HFBR-2526Z [FOXCONN]

Receiver, 640nm Min, 660nm Max, 125Mbps, Through Hole Mount, ROHS COMPLIANT PACKAGE;
HFBR-2526Z
型号: HFBR-2526Z
厂家: FOXCONN    FOXCONN
描述:

Receiver, 640nm Min, 660nm Max, 125Mbps, Through Hole Mount, ROHS COMPLIANT PACKAGE

放大器 光纤
文件: 总12页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-0507Z Series  
HFBR-15X7Z Transmitters  
HFBR-25X6Z Receivers  
125 Megabaud Versatile Link  
The Versatile Fiber Optic Connection  
Data Sheet  
Description  
Features  
RoHS-compliant  
The 125 MBd Versatile Link (HFBR-0507Z Series) is the  
most cost-effective fiber-optic solution for transmission Data transmission at signal rates of 1 to 125MBd over  
of 125 MBd data over 100 meters. The data link consists  
of a 650 nm LED transmitter, HFBR-15X7Z, and a PIN/pre-  
amp receiver, HFBR-25X6Z. These can be used with low-  
cost plastic or silica fiber. One mm diameter plastic fiber  
provides the lowest cost solution for distances under 25  
meters. The lower attenuation of silica fiber allows data  
transmission over longer distance, for a small difference  
in cost. These components can be used for high speed  
distances of 100 meters  
Compatible with inexpensive, easily terminated plas-  
tic optical fiber, and with large core silica fiber  
High voltage isolation  
Transmitter and receiver application circuit  
schematics and recommended board layouts avail-  
able  
data links without the problems common with copper Interlocking feature for single channel or duplex links,  
wire solutions, at a competitive cost.  
in a vertical or horizontal mount configuration  
The HFBR-15X7Z transmitter is a high power 650 nm  
LED in a low cost plastic housing designed to efficiently Applications  
couple power into 1 mm diameter plastic optical fiber  
Intra-system links: board-to-board, rack-to-rack  
Telecommunications switching systems  
Computer-to-peripheral data links, PC bus extension  
and 200 μm Hard Clad Silica (HCS®) fiber. With the recom-  
mended drive circuit, the LED operates at speeds from  
1-125 MBd. The HFBR-25X6Z is a high bandwidth analog  
receiver containing a PIN photodiode and internal tran- Industrial control  
simpedance amplifier. With the recommended applica-  
tion circuit for 125 MBd operation, the performance of  
Proprietary LANs  
Digitized video  
Medical instruments  
the complete data link is specified for of 0-25 meters with  
plastic fiber and 0-100 meters with 200 μm HCS® fiber. A  
wide variety of other digitizing circuits can be combined Reduction of lightning and voltage transient suscepti-  
with the HFBR-0507Z Series to optimize perfor-mance  
and cost at higher and lower data rates.  
bility  
HCS® is a registered trademark of Spectran Corporation.  
HFBR-0507Z Series  
125 MBd Data Link  
Data link operating conditions and performance are operation. The Applications Engineering Department in  
specifiedfortheHFBR-15X7ZtransmitterandHFBR-25X6Z the Avago Optical Communication Division is available to  
receiver in the recommended applications circuits shown assist in optimizing link performance for higher or lower  
in Figure 1. This circuit has been optimized for 125 MBd speed operation.  
Recommended Operating Conditions for the Circuits in Figures 1 and 2.  
Parameter  
Ambient Temperature  
Supply Voltage  
Symbol  
Min.  
0
Max.  
70  
Unit  
°C  
V
