DSP56724 [FREESCALE]

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors; 交响乐™ DSP56724 / DSP56725多核音频处理器
DSP56724
型号: DSP56724
厂家: Freescale    Freescale
描述:

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors
交响乐™ DSP56724 / DSP56725多核音频处理器

文件: 总48页 (文件大小:830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: DSP56724EC  
Rev. 1, 12/2008  
DSP56724/DSP56725  
DSP56724  
144-Pin LQFP  
20 mm × 20 mm  
0.5 mm pitch  
SymphonyDSP56724/  
DSP56725 Multi-Core Audio  
Processors  
DSP56725  
80-Pin LQFP  
14 mm × 14 mm  
0.65 mm pitch  
See Table 19.  
meeting high MIPs requirements. Legacy peripherals from the  
previous DSP5636x/37x families are included, as are a variety  
of new modules available in the DSP5672x family. Modules  
from the DSP56720 are included, such as an Asynchronous  
Sample Rate Converter (ASRC), an Inter-Core  
Communication (ICC) module, an External Memory  
Controller (EMC) to support SDRAM (DSP56724 only), and  
a Sony/Philips Digital Interface (S/PDIF) transceiver.  
The Symphony DSP56724/DSP56725 Multi-Core Audio  
Processors are part of the DSP5672x family of programmable  
CMOS DSPs, designed using dual DSP56300 24-bit cores.  
The DSP56724 is intended for consumer and professional  
audio applications that require high performance for audio  
processing. In addition, the DSP56724 is ideally suited for  
applications that need the capability to expand memory  
off-chip or to interface to external parallel peripherals.  
Potential applications include A/V receivers, DVD Receivers,  
Home Theater in a Box (HTIB), and professional audio  
equipment including portable recording equipment, musical  
instruments, guitar amplifiers and pedals. The DSP56724  
offers customers flexibility in their designs by providing a  
more cost-effective alternative to the DSP56720 while  
maintaining pin compatibility.  
The DSP56724/DSP56725 devices offer up to 250 million  
instructions per second (MIPs) per core using an internal  
250 MHz clock. The DSP56724/ DSP56725 products are high  
density CMOS devices with 3.3 V inputs and outputs.  
The DSP56724 block diagram is shown in Figure 1; the  
DSP56725 block diagram is shown in Figure 2.  
NOTE  
The DSP56725 is intended for automotive and audio  
applications that require high performance for audio  
processing. Potential applications include A/V receivers,  
DVD Receivers, Home Theater in a Box (HTIB), and  
automotive amplifiers and entertainment systems. The  
DSP56725 offers customers flexibility in their designs by  
providing a more cost-effective alternative to the DSP56721  
while maintaining pin compatibility.  
This document contains information on a new product.  
Specifications and information herein are subject to change  
without notice. Finalized specifications may be published  
after further characterization and device qualifications are  
completed.  
The DSP56724/DSP56725 devices provide a wealth of  
on-chip audio processing functions, via a plug and play  
software architecture system that supports audio decoding  
algorithms, various equalization algorithms, compression,  
signal generator, tone control, fade/balance, level  
meter/spectrum analyzer, among others. The  
DSP56724/DSP56725 devices also support various matrix  
decoders and sound field processing algorithms.  
With two DSP56300 cores, a single DSP56724/ DSP56725  
device can replace dual-DSP designs, saving costs while  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2.7 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . . . . 31  
1.2.8 S/PDIF Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
1.2.9 EMC Timing Specifications—DSP56724 . . . . . . . . 33  
Functional Description and Application Information . . . . . . . 38  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
4.1 Pinout and Package Information . . . . . . . . . . . . . . . . . 39  
4.1.1 Pinout for DSP56724 144-Pin Plastic  
1.1 Chip-Level Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . 6  
1.1.3 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1.4 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . 7  
1.1.5 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . 8  
1.1.6 Internal Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1.7 External Clock Operation. . . . . . . . . . . . . . . . . . . . . 9  
1.1.8 Reset, Stop, Mode Select, and Interrupt Timing . . 10  
1.2 Module-Level Specifications. . . . . . . . . . . . . . . . . . . . . . .13  
1.2.1 Serial Host Interface SPI Protocol Timing . . . . . . . 14  
1.2.2 Serial Host Interface (SHI) I2C Protocol Timing . . 20  
1.2.3 Programming the SHI I2C Serial Clock . . . . . . . . . 22  
1.2.4 Enhanced Serial Audio Interface Timing . . . . . . . . 23  
1.2.5 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
1.2.6 JTAG Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2
3
4
LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
4.1.2 Pinout for DSP56725 80-Pin Plastic  
LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.1.3 Pin Multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.2 144-Pin Package Outline Drawing. . . . . . . . . . . . . . . . 41  
4.3 80-Pin Package Outline Drawing. . . . . . . . . . . . . . . . . 43  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5
6
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
2
Freescale Semiconductor  
EXTAL/XTAL  
DSP  
Core-0  
DSP  
Core-1  
CGM  
ASRC  
On-Chip  
Memory  
On-Chip  
Memory  
Arbiter 9  
Arbiter 8  
Shared Bus 0  
P
X
Y
P
X
Y
Shared Bus 1  
Arbiters 0–7  
PCU  
PCU  
DMA  
OnCE  
OnCE  
DMA  
/ AGU  
/ ALU  
/ AGU  
/ ALU  
Shared Memory 4 Kbytes  
Blocks 0–7 (32 Kbytes total)  
MODA0, MODB0,  
MODC0, MODD0  
2 JTAGs  
JTAG  
MODA1, MODB1,  
MODC1, MODD1  
Figure 1. DSP56724 Block Diagram  
EXTAL/XTAL  
DSP  
Core-0  
DSP  
Core-1  
CGM  
ASRC  
On-Chip  
Memory  
On-Chip  
Memory  
Arbiter 8  
Shared Bus 0  
Shared Bus 1  
P
X
Y
P
X
Y
Arbiters 0–7  
PCU  
PCU  
DMA  
OnCE  
OnCE  
DMA  
/ AGU  
/ ALU  
/ AGU  
/ ALU  
Shared Memory 4 Kbytes  
Blocks 0–7 (32 Kbytes total)  
MODA0, MODB0,  
MODC0, MODD0  
2 JTAGs  
JTAG  
MODA1, MODB1,  
MODC1, MODD1  
Figure 2. DSP56725 Block Diagram  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
3
1
Electrical Characteristics  
1.1  
Chip-Level Conditions  
Table 1 provides a quick reference to the subsections in this section.  
Table 1. Chip-Level Conditions  
For  
Section 1.1.1, “Maximum Ratings”  
See  
on page 4  
on page 6  
on page 6  
on page 7  
on page 8  
on page 8  
on page 9  
on page 10  
Section 1.1.2, “Thermal Characteristics”  
Section 1.1.3, “Power Requirements”  
Section 1.1.4, “DC Electrical Characteristics”  
Section 1.1.5, “AC Electrical Characteristics”  
Section 1.1.6, “Internal Clocks”  
Section 1.1.7, “External Clock Operation”  
Section 1.1.8, “Reset, Stop, Mode Select, and Interrupt Timing”  
1.1.1  
Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage due to high  
