ZXTP25020DFL [FAIRCHILD]

Dual BCM PFC Controller; 双BCM PFC控制器
ZXTP25020DFL
型号: ZXTP25020DFL
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Dual BCM PFC Controller
双BCM PFC控制器

功率因数校正 控制器
文件: 总30页 (文件大小:5237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FEB388_002  
FAN9611/FAN9612 400W Interleaved  
Dual BCM PFC Controller  
Evaluation Board User Guide  
Featured Fairchild Product: FAN9611, FAN9612  
Please contact a local Fairchild Sales representative  
for an evaluation board.  
© 2010 Fairchild Semiconductor Corporation  
1
FEB388_FAN9611/12 • Rev. 0.0.2  
 
www.fairchildsemi.com  
Table of Contents  
1. Overview of the Evaluation Board ............................................................................................. 3  
2. Key Features ............................................................................................................................... 4  
3. Specifications.............................................................................................................................. 5  
4. Test Procedure ............................................................................................................................ 6  
5. Schematic.................................................................................................................................... 7  
6. Boost Inductor Specification....................................................................................................... 8  
7. Line Filter Inductor Specifications ............................................................................................. 9  
8. PCB Layout............................................................................................................................... 10  
9. Bill of Materials (BOM) ........................................................................................................... 14  
10.  
Test Results....................................................................................................................... 16  
10.1.  
Startup..................................................................................................................... 16  
Normal Operation ................................................................................................... 18  
Line Transient ......................................................................................................... 20  
Load Transient ........................................................................................................ 21  
Brownout Protection ............................................................................................... 22  
Phase Management ................................................................................................. 24  
Efficiency................................................................................................................ 27  
Harmonic Distortion and Power Factor .................................................................. 28  
10.2.  
10.3.  
10.4.  
10.5.  
10.6.  
10.7.  
10.8.  
11.  
12.  
13.  
References......................................................................................................................... 30  
Ordering Information ........................................................................................................ 30  
Revision History ............................................................................................................... 30  
© 2010 Fairchild Semiconductor Corporation  
2
FEB279_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
The following user guide supports the FAN9611/12 400W evaluation board for  
interleaved boundary-conduction-mode power-factor-corrected supply. It should be used  
in conjunction with the FAN9611/12 datasheet as well as the Fairchild application note  
