DSPB56374AFC [FREESCALE]

Freescale Semiconductor; 飞思卡尔半导体公司
DSPB56374AFC
型号: DSPB56374AFC
厂家: Freescale    Freescale
描述:

Freescale Semiconductor
飞思卡尔半导体公司

半导体 外围集成电路 时钟
文件: 总64页 (文件大小:1130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DSP56374  
Rev. 4.2, 1/2007  
Freescale Semiconductor  
Data Sheet: Technical Data  
DSP56374 Data Sheet  
Table of Contents  
1 Overview  
The DSP56374 is a high-density CMOS device with  
3.3 V inputs and outputs.  
1
2
3
4
5
6
7
8
9
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power Requirements . . . . . . . . . . . . . . . . . . . . . 26  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . 27  
DC Electrical Characteristics . . . . . . . . . . . . . . . 28  
AC Electrical Characteristics. . . . . . . . . . . . . . . . 29  
NOTE  
This document contains information on a  
new product. Specifications and  
information herein are subject to change  
without notice.  
10 Internal Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
11 External Clock Operation . . . . . . . . . . . . . . . . . . 29  
12 Reset, Stop, Mode Select, and Interrupt Timing. 32  
13 Serial Host Interface SPI Protocol Timing. . . . . . 35  
14 Serial Host Interface (SHI) I2C Protocol Timing . 41  
15 Programming the Serial Clock . . . . . . . . . . . . . . 43  
16 Enhanced Serial Audio Interface Timing. . . . . . . 44  
17 Timer Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
18 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
19 JTAG Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
20 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . . 53  
For software or simulation models (for  
example, IBIS files), contact sales or go  
to www.freescale.com.  
The DSP56374 supports digital audio applications  
requiring sound field processing, acoustic equalization,  
and other digital audio algorithms. The DSP56374 uses  
the high performance, single-clock-per-cycle DSP56300  
core family of programmable CMOS digital signal  
processors (DSPs) combined with the audio signal  
processing capability of the Freescale Semiconductor,  
Inc. Symphony™ DSP family, as shown in Figure 1.  
Significant architectural enhancements include a barrel  
shifter, 24-bit addressing, and direct memory access  
© Freescale Semiconductor, Inc., 2004, 2005, 2006, 2007. All rights reserved.  
Overview  
(DMA). The DSP56374 offers 150 million instructions per second (MIPS) using an internal 150 MHz  
clock.  
Data Sheet Conventions  
This data sheet uses the following conventions:  
Used to indicate a signal that is active when pulled low (For example,  
the RESET pin is active when low.)  
OVERBAR  
“asserted” Means that a high true (active high) signal is high or that a low true  
(active low) signal is low  
“deasserted” Means that a high true (active high) signal is low or that a low true  
(active low) signal is high  
Examples:  
Signal/  
Symbol  
Logic State  
Signal State  
Voltage*  
PIN  
PIN  
PIN  
PIN  
True  
False  
True  
Asserted  
Deasserted  
Asserted  
VIL / VOL  
VIH / VOH  
VIH / VOH  
VIL / VOL  
False  
Deasserted  
Note: *Values for V , V , V , and V are defined by individual product specifications.  
IL OL  
IH  
OH  
DSP56374 Data Sheet, Rev. 4.2  
2
Freescale Semiconductor  
Features  
15*  
12*  
3
12  
5
Memory Expansion Area  
Watch  
dog  
Timer  
GPIO  
ESAI_1  
Interface  
Triple  
Timer  
SHI  
Interface  
ESAI  
Interface  
X Data  
RAM  
Y Data  
RAM  
Program  
RAM  
6k  
× 24  
6k  
× 24  
6k  
× 24  
ROM  
20k 24  
ROM  
4k 24  
ROM  
4k 24  
×
×
×
Peripheral  
Expansion Area  
YAB  
XAB  
PAB  
DAB  
Address  
Generation  
Unit  
Six Channel  
DMA Unit  
24-Bit  
Bootstrap  
ROM  
DSP56300  
Core  
DDB  
YDB  
XDB  
PDB  
GDB  
Internal  
Data  
Bus  
Switch  
Power  
Mgmt.  
Clock  
Gen.  
4
Data ALU  
Program  
Interrupt  
Controller  
Program  
Decode  
Controller  
Program  
Address  
Generator  
JTAG  
OnCE  
PLL  
+ →  
× 24 56 56-bit MAC  
Two 56-bit Accumulators  
24  
56-bit Barrel Shifter  
XTAL  
MODA/IRQA/GPIO  
MODB/IRQB/GPIO  
MODC/IRQC/GPIO  
MODD/IRQD/GPIO  
EXTAL  
RESET  
PINIT/NMI  
* ESAI_1 and dedicated GPIO pins are not available in the 52-pin package.  
Figure 1. DSP56374 Block Diagram  
2 Features  
2.1 DSP56300 Modular Chassis  
150 Million Instructions Per Second (MIPS) with a 150 MHz clock at an internal logic supply  
(QVDDL) of 1.25 V  
Object Code Compatible with the 56K core  
Data ALU with a 24 x 24 bit multiplier-accumulator and a 56-bit barrel shifter;16 bit arithmetic  
support  
Program Control with position independent code support  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
3
Features  
Six-channel DMA controller  
Provides a wide range of frequency multiplications (1 to 255), predivider factors (1 to 31), PLL  
feedback multiplier (2 or 4), Output divide factor (1, 2, or 4) and a power-saving clock divider  
i
(2 : i = 0 to 7) to reduce clock noise  
Internal address tracing support and OnCE for Hardware/Software debugging  
JTAG port, supporting boundary scan, compliant to IEEE 1149.1  
Very low-power CMOS design, fully static design with operating frequencies down to DC  
STOP and WAIT low-power standby modes  
2.2 On-chip Memory Configuration  
6Kx24 Bit Y-Data RAM and 4Kx24 Bit Y-Data ROM  
6Kx24 Bit X-Data RAM and 4Kx24 Bit X-Data ROM  
20Kx24 Bit Program and Bootstrap ROM including a PROM patching mechanism  
6Kx24 Bit Program RAM.  
Various memory switches are available. See memory table below.  
Table 1. DSP56374 Memory Switch Configurations  
Bit Settings  
MSW0  
Memory Sizes (24-bit words)  
Prog  
RAM  
X Data  
RAM  
Y Data  
RAM  
Prog  
ROM  
X Data  
ROM  
Y Data  
ROM  
MSW1  
MS  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
6K  
2K  
6K  
10K  
8K  
6K  
6K  
6K  
6K  
4K  
20K  
20K  
20K  
20K  
20K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
8K  
4K  
10K  
4K  
2.3 Peripheral Modules  
Enhanced Serial Audio Interface (ESAI): up to 4 receiver pins and up to 6 transmitter pins, master  
or slave. I S, Sony, AC97, network, and other programmable protocols.  
2
Enhanced Serial Audio Interface I (ESAI_1): up to 4 receiver pins and up to 6 transmitter pins,  
master or slave. I S, Sony, AC97, network and other programmable protocols. Note: Available in  
2
the 80-pin package only.  
2
Serial Host Interface (SHI): SPI and I C protocols, 10-word receive FIFO, support for 8, 16, and  
24-bit words. Three noise reduction filter modes.  