static voltage or electrical fields. However, normal precautions  
should be taken to avoid exceeding maximum voltage ratings.  
Reliability of operation is enhanced if unused inputs are pulled to an  
appropriate logic voltage level (for example, either GND or V ).  
DD  
The suggested value for a pull-up or pull-down resistor is 4.7 kΩ.  
NOTE  
In the calculation of timing requirements, adding a maximum value of one specification to  
a minimum value of another specification does not yield a reasonable sum. A maximum  
specification is calculated using a worst case variation of process parameter values in one  
direction. The minimum specification is calculated using the worst case for the same  
parameters in the opposite direction. Therefore, a “maximum” value for a specification will  
never occur in the same device that has a “minimum” value for another specification;  
adding a maximum to a minimum represents a condition that can never exist.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
4
Freescale Semiconductor  
Table 2 lists the maximum ratings.  
Table 2. Maximum Ratings  
1
1, 2  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
V
V
–0.3 to + 1.26  
V
CORE_VDD, PLLD_VDD  
V
V
PLLP_VDD, IO_VDD,  
V
V
–0.3 to + 4.0  
V
IO_VDD_25, PLLA_VDD  
Maximum CORE_VDD power supply ramp time  
Input Voltage per pin excluding VDD and GND  
Tr  
10  
ms  
V
V
GND – 0.3 to 5.5 V  
IN  
Current drain per pin excluding V and GND (Except for pads listed below)  
I
12  
5
mA  
mA  
mA  
mA  
mA  
°C  
DD  
LSYNC_OUT  
LCLK  
I
lsync_out  
I
5
lclk  
LALE  
I
5
ale  
TDO  
I
12  
JTAG  
Operating temperature range  
• Fsys < 200 MHz  
• Fsys < 250 MHz  
T
J
–40 to +100  
0 to 90  
Storage temperature  
T
–65 to +150  
2000  
°C  
V
STG  
ESD protected voltage (Human Body Model)  
ESD protected voltage (Charged Device Model)  
V
• All pins  
• Corner pins  
500  
750  
Note:  
1. GND = 0 V, T = 40° C to 100° C, CL = 50 pF  
J
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the maximum rating may affect device reliability or cause permanent damage to the device.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
5
1.1.2  
Thermal Characteristics  
Table 3 lists the thermal characteristics.  
Table 3. Thermal Characteristics  
Symbol  
Characteristic  
LQFP Values  
Unit  
Natural Convection, Junction-to-ambient thermal Single layer board  
57 for 80 QFP  
49 for 144 QFP  
°C/W  
1,2  
resistance  
(1s)  
R
R
or θ  
or θ  
θJA  
JA  
JC  
Four layer board  
(2s2p)  
44 for 80 QFP  
40 for 144 QFP  
°C/W  
°C/W  
3
Junction-to-case thermal resistance  
10 for 80 QFP  
9 for 144 QFP  
θJC  
Note:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1).  
1.1.3  
Power Requirements  
To prevent high current conditions due to possible improper sequencing of the power supplies, use an external Schottky diode  
as shown in Figure 3, connected between the DSP56724/DSP56725 IO_VDD and Core_VDD power pins.  
IO_VDD  
External  
Schottky  
Diode  
Core_VDD  
Figure 3. Prevent High Current Conditions by Using External Schottky Diode  
If an external Schottky diode is not used (to prevent a high current condition at power-up), then IO_VDD must be applied ahead  
of Core_VDD, as shown in Figure 4.  
Core_VDD  
IO_VDD  
Figure 4. Prevent High Current Conditions by Applying IO_VDD Before Core_VDD  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
6
Freescale Semiconductor  
For correct operation of the internal power-on reset logic, the Core_VDD ramp rate (Tr) to full supply must be less than 10 ms,  
as shown in Figure 4.  
Tr  
1.0 V  
0 V  
Core_VDD  
Tr must be < 10 ms  
Figure 5. Ensure Correct Operation of Power-On Reset with Fast Ramp of Core_VDD  
1.1.4  
DC Electrical Characteristics  
Table 4. DC Electrical Characteristics  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Core Supply voltages  
• Fsys < 200 MHz  
• Fsys < 250 MHz  
V
V
V
0.95  
1.14  
1.0  
1.2  
1.05  
1.26  
CORE_VDD,  
PLLD_VDD  
IO Supply voltages  
V
3.14  
3.3  
3.45  
V
V
IO_VDD,  
V
PLLP_VDD,  
V
PLLA_VDD  
Input high voltage  
V
2.0  
V
+ 2V  
IO_VDD  
IH  
Note: To avoid a high current condition and possible system damage, all 3.3-V and 2.5-V supplies must rise before the 1.0-V  
supplies rise.  
Input low voltage  
V
I
–0.3  
0.8  
80  
V
IL  
Input leakage current  
μA  
pF  
μA  
IN  
Clock pin Input Capacitance (EXTAL)  
C
2.057  
IN  
High impedance (off-state) input current (@ 3.3 V or  
0 V)  
I
–10  
10  
TSI  
Output high voltage  
V
2.4  
V
OH  
I
= –12 mA  
OH  
LSYNC_OUT, LALE, LCLK Pins I  
= –16 mA,  
OH  
TDO Pin I = –24 mA  
OH  
Output low voltage  
V
0.4  
V
OL  
I
= 12 mA  
OL  
LSYNC_OUT, LALE, LCLK Pins I = 16 mA,  
OL  
TDO Pins I = 24 mA  
OL  
Internal pull-up resistor  
R
R
63  
57  
92  
91  
142  
159  
kΩ  
kΩ  
PU  
PD  
Internal pull-down resistor  
1
Internal supply current (core only) operating at  
Fsys < 200 MHz  
• In Normal mode  
mA  
mA  
I
90  
60  
280  
250  
CCI  
• In Wait mode  
I
CCW  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
7
Table 4. DC Electrical Characteristics (Continued)  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
2
• In Stop mode  
I
30  
220  
mA  
CCS  
1
Internal supply current (core only) operating at  
Fsys < 250 MHz  
• In Normal mode  
I
140  
90  
340  
290  
240  
10  
mA  
mA  
mA  
pF  
CCI  
• In Wait mode  
I
CCW  
2
• In Stop mode  
I
40  
CCS  
Input capacitance  
C
IN  
Note:  
1. The Current Consumption section provides a formula to compute the estimated current requirements in Normal mode. In  
order to obtain these results, all inputs must be terminated (for example, not allowed to float). Measurements are based on  
synthetic intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured  
results of this benchmark. This reflects typical DSP applications. Typical internal supply current with Fsys < 200 MHz is  
measured with V  
= 1.0 V, V  
= 3.3 V at T = 25° C. Maximum internal supply current is measured with  
CORE_VDD  
DD_IO J  
V
V
V
= 1.05 V, V  
= 3.6 V at T = 100° C. Typical internal supply current with Fsys < 250 MHz is measured with  
CORE_VDD  
IO_VDD) J  
= 1.2 V, V  
= 3.3 V at T = 25° C. Maximum internal supply current is measured with V  
= 1.26 V,  
CORE_VDD  
CORE_VDD  
DD_IO  
J
= 3.6 V at T = 90° C.  
IO_VDD)  
J
2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (that is, not allowed  
to float).  
1.1.5  
AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a V maximum of 0.8 V and a V  
IL  
IH  
minimum of 2.0 V for all pins. AC timing specifications, which are referenced to a device input signal, are measured in  
production with respect to the 50% point of the respective input signal’s transition. For all pins, output levels are measured with  
the production test machine V and V reference levels set at 0.4 V and 2.4 V, respectively.  
OL  
OH  
1.1.6  
Internal Clocks  
Table 5 lists the internal clocks.  
Table 5. Internal Clocks  