AN-6086 Design Considerations for Interleaved Boundary-Conduction Mode PFC using  
FAN9612. Although marked FAN9612, the evaluation board can be interchangeably used  
to evaluate either the FAN9611 (10V turn-on threshold) or FAN9612 controller (12.5V  
turn-on threshold). Please visit Fairchild’s website at www.fairchildsemi.com for  
additional information.  
1. Overview of the Evaluation Board  
The FAN9611/12 interleaved dual Boundary-Conduction-Mode (BCM) Power-Factor-  
Correction (PFC) controllers operate two parallel-connected boost power trains 180º out  
of phase. Interleaving extends the maximum practical power level of the control  
technique from about 300W to greater than 800W. Unlike the continuous conduction  
mode (CCM) technique often used at higher power levels, BCM offers inherent zero-  
current switching of the boost diodes (no reverse-recovery losses), which permits the use  
of less expensive diodes without sacrificing efficiency. Furthermore, the input and output  
filters can be smaller due to ripple current cancellation between the power trains and  
doubling of effective switching frequency.  
The advanced line feedforward with peak detection circuit minimizes the output voltage  
variation during line transients. To guarantee stable operation with less switching loss at  
light load, the maximum switching frequency is clamped at 525kHz. Synchronization is  
maintained under all operating conditions.  
Protection functions include output over-voltage, over-current, open-feedback, under-  
voltage lockout, brownout, and redundant latching over-voltage protection. The  
FAN9611/12 is available in a lead-free 16-lead SOIC package.  
This FAN9611/12 evaluation board is a four-layer board designed for 400W (400V/1A)  
rated power. Thanks to the phase management, the efficiency is maintained above 96%  
at low-line and high-line, even down to 10% of the rated output power. Efficiency is  
96.4% at line voltage 115VAC and 98.2% at 230VAC under full-load conditions.  
© 2010 Fairchild Semiconductor Corporation  
3
FEB279_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
2. Key Features  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Low Total Harmonic Distortion, High Power Factor  
180° Out-of-Phase Synchronization  
Automatic Phase Disable at Light Load  
1.8A Sink, 1.0A Source, High-Current Gate Drivers  
Transconductance (gM) Error Amplifier for Reduced Overshoot  
Voltage-Mode Control with (VIN)2 Feed-forward  
Closed-Loop Soft-Start with Programmable Soft-Start Time for Reduced Overshoot  
Minimum Restart Timer Frequency to Avoid Audible Noise  
Maximum Switching Frequency Clamp  
Brownout Protection with Soft Recovery  
Non-Latching OVP on FB Pin and Second-Level Latching Protection on OVP Pin  
Open-Feedback Protection  
Over-Current and Power-Limit Protection for Each Phase  
Low Startup Current: 80µA Typical  
Works with DC, 50Hz to 400Hz AC Inputs  
Figure 1.  
Block Diagram  
© 2010 Fairchild Semiconductor Corporation  
4
FEB279_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
3. Specifications  
This board has been designed and optimized for the following conditions:  
Output Voltage  
(Rated Current)  
Input Voltage Range  
Rated Output Power  
VIN Nominal : 85~264VAC  
VDD Supply : 13VDC~18VDC  
400W  
400V-1A  
Note:  
1. Minimum output voltage during the 20ms hold-up time is 330VDC  
.
ƒ VLINE = 85~264VAC  
ƒ VOUT = 400V  
ƒ fSW > 50kHz  
ƒ Efficiency > 96% down to 20% load (115VAC)  
ƒ Efficiency > 97% down to 20% load (230VAC)  
ƒ PF > 0.99 at full load  
The trip points for the built-in protections are set as below in the evaluation board.  
ƒ
ƒ
ƒ
ƒ
The non-latching output OVP trip point is set at 108% of the nominal output voltage.  
The latching output OVP trip point is set at 117% of the nominal output voltage.  
The line UVLO (brownout protection) trip point is set at 68VAC (10VAC hysteresis).  