Triple Timer module (TEC)  
Most pins of unused peripherals may be programmed as GPIO pins. Up to 47 pins can be  
configured as GPIO on the 80 pin package and 20 pins on the 52 pin package.  
DSP56374 Data Sheet, Rev. 4.2  
4
Freescale Semiconductor  
Documentation  
Hardware Watchdog Timer  
2.4 Packages  
80-pin and 52-pin plastic LQFP packages.  
3 Documentation  
Table 2 lists the documents that provide a complete description of the DSP56374 and are required to design  
properly with the part. Documentation is available from a local Freescale Semiconductor, Inc. (formerly  
Motorola) distributor, semiconductor sales office, Literature Distribution Center, or through the Freescale  
DSP home page on the Internet (the source for the latest information).  
Table 2. DSP56374 Documentation  
Document Name  
Description  
Order Number  
DSP56300 Family Manual  
Detailed description of the 56300-family architecture and the DSP56300FM/AD  
24-bit core processor and instruction set  
DSP56374 User’s Manual  
Detailed description of memory, peripherals, and interfaces  
DSP56374UM/D  
DSP56374  
DSP56374 Technical Data Sheet Electrical and timing specifications; pin and package  
descriptions  
DSP56374 Product Brief  
Brief description of the chip  
DSP56374PB/D  
4 Signal Groupings  
The input and output signals of the DSP56374 are organized into functional groups, which are listed in  
Table 3.  
The DSP56374 is operated from a 1.25 V and 3.3 V supply; however, some of the inputs can tolerate 5.0 V.  
A special notice for this feature is added to the signal descriptions of those inputs.  
Table 3. DSP56374 Functional Signal Groupings  
Number of  
Signals1  
Detailed  
Description  
Functional Group  
Power (VDD  
)
11  
9
Table 15  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Ground (GND)  
Scan Pins  
1
Clock and PLL  
Interrupt and mode control  
SHI  
3
Port H2  
Port H2  
Port C4  
Port E5  
5
5
ESAI  
12  
12  
ESAI_1  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
5
Signal Groupings  
Table 3. DSP56374 Functional Signal Groupings (continued)  
Number of  
Detailed  
Description  
Functional Group  
Signals1  
Dedicated GPIO  
Port G3  
15  
3
Table 12  
Table 13  
Table 14  
Timer  
JTAG/OnCE Port  
4
Note:  
1
Pins are not 5 V. tolerant unless noted.  
Port H signals are the GPIO port signals which are multiplexed with the MOD and HREQ signals.  
Port G signals are the dedicated GPIO port signals.  
Port C signals are the GPIO port signals which are multiplexed with the ESAI signals.  
Port E signals are the GPIO port signals which are multiplexed with the ESAI_1 signals.  
2
3
4
5
4.1 Power  
Table 4. Power Inputs  
Description  
Power Name  
PLLA_VDD (1) PLL Power— The voltage (3.3 V) should be well-regulated and the input should be provided with  
an extremely low impedance path to the 3.3 VDD power rail. The user must provide adequate  
external decoupling capacitors between PLLA_VDD and PLLA_GND. PLLA_VDD requires a filter  
as shown in Figure 1 and Figure 2 below. See the DSP56374 technical data sheet for additional  
details.  
PLLP_VDD(1)  
PLL Power— The voltage (3.3 V) should be well-regulated and the input should be provided with  
an extremely low impedance path to the 3.3 VDD power rail. The user must provide adequate  
external decoupling capacitors between PLLP_VDD and PLLP_GND.  
PLLD_VDD (1) PLL Power— The voltage (1.25 V) should be well-regulated and the input should be provided with  
an extremely low impedance path to the 1.25 VDD power rail. The user must provide adequate  
external decoupling capacitors between PLLD_VDD and PLLD_GND.  
CORE_VDD (4) Core Power—The voltage (1.25 V) should be well-regulated and the input should be provided with  
an extremely low impedance path to the 1.25 VDD power rail. The user must provide adequate  
external decoupling capacitors.  
IO_VDD  
(80-pin 4)  
(52-pin 3)  
SHI, ESAI, ESAI_1, WDT and Timer I/O Power —The voltage (3.3 V) should be well-regulated,  
and the input should be provided with an extremely low impedance path to the 3.3 VDD power rail.  
This is an isolated power for the SHI, ESAI, ESAI_1, WDT and Timer I/O. The user must provide  
adequate external decoupling capacitors.  
4.2 Ground  
Table 5. Grounds  
Description  
Ground Name  
PLLA_GND(1)  
PLL Ground—The PLL ground should be provided with an extremely low-impedance path to  
ground. This connection must be tied externally to all other chip ground connections. The user  
must provide adequate external decoupling capacitors between PLLA_VDD and PLLA_GND.  
DSP56374 Data Sheet, Rev. 4.2  
6
Freescale Semiconductor  
Signal Groupings  
Table 5. Grounds (continued)  
Description  
Ground Name  
PLLP_GND(1)  
PLL Ground—The PLL ground should be provided with an extremely low-impedance path to  
ground. This connection must be tied externally to all other chip ground connections. The user  
must provide adequate external decoupling capacitors between PLLP_VDD and PLLP_GND.  
PLLD_GND(1) PLL Ground—The PLL ground should be provided with an extremely low-impedance path to  
ground. This connection must be tied externally to all other chip ground connections. The user  
must provide adequate external decoupling capacitors between PLLD_VDD and PLLD_GND.  
CORE_GND(4) Core Ground—The Core ground should be provided with an extremely low-impedance path to  
ground. This connection must be tied externally to all other chip ground connections. The user  
must provide adequate external decoupling capacitors.  
IO_GND(2)  
SHI, ESAI, ESAI_1, WDT and Timer I/O Ground—IO_GND is the ground for the SHI, ESAI,  
ESAI_1, WDT and Timer I/O. This connection must be tied externally to all other chip ground  
connections. The user must provide adequate external decoupling capacitors.  
4.3 SCAN  
Table 6. SCAN Signals  
State  
Signal  
Type  
During  
Reset  
Signal Description  
Name  
SCAN  
Input  
Input  
SCAN—Manufacturing test pin. This pin must be connected to ground.  
4.4 Clock and PLL  
Table 7. Clock and PLL Signals  
Signal Description  
State  
during  
Reset  
Signal  
Type  
Name  
EXTAL  
Input  
Input  
External Clock / Crystal Input—An external clock source must be connected  
to EXTAL in order to supply the clock to the internal clock generator and PLL.  
XTAL  
Output Chip Driven Crystal Output—Connects the internal Crystal Oscillator output to an external  
crystal. If an external clock is used, leave XTAL unconnected.  
PINIT/NMI  
Input  
Input  
PLL Initial/Nonmaskable Interrupt—During assertion of RESET, the value of  
PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register,  
determining whether the PLL is enabled or disabled. After RESET  
de-assertion and during normal instruction processing, the PINIT/NMI  
Schmitt-trigger input is a negative-edge-triggered nonmaskable interrupt  
(NMI) request internally synchronized to the internal system clock.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
7
Signal Groupings  
4.5 Interrupt and Mode Control  
The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset.  
After RESET is de-asserted, these inputs are hardware interrupt request lines.  
