FR9888CSECTR [FITIPOWER]

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter;
FR9888CSECTR
型号: FR9888CSECTR
厂家: Fitipower    Fitipower
描述:

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter

文件: 总13页 (文件大小:1392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
fitipower integrated technology lnc.  
FR9888C  
23V, 3.5A, 340KHz Synchronous Step-Down  
DC/DC Converter  
Description  
Features  
The FR9888C is a synchronous step-down DC/DC  
converter that provides wide 4.5V to 23V input  
voltage range and 3.5A continuous load current  
capability.  
High Efficiency up to 96%  
Low Rds(on) Integrated Power MOSFET  
(110/80)  
Wide Input Voltage Range: 4.5V to 23V  
Adjustable Output Voltage Range: 0.925V to 20V  
3.5A Output Current  
The  
FR9888C  
fault  
protection  
includes  
cycle-by-cycle current limit, input UVLO, output over  
voltage protection and thermal shutdown. Besides,  
adjustable soft-start function prevents inrush current  
at turn-on. This device uses current mode control  
scheme which provides fast transient response.  
In shutdown mode, the supply current is less than  
1μA.  
Fixed 340kHz Switching Frequency  
Current Mode Operation  
External Compensation Function  
Adjustable Soft-Start  
Cycle-by-Cycle Current Limit  
Input Under Voltage Lockout  
Over-Temperature Protection with Auto Recovery  
<1μA Shutdown Current  
The FR9888C is available in SOP-8 exposed pad  
package, provides a very compact system solution  
and good thermal conductance.  
SOP-8 Exposed Pad Package  
Applications  
Set-Top-Box (STB)  
LCD Displays, TV  
Distributed Power System  
XDSL Modem  
Pin Assignments  
Ordering Information  
SP Package (SOP-8 Exposed Pad)  
FR9888C□□□  
TR: Tape/Reel  
8
7
6
5
BST  
VIN  
1
2
SS  
C: Green  
9
PAD  
SHDN  
COMP  
FB  
Package Type  
SP: SOP-8 (Exposed Pad)  
SE: SOP-8 (Exposed Pad) (Note 1)  
3
4
LX  
GND  
SE Package (SOP-8 Exposed Pad)  
8
7
6
5
BST  
VIN  
1
2
SS  
SHDN  
COMP  
FB  
9
PAD  
3
4
LX  
GND  
Note 1: Exposed pad is small pad.  
Figure 1. Pin Assignment of FR9888C  
FR9888C-0.3-MAR-2014  
1
fitipower integrated technology lnc.  
FR9888C  
Typical Application Circuit  
C4  
0.1μF  
R3  
100kΩ  
7
1
L1  
10μH  
SHDN  
BST  
LX  
2
6
3
5
VIN  
VOUT  
3.3V  
VIN  
4.5V to 23V  
C1  
10μF  
CERAMIC x 2  
C6  
(optional)  
C2  
22μF  
R1  
FR9888C  
30.9kΩ  
CERAMIC x 2  
FB  
COMP  
C5  
4.7nF  
SS  
8
GND  
4
C7  
(optional)  
R2  
12kΩ  
R4  
8.2kΩ  
C3  
0.1μF  
Figure 2. CIN /COUT use Ceramic Capacitors Application Circuit  
C4  
0.1μF  
R3  
100kΩ  
7
1
L1  
10μH  
SHDN  
BST  
2
3
5
VIN  
VOUT  
3.3V  
LX  
VIN  
4.5V to 23V  
C6  
(optional)  
C2  
100μF  
EC x 1  
FR9888C  
R1  
30.9kΩ  
C1  
100μF  
EC x 1  
C8  
0.1μF  
CERAMIC x 1  
6
COMP  
FB  
C5  
4.7nF  
SS  
8
GND  
4
C7  
(optional)  
R2  
12kΩ  
R4  
8.2kΩ  
C3  
0.1μF  
Figure 3. CIN /COUT use Electrolytic Capacitors Application Circuit  
VIN=12V, the recommended BOM list is as below.  
VOUT  
1.2V  
1.8V  
3.3V  
5V  
R1  
R2  
R4  
C5  
L1  
4.7μH  
6.8μH  
10μH  
10μH  
4.99kΩ  
4.99kΩ  
30.9kΩ  
30.9kΩ  
16.5kΩ  
5.23kΩ  
12kΩ  
3.3kΩ  
5.6kΩ  
8.2kΩ  
10kΩ  
4.7nF  
4.7nF  
4.7nF  
4.7nF  
6.98kΩ  
Table 1. Recommended Component Values  
FR9888C-0.3-MAR-2014  
2
fitipower integrated technology lnc.  
FR9888C  
Functional Pin Description  
Pin Name  
Pin No.  
Pin Function  
High Side Gate Drive Boost Pin. A capacitance between 10nF~100nF must be connected from this pin  
to LX. It can boost the gate drive to fully turn on the internal high side NMOS.  
BST  