The pulse-by-pulse current limit for each MOSFET is set at 9.1A.  
The maximum power limit is set at ~120% of the rated output power. The phase  
management function permits phase shedding/adding ~15% of the nominal output power  
for high line (230VAC). This level can be programmed by modifying MOT resistor (R6).  
© 2010 Fairchild Semiconductor Corporation  
5
FEB279_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
4. Test Procedure  
Before testing the board; DC voltage supply for VDD, AC voltage supply for line input,  
and DC electric load for output should be connected to the board properly.  
1. Supply VDD for the control chip first. It should be higher than 13V (refer to the  
specification for VDD turn-on threshold voltage in Table 1).  
Table 1.  
Specification Excerpt from FAN9611/12 Datasheet  
Symbol  
Supply  
ISTARTUP  
IDD  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Startup Supply Current  
VDD = VON – 0.2V  
80  
3.7  
4
110  
5.2  
6
µA  
mA  
mA  
V
Operating Current  
Output Not Switching  
IDD_DYM  
Dynamic Operating Current  
UVLO Start Threshold, FAN9611  
UVLO Start Threshold, FAN9612  
UVLO Stop Threshold Voltage  
UVLO Hysteresis, FAN9611  
UVLO Hysteresis, FAN9612  
fSW = 50kHz; CLOAD = 2nF  
9.5  
12.0  
7.0  
10.0  
12.5  
7.5  
2.5  
5.0  
10.5  
13.0  
8.0  
VON  
VOFF  
VHYS  
VDD Increasing  
VDD Decreasing  
VON – VOFF  
V
V
V
V
2. Connect the AC voltage (85~265VAC) to start the FAN9611/12 evaluation board.  
Since FAN9611/12 has brownout protection, any input voltages lower than operation  
range triggers the protection.  
3. Change load current (0~1A) and check the operation.  
© 2010 Fairchild Semiconductor Corporation  
6
FEB279_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
5. Schematic  
Figure 2.  
FAN9611/12 400W Evaluation Board Schematic  
© 2010 Fairchild Semiconductor Corporation  
7
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
6. Boost Inductor Specification  
PA2075NL from Pulse Engineering (www.pulseeng.com)  
Core: PQ3230 (Ae=161mm2)  
Bobbin: PQ3230  
Inductance : 200μH  
Figure 3. Boost Inductor used in this FAN9611/12 Evaluation Board  
Table 2.  
Inductor Turns Specifications  
Pin  
Turns  
N1  
5 Æ 3  
30  
Insulation Tape  
N2  
2 Æ 4  
3
Insulation Tape  
© 2010 Fairchild Semiconductor Corporation  
8
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
7. Line Filter Inductor Specifications  
A : 30mm (max)  
B: 15 mm (max)  
C: 11 mm  
D: 13 mm  
E: 15±1 mm  
Electrical Specifications (1kHz, 1V)  
-
-
-
Inductance: 9.0mH (min.) for each winding  
DC resistance: 0.05(max.) for each winding  
Number of turns: 0.9mm×2/30.5 turns for each winding  
Figure 4.  
Line Filter Inductor Specification  
Table 3.  
Materials List  
Material  
Component  
Manufacturer  
UL File Number  
Core  
T22x14x08  
THFN-216  
Core T22x14x08, TOMITA  
Ta Ya Electric Wire Co,. Ltd.  
PACIFIC Wire and cable Co., Ltd.  
Tai-1 Electric Wire & Cable Co., Ltd.  
Jang Shing Wire Co., Ltd.  
E197768  
E201757  
E85640  
UEWN/U  
Wire  
UEWE  
UWY  
E174837  
Solder  
96.5%, Sn, 3%, Ag, 0.5% Cu  
Xin Yuan Co., Ltd.  
© 2010 Fairchild Semiconductor Corporation  
9
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
8. PCB Layout  
Figure 5.  
First Layer (Top Side)  
Figure 6.  
Second Layer (Plane Layer)  
© 2010 Fairchild Semiconductor Corporation  
10  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 7.  
Third Layer (Ground layer)  
Figure 8.  
Fourth Layer (Bottom Side)  
© 2010 Fairchild Semiconductor Corporation  
11  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 9.  
Top Solder Mask  
Figure 10. Bottom Solder Mask  
© 2010 Fairchild Semiconductor Corporation  
12  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 11. Top Silkscreen  
Figure 12. Bottom Silkscreen  
© 2010 Fairchild Semiconductor Corporation  
13  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