No.  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
1
2
Comparison Frequency  
Fref  
Fin  
2
8
MHz Fref = Fin/NR  
Input Clock Frequency  
• with PLL enabled  
• with PLL disabled  
2
248  
200  
MHz  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
8
Table 5. Internal Clocks (Continued)  
No.  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
3
4
PLL VCO Frequency  
Fvco  
Fout  
200  
500  
MHz Fvco = (Fin * NF)/NR  
[1] [2]  
Output Clock Frequency  
• with PLL enabled  
• with PLL disabled  
25  
200 or 250  
200 or 250  
MHz Fout = Fvco/NO  
Fout = Fin  
5
System Clock Frequency  
• with PLL enabled  
• with PLL disabled  
Fsys  
[2]  
DF  
0.195  
0
200 or 250  
200  
MHz Fsys = Fout/2  
Fsys = Fout  
Note:  
1. Fin = External frequency  
NF = Multiplication Factor  
NR = Predivision Factor  
NO = Output Divider  
DF = Division Factor  
2. Maximum frequency of 200 MHz supported at 0.95 V < V  
Maximum frequency of 250 MHz supported at 1.14 V < V  
< 1.05 V and –40 < Tj < 100° C  
< 1.26 V and 0 < Tj < 90° C  
VDD_CORE  
VDD_CORE  
1.1.7  
External Clock Operation  
The DSP56724/DSP56725 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip  
oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; see Figure 6.  
EXTAL  
XTAL  
Suggested component values:  
f
osc = 24.576 MHz  
R = 1 M 10%  
C (EXTAL)= 18 pF  
C (XTAL) = 18 pF  
R
XTAL1  
Calculations are for a 5–30 MHz crystal with the following parameters:  
C
C
• shunt capacitance (C ) of 10 pq–F12 pF  
0
• series resistance 40 Ohm  
• drive level of 10 μW  
Figure 6. Using the On-Chip Oscillator  
If the DSP56724/DSP56725 system clock is an externally supplied square wave voltage source, it is connected to EXTAL  
(Figure 7). When the external square wave source is connected to EXTAL, the XTAL pin is not used.  
V
IH  
Midpoint  
EXTAL  
Eth  
Etl  
V
IL  
6
7
8
Etc  
Note:  
The midpoint is 0.5 (V + V ).  
IH IL  
Figure 7. External Clock Timing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
9
Table 6 lists the clock operation.  
Table 6. Clock Operation  
Symbol  
No.  
Characteristics  
Min  
Max  
Units  
1
6
EXTAL input high  
(40% to 60% duty cycle)  
• Crystal oscillator  
• Square wave input  
Eth  
16.67  
2.5  
100  
inf  
ns  
1
7
EXTAL input low  
(40% to 60% duty cycle)  
• Crystal oscillator  
• Square wave input  
Etl  
Etc  
Tc  
16.67  
2.5  
100  
inf  
ns  
ns  
ns  
8
9
EXTAL cycle time  
• With PLL disabled  
• With PLL enabled  
5
33.3  
inf  
500  
Instruction cycle time  
• With PLL disabled  
• With PLL enabled  
5
inf  
5120  
4
4
Note:  
1. Measured at 50% of the input transition.  
2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time  
required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock  
frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low  
time requirements are met.  
3. Maximum frequency of 200 MHz supported at 0.95 V < V  
Maximum frequency of 250 MHz supported at 1.14 V < V  
< 1.05 V and –40 < Tj < 100° C  
< 1.26 V and 0 < Tj < 90° C  
VDD_CORE  
VDD_CORE  
4. PLL  
= 200 μs.  
LOCK  
1.1.8  
Reset, Stop, Mode Select, and Interrupt Timing  
Table 7 lists the reset, stop, mode select, and interrupt timing.  
Table 7. Reset, Stop, Mode Select, and Interrupt Timing  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
3
10  
11  
Delay from RESET assertion to all pins at reset value  
11  
ns  
4
Required RESET duration  
• Power on, external clock generator, PLL disabled  
• Power on, external clock generator, PLL enabled  
2 × T  
10  
10  
ns  
ns  
C
2 × T  
C
13  
Syn reset deassert delay time  
• Minimum  
2 × T  
10  
200  
10  
12  
7
ns  
us  
ns  
ns  
ns  
ns  
ns  
C
• Maximum (PLL enabled)  
Mode select setup time  
Mode select hold time  
(2xT )+PLL  
C
LOCK  
14  
15  
16  
17  
18  
Minimum edge-triggered interrupt request assertion width  
Minimum edge-triggered interrupt request deassertion width  
Delay from interrupt trigger to interrupt code execution  
4
10 × T  
54  
C + 4  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
10  
Freescale Semiconductor  
Table 7. Reset, Stop, Mode Select, and Interrupt Timing (Continued)  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
19  
Duration of level sensitive IRQA assertion to ensure interrupt  
service (when exiting Stop)  
1, 2, 3  
• PLL is active during Stop and Stop delay is enabled (OMR Bit  
6 = 0)  
(128 Kbytes × T  
655  
125  
855  
200  
μs  
ns  
μs  
μs  
ns  
C)  
• PLL is active during Stop and Stop delay is not enabled (OMR  
Bit 6 = 1)  
25 × T  
C
• PLL is not active during Stop and Stop delay is enabled (OMR  
Bit 6 = 0)  
(128KxT ) + PLL  
C
LOCK  
• PLL is not active during Stop and Stop delay is not enabled  
(OMR Bit 6 = 1)  
(25 × T ) + PLL  
C
LOCK  
20  
21  
• Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
general-purpose transfer output valid caused by first interrupt  
10 × T + 3.8  
53.8  
C
1
instruction execution  
1
Interrupt Requests Rate  
• ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1  
12 × T  
60.0  
40.0  
40.0  
60.0  
ns  
ns  
ns  
ns  
C
• DMA  
8 × T  
C
• IRQ, NMI (edge trigger)  
• IRQ (level trigger)  
8 × T  
C
12 × T  
C
22  
DMA Requests Rate  
• Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1  
6 × T  
30.0  
35.0  
10.0  
15.0  
ns  
ns  
ns  
ns  
C
• Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1  
• Timer, Timer_1  
7 × T  
C
2 × T  
C
• IRQ, NMI (edge trigger)  
3 × T  
C
Note:  
1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply  
to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using  
fast interrupts. Long interrupts are recommended when using Level-sensitive mode.  
2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined  
by the OMR Bit 6 settings.  
For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL  
to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 us.  
3. Periodically sampled and not 100% tested.  
4. RESET duration is measured during the time in which RESET is asserted, V is valid, and the EXTAL input is active and  
DD  
valid. When V is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the  
DD  
device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should  
minimize this state to the shortest possible duration.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
11  
Figure 8 shows the reset timing diagram.  
V
IH  
RESET  
11  
13  
10  
All Pins  
Reset Value  
Figure 8. Reset Timing  
Figure 9 shows external fast interrupt timing diagram.  
a) First Interrupt Instruction Execution  
19  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
b) General Purpose I/O  
General  
Purpose  
I/O  
20  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
Figure 9. External Fast Interrupt Timing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
12  
Figure 10 shows external interrupt timing (negative edge-triggered).  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
16  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