Reference  
T
A
V
+4.75  
VCC -1.89  
+5.25  
VCC -1.62  
VCC -0.70  
55  
CC  
Data Input Voltage – Low  
Data Input Voltage – High  
Data Output Load  
Signaling Rate  
V
V
IL  
V
V -1.06  
V
IH  
CC  
RL  
fS  
45  
1
Ω
Note 1  
Note 2  
125  
MBd  
%
Duty Cycle  
D.C.  
40  
60  
Link Performance: 1-125 MBd, BER ≤ 10-9, under recommended operating conditions with recommended transmit  
and receive application circuits.  
Parameter  
Optical Power Budget, 1 m POF  
Symbol  
OPBPOF  
Min.[3]  
11  
Typ.[4]  
16  
Max.  
Unit  
dB  
Condition  
Reference  
Note 5,6,7  
Note 5,6,7  
Optical Power Margin,  
20 m Standard POF  
OPMPOF,20  
3
6
dB  
Link Distance with  
Standard 1 mm POF  
l
20  
3
27  
6
m
dB  
m
Optical Power Margin,  
25 m Low Loss POF  
OPMPOF,25  
l
Note 5,6,7  
Link Distance with Extra  
Low Loss 1 mm POF  
25  
32  
Optical Power Budget, 1 m HCS  
OPBHCS  
7
3
12  
6
dB  
dB  
Note 5,6,7  
Note 5,6,7  
Optical Power Margin,  
100 m HCS  
OPMHCS,100  
Link Distance with HCS Cable  
l
100  
125  
m
Notes:  
1. If the output of U4C in Figure 1, page 4 is transmitted via coaxial cable, terminate with a 50 Ω resistor to V - 2 V.  
CC  
2. Run length limited code with maximum run length of 10 μs.  
3. Minimum link performance is projected based on the worst case specifications of the HFBR-15X7Z transmitter, HFBR-25X6Z receiver,  
and POF cable, and the typical performance of other components (e.g. logic gates, transistors, resistors, capacitors, quantizer, HCScable).  
4. Typical performance is at 25°C, 125 MBd, and is measured with typical values of all circuit components.  
5. Standard cable is HFBR-RXXYYYZ plastic optical fiber , with a maximum attenuation of 0.24 dB/m at 650 nm and NA = 0.5.  
Extra low loss cable is HFBR-EXXYYYZ plastic optical fiber, with a maximum attenuation of 0.19 dB/m at 650 nm and NA = 0.5.  
HCS cable is HFBR-H/VXXYYY glass optical fiber, with a maximum attenuation of 10 dB/km at 650 nm and NA = 0.37.  
6. Optical Power Budget is the difference between the transmitter output power and the receiver sensitivity, measured after 1meter of fiber.  
The minimum OPB is based on the limits of optical component performance over temperature, process, and recommended power supply  
variation.  
7. The Optical Power Margin is the available OPB after including the effects of attenuation and modal dispersion for the minimum link distance:  
OPM = OPB - (attenuation power loss + modal dispersion power penalty). The minimum OPM is the margin available for longterm LED LOP  
degradation and additional fixed passive losses (such as in-line connectors) in addition to the minimum specified distance.  
2
Plastic Optical Fiber (1 mm POF) Transmitter Application Circuit: Performance of the HFBR-15X7Z transmitter in the recom-  
mended application circuit (Figure 1) for POF; 1-125 MBd, 25°C.  
Parameter  
Symbol  
Typical  
Unit  
Condition  
Note  
Average Optical Power 1 mm POF  
Pavg  
-9.7  
dBm  
50% Duty  
Cycle  
Note 1, Fig 3  
Average Modulated Power 1 mm POF  
Optical Rise Time (10% to 90%)  
Optical Fall Time (90% to 10%)  
High Level LED Current (On)  
Pmod  
tr  
-11.3  
2.1  
2.8  
19  
dBm  
ns  
Note 2, Fig 3  
5 MHz  
5 MHz  
tf  
ns  
IF,H  
IF,L  
mA  
mA  
%
Note 3  
Note 3  
Low Level LED Current (O)  
3
Optical Overshoot - 1 mm POF  
45  
Transmitter Application Circuit  