Table 8. Interrupt and Mode Control  
State  
Signal Name  
Type  
during  
Reset  
Signal Description  
MODA/IRQA  
Input  
MODA Mode Select A/External Interrupt Request A—MODA/IRQA is an  
Input  
active-low Schmitt-trigger input, internally synchronized to the DSP  
clock. MODA/IRQA selects the initial chip operating mode during  
hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during  
normal instruction processing. This pin can also be programmed as  
GPIO. MODA, MODB, MODC, and MODD select one of 16 initial chip  
operating modes, latched into the OMR when the RESET signal is  
de-asserted. If the processor is in the stop standby state and the  
MODA/IRQA pin is pulled to GND, the processor will exit the stop state.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
PH0  
Input, output,  
or  
Port H0—When the MODA/IRQA is configured as GPIO, this signal is  
individually programmable as input, output, or internally disconnected.  
disconnected  
MODB/IRQB  
Input  
MODB Mode Select B/External Interrupt Request B—MODB/IRQB is an  
Input  
active-low Schmitt-trigger input, internally synchronized to the DSP  
clock. MODB/IRQB selects the initial chip operating mode during  
hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during  
normal instruction processing. This pin can also be programmed as  
GPIO. MODA, MODB, MODC, and MODD select one of 16 initial chip  
operating modes, latched into OMR when the RESET signal is  
de-asserted.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
PH1  
Input, output,  
or  
Port H1—When the MODB/IRQB is configured as GPIO, this signal is  
individually programmable as input, output, or internally disconnected.  
disconnected  
MODC/IRQC  
Input  
MODC Mode Select C/External Interrupt Request C—MODC/IRQC is an  
Input  
active-low Schmitt-trigger input, internally synchronized to the DSP  
clock. MODC/IRQC selects the initial chip operating mode during  
hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during  
normal instruction processing. This pin can also be programmed as  
GPIO. MODA, MODB, MODC, and MODD select one of 16 initial chip  
operating modes, latched into OMR when the RESET signal is  
de-asserted.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
8
Freescale Semiconductor  
Signal Groupings  
Table 8. Interrupt and Mode Control (continued)  
State  
Signal Name  
Type  
during  
Reset  
Signal Description  
PH2  
Input, output,  
or  
Port H2—When the MODC/IRQC is configured as GPIO, this signal is  
individually programmable as input, output, or internally disconnected.  
disconnected  
MODD/IRQD  
Input  
MODD Mode Select D/External Interrupt Request D—MODD/IRQD is an  
Input  
active-low Schmitt-trigger input, internally synchronized to the DSP  
clock. MODD/IRQD selects the initial chip operating mode during  
hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during  
normal instruction processing. This pin can also be programmed as  
GPIO. MODA, MODB, MODC, and MODD select one of 16 initial chip  
operating modes, latched into OMR when the RESET signal is  
de-asserted.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
PH3  
Input, output,  
or  
Port H3—When the MODD/IRQD is configured as GPIO, this signal is  
individually programmable as input, output, or internally disconnected.  
disconnected  
RESET  
Input  
Input  
Reset—RESET is an active-low, Schmitt-trigger input. When asserted,  
the chip is placed in the Reset state and the internal phase generator is  
reset. The Schmitt-trigger input allows a slowly rising input (such as a  
capacitor charging) to reset the chip reliably. When the RESET signal is  
de-asserted, the initial chip operating mode is latched from the MODA,  
MODB, MODC, and MODD inputs. The RESET signal must be asserted  
during power up. A stable EXTAL signal must be supplied while RESET  
is being asserted.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
4.6 Serial Host Interface  
The SHI has five I/O signals that can be configured to allow the SHI to operate in either SPI or I C mode.  
2
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
9
Signal Groupings  
Signal  
Table 9. Serial Host Interface Signals  
State during  
Signal Type  
Signal Description  
Name  
Reset  
SCK  
Input or output  
Tri-stated  
SPI Serial Clock—The SCK signal is an output when the SPI is configured  
as a master and a Schmitt-trigger input when the SPI is configured as a  
slave. When the SPI is configured as a master, the SCK signal is derived  
from the internal SHI clock generator. When the SPI is configured as a  
slave, the SCK signal is an input, and the clock signal from the external  
master synchronizes the data transfer. The SCK signal is ignored by the SPI  
if it is defined as a slave and the slave select (SS) signal is not asserted. In  
both the master and slave SPI devices, data is shifted on one edge of the  
SCK signal and is sampled on the opposite edge where data is stable. Edge  
polarity is determined by the SPI transfer protocol.  
SCL  
Input or output  
I2C Serial Clock—SCL carries the clock for I2C bus transactions in the I2C  
mode. SCL is a Schmitt-trigger input when configured as a slave and an  
open-drain output when configured as a master. SCL should be connected  
to VDD through an external pull-up resistor according to the I2C  
specifications.  
This signal is tri-stated during hardware, software, and individual reset.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
MISO  
Input or output  
Tri-stated  
SPI Master-In-Slave-Out—When the SPI is configured as a master, MISO  
is the master data input line. The MISO signal is used in conjunction with the  
MOSI signal for transmitting and receiving serial data. This signal is a  
Schmitt-trigger input when configured for the SPI Master mode, an output  
when configured for the SPI Slave mode, and tri-stated if configured for the  
SPI Slave mode when SS is de-asserted. An external pull-up resistor is not  
required for SPI operation.  
SDA  
Input or  
open-drain  
output  
I2C Data and Acknowledge—In I2C mode, SDA is a Schmitt-trigger input  
when receiving and an open-drain output when transmitting. SDA should be  
connected to VDD through a pull-up resistor. SDA carries the data for I2C  
transactions. The data in SDA must be stable during the high period of SCL.  
The data in SDA is only allowed to change when SCL is low. When the bus  
is free, SDA is high. The SDA line is only allowed to change during the time  
SCL is high in the case of start and stop events. A high-to-low transition of  
the SDA line while SCL is high is a unique situation, and is defined as the  
start event. A low-to-high transition of SDA while SCL is high is a unique  
situation defined as the stop event.  
This signal is tri-stated during hardware, software, and individual reset.  
Thus, there is no need for an external pull-up in this state.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
10  
Freescale Semiconductor  
Signal Groupings  
Table 9. Serial Host Interface Signals (continued)  
Signal  
Name  
State during  
Signal Description  
Reset  
Signal Type  
MOSI  
Input or output  
Tri-stated  
SPI Master-Out-Slave-In—When the SPI is configured as a master, MOSI  
is the master data output line. The MOSI signal is used in conjunction with  
the MISO signal for transmitting and receiving serial data. MOSI is the slave  
data input line when the SPI is configured as a slave. This signal is a  
Schmitt-trigger input when configured for the SPI Slave mode.  
HA0  
Input  
I2C Slave Address 0—This signal uses a Schmitt-trigger input when  
configured for the I2C mode. When configured for I2C slave mode, the HA0  
signal is used to form the slave device address. HA0 is ignored when  
configured for the I2C master mode.  
This signal is tri-stated during hardware, software, and individual reset.  
Thus, there is no need for an external pull-up in this state.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
SS  
Input  
Input  
Ignored Input SPI Slave Select—This signal is an active low Schmitt-trigger input when  
configured for the SPI mode. When configured for the SPI Slave mode, this  
signal is used to enable the SPI slave for transfer. When configured for the  
SPI master mode, this signal should be kept de-asserted (pulled high). If it  
is asserted while configured as SPI master, a bus error condition is flagged.  