9. Bill of Materials (BOM)  
Qty Reference Part Number  
Value  
Description  
Package Type  
Manufacturer  
STD  
2
1
C1 C6  
C2  
0.22µF  
390nF  
CAP, SMD, CERAMIC, 25V, X7R  
CAP, SMD, CERAMIC, 25V, X7R  
805  
805  
STD  
ECWF2W154JA  
Q
2
1
2
C4 C9  
150nF  
470nF  
Cap, 400V, 5%, Polypropylene  
CAP, SMD, CERAMIC,25V, X7R  
Radial, Thru-Hole  
805  
Panasonic-ECG  
STD  
C5  
C7 C11  
C23  
B32914A3474  
470nF,330V  
Cap, 330VAC, 10%, Polypropylene Box, Thru-Hole  
EPCOS  
2
2
C8 C13  
EETUQ2W221E  
220µF  
2.2µF  
Cap, Alum, Elect.  
Radial, Thru-Hole  
1206  
Panasonic  
STD  
C10 C14  
CAP, SMD, CERAMIC, 25V, X7R  
Cap, X series 250VAC, 5%,  
Polypropylene  
Fuhjyyu Electronic  
Industrial Co.  
1
C12  
HQX104K275R2  
0.1µF, 275V  
Box, Thru-Hole  
1
1
1
C15  
C16  
C18  
15n  
0.1µF  
1µF  
CAP, SMD, CERAMIC,25V, X7R  
CAP, SMD, CERAMIC, 25V, X7R  
CAP, SMD, CERAMIC,50V, X5R  
805  
805  
805  
STD  
STD  
STD  
PHE840MB  
6100MB05R17  
Cap, X Type, 275VAC, 10%,  
Polypropylene  
1
C19  
0.1µF  
Box, Axial  
KEMET  
CS85-  
B2GA471KYNS  
2
1
3
C20-21  
C22  
470pF  
1nF  
Cap, Ceramic, 250VAC, 10%, Y5P, Disc, Thru-hole  
TDK Corporation  
STD  
CAP, SMD, CERAMIC, 25V, X7R  
Diode, 600V, 3A, Std recovery  
805  
Fairchild  
Semiconductor  
D1 D3-4  
S3J  
MBR0540  
GBU8J  
SMC  
Fairchild  
Semiconductor  
2
1
D2 D8  
D5  
Diode, Schottky,40V, 500mA  
Bridge Rectifier, 600V, 8A  
DIODE FAST REC 1A 600V  
SOD-123  
Thru-Hole  
SMA  
Fairchild  
Semiconductor  
Fairchild  
Semiconductor  
2
D6-7  
D10  
F1  
ES1J  
DIODE SCHOTTKY 30V 500MA  
SOD-123  
Fairchild  
Semiconductor  
1
MBR0530  
31.8201  
SOD-123  
PCB mount, Thru-  
hole  
1
Fuseholder, 5x20mm, 250VAC, 10A  
Schurter Inc  
Heatsink, 13.4degC/W, TO-220 with  
Tab-Koolclip for Q2-3  
2
H1 H3  
H2  
534202B33453G  
639BG  
1"x0.475"x1.18"  
1.65"x1.5"  
Thru-hole  
Aavid Thermalloy  
Aavid Thermalloy  
TO-220 Heat sink for D5, Bridge  
Rectifier  
1
On Shore  
Technology, Inc.  
1
J1  
ED100/3DS  
Terminal Block, 5MM Vert., 3 Pos.  
J2 J8-18  
J21-22  
3103-1-00-15-00-  
00-08-0  
Probe-pin, Gold, 0.3" x 40mil dia.,  
31mil mounting length  
14  
3
Thru-Hole  
Thru-Hole  
Thru-hole  
Mill-Max  
Custom  
Deltron  
Deltron  
Jumper wire, #16, Insulated, for  
current probe measurement  
J3-5  
Banana Jack, .175, Horizontal,  
Insulated_RED  
2
J6 J19  
J7 J20  
571-0500  
571-0100  
Banana Jack, .175, Horizontal,  
Insulated_BLK  
2
Thru-hole  
SEN HUEI  
INDUSTRIAL  
CO.,LTD  
2
L3-4  
TRN-0197  
Common Mode Choke  
Thru-Hole  
2
2
Q1 Q4  
Q2-3  
ZXTP25020DFL  
FDPF18N50  
Transistor, PNP, 20V, 1.5A  
SOT-23  
TO-220  
Zetex  
MOSFET, NCH, 500V, 18A, 0.265  
Ohm  
Fairchild  
Semiconductor  
Continued on following page…  
© 2010 Fairchild Semiconductor Corporation  
14  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
BOM (Continued)  
Qty Reference  
Part Number  
Value  
Description  
RES, SMD, 1/8W  
Package Type Manufacturer  
2
6
R1-2  
47k  
805  
805  
STD  
STD  
R3 R9 R27-  
28 R33-34  
665kΩ  
RES, SMD, 1/8W  
1
1
1
2
2
2
1
1
1
1
1
R4  
R5  
332kΩ  
68kΩ  
100kΩ  
340kΩ  
100Ω  
15Ω  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/2W  
Thermister, 5Ω  
805  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
EPCOS  
STD  
805  
R6  
805  
R7-8  
R10 R20  
R11-12  
R15  
805  
805  
805  
DNP  
49.9Ω  
0
805  
R16  
805  
R17  
2010  
Thru-Hole  
805  
R18  
B57237S0509M000  
5Ω  
R19  
14.7kΩ  
RES, SMD, 1/8W  
1 inserted  
into each  
corner of  
PCB  
LOCKING BOARD SUPPORT 3/4",  
1 for each PCB corner  
Richco Plastic  
Company  
4
LCBS-12-01  
3103  
Standoff  
Washer  
Nylon Shoulder Washer #4x0.187",  
Black  
Keystone  
Electronics  
1
1 at D5, H2  
1
1
1 at D5, H2  
1 at D5, H2  
MLWZ 003  
HNZ440  
Split Lock Washer, Metric M 3 Zinc Washer  
B&F Fastener  
B&F Fastener  
Nut Hex, #4-40 Zinc  
Nut  
Screw Machine Phillips, 4-40x1/2"  