17  
NMI_1  
Figure 10. External Interrupt Timing (Negative Edge-Triggered)  
Figure 11 shows MODE select set-up and hold time diagram.  
V
RESET  
IH  
14  
15  
V
V
V
IH  
IH  
IL  
MODA, MODB,  
MODC, MODD,  
PINIT  
V
IRQA, IRQB,  
IRQC,IRQD, NMI  
IL  
Figure 11. MODE Select Set-Up and Hold Time  
1.2  
Module-Level Specifications  
Table 8 provides a quick reference to the subsections of this section.  
Table 8. Module-Level Specifications  
For  
See  
Section 1.2.1, “Serial Host Interface SPI Protocol Timing”  
on page 4  
on page 6  
on page 6  
on page 7  
on page 28  
on page 29  
on page 31  
on page 32  
on page 33  
2
Section 1.2.2, “Serial Host Interface (SHI) I C Protocol Timing”  
2
Section 1.2.3, “Programming the SHI I C Serial Clock”  
Section 1.2.4, “Enhanced Serial Audio Interface Timing”  
Section 1.2.5, “GPIO Timing”  
Section 1.2.6, “JTAG Timing”  
Section 1.2.7, “Watchdog Timer Timing”  
Section 1.2.8, “S/PDIF Timing”  
Section 1.2.9, “EMC Timing Specifications—DSP56724”  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
13  
1.2.1  
Serial Host Interface SPI Protocol Timing  
Table 9 lists the serial host interface SPI protocol timing.  
Table 9. Serial Host Interface SPI Protocol Timing  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
23 Minimum serial clock cycle = t  
(min)  
Master/Slave  
Bypassed  
Very Narrow  
Narrow  
10 × T + 9  
59.0  
59.0  
183.0  
383.0  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SPICC  
C
10 × T + 9  
C
10 × T + 133  
C
Wide  
10 × T + 333  
C
XX Tolerable Spike width on data or clock in.  
Bypassed  
Very Narrow  
Narrow  
10  
50  
100  
Wide  
24 Serial clock high period  
Master  
Bypassed  
29.5  
0.5 × (t  
0.5 × (t  
0.5 × (t  
0.5 × (t  
)
)
)
)
SPICC  
SPICC  
SPICC  
SPICC  
Very Narrow  
Narrow  
29.5  
91.5  
191  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wide  
Slave  
Bypassed  
Very Narrow  
Narrow  
2.5 × T + 12  
24  
C
2.5 × T + 12  
24  
C
2.5 × T + 102  
114.5  
201.5  
29.5  
C
Wide  
2.5 × T + 189  
C
25 Serial clock low period  
Master  
Bypassed  
0.5 × (t  
0.5 × (t  
0.5 × (t  
0.5 × t  
)
)
)
SPICC  
SPICC  
SPICC  
Very Narrow  
Narrow  
29.5  
91.5  
191  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wide  
)
SPICC  
Slave  
Bypassed  
Very Narrow  
Narrow  
2.5 × T + 12  
24  
C
2.5 × T + 12  
24  
C
2.5 × T + 102  
114.5  
201.5  
C
Wide  
2.5 × T + 189  
C
26 Serial clock rise/fall time  
Master  
Slave  
5
ns  
ns  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
14  
Freescale Semiconductor  
Table 9. Serial Host Interface SPI Protocol Timing (Continued)  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
27 SS assertion to first SCK edge  
CPHA = 0  
Slave  
Bypassed  
Very Narrow  
Narrow  
3.5 × T + 15  
32.5  
22.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
3.5 × T + 5  
C
Wide  
0
CPHA = 1  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
10  
0
0
Wide  
0
28 Last SCK edge to SS not asserted  
Bypassed  
Very Narrow  
Narrow  
12  
22  
100  
200  
0
Wide  
29 Data input valid to SCK edge (data input  
set-up time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
0
0
Wide  
0
30 SCK last sampling edge to data input not  
valid  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
2 × T + 10  
20  
40  
70  
100.0  
5
C
2 × T + 30  
C
2 × T + 60  
C
Wide  
31 SS assertion to data out active  
Slave  
Slave  
2
32 SS deassertion to data high impedance  
9
33 SCK edge to data out valid  
(data out delay time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
46.2  
270  
376  
521  
Wide  
34 SCK edge to data out not valid  
(data out hold time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
11.67  
15  
55  
105  
Wide  
35 SS assertion to data out valid  
(CPHA = 0)  
Slave  
14.0  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
15  
Table 9. Serial Host Interface SPI Protocol Timing (Continued)  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
36 First SCK sampling edge to HREQ output  
deassertion  
Slave  
Bypassed  
Very Narrow  
Narrow  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
95  
Wide  
145  
50.0  
60.0  
100.0  
150.0  
45.0  
37 Last SCK sampling edge to HREQ output  
not deasserted (CPHA = 1)  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
38 SS deassertion to HREQ output not  
deasserted (CPHA = 0)  
39 SS deassertion pulse width (CPHA = 0)  
40 HREQ in assertion to first SCK edge  
Slave  
T + 6  
11.0  
96.0  
ns  
ns  
C
Master  
0.5 × T  
SPICC  
+ 3.0 × T + 43  
C
41 HREQ in deassertion to last SCK sampling  
edge (HREQ in set-up time) (CPHA = 1)  
Master  
Master  
Master  
0
0
ns  
ns  
ns  
42 First SCK edge to HREQ in not asserted  
(HREQ in hold time)  
43 HREQ assertion width  
3.0 × T  
15  
C
Note:  
1. 0.95 V < V  
< 1.05 V and T < 100° C, C = 50 pF  
VDD_CORE  
J
L
2. Periodically sampled, not 100% tested  
3. All times assume noise free inputs.  
4. All times assume internal clock frequency of 200 MHz.  
5. SHI_1 specs match those of SHI  
6. Slave timings should equal the serial clock high period + the serial clock low period.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
16  
Freescale Semiconductor  
Figure 12 shows the SPI master timing (CPHA = 0).  
SS  
(Input)  
25  
23  
23  
24  
26  
26  
26  
26  
SCK (CPOL = 0)  
(Output)  
24  
25  
SCK (CPOL = 1)  
(Output)  
29  
30  
m29  
30  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
34  
33  
MSB  
MOSI  
(Output)  
LSB  
40  
42  
HREQ  
(Input)  
43  
Figure 12. SPI Master Timing (CPHA = 0)  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
17  
Figure 13 shows the SPI master timing (CPHA = 1).  
SS  
(Input)  
25  
24  
23  
23  
24  
26  
26  
SCK (CPOL = 0)  
(Output)  
26  
25  
26  
SCK (CPOL = 1)  
(Output)  
29  
29  
30  
30  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
33  
34  
MOSI  
(Output)  
MSB  
LSB  
40  
41  
42  
HREQ  
(Input)  
43  
Figure 13. SPI Master Timing (CPHA = 1)  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
18  
Figure 14 shows the SPI slave timing (CPHA = 0).  
SS  
(Input)  
25  
23  
23  
28  
24  
26  
26  
26  
39  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
35  
33  
34  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
MOSI  
(Input)  
LSB  
Valid  
36  
38  
HREQ  
(Output)  
Figure 14. SPI Slave Timing (CPHA = 0)  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
19  
Figure 15 shows the SPI slave timing (CPHA = 1).  
SS  
(Input)  
25  
23  
28  
24  
26  
26  
26  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
33  
33  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
37  
36  
HREQ  
(Output)  
Figure 15. SPI Slave Timing (CPHA = 1)  
1.2.2  
Serial Host Interface (SHI) I2C Protocol Timing  
2
Table 10 lists the SHI I C protocol timing diagram.  
2
Table 10. SHI I C Protocol Timing  
2
Standard I C  
Standard  
Fast-Mode  
Symbol/  