If SS is de-asserted, the SHI ignores SCK clocks and keeps the MISO  
output signal in the high-impedance state.  
HA2  
I2C Slave Address 2—This signal uses a Schmitt-trigger input when  
configured for the I2C mode. When configured for the I2C Slave mode, the  
HA2 signal is used to form the slave device address. HA2 is ignored in the  
I2C master mode.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
HREQ Input or Output  
Tri-stated  
Host Request—This signal is an active low Schmitt-trigger input when  
configured for the master mode but an active low output when configured for  
the slave mode.  
When configured for the slave mode, HREQ is asserted to indicate that the  
SHI is ready for the next data word transfer and de-asserted at the first clock  
pulse of the new data word transfer. When configured for the master mode,  
HREQ is an input. When asserted by the external slave device, it will trigger  
the start of the data word transfer by the master. After finishing the data word  
transfer, the master will await the next assertion of HREQ to proceed to the  
next transfer. This pin can also be programmed as GPIO.  
PH4  
Input, output, or  
disconnected  
Port H4—When HREQ is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
11  
Signal Groupings  
4.7 Enhanced Serial Audio Interface  
Table 10. Enhanced Serial Audio Interface Signals  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
HCKR  
Input or output  
GPIO  
High Frequency Clock for Receiver—When programmed  
disconnected as an input, this signal provides a high frequency clock  
source for the ESAI receiver as an alternate to the DSP  
core clock. When programmed as an output, this signal can  
serve as a high-frequency sample clock (e.g., for external  
digital to analog converters [DACs]) or as an additional  
system clock.  
PC2  
Input, output, or  
disconnected  
Port C2—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
HCKT  
PC5  
Input or output  
GPIO  
High Frequency Clock for Transmitter—When programmed  
disconnected as an input, this signal provides a high frequency clock  
source for the ESAI transmitter as an alternate to the DSP  
core clock. When programmed as an output, this signal can  
serve as a high frequency sample clock (e.g., for external  
DACs) or as an additional system clock.  
Input, output, or  
disconnected  
Port C5—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
This pin has an internal pull up resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
12  
Freescale Semiconductor  
Signal Groupings  
Table 10. Enhanced Serial Audio Interface Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
FSR  
Input or output  
GPIO  
Frame Sync for Receiver—This is the receiver frame sync  
disconnected input/output signal. In the asynchronous mode (SYN=0),  
the FSR pin operates as the frame sync input or output  
used by all the enabled receivers. In the synchronous mode  
(SYN=1), it operates as either the serial flag 1 pin  
(TEBE=0), or as the transmitter external buffer enable  
control (TEBE=1, RFSD=1).  
When this pin is configured as serial flag pin, its direction is  
determined by the RFSD bit in the RCCR register. When  
configured as the output flag OF1, this pin will reflect the  
value of the OF1 bit in the SAICR register, and the data in  
the OF1 bit will show up at the pin synchronized to the  
frame sync in normal mode or the slot in network mode.  
When configured as the input flag IF1, the data value at the  
pin will be stored in the IF1 bit in the SAISR register,  
synchronized by the frame sync in normal mode or the slot  
in network mode.  
PC1  
FST  
Input, output, or  
disconnected  
Port C1—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
Input or output  
GPIO  
Frame Sync for Transmitter—This is the transmitter frame  
disconnected sync input/output signal. For synchronous mode, this signal  
is the frame sync for both transmitters and receivers. For  
asynchronous mode, FST is the frame sync for the  
transmitters only. The direction is determined by the  
transmitter frame sync direction (TFSD) bit in the ESAI  
transmit clock control register (TCCR).  
PC4  
Input, output, or  
disconnected  
Port C4—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
13  
Signal Groupings  
Table 10. Enhanced Serial Audio Interface Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
SCKR  
Input or output  
GPIO  
Receiver Serial Clock—SCKR provides the receiver serial  
disconnected bit clock for the ESAI. The SCKR operates as a clock input  
or output used by all the enabled receivers in the  
asynchronous mode (SYN=0), or as serial flag 0 pin in the  
synchronous mode (SYN=1).  
When this pin is configured as serial flag pin, its direction is  
determined by the RCKD bit in the RCCR register. When  
configured as the output flag OF0, this pin will reflect the  
value of the OF0 bit in the SAICR register, and the data in  
the OF0 bit will show up at the pin synchronized to the  
frame sync in normal mode or the slot in network mode.  
When configured as the input flag IF0, the data value at the  
pin will be stored in the IF0 bit in the SAISR register,  
synchronized by the frame sync in normal mode or the slot  
in network mode.  
PC0  
Input, output, or  
disconnected  
Port C0—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SCKT  
PC3  
Input or output  
GPIO  
Transmitter Serial Clock—This signal provides the serial bit  
disconnected rate clock for the ESAI. SCKT is a clock input or output used  
by all enabled transmitters and receivers in synchronous  
mode, or by all enabled transmitters in asynchronous  
mode.  
Input, output, or  
disconnected  
Port C3—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
14  
Freescale Semiconductor  
Signal Groupings  
Table 10. Enhanced Serial Audio Interface Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
SDO5  
Output  
GPIO  
Serial Data Output 5—When programmed as a transmitter,  
disconnected SDO5 is used to transmit data from the TX5 serial transmit  
shift register.  
SDI0  
PC6  
Input  
Serial Data Input 0—When programmed as a receiver,  
SDI0 is used to receive serial data into the RX0 serial  
receive shift register.  
Input, output, or  
disconnected  
Port C6—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO4  
SDI1  
PC7  
Output  
Input  
GPIO  
Serial Data Output 4—When programmed as a transmitter,  
disconnected SDO4 is used to transmit data from the TX4 serial transmit  
shift register.  
Serial Data Input 1—When programmed as a receiver,  
SDI1 is used to receive serial data into the RX1 serial  
receive shift register.  
Input, output, or  
disconnected  
Port C7—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO3  
SDI2  
PC8  
Output  
Input  
GPIO  
Serial Data Output 3—When programmed as a  
disconnected transmitter, SDO3 is used to transmit data from the TX3  
serial transmit shift register.  
Serial Data Input 2—When programmed as a receiver,  
SDI2 is used to receive serial data into the RX2 serial  
receive shift register.  
Input, output, or  
disconnected  
Port C8—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
15  
Signal Groupings  
Table 10. Enhanced Serial Audio Interface Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
SDO2  
Output  
GPIO  
Serial Data Output 2—When programmed as a transmitter,  
disconnected SDO2 is used to transmit data from the TX2 serial transmit  
shift register  
SDI3  
PC9  
Input  
Serial Data Input 3—When programmed as a receiver,  
SDI3 is used to receive serial data into the RX3 serial  
receive shift register.  
Input, output, or  
disconnected  
Port C9—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO1  
PC10  
Output  
GPIO  
Serial Data Output 1—SDO1 is used to transmit data from  
disconnected the TX1 serial transmit shift register.  
Input, output, or  
disconnected  
Port C10—When the ESAI is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO0  
Output  
GPIO  
Serial Data Output 0—SDO0 is used to transmit data from  
disconnected the TX0 serial transmit shift register.  