1
2
3
Power Supply Input Pin. Placed input capacitors as close as possible from VIN to GND to avoid noise  
influence.  
VIN  
LX  
Power Switching Node. Connect an external inductor to this switching node.  
Ground Pin. Connect this pin to exposed pad.  
GND  
4
Voltage Feedback Input Pin. Connect FB and VOUT with a resistive voltage divider. This IC senses  
feedback voltage via FB and regulates it at 0.925V.  
FB  
5
6
7
Compensation Pin. This pin is used to compensate the regulation control loop. Connect a series RC  
network from COMP pin to GND.  
COMP  
 ꢀꢁꢂ  
Enable input pin. Pull high to turn on IC, and pull low to turn off IC. Connect VIN with a 100kΩ resistor  
for self-startup.  
Soft-Start Pin. This pin controls the soft-start period. Connect a capacitor from SS to GND to set the  
soft start period.  
SS  
8
9
Exposed  
Pad  
Ground pin. The exposed pad must be soldered to a large PCB area and connected to GND for  
maximum power dissipation  
Block Diagram  
VIN  
ISEN  
Internal  
Regulator  
OTP  
OVP  
VCC  
UVLO  
&
POR  
VCC  
SHDN  
1M  
Oscillator  
BST  
High-Side  
MOSFET  
6µA  
FB  
S
R
Driver  
Logic  
PWM  
Control  
Current  
Comp  
LX  
OTP  
OVP  
SS  
UVLO  
Low-Side  
MOSFET  
0.925V  
Current  
Limit  
COMP  
GND  
Figure 4. Block Diagram of FR9888C  
FR9888C-0.3-MAR-2014  
3
fitipower integrated technology lnc.  
FR9888C  
Absolute Maximum Ratings (Note 2)  
Supply Voltage VIN ------------------------------------------------------------------------------------------- -0.3V to +25V  
Enable Voltage ꢁHꢂꢃ -------------------------------------------------------------------------------------  
-0.3V to +25V  
LX Voltage VLX ------------------------------------------------------------------------------------------------ -1V to VIN+0.3V  
BST Voltage VBST --------------------------------------------------------------------------------------------- VLX-0.3V to VLX+6V  
All Other Pins Voltage --------------------------------------------------------------------------------------- -0.3V to +6V  
Maximum Junction Temperature (TJ) -------------------------------------------------------------------- +150°C  
Storage Temperature (TS) ---------------------------------------------------------------------------------- -65°C to +150°C  
Lead Temperature (Soldering, 10sec.) ------------------------------------------------------------------ +260°C  
Power Dissipation @TA=25°C, (PD) (Note 3)  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 2.08W  
● Package Thermal Resistance, (θJA)  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 60°C/W  
● Package Thermal Resistance, (θJC)  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 15°C/W  
Note 2: Stresses beyond this listed under “Absolute Maximum Ratings" may cause permanent damage to the device.  
Note 3: PCB heat sink copper area=10mm2.  
Recommended Operating Conditions  
Supply Voltage VIN ------------------------------------------------------------------------------------------ +4.5V to +23V  
Operation Temperature Range -------------------------------------------------------------------------- -40°C to + 85°C  
FR9888C-0.3-MAR-2014  
4
fitipower integrated technology lnc.  
FR9888C  
Electrical Characteristics  
(VIN=12V, TA=25°C, unless otherwise specified.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VIN Input Supply Voltage  
VIN  
IDDQ  
4.5  
23  
V
mA  
μA  
V
ꢁHꢂꢃ=2V, VFB=1.0V  
ꢁHꢂꢃ=0V  
VIN Quiescent Current  
2.5  
VIN Shutdown Supply Current  
ISD  
1
Feedback Voltage  
VFB  
4.5VVIN23V  
0.9  
0.925  