ICC  
110  
mA  
Figure 1  
Current Consumption - 1 mm POF  
Hard Clad Silica Fiber (200 μm HCS) Transmitter Application Circuit: Performance of the HFBR-15X7Z transmitter in the recom-  
mended application circuit (Figure 1) for HCS; 1-125 MBd, 25°C.  
Parameter  
Symbol  
Typical  
Unit  
Condition  
Note  
Average Optical Power 200 μm HCS  
Pavg  
-14.6  
dBm  
50% Duty  
Cycle  
Note 1, Fig 3  
Average Modulated Power 200 μm HCS  
Optical Rise Time (10% to 90%)  
Optical Fall Time (90% to 10%)  
High Level LED Current (On)  
Pmod  
tr  
-16.2  
3.1  
3.4  
60  
dBm  
ns  
Note 2, Fig 3  
5 MHz  
5 MHz  
tf  
ns  
IF,H  
IF,L  
mA  
mA  
%
Note 3  
Note 3  
Low Level LED Current (Off)  
6
Optical Overshoot - 200 μm HCS  
30  
Transmitter Application Circuit  
ICC  
130  
mA  
Figure 1  
Current Consumption - 200 μm HCS  
Notes:  
1. Average optical power is measured with an average power meter at 50% duty cycle, after 1 meter of fiber.  
2. To allow the LED to switch at high speeds, the recommended drive circuit modulates LED light output between two non-zero power levels.  
The modulated (useful) power is the difference between the high and low level of light output power (transmitted) or input power (received),  
which can be measured with an average power meter as a function of duty cycle (see Figure 3). Average Modulated Power is defined as one  
half the slope of the average power versus duty cycle:  
[Pavg @ 80% duty cycle - Pavg @ 20% duty cycle]  
Average Modulated Power =  
(2) [0.80 - 0.20]  
3. High and low level LED currents refer to the current through the HFBR-15X7Z LED. The low level LED “off” current, sometimes referred to as  
“hold-on” current, is prebias supplied to the LED during the off state to facilitate fast switching speeds.  
3
Plastic and Hard Clad Silica Optical Fiber Receiver Application Circuit: Performance[4] of the HFBR-25X6Z receiver in the recom-  
mended application circuit (Figure 1); 1-125MBd, 25°C unless otherwise stated.  
Parameter  
Data Output Voltage - Low  
Data Output Voltage - High  
Symbol  
Typical  
VCC -1.7  
VCC -0.9  
-27.5  
Unit  
V
Condition  
RL = 50 Ω  
Note  
V
Note 5  
Note 5  
Note 2  
OL  
VOH  
V
RL = 50 Ω  
Receiver Sensitivity to Average  
Pmin  
dBm  
50% eye opening  
Modulated Optical Power 1 mm POF  
Receiver Sensitivity to Average  
Modulated Optical Power 200 μm HCS  
Pmin  
Pmax  
Pmax  
ICC  
-28.5  
-7.5  
-10.5  
85  
dBm  
dBm  
dBm  
mA  
50% eye opening  
50% eye opening  
50% eye opening  
RL = ∞  
Note 2  
Note 2  
Note 2  
Figure 1  
Receiver Overdrive Level of Average  
Modulated Optical Power 1 mm POF  
Receiver Overdrive Level of Average  
Modulated Optical Power 200 μm HCS  
Receiver Application Circuit Current  
Consumption  
Notes:  
4. Performance in response to a signal from the HFBR-15X7Z transmitter driven with the recommended circuit at 1-125 MBd over 1 meter of  
HFBR-RZ/EXXYYYZ plastic optical fiber or 1 meter of HFBR-H/VXXYYY hard clad silica optical fiber.  
5. Terminated through a 50 Ω resistor to VCC - 2 V.  
6. If there is no input optical power to the receiver, electrical noise can result in false triggering of the receiver. In typical applications, data encod-  
ing and error detection prevent random triggering from being interpreted as valid data. Refer to Applications Note 1066 for design guidelines.  