Zinc  
1
1 at D5, H2  
PMS 440 0050 PH  
Screw  
B&F Fastener  
FAN9611/12  
FEB388 Rev. 0.0.1  
Fairchild  
Semiconductor  
1
2
6
PWB  
R1-2  
FEB388 PWB, 9.8" x 6.8"  
PWB  
805  
47kΩ  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
STD  
R3 R9 R27-  
28 R33-34  
665kΩ  
805  
STD  
1
1
1
2
2
2
2
1
1
R4  
R5  
332kΩ  
68kΩ  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
RES, SMD, 1/2W  
RES, SMD, 1/8W  
RES, SMD, 1/8W  
805  
805  
805  
805  
805  
805  
1812  
805  
805  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
R6  
100kΩ  
340kΩ  
100Ω  
15Ω  
R7-8  
R10 R20  
R11-12  
R13-14  
R15  
0.022Ω  
DNP  
R16  
49.9Ω  
Note:  
2. DNP = Do not populate. STD = standard components  
© 2010 Fairchild Semiconductor Corporation  
15  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10. Test Results  
10.1. Startup  
Figure 13 and Figure 14 show the startup operation at 115VAC line voltage for no-load and  
full-load condition, respectively. Due to the closed-loop soft-start, almost no overshoot is  
observed for no-load startup and full-load startup.  
Gate Drive 1  
COMP  
Voltage  
Output  
Voltage  
Line  
Current  
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),  
CH3: Output Voltage (200V/div), CH4: Line Current (5A/div), Time (100ms/div)  
Figure 13. No-Load Startup at 115VAC  
Gate Drive 1  
COMP  
Voltage  
Output  
Voltage  
Line  
Current  
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),  
CH3: Output Voltage (200V/div), CH4: Line Current (10A/div), Time (200ms/div)  
Figure 14. Full-Load Startup at 115VAC  
© 2010 Fairchild Semiconductor Corporation  
16  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 15 and Figure 16 show the startup operation at 230VAC line voltage for no-load and  
full-load conditions, respectively. Due to the closed-loop soft-start, almost no overshoot is  
observed for no-load startup and full-load startup.  
Gate Drive 1  
COMP  
Voltage  
Output  
Voltage  
Line  
Current  
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),  
CH3: Output Voltage (200V/div), CH4: Line Current (5A/div), Time (100ms/div)  
Figure 15. No-Load Startup at 230VAC  
Gate Drive 1  
COMP  
Voltage  
Output  
Voltage  
Line  
Current  
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),  
CH3: Output Voltage (200V/div), CH4: Line Current (5A/div), Time (100ms/div)  
Figure 16. Full-Load Startup at 230VAC  
© 2010 Fairchild Semiconductor Corporation  
17  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.2. Normal Operation  
Figure 17 and Figure 18 show the two inductor currents and sum of two inductor currents  
at 115VAC line voltage and full-load conditions. The sum of the inductor currents has  
relatively small ripple due to the ripple cancellation of interleaving operation.  
IL1  
IL2  
IL1 + IL2  
CH3: Inductor L1 Current (5A/div), CH4: Inductor L2 Current (5A/div),  
F1: Sum of Two Inductor Current (5A/div), Time (2ms/div)  
Figure 17. Inductor Current Waveforms at Full-Load and 115VAC  
IL1  
IL2  
IL1 + IL2  
CH3: Inductor L1 Current (5A/div), CH4: Inductor L2 Current (5A/div),  
F1: Sum of Two Inductor Current (5A/div), Time (5μs/div)  
Figure 18.  
Zoom of Inductor Current Waveforms of Figure 17 at Peak of Line Voltage  
© 2010 Fairchild Semiconductor Corporation  
18  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 19 and Figure 20 show the two inductor currents and sum of two  
inductor currents at 230VAC line voltage and full-load conditions. The  
sum of the inductor currents has relatively small ripple due to the ripple  
cancellation of interleaving operation.  
IL1  
IL2  
I
L1 + IL2  
CH3: Inductor L1 Current (2A/div), CH4: Inductor L2 Current (2A/div),  
F1: Sum of Two Inductor Current (2A/div), Time (2ms/div)  
Figure 19. Inductor Current Waveforms at Full-Load and 230VAC  
IL1  
IL2  
IL1 + IL2  