1.5  
0.95  
Feedback OVP Threshold Voltage  
High-Side MOSFET RDS(ON) (Note 4)  
Low-Side MOSFET RDS(ON) (Note 4)  
High-Side MOSFET Leakage Current  
High-Side MOSFET Current Limit (Note 4)  
Low-Side MOSFET Current Limit (Note 4)  
VOVP  
V
RDS(ON)  
RDS(ON)  
ILX(leak)  
ILIMIT(HS)  
ILIMIT(LS)  
110  
80  
mΩ  
mΩ  
μA  
A
ꢁHꢂꢃ=0V, VLX=0V  
Minimum Duty  
10  
4
5
From Drain to Source  
A
1.5  
3.5  
Current sense to COMP Transconductance  
(Note 4)  
A/V  
μA/V  
V/V  
kHz  
kHz  
%
Δ ICOMP = ±10μA  
Error Amplifier Transconductance (Note 4)  
Error Amplifier Voltage Gain (Note 4)  
Oscillation frequency  
1600  
400  
340  
110  
90  
FOSC  
290  
420  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
FOSC(short) VFB=0V  
DMAX  
TMIN  
VFB=0.8V  
Minimum On Time (Note 4)  
Input UVLO Threshold  
100  
4.3  
ns  
VUVLO(Vth) VIN Rising  
VUVLO(HYS)  
V
Under Voltage Lockout Threshold  
Hysteresis  
400  
mV  
Soft-Start Current  
Soft-Start Period  
ISS  
VSS=0V  
6
μA  
ms  
V
TSS  
CSS=0.1μF  
15  
ꢁHꢂꢃ(ꢄꢅ  
0.4  
ꢁHꢂꢃ Input Low Voltage  
ꢁHꢂꢃ Input High Voltage  
ꢁHꢂꢃ(Hꢅ  
ꢁHꢂꢃ  
TSD  
2
V
ꢁHꢂꢃ=2V  
2
μA  
°C  
ꢁHꢂꢃ Input Current  
Thermal Shutdown Threshold (Note 4)  
Note 4: Not production tested.  
170  
FR9888C-0.3-MAR-2014  
5
fitipower integrated technology lnc.  
FR9888C  
Typical Performance Curves  
VIN=12V, VOUT=3.3ꢀ, C1=10μF× 2, C2=22μF×2, ꢄ1=10μH, TA=+25°C, unless otherwise noted.  
VOUT = 3.3V  
VOUT = 1.2V  
Figure 5. Efficiency vs. Load Current  
Figure 6. Efficiency vs. Load Current  
VOUT = 5V  
Figure 7. Efficiency vs. Load Current  
Figure 8. Current Limit vs. Temperature  
Figure 9. Feedback Voltage vs. Temperature  
Figure 10. Switching Frequency vs. Temperature  
FR9888C-0.3-MAR-2014  
6
fitipower integrated technology lnc.  
FR9888C  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=3.3ꢀ, C1=10μF×2, C2=22μF×2, ꢄ1=10μH, TA=+25°C, unless otherwise noted.  
IOUT=0A  
IOUT=3.5A  
VIN 10mV/div.  
VOUT 20mV/div.  
VIN 100mV/div.  
IL 1A/div.  
VOUT 20mV/div.  
IL  
1A/div.  
VLX 5V/div.  
VLX 5V/div.  
s/div.  
Figure 11. Steady State Waveform  
2μs/div.  
Figure 12. Steady State Waveform  
IOUT=0A  
IOUT=3.5A  
VIN 5V/div.  
VOUT 1V/div.  
VIN 5V/div.  
VOUT 1V/div.  
IL  
1A/div.  
IL  
1A/div.  
VLX 5V/div.  
VLX 5V/div.  
40ms/div.  
40ms/div.  
Figure 13. Power On through VIN Waveform  
Figure 14. Power On through VIN Waveform  
IOUT=0A  
IOUT=3.5A  
VIN 10V/div.  
VOUT 1V/div.  
VIN 10V/div.  
VOUT 1V/div.  
IL  
1A/div.  
IL  
1A/div.  
VLX 5V/div.  
VLX 5V/div.  
10ms/div.  
Figure 16. Power Off through VIN Waveform  
20ms/div.  
Figure 15. Power Off through VIN Waveform  
FR9888C-0.3-MAR-2014  
7
fitipower integrated technology lnc.  
FR9888C  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=3.3ꢀ, C1=10μF×2, C2=22μF×2, ꢄ1=10μH, TA=+25°C, unless otherwise noted.  
IOUT=3.5A  
IOUT=0A  
5V/div.  
5V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT 1V/div.  
VOUT 1V/div.  
IL  
1A/div.  
IL  
1A/div.  
VLX 5V/div.  
VLX 5V/div.  
4ms/div.  
4ms/div.  
Figure 18. Power On through ꢁHꢂꢃ Waveform  
Figure 17. Power On through ꢁHꢂꢃ Waveform  
IOUT=0A  
IOUT=3.5A  
5V/div.  
 ꢀꢁꢂ  
5V/div.  
 ꢀꢁꢂ  
VOUT 1V/div.  
VOUT 1V/div.  
IL 1A/div.  
IL  
1A/div.  
5V/div.  
VLX 5V/div.  
VLX  
80μs/div.  
4ms/div.  
Figure 19. Power Off through ꢁHꢂꢃ Waveform  
Figure 20. Power Off through ꢁHꢂꢃ Waveform  
VOUT 200mV/div.  
VOUT 1V/div.  
IL  
2A/div.  
IL  
1A/div.  
400μs/div.  
Figure 22. Short Circuit Test  
400μs/div.  
Figure 21. Load Transient Waveform  