Expression  
1,2,3,4,5  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
XX Tolerable Spike Width on SCL or SDA  
Filters Bypassed  
0
10  
50  
100  
0
10  
50  
100  
ns  
ns  
ns  
ns  
Very Narrow Filters enabled  
Narrow Filters enabled  
Wide Filters enabled.  
44 SCL clock frequency  
44 SCL clock cycle  
F
T
T
10  
100  
400  
kHz  
μs  
SCL  
SCL  
BUF  
2.5  
1.3  
0.6  
45 Bus free time  
4.7  
4.7  
μs  
46 Start condition set-up time  
T
μs  
SUSTA  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
20  
Freescale Semiconductor  
2
Table 10. SHI I C Protocol Timing (Continued)  
2
Standard I C  
Standard  
Fast-Mode  
Symbol/  
Expression  
1,2,3,4,5  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
47 Start condition hold time  
48 SCL low period  
T
4.0  
4.7  
4.0  
0.6  
1.3  
1.3  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
HD;STA  
T
LOW  
49 SCL high period  
T
HIGH  
7
50 SCL and SDA rise time  
T
1000  
5.0  
300  
5.0  
R
7
51 SCL and SDA fall time  
T
F
52 Data set-up time  
53 Data hold time  
T
T
250  
0.0  
100  
0.0  
SU;DAT  
0.9  
HD;DAT  
54 DSP clock frequency  
• Filters bypassed  
F
OSC  
10.6  
10.6  
11.8  
13.1  
28.5  
28.5  
39.7  
61.0  
MHz  
MHz  
MHz  
MHz  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
55 SCL low to data out valid  
56 Stop condition setup time  
T
3.4  
0.9  
μs  
μs  
ns  
VD;DAT  
SU;STO  
SU;RQI  
T
4.0  
0.0  
0.6  
0.0  
57 HREQ in deassertion to last SCL edge (HREQ in  
set-up time)  
t
58 First SCL sampling edge to HREQ output  
deassertion2  
T
NG;RQO  
• Filters bypassed  
4 × T + 30  
50.0  
70.0  
250.0  
150.0  
50.0  
70.0  
150.0  
250.0  
ns  
ns  
ns  
ns  
C
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
4 × T + 50  
C
4 × T + 130  
C
4 × T + 230  
C
59 Last SCL edge to HREQ output not deasserted2  
• Filters bypassed  
T
AS;RQO  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
2 × T + 30  
40  
50  
90  
40  
50  
90  
ns  
ns  
ns  
ns  
C
2 × T + 40  
C
2 × T + 80  
C
2 × T + 130  
140  
140  
C
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
21  
2
Table 10. SHI I C Protocol Timing (Continued)  
2
Standard I C  
Standard  
Fast-Mode  
Symbol/  
Expression  
1,2,3,4,5  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
60 HREQ in assertion to first SCL edge  
• Filters bypassed  
T
AS;RQI  
4327  
4317  
4282  
4227  
927  
917  
877  
827  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
61 First SCL edge to HREQ is not asserted  
(HREQ in hold time.)  
t
0.0  
0.0  
ns  
HO;RQI  
Note:  
1. V  
= 1.00 0.05 V; T = –40° C to 100° C, C = 50 pF  
CORE_VDD  
J
L
2. Pull-up resistor: R P (min) = 1.5 kΩ  
3. Capacitive load: C b (max) = 50 pF  
5. All times assume noise free inputs  
5. All times assume internal clock frequency of 200 MHz  
6. SHI_1 specs match those of SHI  
7. The numbers listed are based on the module/pad design and its characteristics during output. The module is compliant with  
2
2
I C standard, so the module should receive I C bus compliant signal without any issue.  
1.2.3  
Programming the SHI I2C Serial Clock  
2
The programmed serial clock cycle, T  
, is specified by the value of the HDM[7:0] and HRS bits of the HCKR (SHI clock  
I CCP  
control register).  
2
The expression for T  
is  
I CCP  
T 2  
= [T × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)]  
Eqn. 1  
I CCP  
C
where  
— HRS is the prescaler rate select bit. When HRS is cleared, the fixed  
divide-by-eight prescaler is operational. When HRS is set, the prescaler is bypassed.  
— HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be  
selected.  
2
In I C mode, the user may select a value for the programmed serial clock cycle from  
6 × T (if HDM[7:0] = $02 and HRS = 1)  
Eqn. 2  
C
to  
4096 × T (if HDM[7:0] = $FF and HRS = 0)  
Eqn. 3  
C
2
The programmed serial clock cycle (T  
shown in next.  
) should be chosen in order to achieve the desired SCL serial clock cycle (T  
), as  
SCL  
I CCP  
T 2  
+ 3 × T + 45ns + T  
(Nominal, SCL Serial Clock Cycle (TSCL) generated as master)  
Eqn. 4  
I CCP  
C
R
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
22  
Freescale Semiconductor  
2
Figure 16 shows the I C timing diagram.  
44  
46  
49  
48  
SCL  
SDA  
50  
53  
51  
45  
52  
MSB  
LSB  
ACK  
Stop  
Stop  
Start  
47  
60  
58  
55  
56  
59  
61  
57  
HREQ  
2
Figure 16. I C Timing  
1.2.4  
Enhanced Serial Audio Interface Timing  
Table 11 lists the enhanced serial audio interface timing.  
Table 11. Enhanced Serial Audio Interface Timing  
1, 2, 3  
3
4
No.  
Characteristics  
Symbol Expression  
Min  
Max Condition Unit  
5
62 Clock cycle  
t
4 × T  
4 × T  
20.0  
20.0  
i ck  
i ck  
ns  
SSICC  
c
c
63 Clock high period  
• For internal clock  
ns  
2 × T  
2 × T  
10  
10  
c
c
• For external clock  
64 Clock low period  
• For internal clock  
ns  
2 × T  
2 × T  
10  
10  
c
c
• For external clock  
65 SCKR rising edge to FSR out (bl) high  
66 SCKR rising edge to FSR out (bl) low  
67 SCKR rising edge to FSR out (wr) high  
17.0  
7.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
17.0  
7.0  
x ck  
i ck a  
6
19.0  
9.0  
x ck  
i ck a  
6
68 SCKR rising edge to FSR out (wr) low  
19.0  
9.0  
x ck  
i ck a  
69 SCKR rising edge to FSR out (wl) high  
70 SCKR rising edge to FSR out (wl) low  
16.0  
6.0  
x ck  
i ck a  
17.0  
7.0  
x ck  
i ck a  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
23  
Table 11. Enhanced Serial Audio Interface Timing (Continued)  
1, 2, 3  
3
4
No.  
Characteristics  
Symbol Expression  
Min  
Max Condition Unit  
71 Data in setup time before SCKR (SCK in synchronous  
mode) falling edge  
12.0  
19.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
72 Data in hold time after SCKR falling edge  
3.5  
9.0  
x ck  
i ck  
6
73 FSR input (bl, wr) high before SCKR falling edge  
2.0  
12.0  
x ck  
i ck a  
74 FSR input (wl) high before SCKR falling edge  
75 FSR input hold time after SCKR falling edge  
76 Flags input setup before SCKR falling edge  
77 Flags input hold time after SCKR falling edge  
78 SCKT rising edge to FST out (bl) high  
2.0  
12.0  
x ck  
i ck a  
2.5  
8.5  
x ck  
i ck a  
0.0  
19.0  
x ck  
i ck s  
6.0  
0.0  
x ck  
i ck s  
18.0  
8.0  
x ck  
i ck  
79 SCKT rising edge to FST out (bl) low  
20.0  
10.0  
x ck  
i ck  
6
80 SCKT rising edge to FST out (wr) high  
20.0  
10.0  
x ck  
i ck  
6
81 SCKT rising edge to FST out (wr) low  
22.0  
12.0  
x ck  
i ck  
82 SCKT rising edge to FST out (wl) high  
15.0  
9.0  
x ck  
i ck  
83 SCKT rising edge to FST out (wl) low  
15.0  
10.0  
x ck  
i ck  
84 SCKT rising edge to data out enable from high impedance  
85 SCKT rising edge to transmitter #0 drive enable assertion  
86 SCKT rising edge to data out valid  
22.0  
17.0  
x ck  
i ck  
17.0  
11.0  
x ck  
i ck  
25.0  
13.0  
x ck  
i ck  
7
87 SCKT rising edge to data out high impedance  
25.0  
16.0  
x ck  