PC11  
Input, output, or  
disconnected  
Port C11—When the ESAI is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
16  
Freescale Semiconductor  
Signal Groupings  
4.8 Enhanced Serial Audio Interface_1  
Table 11. Enhanced Serial Audio Interface_1 Signals  
State during  
Signal Name  
Signal Type  
Signal Description  
High Frequency Clock for Receiver—When programmed as  
Reset  
HCKR_1  
Input or output  
GPIO  
disconnected an input, this signal provides a high frequency clock source  
for the ESAI_1 receiver as an alternate to the DSP core  
clock. When programmed as an output, this signal can  
serve as a high-frequency sample clock (e.g., for external  
digital to analog converters [DACs]) or as an additional  
system clock.  
PE2  
Input, output, or  
disconnected  
Port E2—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
HCKT_1  
Input or output  
GPIO  
High Frequency Clock for Transmitter—When programmed  
disconnected as an input, this signal provides a high frequency clock  
source for the ESAI_1 transmitter as an alternate to the  
DSP core clock. When programmed as an output, this  
signal can serve as a high frequency sample clock (e.g., for  
external DACs) or as an additional system clock.  
PE5  
Input, output, or  
disconnected  
Port E5—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
17  
Signal Groupings  
Table 11. Enhanced Serial Audio Interface_1 Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
FSR_1  
Input or output  
GPIO  
Frame Sync for Receiver_1—This is the receiver frame  
disconnected sync input/output signal. In the asynchronous mode  
(SYN=0), the FSR_1 pin operates as the frame sync input  
or output used by all the enabled receivers. In the  
synchronous mode (SYN=1), it operates as either the serial  
flag 1 pin (TEBE=0), or as the transmitter external buffer  
enable control (TEBE=1, RFSD=1).  
When this pin is configured as serial flag pin, its direction is  
determined by the RFSD bit in the RCCR_1 register. When  
configured as the output flag OF1, this pin will reflect the  
value of the OF1 bit in the SAICR_1 register, and the data  
in the OF1 bit will show up at the pin synchronized to the  
frame sync in normal mode or the slot in network mode.  
When configured as the input flag IF1, the data value at the  
pin will be stored in the IF1 bit in the SAISR_1 register,  
synchronized by the frame sync in normal mode or the slot  
in network mode.  
PE1  
Input, output, or  
disconnected  
Port E1—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
FST_1  
Input or output  
GPIO  
Frame Sync for Transmitter_1—This is the transmitter frame  
disconnected sync input/output signal. For synchronous mode, this signal  
is the frame sync for both transmitters and receivers. For  
asynchronous mode, FST_1 is the frame sync for the  
transmitters only. The direction is determined by the  
transmitter frame sync direction (TFSD) bit in the ESAI_1  
transmit clock control register (TCCR_1).  
PE4  
Input, output, or  
disconnected  
Port E4—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
18  
Freescale Semiconductor  
Signal Groupings  
Table 11. Enhanced Serial Audio Interface_1 Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
SCKR_1  
Input or output  
GPIO  
Receiver Serial Clock_1—SCKR_1 provides the receiver  
disconnected serial bit clock for the ESAI_1. The SCKR_1 operates as a  
clock input or output used by all the enabled receivers in the  
asynchronous mode (SYN=0), or as serial flag 0 pin in the  
synchronous mode (SYN=1).  
When this pin is configured as serial flag pin, its direction is  
determined by the RCKD bit in the RCCR_1 register. When  
configured as the output flag OF0, this pin will reflect the  
value of the OF0 bit in the SAICR_1 register, and the data  
in the OF0 bit will show up at the pin synchronized to the  
frame sync in normal mode or the slot in network mode.  
When configured as the input flag IF0, the data value at the  
pin will be stored in the IF0 bit in the SAISR_1 register,  
synchronized by the frame sync in normal mode or the slot  
in network mode.  
PE0  
Input, output, or  
disconnected  
Port E0—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
SCKT_1  
PE3  
Input or output  
GPIO  
Transmitter Serial Clock_1—This signal provides the serial  
disconnected bit rate clock for the ESAI_1. SCKT_1 is a clock input or  
output used by all enabled transmitters and receivers in  
synchronous mode, or by all enabled transmitters in  
asynchronous mode.  
Input, output, or  
disconnected  
Port E3—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
19  
Signal Groupings  
Table 11. Enhanced Serial Audio Interface_1 Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
SDO5_1  
Output  
GPIO  
Serial Data Output 5_1—When programmed as a  
disconnected transmitter, SDO5_1 is used to transmit data from the TX5  
serial transmit shift register.  
SDI0_1  
PE6  
Input  
Serial Data Input 0_1—When programmed as a receiver,  
SDI0_1 is used to receive serial data into the RX0 serial  
receive shift register.  
Input, output, or  
disconnected  
Port E6—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
SDO4_1  
SDI1_1  
PE7  
Output  
Input  
GPIO  
Serial Data Output 4_1—When programmed as a  
disconnected transmitter, SDO4_1 is used to transmit data from the TX4  
serial transmit shift register.  
Serial Data Input 1_1—When programmed as a receiver,  
SDI1_1 is used to receive serial data into the RX1 serial  
receive shift register.  
Input, output, or  
disconnected  
Port E7—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO3_1  
SDI2_1  
PE8  
Output  
Input  
GPIO  
Serial Data Output 3—When programmed as a transmitter,  
disconnected SDO3_1 is used to transmit data from the TX3 serial  
transmit shift register.  
Serial Data Input 2—When programmed as a receiver,  
SDI2_1 is used to receive serial data into the RX2 serial  
receive shift register.  
Input, output, or  
disconnected  
Port E8—When the ESAI is configured as GPIO, this signal  
is individually programmable as input, output, or internally  
disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
20  
Freescale Semiconductor  
Signal Groupings  
Table 11. Enhanced Serial Audio Interface_1 Signals (continued)  
State during  
Signal Name  
Signal Type  
Signal Description  
Reset  
SDO2_1  
Output  
GPIO  
Serial Data Output 2—When programmed as a transmitter,  
disconnected SDO2_1 is used to transmit data from the TX2 serial  
transmit shift register.  
SDI3_1  
PE9  
Input  
Serial Data Input 3—When programmed as a receiver,  
SDI3_1 is used to receive serial data into the RX3 serial  
receive shift register.  
Input, output, or  
disconnected  
Port E9—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO1_1  
PE10  
Output  
GPIO  
Serial Data Output 1—SDO1_1 is used to transmit data  
disconnected from the TX1 serial transmit shift register.  
Input, output, or  
disconnected  
Port E10—When the ESAI is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
SDO0_1  
PE11  
Output  
GPIO  
Serial Data Output 0—SDO0_1 is used to transmit data  
disconnected from the TX0 serial transmit shift register.  
Input, output, or  
disconnected  
Port E11—When the ESAI_1 is configured as GPIO, this  
signal is individually programmable as input, output, or  
internally disconnected.  
The default state after reset is GPIO disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
21  
Signal Groupings  
4.9 Dedicated GPIO-Port G  
Table 12. Dedicated GPIO-Port G Signals  
Signal  
Name  
State During  
Type  
Signal Description  
Port G0—This signal is individually programmable as input,  
Reset  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
Input,  
GPIO  
output, or  
disconnected  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G1—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G2—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G3—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G4—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G5—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G6—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G7—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
GPIO  
Port G8—This signal is individually programmable as input,  
output, or  
disconnected output, or internally disconnected.  
disconnected  
Internal Pull down resistor.  