FR9888C-0.3-MAR-2014  
8
fitipower integrated technology lnc.  
FR9888C  
Function Description  
Input Under Voltage Lockout  
The FR9888C is a high efficiency and constant  
frequency current mode step-down synchronous  
When the FR9888C is power on, the internal  
circuits will be inactive until VIN voltage exceeds the  
input UVLO threshold voltage. And the regulator  
will be disabled when VIN is below the input UVLO  
threshold voltage. The hysteretic of the UVLO  
comparator is 250mV (typ).  
DC/DC converter.  
It has integrated high-side  
(110mΩ, typ) and low-side (80mΩ, typꢅ power  
switches, and provides 3.5A continuous load current.  
It regulates input voltage from 4.5V to 23V, and down  
to an output voltage as low as 0.925V.  
Control Loop  
Short Circuit Protection  
During normal operation, the output voltage is  
sensed at FB pin by a resistive voltage divider and  
amplified through the error amplifier. The voltage of  
error amplifier output pin -- COMP is compared to  
the switch current to control the RS latch. At each  
cycle, the high side NMOS will be turned on when  
the oscillator sets the RS latch and turned off when  
current comparator resets the RS latch. When the  
load current increases, the FB pin voltage will drop  
below 0.925V, and it will cause the COMP voltage  
increasing until average inductor current arrives at  
new load current.  
The FR9888C provides short circuit protection  
function to prevent the device damage from short  
condition. When the short condition occurs and  
the feedback voltage drops lower than 0.4V, the  
oscillator frequency will be reduced to 110kHz to  
prevent the inductor current increasing beyond the  
current limit. In the meantime, the current limit will  
also be reduced to lower the short current. Once  
the short condition is removed, the frequency and  
current limit will return to normal.  
Over Current Protection  
The FR9888C over current protection function is  
implemented by using cycle-by-cycle current limit  
architecture. The inductor current is monitored by  
measuring the high-side MOSFET series sense  
resistor voltage. When the load current increases,  
the inductor current will also increase. When the  
peak inductor current reaches the current limit  
threshold, the output voltage will start to drop.  
When the over current condition is removed, the  
output voltage will return to the regulated value.  
Enable  
The FR9888C ꢁHꢂꢃ pin provides digital control to  
turn on/turn off the regulator. When the voltage of  
ꢁHꢂꢃ exceeds the threshold voltage, the regulator  
will start the soft start function. If the ꢁHꢂꢃ pin  
voltage is below the shutdown threshold voltage, the  
regulator will turn into shutdown mode and shutdown  
current will be smaller than 1μA. For auto start-up  
operation, connect ꢁHꢂꢃ to ꢀꢆꢃ through a 100KΩ  
resistor.  
Over Temperature Protection  
The FR9888C incorporates an over temperature  
protection circuit to protect itself from overheating.  
When the junction temperature exceeds the thermal  
shutdown threshold temperature, the regulator will  
be shutdown. And the hysteretic of the over  
temperature protection is 60°C (typ).  
Soft Start  
The FR9888C employs adjustable soft start function  
to reduce input inrush current during start up. When  
the device turns on, a 6μA current will begin to  
charge the capacitor which is connected from SS pin  
to GND. The equation for the soft start time is  
shown as below:  
Compensation  
The stability of the feedback circuit is controlled by  
 