CH3: Inductor L1 Current (2A/div), CH4: Inductor L2 Current (2A/div),  
F1: Sum of Two Inductor Current (2A/div), Time (2μs/div)  
Figure 20. Zoom of Inductor Current Waveforms of Figure 19 at Peak of Line Voltage  
© 2010 Fairchild Semiconductor Corporation  
19  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.3. Line Transient  
Figure 21 and Figure 22 show the line transient operation and minimal effect on output  
voltage due to the line feed-forward function. When the line voltage changes from  
230VAC to 115VAC, about 20V (5% of nominal output voltage) voltage undershoot is  
observed. When the line voltage changes from 115VAC to 230VAC, almost no voltage  
undershoot is observed.  
Rectified  
Line  
Voltage  
VCOMP  
VOUT  
Line  
Current  
CH1: Rectified Line Voltage (100V/div), CH2: COMP Voltage (2V/div),  
CH3: Output Voltage (100V/div), CH4: Line Current (5A/div), Time (50ms/div)  
Figure 21. Line Transient Response at Full-Load Condition (230VAC Æ115VAC  
)
Rectified  
Line  
Voltage  
VCOMP  
VOUT  
Line  
Current  
CH1: Rectified Line Voltage (100V/div), CH2: COMP Voltage (2V/div),  
CH3: Output Voltage (100V/div), CH4: Line Current (5A/div), Time (50ms/div)  
Figure 22. Line Transient Response at Full-Load Condition (115VAC Æ230VAC  
)
© 2010 Fairchild Semiconductor Corporation  
20  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.4. Load Transient  
Figure 23 and Figure 24 show the load-transient operation. When the output load changes  
from 100% to 0%, 26V (6.5% of nominal output voltage) voltage overshoot is observed.  
When the output load changes from 0% to 100%, 43V (11% of nominal output voltage)  
voltage undershoot is observed.  
VOUT  
Rectified  
Line  
Voltage  
Line  
Current  
CH2: Rectified line voltage (100V/div), CH3: Output voltage (100V/div),  
CH4: Line current (5A/div), Time (50ms/div)  
Figure 23. Load Transient Response at 230VAC (Full Load Æ No Load)  
VOUT  
Rectified  
Line  
Voltage  
Line  
Current  
CH2: Rectified Line Voltage (100V/div), CH3: Output Voltage (100V/div),  
CH4: Line Current (5A/div), Time (50ms/div)  
Figure 24. Load Transient Response at 230VAC (No Load Æ Full Load)  
© 2010 Fairchild Semiconductor Corporation  
21  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.5. Brownout Protection  
Figure 25 and Figure 26 show the startup operation at slowly increasing line voltage.  
The power supply starts up when the line voltage reaches around 78VAC  
.
Line  
Voltage  
Gate  
Drive 1  
Line  
Current  
CH1: Line Voltage (100V/div), CH2: Gate Drive 1 Voltage (20V/div),  
CH4: Line Current (5A/div), Time (200ms/div)  
Figure 25. Startup Slowly Increasing the Line Voltage  
Line  
Voltage  
Gate  
Drive 1  
Line  
Current  
CH1: Line Voltage (100V/div), CH2: Gate Drive 1 Voltage (20V/div),  
CH4: Line Current (5A/div), Time (20ms/div)  
Figure 26. Shutdown Slowly Decreasing the Line Voltage  
© 2010 Fairchild Semiconductor Corporation  
22  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 27 and Figure 28 show the shutdown operation at slowly decreasing line voltage.  
The power shuts down when line voltage drops below 68VAC.  
Line  
Voltage  
Gate  
Drive 1  
Line  
Current  
CH1: Line Voltage (100V/div), CH2: Gate Drive 1 Voltage (20V/div),  
CH4: Line Current (5A/div), Time (200ms/div)  
Figure 27. Startup Slowly Increasing the Line Voltage  
Line  
Voltage  
Gate  
Drive 1  
Line  
Current  
CH1: Line Voltage (100V/div), CH2: Gate Drive 1 Voltage (20V/div),  
CH4: Line Current (5A/div), Time (20ms/div)  
Figure 28. Shutdown Slowly Decreasing the Line Voltage  
© 2010 Fairchild Semiconductor Corporation  
23  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.6. Phase Management  
Figure 29 and Figure 30 show the phase-shedding waveforms. As observed, when the gate  
drive signal of Channel 2 is disabled, the duty cycle of Channel 1 gate drive signal is  