i ck  
88 SCKT rising edge to transmitter #0 drive enable  
14.0  
9.0  
x ck  
i ck  
7
deassertion  
6
89 FST input (bl, wr) setup time before SCKT falling edge  
2.0  
18.0  
x ck  
i ck  
90 FST input (wl) setup time before SCKT falling edge  
91 FST input hold time after SCKT falling edge  
2.0  
18.0  
x ck  
i ck  
4.0  
5.0  
x ck  
i ck  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
24  
Freescale Semiconductor  
Table 11. Enhanced Serial Audio Interface Timing (Continued)  
1, 2, 3  
3
4
No.  
Characteristics  
Symbol Expression  
Min  
Max Condition Unit  
92 FST input (wl) to data out enable from high impedance  
93 FST input (wl) to transmitter #0 drive enable assertion  
94 Flag output valid after SCKT rising edge  
21.0  
14.0  
ns  
ns  
ns  
14.0  
9.0  
x ck  
i ck  
95 HCKR/HCKT clock cycle  
2 × T  
10  
ns  
ns  
ns  
C
96 HCKT input rising edge to SCKT output  
97 HCKR input rising edge to SCKR output  
18.0  
18.0  
Note:  
1. 0.95 V < V  
< 1.05 V and Tj < 100° C, C = 50 pF  
VDD_CORE  
L
2. i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(asynchronous implies that SCKT and SCKR are two different clocks)  
i ck s = internal clock, synchronous mode  
(synchronous implies that SCKT and SCKR are the same clock)  
3. bl = bit length  
wl = word length  
wr = word length relative  
4. SCKT(SCKT pin) = transmit clock  
SCKR(SCKR pin) = receive clock  
FST(FST pin) = transmit frame sync  
FSR(FSR pin) = receive frame sync  
HCKT(HCKT pin) = transmit high frequency clock  
HCKR(HCKR pin) = receive high frequency clock  
5. For the internal clock, the external clock cycle is defined by Tc and the ESAI control register.  
6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync  
signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one  
before last bit clock of the first word in frame.  
7. Periodically sampled and not 100% tested.  
8. ESAI_1, ESAI_2, ESAI_3 specs match those of ESAI.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
25  
Figure 17 shows the ESAI transmitter timing diagram.  
62  
63  
SCKT  
64  
(Input/Output)  
78  
79  
FST (Bit)  
Out  
82  
83  
FST (Word)  
Out  
86  
84  
86  
87  
First Bit  
Last Bit  
Data Out  
93  
Transmitter #0  
Drive Enable  
(Internal Signal)  
89  
85  
88  
91  
FST (Bit) In  
92  
91  
90  
FST (Word) In  
Flags Out  
94  
See Note  
Note: In network mode, output flag transitions can occur at the start of each time slot within the  
frame. In normal mode, the output flag state is asserted for the entire frame period.  
Figure 17. ESAI Transmitter Timing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
26  
Freescale Semiconductor  
Figure 18 shows the ESAI receiver timing diagram.  
62  
63  
SCKR  
64  
(Input/Output)  
65  
66  
FSR (Bit)  
Out  
69  
70  
FSR (Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
FSR (Bit)  
In  
74  
75  
77  
FSR (Word)  
In  
76  
Flags In  
Figure 18. ESAI Receiver Timing  
Figure 19 shows the ESAI HCKT timing diagram.  
HCKT  
95  
SCKT(output)  
96  
Figure 19. ESAI HCKT Timing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
27  
Figure 20 shows the ESAI HCKR timing diagram.  
HCKR  
95  
SCKR (output)  
97  
Figure 20. ESAI HCKR Timing  
1.2.5  
GPIO Timing  
Table 12 lists the GPIO timing.  
Table 12. GPIO Timing  
1
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
2
100 Fsys edge to GPIO out valid (GPIO out delay time)  
2
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
101 Fsys edge to GPIO out not valid (GPIO out hold time)  
2
102 Fsys In valid to EXTAL edge (GPIO in set-up time)  
2
103 Fsys edge to GPIO in not valid (GPIO in hold time)  
0
104 Minimum GPIO pulse high width  
105 Minimum GPIO pulse low width  
106 GPIO out rise time  
2 × TC  
2 × TC  
10  
10  
13.0  
13.0  
107 GPIO out fall time  
Note:  
1. 0.95 V < V  
< 1.05 V and Tj < 100° C, C = 50 pF  
VDD_CORE  
L
2. Simulation numbers-subject to change.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
28  
Freescale Semiconductor  
Figure 21 shows the GPIO timing diagram.  
Fsys  
100  
101  
GPIO  
(Output)  
102  
103  
GPIO  
(Input)  
Valid  
GPIO  
(Output)  
105  
107  
104  
106  
Figure 21. GPIO Timing  
Table 13. JTAG Timing  
1.2.6  
JTAG Timing  
Table 13 lists the JTAG timing.  
All Frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
108 TCK frequency of operation (1/(T × 3); maximum 10 MHz)  
10.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
109 TCK cycle time in Crystal mode  
110 TCK clock pulse width measured at 1.65 V  
111 TCK rise and fall times  
100.0  
50.0  
3.0  
112 Boundary scan input data setup time  
113 Boundary scan input data hold time  
114 TCK low to output data valid  
115 TCK low to output high impedance  
116 TMS, TDI data setup time  
15.0  
24.0  
40.0  
40.0  
5.0  
25.0  
117 TMS, TDI data hold time  
118 TCK low to TDO data valid  
44.0  
44.0  
119 TCK low to TDO high impedance  
Note:  
1. 0.95 V < V  
< 1.05 V and Tj < 100° C, C = 50 pF  
VDD_CORE  
L
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
29  
Figure 22 shows the text clock input timing diagram.  
109  
110  
110  
V
V
M
V
M
TCK  
(Input)  
IH  
V
IL  
111  
111  
Figure 22. Test Clock Input Timing Diagram  
Figure 23 shows the debugger port timing diagram.  
VIH  
TCK  
(Input)  
VIL  
112  
Input Data Valid  
113  
Data  
Inputs  
114  
115  
114  
Data  
Output Data Valid  
Outputs  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 23. Debugger Port Timing Diagram  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
30  
Figure 24 shows the test access port timing diagram.  
VIH  
117  
TCK  
(Input)  
VIL  
116  
Input Data Valid  
TDI  
TMS  
(Input)  
118  
TDO  
(Output)  
Output Data Valid  
119  
TDO  
(Output)  
118  
TDO  
(Output)  
Output Data Valid  
Figure 24. Test Access Port Timing Diagram  
1.2.7  
Watchdog Timer Timing  
Table 14 lists the watchdog timer timings.  
Table 14. Watchdog Timer Timing  
No.  
Characteristics  
Expression  
2 × T  
Min  
Max  
Unit  
120 Delay from time-out to fall of WDT, WDT_1  
121 Delay from timer clear to rise of WDT, WDT_1  
10.0  
10.0  
ns  
ns  
c
2 × Tc  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
31  
1.2.8  
S/PDIF Timing  
Table 15 lists the S/PDIF timing.  
Table 15. S/PDIF Timing  
Symbol  
All Frequency  
Characteristics  
Unit  
Min  
Max  
0.7  
ns  
SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew:  
asynchronous inputs, no specs apply  
SPDIFOUT1,SPDIFOUT2 output (Load = 50pf)  
• Skew  
Transition Rising  
1.5  
24.2  
31.3  
ns  
ns  
Transition Falling  
SPDIFOUT1, SPDIFOUT2 output (Load = 30pf)  
• Skew  
Transition Rising  
1.5  
13.6  
18.0  
Transition Falling  
SRCK period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SRCK high period  
SRCK low period  
STCLK period  
STCLK high period  
STCLK low period  
Figure 25 shows the SRCK timing diagram.  
srckp  
srckpl  
srckph  
V
V
M
M
SRCK  
(Output)  