This input is 5 V tolerant  
DSP56374 Data Sheet, Rev. 4.2  
22  
Freescale Semiconductor  
Signal Groupings  
Table 12. Dedicated GPIO-Port G Signals (continued)  
Signal  
Name  
State During  
Signal Description  
Reset  
Type  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
Input,  
output, or  
disconnected  
GPIO  
Port G9—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G10—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G11—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G12—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
output, or  
disconnected  
GPIO  
Port G13—This signal is individually programmable as input,  
disconnected output, or internally disconnected.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input,  
GPIO  
Port G14—This signal is individually programmable as input,  
output, or  
disconnected output, or internally disconnected.  
disconnected  
Internal Pull down resistor.  
This input is 5 V tolerant  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
23  
Signal Groupings  
4.10 Timer  
Table 13. Timer Signal  
State  
during  
Reset  
Signal  
Name  
Type  
Signal Description  
TIO0  
Input or  
Output  
GPIO Input Timer 0 Schmitt-Trigger Input/Output—When timer 0 functions as an  
external event counter or in measurement mode, TIO0 is used as input.  
When timer 0 functions in watchdog, timer, or pulse modulation mode,  
TIO0 is used as output.  
The default mode after reset is GPIO input. This can be changed to  
output or configured as a timer input/output through the timer 0  
control/status register (TCSR0). If TIO0 is not being used, it is  
recommended to either define it as GPIO output immediately at the  
beginning of operation or leave it defined as GPIO input.  
Internal Pull down resistor.  
This input is 5 V tolerant  
TIO1  
Input or  
Output  
Watchdog Timer 1 Schmitt-Trigger Input/Output—When timer 1 functions as an  
Timer  
external event counter or in measurement mode, TIO1 is used as input.  
When timer 1 functions in watchdog, timer, or pulse modulation mode,  
TIO1 is used as output.  
Output  
The default mode after reset is GPIO input. This can be changed to  
output or configured as a timer input/output through the timer  
1control/status register (TCSR1). If TIO1 is not being used, it is  
recommended to either define it as GPIO output immediately at the  
beginning of operation or leave it defined as GPIO input.  
WDT  
TIO2  
Output  
WDT—When this pin is configured as a hardware watchdog timer pin,  
this signal is asserted low when the hardware watchdog timer counts  
down to zero.  
Internal Pull down resistor.  
This input is 5 V tolerant  
Input or  
Output  
PLOCK  
Output  
Timer 2 Schmitt-Trigger Input/Output—When timer 2 functions as an  
external event counter or in measurement mode, TIO2 is used as input.  
When timer 2 functions in watchdog, timer, or pulse modulation mode,  
TIO2 is used as output.  
The default mode after reset is GPIO input. This can be changed to  
output or configured as a timer input/output through the timer  
control/status register (TCSR2). If TIO2 is not being used, it is  
recommended to either define it as GPIO output immediately at the  
beginning of operation or leave it defined as GPIO input .  
DSP56374 Data Sheet, Rev. 4.2  
24  
Freescale Semiconductor  
Maximum Ratings  
Table 13. Timer Signal (continued)  
State  
Signal  
Name  
Type  
during  
Reset  
Signal Description  
PLOCK  
Output  
PLOCK—When this pin is configured as a PLL lock pin, this signal is  
asserted high when the on-chip PLL enabled and locked and  
de-asserted when the PLL enabled and unlocked. This pin is also  
asserted high when the PLL is disabled.  
Internal Pull down resistor.  
This input is 5 V tolerant  
4.11 JTAG/OnCE Interface  
Table 14. JTAG/OnCE Interface  
State  
during  
Reset  
Signal  
Name  
Signal  
Type  
Signal Description  
TCK  
Input  
Input  
Test Clock—TCK is a test clock input signal used to synchronize the JTAG test  
logic.  
Internal Pull up resistor.  
This input is 5 V tolerant.  
TDI  
Input  
Input  
Test Data Input—TDI is a test data serial input signal used for test instructions  
and data. TDI is sampled on the rising edge of TCK.  
Internal Pull up resistor.  
This input is 5 V tolerant.  
TDO  
TMS  
Output  
Input  
Tri-stated Test Data Output—TDO is a test data serial output signal used for test  
instructions and data. TDO is tri-statable and is actively driven in the shift-IR  
and shift-DR controller states. TDO changes on the falling edge of TCK.  
Input  
Test Mode Select—TMS is an input signal used to sequence the test  
controller’s state machine. TMS is sampled on the rising edge of TCK.  
Internal Pull up resistor.  
This input is 5 V tolerant.  
5 Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage due to high static voltage  
or electrical fields. However, normal precautions should be taken to avoid  
exceeding maximum voltage ratings. Reliability of operation is enhanced if unused  
inputs are pulled to an appropriate logic voltage level (e.g., either GND or V ).  
DD  
The suggested value for a pullup or pulldown resistor is 4.7 kΩ.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
25  
Power Requirements  
NOTE  
In the calculation of timing requirements, adding a maximum value of one  
specification to a minimum value of another specification does not yield a  
reasonable sum. A maximum specification is calculated using a worst case variation  
of process parameter values in one direction. The minimum specification is  
calculated using the worst case for the same parameters in the opposite direction.  
Therefore, a “maximum” value for a specification will never occur in the same  
device that has a “minimum” value for another specification; adding a maximum to  
a minimum represents a condition that can never exist.  
Table 15. Maximum Ratings  
Rating1  
Symbol  
Value1, 2  
Unit  
Supply Voltage  
VCORE_VDD,  
VPLLD_VDD  
0.3 to + 1.6  
V
VPLLP_VDD,  
VIO_VDD,  
VPLLA_VDD  
0.3 to + 4.0  
V
,
Maximum CORE_VDD power supply ramp time4  
All “5.0V tolerant” input voltages  
Tr  
VIN  
I
10  
GND 0.3 to 6V  
12  
ms  
V
Current drain per pin excluding VDD and GND(Except  
for pads listed below)  
mA  
SCK_SCL  
ISCK  
IJTAG  
TJ  
16  
24  
mA  
ma  
°C  
TDO  
Operating temperature range3  
80 LQFP = 105  
52 LQFP = 110  
Storage temperature  
TSTG  
55 to +125  
2000  
°C  
V
ESD protected voltage (Human Body Model)  
ESD protected voltage (Machine Model)  
200  
V
Note:  
1
GND = 0 V, TJ = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), CL = 50pF  
2
3
4
Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed.  
Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.  
Operating temperature qualified for automotive applications. TJ = TA + θJA x Power. Variables used were  
Core Current = 100 mA, I/O Current = 60 mA, Core Voltage = 1.3 V, I/O Voltage = 3.46 V, TA = 85°C  
If the power supply ramp to full supply time is longer than 10 ms, the POR circuitry will not operate correctly,  
causing erroneous operation.  
6 Power Requirements  
To prevent high current conditions due to possible improper sequencing of the power supplies, the  
connection shown below is recommended to be made between the DSP56374 IO_VDD and Core_VDD  
power pins.  