L1  
CB70-1812  
V
CC  
9
+
C3  
0.1  
C2  
0.1  
C4  
C5  
10  
C6  
0.1  
C7  
0.001  
C1  
0.001  
14  
0.001  
R5  
22  
8
8
10 U1C  
1
2
3
4
74ACTQ00  
7
U2  
5
R8*  
R9*  
12  
13 U1D  
Q1  
BFQ52  
Q2  
BFQ52  
11  
HFBR-15X7Z  
Q3  
2N3904  
1
2
3
U1A  
74ACTQ00  
74ACTQ00  
R6  
91  
R7  
91  
4
5
6
U1B  
74ACTQ00  
T
V
EE  
X
R10  
15  
9
8
C8*  
Q2 BASE  
Q1 BASE  
R11*  
7
T
V
X
CC  
6
5
4
3
2
R
NC  
V
CC  
X
+
C20  
10  
C19  
0.1  
ALL CAPACITOR VALUES  
ARE IN MICRO FARADS,  
WITH 10% TOLERANCE  
R12  
4.7  
PIN 19 10H116  
PIN 18 10H116  
C10  
0.1  
C9  
.47  
V
CC  
V
R
X
V
EE  
BB  
(UNLESS OTHERWISE NOTED).  
J1 1  
3V  
C17  
0.1  
ALL RESISTANCES ARE IN  
OHMS WITH 5% TOLERANCE  
(UNLESS OTHERWISE NOTED).  
R22  
1K  
V
BB  
R13  
4.7  
R24  
1K  
R18  
51  
R16  
51  
R14  
1K  
8
C16  
0.1  
MC10H116FN  
MC10H116FN  
MC10H116FN  
C12  
0.1  
10  
4
14  
9
U4B  
18  
19  
15  
17  
7
5
13  
12  
1
2
3
4
U4C  
U4A  
U3  
5
3
8
C11  
0.1  
C15  
R19  
51  
R17  
51  
R15  
1K  
20  
2
0.1  
HFBR-25X6Z  
R25  
1K  
3 V  
R23  
1K  
V
CC  
R20  
12  
THE VALUES OF R8, R9, R11, AND  
C8 ARE DIFFERENT FOR POF AND  
HCS DRIVE CIRCUITS.  
V
BB  
V
BB  
POF  
300  
300  
1K  
HCS TOLERANCE  
+
C14  
10  
R21  
62  
R8  
82  
82  
1%  
1%  
1%  
1%  
C13  
0.1  
C18  
0.1  
R9  
U5  
R11  
C8  
470  
43 pF 120 pF  
TL431  
Figure 1. Transmitter and receiver application circuit with +5 V ECL inputs and outputs.  
4
120  
120  
+5 V ECL  
SERIAL DATA  
SOURCE  
82  
82  
9 T  
V
V
X
EE  
0.1 μF  
8 TD  
7 TD  
+
5 V  
Ð
4.7 μH  
0.1 μF  
+
6 T  
X
10 μF  
CC  
0.1 μF  
5 R  
4
V
X
CC  
10 μF  
0.1 μF  
82  
82  
+
4.7 μH  
FIBER-OPTIC  
TRANSCEIVER  
SHOWN IN  
FIGURE 1  
3 RD  
2 RD  
+5 V ECL  
SERIAL DATA  
RECEIVER  
1 R  
V
X
EE  
120  
120  
4.7 μH  
Figure 2. Recommended power supply filter and +5 V ECL signal terminations for the transmitter and receiver applica-  
tion circuit of Figure 1.  
200  
150  
21  
19  
17  
POF  
100  
15  
13  
11  
9
AVERAGE  
MODULATED  
POWER  
HCS  
50  
0
AVERAGE POWER,  
50% DUTY CYCLE  
0
20  
40  
60  
80  
100  
10 30  
50  
70  
90  
110 130 150  
DUTY CYCLE Ð%  
DATA RATE Ð MBd  
Figure 3. Average modulated power.  
Figure 4. Typical optical power budget vs. data rate.  
5
125 Megabaud Versatile Link Transmitter  
HFBR-15X7Z Series  
Description  
GROUND  
The HFBR-15X7Z transmitters incorporate a 650 nano-  
meter LED in a horizontal (HFBR-1527Z) or vertical (HF-  
BR-1537Z) gray housing. The HFBR-15X7Z transmitters  
1
2
3
ANODE  
CATHODE  
GROUND  
are suitable for use with current peaking to decrease  
4
GROUND  
response time and can be used with HFBR-25X6Z receiv-  
ers in data links operating at signal rates from 1 to 125  
megabaud over 1 mm diameter plastic optical fiber or  
200 μm diameter hard clad silica glass optical fiber. Refer  
to Application Note 1066 for details for recommended  
interface circuits.  
GROUND  
SEE NOTE 6  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Min.  
-40  
-40  
Max.  
85  
Unit  
Reference  
°C  
°C  
°C  
s
Operating Temperature  
Lead Soldering Temperature Cycle Time  
TO  
70  
260  
10  
Note 1, 9  
Transmitter High Level Forward  
Input Current  
IF,H  
120  
mA  
50% Duty Cycle  
≥ 1 MHz  
Transmitter Average Forward Input Current  
Reverse Input Voltage  
IF,AV  
VR  
60  