Figure 25. SRCK Timing  
Figure 26 shows the STCLK timing diagram.  
stclkp  
stclkpl  
stclkph  
V
V
M
M
STCLK  
(Input)  
Figure 26. STCLK Timing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
32  
Freescale Semiconductor  
1.2.9  
EMC Timing Specifications—DSP56724  
Table 16 lists the EMC timing parameters with EMC PLL enabled.  
NOTE  
The DSP56725 device does not have an EMC module.  
Table 16. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
T
2 × T  
3
160  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
c
LCLK skew to LSYNC_OUT  
T
clk_skew  
Input setup to LSYNC_IN (except LGTA/LUPWAIT)  
Input hold from LSYNC_IN (except LGTA/LUPWAIT)  
LGTA valid time  
T
T
in_s  
in_h  
2
T
12  
12  
3
gta  
LUPWAIT valid time  
T
upwait  
LALE negedge to LAD (address phase) invalid (address latch hold time)  
LALE valid time  
T
ale_h  
T
3.8  
4
ale  
Output setup from LSYNC_IN (except LAD[23:0] and LALE)  
Output hold from LSYNC_IN (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LSYNC_IN  
LAD[23:0] output hold from LSYNC_IN  
T
out_s  
T
2
out_h  
T
3.5  
1.5  
ad_s  
T
ad_h  
LSYNC_IN to output high impedance for LAD[23:0]  
T
4.3  
ad_z  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
33  
Figure 27 shows the EMC signals diagram, with EMC PLL enabled.  
Tclk  
LCLK  
Tclk_skew  
LSYNC_OUT  
Tsync_in_skew  
LSYNC_IN  
Tin_s  
Tin_h  
LAD[23:0] (data)  
asynchronous input  
LGTA  
Tgta  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 27. EMC Signals (EMC PLL Enabled; LCRR[CLKDIV] = 2)  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
34  
Freescale Semiconductor  
Table 17 lists the EMC timing parameters with EMC PLL bypassed.  
Table 17. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
T
4 × T  
8
ns  
ns  
ns  
ns  
ns  
ns  
clk  
c
Input setup to LCLK (except LGTA/LUPWAIT)  
Input hold from LCLK (except LGTA/LUPWAIT)  
LGTA valid time  
T
T
in_s  
in_h  
1
–1  
22  
22  
4
T
gta  
LUPWAIT valid time  
T
upwait  
LALE negedge to LAD (address phase) invalid (address latch hold  
time)  
T
ale_h  
LALE valid time  
T
14  
9
ns  
ns  
ns  
ns  
ns  
ns  
ale  
Output setup from LCLK (except LAD[23:0] and LALE)  
Output hold from LCLK (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LCLK  
T
out_s  
T
8
out_h  
T
8
ad_s  
LAD[23:0] output hold from LCLK  
T
7
ad_h  
LCLK to output high impedance for LAD[23:0]  
T
8.1  
ad_z  
Note: Negative hold time means the signal could be invalid before LCLK rising edge.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
35  
Figure 28 shows the EMC signals diagram, with EMC PLL bypassed.  
Tclk  
LCLK  
Tin_s  
Tin_h  
LAD[23:0] (data)  
asynchronous input  
LGTA  
Tgta  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 28. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4  
Table 18 lists the EMC timing parameters with EMC PLL bypassed.  
Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
T
8 × T  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
c
Input setup to LCLK (except LGTA/LUPWAIT)  
Input hold from LCLK (except LGTA/LUPWAIT)  
LGTA valid time  
T
T
in_s  
in_h  
1
–1  
42  
42  
5
T
gta  
LUPWAIT valid time  
T
upwait  
LALE negedge to LAD (address phase) invalid (address latch hold time)  
LALE valid time  
T
ale_h  
T
34  
ale  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
36  
Freescale Semiconductor  
Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
Parameter  
Symbol  
Min  
Max  
Unit  
Output setup from LCLK (except LAD[23:0] and LALE)  
Output hold from LCLK (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LCLK  
LAD[23:0] output hold from LCLK  
T
19  
18  
18  
17  
ns  
ns  
ns  
ns  
ns  
out_s  
T
out_h  
T
ad_s  
T
ad_h  
LCLK to output high impedance for LAD[23:0]  
Note:  
T
17.1  
ad_z  
1. Negative hold time means the signal could be invalid before LCLK raising edge.  
Figure 29 shows the EMC signals diagram, with EMC PLL bypassed.  
Tclk  
LCLK  
Tin_s  
Tin_h  
LAD[23:0] (data)  
asynchronous input  
Tgta  
LGTA  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 29. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
37  
2
Functional Description and Application Information  
Refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual (DSP56724RM) for detailed  
functional and applications information.  
3
Ordering Information  
Table 19 shows the ordering information for the DSP56724/DSP56725 devices.  
Table 19. Ordering Information  
Device  
Device Marking  
Ambient Temp.  
Speed  
Voltage  
LQFP Package  
DSP56724  
DSP56724  
DSP56725  
DSP56725  
DSPB56724AG  
DSPB56724CAG  
DSPB56725AF  
DSPB56725CAF  
0° C–70° C  
–40° C–85° C  
0° C–70° C  
250 MHz  
200 MHz  
250 MHz  
200 MHz  
1.14–1.26 V  
0.95–1.05 V  
1.14–1.26 V  
0.95–1.05 V  
20 mm × 20 mm  
20 mm × 20 mm  
14 mm × 14 mm  
14 mm × 14 mm  
–40° C–85° C  
Contact your local Freescale sales representative for ordering information.  
4
Package Information  
This section provides package and pinout information.  
Table 20 is a quick reference to the package outline drawings.  
Table 20. Package Outline Drawings  
Package See  
Device  
DSP56724 144-pin plastic LQFP See Section 4.2, “144-Pin Package Outline Drawing,” on page 41.  
DSP56725 80-pin plastic LQFP See Section 4.3, “80-Pin Package Outline Drawing,on page 43.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
38  
Freescale Semiconductor  
4.1  
Pinout and Package Information  
This section provides information about the available package for DSP56724 and DSP56725 devices, including diagrams of the  
package pinouts. See Figure 30 for the DSP56724 pin assignments and Figure 31 for the DSP56725 pin assignments. For more  
detailed information about signals, refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference  
Manual (DSP56724RM).  
4.1.1  
Pinout for DSP56724 144-Pin Plastic LQFP Package  
CORE_VDD  
CORE_GND  
LALE  
1
2
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
IO_GND  
IO_VDD  
3
WDT  
PINIT/NMI  
TDO  
TDI  
TCK  
TMS  
SDO2_1/SDI3_1  
SDO3_1/SDI2_1  
SDO4_1/SDI1_1  
SDO5_1/SDI0_1  
CORE_GND  
CORE_VDD  
FSR  
LCS0  
4
LCS1  
5
LCS2  
6
LCS3  
7
LCS4  
8
9
LCS5  
LCS6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
LCS7  
98  
IO_VDD  
IO_GND  
CORE_VDD  
CORE_GND  
LWE  
97  
96  
95  
DSP56724  
144-Pin  
94  
93  
SCKR  
LOE  
LGPL5  
LSDA10  
LCKE  
LCLK  
LBCTL  
LSDWE  
LSDCAS  
LGTA  
92  
HCKR  
91  
SCKT  
90  
FST  
89  
HCKT  
88  
SDO2/SDI3  
SDO3/SDI2  
SDO4/SDI1  
SDO5/SDI0  
SPDIFOUT1  
SPDIFIN1  
IO_GND  
87  
86  
85  
84  
LA0  
LA1  
LA2  
83  
82  
81  
IO_VDD  
IO_VDD  
IO_GND  
PLLP1_GND  
PLLP1_VDD  
PLLD1_GND  
PLLD1_VDD  
PLLA1_GND  
PLLA1_VDD  
80  
EXTAL  
79  
XTAL  
78  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
77  
76  
75  
74  
73  
Figure 30. DSP56724 144-Pin Package Pinout  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
39  
4.1.2  
Pinout for DSP56725 80-Pin Plastic LQFP Package  