DSP56374 Data Sheet, Rev. 4.2  
26  
Freescale Semiconductor  
Thermal Characteristics  
IO_VDD  
External  
Schottky  
Diode  
Core_VDD  
To prevent a high current condition upon power up, the IO_VDD must be applied ahead of the Core_VDD  
as shown below if the external Schottky is not used.  
Core_VDD  
IO_VDD  
For correct operation of the internal power on reset logic, the Core_VDD ramp rate (Tr) to full supply must  
be less than 10 ms. This is shown below.  
Tr  
1.25 V  
0 V  
Core_VDD  
7 Thermal Characteristics  
Table 16. Thermal Characteristics  
Characteristic  
Symbol  
LQFP Values  
Unit  
Natural Convection, Junction-to-ambient thermal  
resistance1,2  
RθJA or θJA  
68 (52 LQFP)  
50 (80 LQFP)  
°C/W  
Junction-to-case thermal resistance3  
RθJC or θJC  
17 (52 LQFP)  
11 (80 LQFP)  
°C/W  
Note:  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance,  
mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components  
on the board, and board thermal resistance.  
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1).  
2
3
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
27  
DC Electrical Characteristics  
8 DC Electrical Characteristics  
Table 17. DC Electrical Characteristics  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltages  
• Core (Core_VDD)  
• PLL (PLLD_VDD)  
VDD  
1.2  
1.25  
1.3  
V
Supply voltages  
VDDIO  
3.14  
2.0  
3.3  
3.46  
V
• I/O (IO_VDD)  
• PLL (PLLP_VDD)  
• PLL (PLLA_VDD)  
Input high voltage  
• All pins  
V
VIH  
VIO_VDD+2V  
Note: All 3.3-V supplies must rise prior to the rise of the 1.25-V supplies to avoid a high current condition and possible  
system damage.  
Input low voltage  
• All pins  
VIL  
IIN  
–0.3  
0.8  
84  
V
Input leakage current  
µA  
pF  
µA  
V
Clock pin Input Capacitance (EXTAL)  
High impedance (off-state) input current (@ 3.46V)  
Output high voltage  
CIN  
ITSI  
VOH  
4.7  
–10  
2.4  
84  
I
OH = -5 mA  
XTAL Pin IOH = -10mA  
Output low voltage  
VOL  
0.4  
V
IOL = 5 mA  
XTAL Pin IOL = 10 mA  
Internal supply current1 (core only) at internal clock of  
150 MHz  
• In Normal mode  
ICCI  
ICCW  
ICCS  
CIN  
65  
16  
1.2  
100  
mA  
mA  
mA  
pF  
• In Wait mode  
• In Stop mode2  
Input capacitance  
10  
Note:  
1
The Current Consumption section provides a formula to compute the estimated current requirements in Normal  
mode. In order to obtain these results, all inputs must be terminated (i.e., not allowed to float). Measurements are  
based on synthetic intensive DSP benchmarks. The power consumption numbers in this specification are 90% of  
the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is  
measured with VCORE_VDD = 1.25V, VDD_IO = 3.3V at TJ = 25°C. Maximum internal supply current is measured  
with VCORE_VDD = 1.30V, VIO_VDD) = 3.46V at TJ = 115°C.  
2
In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not  
allowed to float).  
DSP56374 Data Sheet, Rev. 4.2  
28  
Freescale Semiconductor  
AC Electrical Characteristics  
9 AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a V maximum  
IL  
of 0.8 V and a V minimum of 2.0 V for all pins. AC timing specifications, which are referenced to a  
IH  
device input signal, are measured in production with respect to the 50% point of the respective input  
signal’s transition. DSP56374 output levels are measured with the production test machine V and V  
OL  
OH  
reference levels set at 1.0 V and 1.8 V, respectively.  
10 Internal Clocks  
Table 18. INTERNAL CLOCKS1  
No.  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
1
2
3
Comparison Frequency  
Input Clock Frequency  
Fref  
FIN  
5
20  
MHz Fref = FIN/NR  
NR is input divider value  
Fref*NR  
Output clock Frequency (with  
PLL enabled)2,3  
FOUT  
75  
(Ef × MF x FM)/  
(PDF × DF x OD)  
150  
MHz FOUT=FVCO/NO where  
NO is output divider value  
Tc  
13.3  
ns  
4
5
Output clock Frequency (with  
PLL disabled)2,3  
FOUT  
Ef  
150  
60  
MHz  
Duty Cycle  
40  
50  
%
FVCO=300MHz~600MHz  
Note:  
1
See users manual for definition.  
DF = Division Factor  
2
Ef = External Frequency  
Mf = Multiplication Factor  
PDF = Predivision Factor  
FM= Frequency Multiplier  
OD = Output Divider  
Tc = Internal Clock Period  
Maximum frequency will vary depending on the ordered part number.  
3
11 External Clock Operation  
The DSP56374 system clock is derived from the on-chip oscillator or is externally supplied. To use the  
on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL;  
an example is shown below.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
29  
External Clock Operation  
Suggested component values:  
fosc = 24.576 MHz  
R = 1 M 10%  
C (EXTAL)= 18 pF  
C (XTAL) = 47 pF  
Calculations are for a 12 - 49 MHz crystal with the following parameters:  
• shunt capacitance (C0) of 10 pF - 12 pF  
• series resistance 40 Ohm  
• drive level of 10 µW  
If the DSP56374 system clock is an externally supplied square wave voltage source, it is connected to  
EXTAL (Figure 2.). When the external square wave source connects to EXTAL, the XTAL pin is not used.  
VIH  
Midpoint  
EXTAL  
ETH  
ETL  
VIL  
6
7
8
ETC  
Note:  
The midpoint is 0.5 (VIH + VIL).  
Figure 2. External Clock Timing  
Table 19. Clock Operation  
No.  
Characteristics  
EXTAL input high 1  
Symbol  
Min  
Max  
Units  
6
Eth  
3.33  
50  
ns  
(40% to 60% duty cycle)  
7
8
EXTAL input low2  
Etl  
Etc  
Icyc  
3.33  
50  
ns  
ns  
ns  
(40% to 60% duty cycle)  
EXTAL cycle time  
• With PLL disabled  
• With PLL enabled  
6.67  
50  
inf  
200  
3
9
Instruction cycle time= ICYC = TC  
• With PLL disabled  
• With PLL enabled  
6.67  
6.67  
inf  
13.33  
DSP56374 Data Sheet, Rev. 4.2  
30  
Freescale Semiconductor  
External Clock Operation  
Max Units  
Table 19. Clock Operation (continued)  
Characteristics Symbol Min  
No.  
Note:  
1
Measured at 50% of the input transition.  
2
The indicated duty cycle is for the specified maximum frequency for which a part is rated. The  
minimum clock high or low time required for correct operation, however, remains the same at lower  
operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may  
vary from the specified duty cycle as long as the minimum high time and low time requirements  
are met.  