Cꢁꢁ nF ꢇꢀFꢈ  
 
Tꢁꢁ ms =  
COMP pin.  
application circuit is optimized for particular  
requirements. If different conversions are  
The compensation value of the  
 
ꢁꢁ μA  
The VFB voltage is 0.925V and the ISS current is 6μA.  
ꢆf a 0.1μF capacitor is connected from ꢁꢁ pin to  
GND, the soft start time will be 15ms.  
required, some of the components may need to be  
changed to ensure stability.  
Output Over Voltage Protection  
When the FB pin voltage exceeds 1.5V, the output  
over voltage protection function will be triggered and  
turn off the high-side/low-side MOSFET.  
FR9888C-0.3-MAR-2014  
9
fitipower integrated technology lnc.  
FR9888C  
Application Information  
Output Voltage Setting  
A low ESR capacitor is required to keep the noise  
minimum.  
Ceramic capacitors are better, but  
The output voltage VOUT is set by using a resistive  
divider from the output to FB. The FB pin regulated  
voltage is 0.925V. Thus the output voltage is:  
tantalum or low ESR electrolytic capacitors may  
also suffice. When using tantalum or electrolytic  
capacitors, a 0.1μF ceramic capacitor should be  
placed as close to the IC as possible.  
R1  
ꢉꢊT=0.925ꢀꢇ 1+  
R2  
Output Capacitor Selection  
Table 2 lists recommended values of R1 and R2 for  
most used output voltage.  
The output capacitor is used to keep the DC output  
voltage and supply the load transient current.  
When operating in constant current mode, the  
output ripple is determined by four components:  
Table 2 Recommended Resistance Values  
VOUT  
5V  
R1  
R2  
30.9kΩ  
30.9kΩ  
4.99kΩ  
4.99kΩ  
6.98kΩ  
12kΩ  
    
    
RꢆPPꢄꢌ t =ꢀRꢆPPꢄꢌ(Cꢅ t +ꢀRꢆPPꢄꢌ(ꢌꢁR(tꢅ  
3.3V  
1.8V  
1.2V  
+ꢀRꢆPPꢄꢌ(ꢌꢁꢄꢅ(tꢅ+ꢀꢃꢉꢆꢁ(tꢅ  
5.23kΩ  
16.5kΩ  
The following figures show the form of the ripple  
contributions.  
Place resistors R1 and R2 close to FB pin to prevent  
stray pickup.  
VRIPPLE(ESR)(t)  
Input Capacitor Selection  
The use of the input capacitor is filtering the input  
voltage ripple and the MOSFETS switching spike  
voltage. Because the input current to the step-down  
converter is discontinuous, the input capacitor is  
required to supply the current to the converter to  
keep the DC input voltage. The capacitor voltage  
rating should be 1.25 to 1.5 times greater than the  
maximum input voltage. The input capacitor ripple  
current RMS value is calculated as:  
(t)  
+
VRIPPLE(ESL) (t)  
(t)  
(t)  
+
VRIPPLE(C) (t)  
 