3
mA  
V
CAUTION: The small junction sizes inherent to the design of this component increase the component’s susceptibility to damage from  
electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
WARNING: WHEN VIEWED UNDER SOME CONDITIONS, THE OPTICAL PORT MAY EXPOSE THE EYE BEYOND THE MAXI-  
MUM PERMISSIBLE EXPOSURE RECOMMENDED IN ANSI Z136.2, 1993. UNDER MOST VIEWING CONDITIONS THERE IS NO  
EYE HAZARD.  
6
Electrical/Optical Characteristics 0 to 70°C, unless otherwise stated.  
Parameter  
Symbol  
Min.  
Typ.[2]  
Max.  
Unit  
Condition  
Note  
Transmitter Output  
Optical Power, 1 mm POF  
PT  
-9.5  
-10.4  
-7.0  
-4.8  
-4.3  
dBm  
IF,dc = 20 mA, 25°C  
0-70°C  
Note 3  
Transmitter Output  
Optical Power, 1 mm POF  
PT  
PT  
-6.0  
-6.9  
-3.0  
-0.5  
-0.0  
dBm  
dBm  
IF,dc = 60 mA, 25°C  
0-70°C  
Note 3  
Note 3  
Transmitter Output  
Optical Power,  
200 μm HCS®  
-14.6  
-15.5  
-13.0  
-10.5  
-10.0  
IF,dc = 60 mA, 25°C  
0-70°C  
Output Optical Power  
Temperature Coefficient  
ΔPT  
ΔT  
-0.02  
dB/°C  
Peak Emission Wavelength  
PK  
640  
1.8  
650  
660  
2.4  
nm  
Peak Wavelength  
Temperature Coefficient  
Δ  
ΔT  
0.12  
nm/°C  
Spectral Width  
FWHM  
21  
nm  
Full Width,  
Half Maximum  
Forward Voltage  
VF  
2.1  
V
IF = 60 mA  
Forward Voltage  
Temperature Coefficient  
ΔVF  
ΔT  
-1.8  
mV/°C  
Transmitter Numerical  
Aperture  
NA  
jc  
VBR  
CO  
tr  
0.5  
140  
13  
60  
12  
9
Thermal Resistance,  
Junction to Case  
°C/W  
V
Note 4  
Reverse Input Breakdown  
Voltage  
3.0  
IF,dc = -10 μA  
Diode Capacitance  
pF  
ns  
VF = 0 V,  
f = 1 MHz  
Unpeaked Optical Rise  
Time, 10% - 90%  
IF = 60 mA  
f = 100 kHz  
Figure 1  
Note 5  
Unpeaked Optical Fall  
Time, 90% - 10%  
tf  
ns  
IF = 60 mA  
f = 100 kHz  
Figure 1  
Note 5  
Notes:  
1. 1.6 mm below seating plane.  
2. Typical data is at 25°C.  
3. Optical Power measured at the end of 0.5 meter of 1 mm diameter plastic or 200 μm diameter hard clad silica optical fiber with a large area  
detector.  
4. Typical value measured from junction to PC board solder joint for horizontal mount package, HFBR-1527Z. jc is approximately  
30°C/W higher for vertical mount package, HFBR-1537Z.  
5. Optical rise and fall times can be reduced with the appropriate driver circuit; refer to Application Note 1066.  
6. Pins 5 and 8 are primarily for mounting and retaining purposes, but are electrically connected; pins 3 and 4 are electrically unconnected. It is  
recommended that pins 3, 4, 5, and 8 all be connected to ground to reduce coupling of electrical noise.  
7. Refer to the Versatile Link Family Fiber Optic Cable and Connectors Technical Data Sheet for cable connector options for 1 mm plastic optical  
fiber and 200 μm HCS fiber.  
8. The LED current peaking necessary for high frequency circuit design contributes to electromagnetic interference (EMI). Care must be taken in  
circuit board layout to minimize emissions for compliance with governmental EMI emissions regulations. Refer to Application Note 1066 for  
design guidelines.  
9. Moisture sensitivity level (MSL) is 3  
7
1.2  
1.0  
0.8  
0° C  
25° C  
HP8082A  
PULSE  
GENERATOR  
BCP MODEL 300  
500 MHz  
BANDWIDTH  
SILICON  
AVALANCHE  
PHOTODIODE  
70° C  
0.6  
0.4  
0.2  
0
HP54002A  
50 OHM BNC  
INPUT POD  
50 OHM  
LOAD  
RESISTOR  
HP54100A  