SDO2_3/SDI3_3  
1
2
3
4
5
6
7
8
9
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
WDT  
SDO3_3/SDI2_3  
SDO4_3/SDI1_3  
SDO5_3/SDI0_3  
IO_VDD  
PINIT/NMI  
TDO  
TDI  
TCK  
IO_GND  
TMS  
CORE_VDD  
CORE_GND  
CORE_GND  
CORE_VDD  
SDO4/SDI1  
SDO5/SDI0  
IO_GND  
IO_VDD  
EXTAL  
DSP56725  
80-Pin  
SPDIFIN1/SDO2_2/SDI3_2  
SPDIFOUT1/SDO3_2/SDI2_2 10  
SDO4_2/SDI1_2  
SDO5_2/SDI0_2  
FSR_3  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SCKR_3  
SCKT_3  
GND  
XTAL  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
GND  
GND  
GND  
GND  
Figure 31. DSP56725 80-Pin Package  
4.1.3  
Pin Multiplexing  
Many pins are multiplexed, and depending on the selected configuration, can be one of three possible signals. For more about  
pin multiplexing, refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual  
(DSP56724RM).  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
40  
Freescale Semiconductor  
4.2  
144-Pin Package Outline Drawing  
The 144-pin package outline drawing is shown in Figure 32 and Figure 33.  
Figure 32. 144-Pin Package Outline Drawing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
41  
Figure 33. 144-Pin Package Outline Drawing (continued)  
FIGURE NOTES:  
1
All dimensions are in millimeters.  
2
3
4
5
Interpret dimensions and tolerances per ASME Y.14.5M–1994  
Datums B, C and D to be determined at datum plane H.  
The top package body size may be smaller than the bottom package size by a maximum of 0.1 mm.  
These dimensions do not include mold protrusions. The maximum allowable protrusion is 0.25 mm per side. These dimensions  
are maximum body size dimensions including mold mismatch.  
6
7
This dimension does not include dam bar protrusion. Protrusions shall not cause the lead width to exceed 0.35 mm. Minimum  
space between protrusion and an adjacent lead shall be 0.07 mm.  
These dimensions are determined at the seating plane, datum A.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
42  
Freescale Semiconductor  
4.3  
80-Pin Package Outline Drawing  
The 80-pin package outline drawing is shown in Figure 34 and Figure 35.  
Figure 34. 80-Pin Package Outline Drawing  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
43  
Figure 35. 80-Pin Package Outline Drawing (continued)  
FIGURE NOTES:  
1
Dimensioning and tolerancing per ASME Y.14.5M–1994.  
Controlling dimension: millimeter.  
2
3
Data plane H is located at the bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom  
of the parting line.  
4
5
6
Datum E, F and to be determined at datum plane H.  
Dimensions to be determined at seating plane C.  
Dimensions do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions include mold mismatch and  
are determined at datum plane H.  
7
Dimension does not include dambar protrusion Dambar protrusion shall not cause the lead width to exceed 0.46 mm. Minimum  
space between protrusion and adjacent lead or protrusion is 0.07mm.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
44  
Freescale Semiconductor  
5
Product Documentation  
Table 21 lists the documents that provide a complete description of the DSP56724/DSP56725 devices and are required to design  
properly with the part. Documentation is available from a local Freescale Semiconductor, Inc. (formerly Motorola) distributor,  
semiconductor sales office, Literature Distribution Center, or through the Freescale DSP home page on the Internet (the source  
for the latest information).  
Table 21. DSP56724 / DSP56725 Documentation  
Document Name  
Description  
Order Number  
DSP56300 Family Manual  
Detailed description of the 56300-family architecture and the 24-bit DSP56300FM  
core processor and instruction set  
DSP56724/DSP56725 Reference Manual Detailed description of memory, peripherals, and interfaces  
DSP56724RM  
DSP56724PB  
DSP56725PB  
DSP56724 Product Brief  
Brief description of the DSP56724 device  
Brief description of the DSP56725 device  
DSP56725 Product Brief  
DSP56724/DSP56725 Data Sheet  
Electrical and timing specifications; pin and package descriptions DSP56724  
(this document)  
6
Revision History  
Table 22 summarizes revisions to this document.  
Table 22. Revision History  
Revision  
Date  
Description  
1
12/2008  
• Modified values and removed rows in Table 4, “DC Electrical Characteristics.”  
• Removed “IO_VDD_25” from Figure 4, “Prevent High Current Conditions by Applying  
IO_VDD Before Core_VDD.”  
• In Table 7, “Reset, Stop, Mode Select, and Interrupt Timing,” for No. 15, changed 10 to  
12, and for No. 16, changed 4 to 7.  
• In Table 9, “Serial Host Interface SPI Protocol Timing,updated values.  
• In Table 10, “SHI I2C Protocol Timing,added note 7 and changed Max values for No. 50  
to 1000 and 300; in addition, updated the values for note 1.  
• In Table 11, “Enhanced Serial Audio Interface Timing,” for No. 82, changed 19 to 15; for  
No. 83, changed 20 to 15; for No. 86, changed 18 to 25; for No. 87, changed 21 to 25.  
• Removed Section 1.2.5, “Timer Timing.”  
• In Table 16, “EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2),for  
“LSYNC_IN (except LGTA/LUPWAIT),” changed 2 to 3.  
• In Table 17, “EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4),” for  
“LCLK to output high impedance for LAD [23:0],changed 9 to 8.1.  
• In Table 18, “EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8),” for  
LCLK to output high impedance for LAD [23:0],” changed 19 to 17.1  
• In Table 19, “Ordering Information,added rows for DSPB56724CAG and  
DSPB56725CAF, and changed “DSPA56724AG” to “DSPB56724AG.”  
0
6/2008  
• Initial public release.  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
45  
THIS PAGE INTENTIONALLY BLANK  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
46  
THIS PAGE INTENTIONALLY BLANK  
Symphony DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 1  
Freescale Semiconductor  
47  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARM is the registered trademark of ARM Limited. ARM7TDMI-S is the trademark of  
ARM Limited.  
support.asia@freescale.com  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: DSP56724EC  
Rev. 1  
12/2008  

相关型号:

DSP56725

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors
FREESCALE

DSP56800

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor
MOTOROLA

DSP56800E

Digitial Signal Controller
FREESCALE

DSP56800E

Digital Signal Processor,
MOTOROLA

DSP56800EERM

16-bit Digital Signal Controllers
FREESCALE

DSP56800ERM

16-bit Digital Signal Controllers
FREESCALE

DSP56800ESDKPB

Embedded SDK for DSP56800E Rev 2.0E. Rev 6.0 Product Brief
ETC

DSP56800FM

16-bit Digital Signal Processor
MOTOROLA

DSP56800FM/D

56F827 16-bit Hybrid Controller
MOTOROLA

DSP56800FMD

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor
MOTOROLA

DSP56800SDKPB

Embedded SDK for DSP56800 Rev 3.0. Rev 7.0 Product Brief
ETC

DSP56800WP1

Novel Digital Signal Processing Architecture With Microcontroller Featuers
ETC