ꢆꢃ(RMꢁ=ꢆꢉꢊTꢇ ꢂꢇ 1ꢋꢂ  
ꢉꢊT  
ꢂ=  
ꢆꢃ  
+
Where D is the duty cycle of the power MOSFET.  
VNOISE (t)  
This function reaches the maximum value at D=0.5  
and the equivalent RMS current is equal to IOUT/2.  
The following diagram is the graphical representation  
of above equation.  
2
3.5A  
1.75  
=
1.5  
VRIPPLE(t)  
1.25  
2A  
1
0.75  
1A  
0.5  
0.25  
(t)  
0
10 20 30 40 50 60 70 80 90  
D (%)  
FR9888C-0.3-MAR-2014  
10  
fitipower integrated technology lnc.  
FR9888C  
Application Information (Continued)  
ꢉꢊT  
That will lower ripple current and result in lower  
ꢉꢊT  
RꢆPPꢄꢌ(ꢌꢁR, pꢋpꢅ  
=
ꢇ 1ꢋ  
ꢇꢌꢁR  
output ripple voltage.  
The ΔꢆL is inductor  
FꢉꢁCꢇꢄ  
ꢆꢃ  
peak-to-peak ripple current:  
ꢌꢁꢄ  
RꢆPPꢄꢌ(ꢌꢁꢄ, pꢋpꢅ  
=
ꢇꢀꢆꢃ  
ꢉꢊT  
ꢉꢊT  
ꢄ+ꢌꢁꢄ  
ꢉꢊT  
8ꢇFꢉꢁC2ꢇꢄꢇCꢉꢊT  
ꢍꢆ=  
ꢇ 1ꢋ  
FꢉꢁCꢇꢄ  
ꢆꢃ  
ꢉꢊT  
RꢆPPꢄꢌ(C, pꢋpꢅ  
=
ꢇ 1ꢋ  
The following diagram is an example to graphical  
represent ΔꢆL equation.  
ꢆꢃ  
Where FOSC is the switching frequency, L is the  
inductance value, VIN is the input voltage, ESR is the  
equivalent series resistance value of the output  
capacitor, ESL is the equivalent series inductance  
value of the output capacitor and the COUT is the  
output capacitor.  
2
1.8  
1.6  
1.4  
1.2  
1
L=4.7μꢀ  
L=6.8μꢀ  
L=10μꢀ  
Low ESR capacitors are preferred to use. Ceramic,  
tantalum or low ESR electrolytic capacitors can be  
used depending on the output ripple requirements.  
When using the ceramic capacitors, the ESL  
component is usually negligible.  
0.8  
0.6  
0.4  
0.2  
5
8
11  
14  
17  
20  
23  
VIN (V)  
It is important to use the proper method to eliminate  
high frequency noise when measuring the output  
ripple. The figure shows how to locate the probe  
across the capacitor when measuring output ripple.  
Removing the scope probe plastic jacket in order to  
expose the ground at the tip of the probe. It gives a  
very short connection from the probe ground to the  
capacitor and eliminates noise.  
VOUT=3.3V, FOSC=340kHz  
A good compromise value between size and  
efficiency is to set the peak-to-peak inductor ripple  
current ΔꢆL equal to 30% of the maximum load  
current. But setting the peak-to-peak inductor  
ripple current ΔꢆL between 20%~50% of the  
maximum load current is also acceptable. Then  
the inductance can be calculated with the following  
equation:  
Probe Ground  
ꢍꢆ=0.3ꢇꢆꢉꢊT(MAꢎꢅ  
 