doubled to minimize the line current glitch and guarantee smooth transient.  
Gate  
Drive 1  
Gate  
Drive 2  
IL1  
IL2  
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),  
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5ms/div)  
Figure 29. Phase-Shedding Operation  
Gate  
Drive 1  
Gate  
Drive 2  
IL1  
IL2  
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),  
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5µs/div)  
Figure 30. Phase-Shedding Operation (Zoomed-in Timescale)  
© 2010 Fairchild Semiconductor Corporation  
24  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 31 and Figure 32 show the phase-adding waveforms. As observed, just before the  
channel 2 gate drive signal is enabled, the duty cycle of Channel 1 gate drive signal is  
halved to minimize the line current glitch and guarantee smooth transient. In Figure 32,  
the first pulse of gate drive 2 during the phase-adding operation is skipped to ensure 180  
degree out-of-phase interleaving operation during transient.  
Gate  
Drive 1  
Gate  
Drive 2  
IL1  
IL2  
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),  
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5ms/div)  
Figure 31. Phase-Adding Operation  
Gate  
Drive 1  
Gate  
Drive 2  
IL1  
IL2  
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),  
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5µs/div)  
Figure 32. Phase-Adding Operation (Zoomed-in Timescale)  
© 2010 Fairchild Semiconductor Corporation  
25  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 33 and Figure 34 show the sum of two-inductor current and line current for  
phase shedding and adding, respectively. The small line-current glitch during phase  
management exists because the actual average value of inductor current is less than half  
of the peak value due to the negative portion of inductor current, as shown in Figure 30  
and Figure 32. However, the phase management takes place at relatively light-load  
condition and the effect of this phenomenon is negligible.  
Gate  
Drive 1  
Gate  
Drive 2  
IL1 + IL1  
Line  
Current  
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),  
CH3: Sum of Two Inductor Currents (1A/div), CH4: Line Current (1A/div), Time (5ms/div)  
Figure 33. Phase Shedding and Line Current  
Gate  
Drive 1  
Gate  
Drive 2  
IL1 + IL1  
Line  
Current  
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),  
CH3: Sum of Two Inductor Currents (1A/div), CH4: Line Current (1A/div), Time (5ms/div)  
Figure 34. Phase Adding Operation and Line Current  
© 2010 Fairchild Semiconductor Corporation  
26  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.7. Efficiency  
Figure 35 through Figure 38 show the measured efficiency of the 400W evaluation board  
with and without phase management at input voltages of 115VAC and 230VAC. Phase  
management improves the efficiency at light load by up to 7%, depending on the line  
voltage and load condition. The phase management thresholds on the test evaluation board  
are around 15% of the nominal output power (Figure 35 and Figure 36). They can be  
adjusted upwards to achieve a more desirable efficiency profile (Figure 37 and Figure 38)  
by increasing the MOT resistor.  
Since phase shedding reduces the switching loss by effectively decreasing the switching  
frequency at light load, a greater efficiency improvement is achieved at 230VAC, where  
switching losses dominate. Relatively less improvement is obtained at 115VAC since the  
MOSFET is turned on with zero voltage and switching losses are negligible.  
The efficiency measurements include the losses in the EMI filter as well as cable loss;  
however, the power consumption of the control IC (<< 1W) is not included since an  
external power supply is used for VDD.  
FAN9612 Efficiency vs. Load  
(230 VAC Input, 400 VDC Output, 400W)  
100  
95  
With Phase Management  