OSCILLOSCOPE  
620  
630  
640  
650  
660  
670  
680  
WAVELENGTH (nm)  
Figure 1. Test circuit for measuring unpeaked rise and  
fall times.  
Figure 2. Typical spectra normalized to the 25°C peak.  
2.4  
0
0° C  
-5  
2.2  
25  
°
C
C
0° C  
-10  
-15  
-20  
-25  
70  
°
2.0  
1.8  
1.6  
25  
°
C
C
70°  
1
I
10  
100  
1
I
10  
100  
- TRANSMITTER DRIVE CURRENT (mA)  
- TRANSMITTER DRIVE CURRENT (mA)  
F,DC  
F,DC  
Figure 3. Typical forward voltage vs. drive current.  
Figure 4. Typical normalized output optical power vs.  
drive current.  
8
125 Megabaud Versatile Link Receiver  
HFBR-25X6Z Series  
Description  
The HFBR-25X6Z receivers contain a PIN photodiode and  
transimpedance pre-amplifier circuit in a horizontal (HF-  
BR-2526Z) or vertical (HFBR-2536Z) blue housing, and  
are designed to interface to 1mm diameter plastic opti-  
cal fiber or 200 μm hard clad silica glass optical fiber. The  
receivers convert a received optical signal to an analog  
output voltage. Follow-on circuitry can optimize link per-  
formance for a variety of distance and data rate require-  
ments. Electrical bandwidth greater than 65 MHz allows  
design of high speed data links with plastic or hard clad  
silica optical fiber. Refer to Application Note 1066 for de-  
tails for recommended interface circuits.  
GROUND  
V
CC  
4
3
GROUND  
GROUND  
SIGNAL  
2
1
GROUND  
SEE NOTES 2, 4, 9  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Symbol  
TS  
Min.  
-40  
0
Max.  
+75  
+70  
260  
10  
Unit  
Reference  
°C  
°C  
°C  
s
T
A
Lead Soldering Temperature  
Cycle Time  
Note 1, 11  
Signal Pin Voltage  
Supply Voltage  
Output Current  
VO  
-0.5  
-0.5  
V
V
CC  
V
6.0  
25  
V
CC  
IO  
mA  
CAUTION: The small junction sizes inherent to the design of this component increase the component’s susceptibility to damage from  
electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
9
Electrical/Optical Characteristics 0 to 70°C; 5.25 V ≥ VCC ≥ 4.75 V; power supply must be filtered (see Figure 1, Note 2).  
Parameter  
Symbol  
RP,APF  
RP,HCS  
VNO  
Min.  
1.7  
Typ.  
3.9  
Max.  
6.5  
Unit  
mV/μW  
mV/μW  
mVRMS  
dBm  
Test Condition  
Note  
Note 4  
AC Responsivity 1 mm POF  
AC Responsivity 200 μm HCS  
RMS Output Noise  
650 nm  
4.5  
7.9  
11.5  
0.69  
-36  
0.46  
- 39  
Note 5  
Note 5  
Equivalent Optical Noise Input  
Power, RMS - 1 mm POF  
PN,RMS  
Equivalent Optical Noise Input  
Power, RMS - 200 μm HCS  
PN,RMS  
PR  
-42  
-40  
dBm  
dBm  
Note 5  
Note 6  
Peak Input Optical Power -  
1 mm POF  
-5.8  
5 ns PWD  
-6.4  
-8.8  
dBm  
dBm  
2 ns PWD  
5 ns PWD  
Peak Input Optical Power -  
200 μm HCS  
PR  
Note 6  
Note 4  
-9.4  
dBm  
Ω
2 ns PWD  
50 MHz  
Output Impedance  
DC Output Voltage  
Supply Current  
ZO  
30  
1.8  
9
V
0.8  
65  
2.6  
15  
V
PR = 0 μW  
O
ICC  
mA  
MHz  
Hz * s  
ns  
Electrical Bandwidth  
Bandwidth * Rise Time  
Electrical Rise Time, 10-90%  
BWE  
125  
0.41  
3.3  
-3 dB electrical  
tr  
tf  
6.3  
6.3  
1.0  
PR = -10 dBm  
peak  
Electrical Fall Time, 90-10%  
Pulse Width Distortion  
Overshoot  
3.3  
0.4  
4
ns  
ns  
%
PR = -10 dBm  
peak  
PWD  
PR = -10 dBm  
peak  
Note 7  
Note 8  
PR = -10 dBm  
peak  
Notes:  
1. 1.6 mm below seating plane.  
2. The signal output is an emitter follower, which does not reject noise in the power supply. The power supply must be filtered as in Figure 1.  