ꢋꢀꢉꢊT ꢇꢀꢉꢊT  
ꢄ=  
ꢇFꢉꢁCꢇꢍꢆꢄ  
To guarantee sufficient output current, peak  
inductor current must be lower than the FR9888C  
VOUT  
GND  
high-side MOSFET current limit.  
inductor current is as below:  
The peak  
Ceramic Capacitor  
Inductor Selection  
ꢍꢆꢄ  
PꢌAK=ꢆꢉꢊT(MAꢎꢅ  
+
2
IPEAK  
The output inductor is used for storing energy and  
filtering output ripple current. But the trade-off  
condition often happens between maximum energy  
storage and the physical size of the inductor. The  
first consideration for selecting the output inductor is  
to make sure that the inductance is large enough to  
keep the converter in the continuous current mode.  
IOUT(MAX)  
IL  
Time  
FR9888C-0.3-MAR-2014  
11  
fitipower integrated technology lnc.  
FR9888C  
Application Information (Continued)  
Compensation Components Selection  
PCB Layout Recommendation  
The device’s performance and stability are  
dramatically affected by PCB layout. It is  
recommended to follow these general guidelines  
shown as below:  
COMP  
C5  
FR9888C  
C7  
(optional)  
R4  
1. Place the input capacitors and output  
capacitors as close to the device as possible.  
The traces which connect to these capacitors  
should be as short and wide as possible to  
minimize parasitic inductance and resistance.  
Select the appropriate compensation value by  
following procedure:  
. Calculate the R4 value with the following equation:  
2. Place feedback resistors close to the FB pin.  
3. Keep the sensitive signal (FB) away from the  
switching signal (LX).  
2 ꢇCꢉꢊTꢇ0.1ꢇFꢉꢁCꢇꢀꢉꢊT  
R4ꢏ  
ꢌAꢇꢐCꢁꢇꢀRꢌF  
4. The exposed pad of the package should be  
soldered to an equivalent area of metal on the  
PCB. This area should connect to the GND  
plane and have multiple via connections to the  
back of the PCB as well as connections to  
intermediate PCB layers. The GND plane  
area connecting to the exposed pad should be  
maximized to improve thermal performance.  
where GEA is the error amplifier voltage gain, and GCS  
is the current sense gain.  
. Calculate the C5 value with the following equation:  
4
C5ꢑ  
2 ꢇR4ꢇ0.1ꢇFꢉꢁC  
External Diode Selection  
5. Multi-layer PCB design is recommended.  
For 5V input applications, it is recommended to add  
an external boost diode. This helps improving the  
efficiency. The boost diode can be a low cost one,  
such as 1N4148.  
C6  
R1  
R3  
D1  
1N4148  
R2  
8
1
7
6
5
Exposed  
VIN  
BST  
VIN  
5V  
GND  
Pad  
FR9888C  
C4  
C2  
C1  
4
2
3
LX  
VIN  
VOUT  
LX  
L1  
C4  
Figure 23. Recommended Layout Diagram  
FR9888C-0.3-MAR-2014  
12  
fitipower integrated technology lnc.  
FR9888C  
Outline Information  
SOP-8 (Exposed Pad) Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SP SE  
SYMBOLS  
UNIT  
MIN  
1.25  
0.00  
MAX  
1.70  
0.15  
MIN  
1.25  
0.00  
MAX  
1.70  
0.15  
A
A1  
A2  
B
1.25  
0.31  
4.80  
3.04  
3.80  
2.15  
1.20  
5.80  
0.40  
1.55  
0.51  
5.00  
3.50  
4.00  
2.41  
1.34  
6.20  
1.27  
1.25  
0.31  
4.80  
1.80  
3.80  
1.80  
1.20  
5.80  
0.40  
1.55  
0.51  
5.00  
2.40  
4.00  
2.40  
1.34  
6.20  
1.27  
D
D1  
E
E1  
e
H
L
NoteFollowed From JEDEC MO-012-E.  
Carrier Dimensions  
Life Support Policy  
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.  
FR9888C-0.3-MAR-2014  
13  

相关型号:

FR9888CSPCTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FRA

Circular Commercial Aircraft Military Aircraft
ITT

FRA-010-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-017-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-020-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-025-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-030-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-040-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-050-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-065-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-075-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-090-120

Radial Leaded PTC FRA Series
DBLECTRO