Without Phase Management  
90  
85  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Output Power (%)  
Figure 35. Measured Efficiency at 115VAC  
(Default Thresholds)  
Figure 36. Measured Efficiency at 230VAC  
(Default Thresholds)  
FAN9612 Efficiency vs. Load  
FAN9612 Efficiency vs. Load  
(115 VAC Input, 400 VDC Output, 400W)  
(230 VAC Input, 400 VDC Output, 400W)  
100  
100  
95  
95  
With Phase Management  
With Phase Management  
90  
90  
Without Phase Management  
Without Phase Management  
85  
85  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Output Power (%)  
Output Power (%)  
Figure 37.  
Measured Efficiency at 115VAC  
(Adjusted Thresholds)  
Figure 38.  
Measured Efficiency at 230VAC  
(Adjusted Thresholds)  
© 2010 Fairchild Semiconductor Corporation  
27  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
10.8. Harmonic Distortion and Power Factor  
Figure 39 and Figure 40 compare the measured harmonic current with EN61000 class D  
and C, respectively, at input voltages of 115VAC and 230VAC. Class D is applied to TV and  
PC power, while Class C is applied to lighting applications. As can be observed, both  
regulations are met with sufficient margin.  
EN61000 Class-D  
1.4  
1.2  
1.0  
EN61000-D  
0.8  
115VAC  
0.6  
230VAC  
0.4  
0.2  
0.0  
3
7
11  
15  
19  
23  
27  
31  
35  
39  
Harmonic order  
Figure 39. Measured Harmonic Current and EN61000 Class-D Regulation  
EN61000 Class-C  
30%  
25%  
EN61000-C  
20%  
115VAC  
15%  
230VAC  
10%  
5%  
0%  
3
7
11  
15  
19  
23  
27  
31  
35  
39  
Harmonic order  
Figure 40. Measured Harmonic Current and EN61000 Class-C Regulation  
© 2010 Fairchild Semiconductor Corporation  
28  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
Figure 41 shows the measured power factors at input voltage of 115VAC and 230VAC. As  
observed, high power factor above 0.98 is obtained from 100% to 50% load. Table 4 shows  
the total harmonic distortion at input voltages of 115VAC and 230VAC.  
FAN9612 PowerFactorvs. Load  
Figure 41. Measured Power Factor  
Total Harmonic Distortion (THD)  
Table 4.  
Line Voltage  
115VAC  
100 % Load  
9.68%  
75 % Load  
11.82%  
50 % Load  
25 % Load  
24.08%  
15.87%  
15.30%  
11.36%  
12.95%  
16.81%  
230VAC  
© 2010 Fairchild Semiconductor Corporation  
29  
FEB388_FAN9611/12 • Rev. 0.0.2  
www.fairchildsemi.com  
11. References  
Datasheet: FAN9611 / FAN9612 – Interleaved Dual BCM PFC Controllers  
AN-6086 – Design Consideration for interleaved Boundary Conduction Mode  
(BCM) PFC using FAN9612”  
12. Ordering Information  
Orderable Part Number  
FEB388  
Description  
FAN9611/FAN9612 400W Evaluation Board  
13. Revision History  
Date  
Rev. #  
0.0.1  
Description  
August 2010  
August 2010  
Initial release  
0.0.2  
Added PCB layout figures  
© 2010 Fairchild Semiconductor Corporation  
30  
FEB388_FAN9611/12 • Rev. 0.0.2  

相关型号:

ZXTP25020DFLTA

20V, SOT23, PNP low power transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXTP25020DFLTA

20V, SOT23, PNP low power transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

ZXTP25020DG

20V PNP high gain transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXTP25020DG

20V PNP high gain transistor in SOT223

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

ZXTP25020DGTA

20V PNP high gain transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXTP25020DGTA

20V PNP high gain transistor in SOT223

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

ZXTP25020DZ

20V PNP high gain transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXTP25020DZ

20V PNP high gain transistor in SOT89

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES

ZXTP25020DZTA

20V PNP high gain transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXTP25020DZTA

20V PNP high gain transistor in SOT89

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
DIODES