3. Typical data are at 25°C and VCC = +5 Vdc.  
4. Pin 1 should be ac coupled to a load ≥ 510 Ω with load capacitance less than 5 pF.  
5. Measured with a 3 pole Bessel filter with a 75 MHz, -3dB bandwidth.  
6. The maximum Peak Input Optical Power is the level at which the Pulse Width Distortion is guaranteed to be less than the PWD listed under  
Test Condition. PR,Max is given for PWD = 5 ns for designing links at ≤ 50 MBd operation, and also for PWD=2ns for designing links up to 125  
MBd (for both POF and HCS input conditions).  
7. 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.  
8. Percent overshoot is defined at:  
(V - V100%  
)
–––PK–––––––– 100%  
V100%  
9. Pins 5 and 8 are primarily for mounting and retaining purposes, but are electrically connected. It is recommended that these pins be con-  
nected to ground to reduce coupling of electrical noise.  
10. If there is no input optical power to the receiver (no transmitted signal) electrical noise can result in false triggering of the receiver. In typical  
applications, data encoding and error detection prevent random triggering from being interpreted as valid data. Refer to Application Note 1066  
for design guidelines.  
11. Moisture sensitivity level (MSL) is 4  
10  
Figure 1. Recommended power supply filter circuit.  
Figure 2. Simplified receiver schematic.  
Figure 3. Typical pulse width distortion vs. peak input  
power.  
Figure 4. Typical output spectral noise density vs.  
frequency.  
Figure 5. Typical rise and fall time vs. temperature.  
11  
Versatile Link Mechanical Dimensions  
HORIZONTAL MODULES  
HFBR-1527Z  
HFBR-2526Z  
HORIZONTAL MODULES  
HFBR-1537Z  
HFBR-2526Z  
5.08  
(0.200)  
2.03  
(0.080)  
6.86  
(0.270)  
10.16  
(0.400)  
2.03  
(0.080)  
10.16  
(0.400)  
18.29  
(0.720)  
5.08  
(0.200)  
18.8  
(0.74)  
6.86  
(0.27)  
4.19  
(0.165)  
0.64  
(0.025)  
7.62  
(0.30)  
18.80  
(0.740)  
3.81 (0.150) MAX.  
3.56 (0.140) MIN.  
1.27  
7.62  
0.51  
(0.020)  
(0.050)  
(0.300)  
2.54  
(0.100)  
0.64 (0.025) DIA.  
1.85  
(0.073)  
2.77  
(0.109)  
Versatile Link Printed Circuit Board Layout Dimensions  
TOP VIEWS  
HORIZONTAL MODULE  
VERTICAL MODULE  
7.62  
(0.300)  
2.54  
(0.100)  
1.01 (0.040) DIA.  
4
5
3
2
1
8
TOP VIEW  
7.62  
(0.300)  
PCB EDGE  
1.85  
(0.073)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-4631EN  
AV02-1502EN - April 11, 2012  

相关型号:

HFBR-2527

Versatile Link The Versatile Fiber Optic Connection
AGILENT

HFBR-2527

Versatile Link The Versatile Fiber Optic Connection
HP

HFBR-2527ET

Versatile Link The Versatile Fiber Optic Connection
AVAGO

HFBR-2527ETZ

FIBER OPTIC RECEIVER, THROUGH HOLE MOUNT, ROHS COMPLIANT, 6 PIN
AVAGO

HFBR-2527ETZ

Receiver, Through Hole Mount, ROHS COMPLIANT, 6 PIN
FOXCONN

HFBR-2527Z

Versatile Link The Versatile Fiber Optic Connection
AVAGO

HFBR-2528

Versatile Link The Versatile Fiber Optic Connection
AGILENT

HFBR-2528

10 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 μm HCS®
AVAGO

HFBR-2528

Versatile Link The Versatile Fiber Optic Connection
HP

HFBR-2528Z

10 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 μm HCS®
AVAGO

HFBR-2531

Versatile Link The Versatile Fiber Optic Connection
AGILENT

HFBR-2531ET

Versatile Link The Versatile Fiber Optic Connection
AVAGO