3
A valid clock signal must be applied to the EXTAL pin within 3 ms of the DSP56374 being  
powered up.  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
31  
Reset, Stop, Mode Select, and Interrupt Timing  
12 Reset, Stop, Mode Select, and Interrupt Timing  
Table 20. Reset, Stop, Mode Select, and Interrupt Timing  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
10  
Delay from RESET assertion to all pins at reset  
value3  
11  
ns  
11  
13  
Required RESET duration4  
• Power on, external clock generator, PLL disabled  
2 xTC  
13.4  
13.4  
ns  
ns  
2 x TC  
• Power on, external clock generator, PLL enabled  
Syn reset deassert delay time  
• Minimum  
2× TC  
13.4  
5.0  
ns  
ms  
ns  
ns  
ns  
• Maximum (PLL enabled)  
Mode select setup time  
Mode select hold time  
(2xTC)+TLOCK  
14  
15  
16  
10.0  
10.0  
13.4  
Minimum edge-triggered interrupt request assertion  
width  
2 xTC  
2 xTC  
17  
18  
19  
Minimum edge-triggered interrupt request  
deassertion width  
13.4  
72  
ns  
ns  
Delay from interrupt trigger to interrupt code  
execution  
10 × TC + 5  
Duration of level sensitive IRQA assertion to ensure  
interrupt service (when exiting Stop)1, 2, 3  
• PLL is active during Stop and Stop delay is  
enabled  
(OMR Bit 6 = 0)  
9+(128× TC)  
25× TC  
854  
165  
µs  
• PLL is active during Stop and Stop delay is not  
enabled  
ns  
(OMR Bit 6 = 1)  
• PLL is not active during Stop and Stop delay is  
enabled (OMR Bit 6 = 0)  
9+(128xTC) + TLOCK  
(25 x TC) + TLOCK  
10 x TC + 3.0  
5.7  
5
ms  
ms  
ns  
• PLL is not active during Stop and Stop delay is  
not enabled (OMR Bit 6 = 1)  
20  
• Delay from IRQA, IRQB, IRQC, IRQD, NMI  
assertion to general-purpose transfer output  
valid caused by first interrupt instruction  
execution1  
69.0  
DSP56374 Data Sheet, Rev. 4.2  
32  
Freescale Semiconductor  
Reset, Stop, Mode Select, and Interrupt Timing  
Table 20. Reset, Stop, Mode Select, and Interrupt Timing (continued)  
No.  
Characteristics  
Interrupt Requests Rate1  
Expression  
Min  
Max  
Unit  
21  
12 x TC  
• ESAI, ESAI_1, SHI, Timer  
80.0  
53.0  
53.0  
80.0  
ns  
ns  
ns  
ns  
• DMA  
8 x TC  
8 x TC  
• IRQ, NMI (edge trigger)  
• IRQ (level trigger)  
12 x TC  
22  
DMA Requests Rate  
6 x TC  
40.0  
ns  
• Data read from ESAI, ESAI_1, SHI  
• Data write to ESAI, ESAI_1, SHI  
• Timer  
7 x TC  
2 x TC  
3 x TC  
46.7  
13.4  
20.0  
ns  
ns  
ns  
• IRQ, NMI (edge trigger)  
Note:  
1
When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through  
21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is  
recommended when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode.  
2
For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time will  
be defined by the OMR Bit 6 settings.  
For PLL enable, (if bet 12 of the PCTL register is 0), the PLL is shutdown during Stop. Recovering from Stop  
requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range  
of 0.5 ms.  
3
4
Periodically sampled and not 100% tested.  
RESET duration is measured during the time in which RESET is asserted, VDD is valid, and the EXTAL input is  
active and valid. When the VDD is valid, but the other “required RESET duration” conditions (as specified  
above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant  
power consumption and heat-up. Designs should minimize this state to the shortest possible duration.  
VIH  
RESET  
11  
13  
10  
All Pins  
Reset Value  
Figure 3. Reset Timing  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
33  
Reset, Stop, Mode Select, and Interrupt Timing  
19  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O  
20  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
b) General Purpose I/O  
Figure 4. External Fast Interrupt Timing  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
16  
17  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
Figure 5. External Interrupt Timing (Negative Edge-Triggered)  
VIH  
RESET  
14  
15  
VIH  
VIL  
VIH  
VIL  
IRQA, IRQB,  
IRQC,IRQD, NMI  
MODA, MODB,  
MODC, MODD,  
PINIT  
Figure 6. Recovery from Stop State Using IRQA Interrupt Service  
DSP56374 Data Sheet, Rev. 4.2  
34  
Freescale Semiconductor  
Serial Host Interface SPI Protocol Timing  
13 Serial Host Interface SPI Protocol Timing  
Table 21. Serial Host Interface SPI Protocol Timing  
No.  
Characteristics1,3,4  
Mode  
Filter Mode  
Bypassed  
Very Narrow  
Narrow  
Expression  
10.0 x TC + 9  
10.0 x TC + 9  
Min  
76.0  
76.0  
Max  
0
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
23 Minimum serial clock cycle = tSPICC(min) Master/Slave  
10.0 x TC + 133 200.0  
10.0 x TC + 333 400.0  
Wide  
XX Tolerable Spike width on data or clock in.  
Bypassed  
Very Narrow  
Narrow  
10  
50  
100  
Wide  
24 Serial clock high period  
Master  
Slave  
Master  
Slave  
Bypassed  
Very Narrow  
Narrow  
38.0  
38.0  
100.0  
200.0  
33.0  
33.0  
Wide  
Bypassed  
2.0 x TC + 19.6  
Very Narrow 2.0 x TC + 19.6  
Narrow  
Wide  
2.0 x TC + 86.6 100.0  
2.0 x TC + 186.6 200.0  
25 Serial clock low period  
Bypassed  
Very Narrow  
Narrow  
38.0  
38.0  
100.0  
200.0  
33.0  
Wide  
Bypassed  
2.0 x TC + 19.6  
Very Narrow 2.0 x TC + 19.6  
33.0  
Narrow  
Wide  
2.0 x TC + 86.6 100.0  
2.0 x TC + 186.6 200.0  
26 Serial clock rise/fall time  
Master  
Slave  
5
ns  
ns  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
35  
Serial Host Interface SPI Protocol Timing  
Table 21. Serial Host Interface SPI Protocol Timing (continued)  
No.  
Characteristics1,3,4  
Mode  
Filter Mode  
Bypassed  
Very Narrow  
Narrow  
Expression  
Min  
26  
16  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
27 SS assertion to first SCK edge  
Slave  
2.0 x TC + 12.6  
2.0 x TC + 2.6  
CPHA = 0  
2.0 x TC 37.45  
Wide  
2.0 x TC 87.45  
0
CPHA = 1  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
10  
0
0
Wide  
0
28 Last SCK edge to SS not asserted  
Bypassed  
Very Narrow  
Narrow  
12  
22  
100  
200  
0
Wide  
29 Data input valid to SCK edge (data input  
set-up time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
0
0
Wide  
0
30 SCK last sampling edge to data input not  
valid  
Master  
/Slave  
Bypassed  
3.0 x TC  
20  
43.2  
73.2  
100.0  
5
Very Narrow 3.0 x TC + 23.2  
Narrow  
Wide  
3.0 x TC + 53.2  
3.0 x TC + 80  
31 SS assertion to data out active  
Slave  
Slave  
32 SS deassertion to data high impedance2  
9
33 SCK edge to data out valid  
(data out delay time)  
Master  
/Slave  
Bypassed  
3.0 x TC + 26.1  
46.2  
110.4  
136.4  
223.4  
Very Narrow 3.0 x TC + 90.4  
Narrow  
Wide  
3.0 x TC + 116.4  
3.0 x TC + 203.4  
2.0 x TC  
34 SCK edge to data out not valid  
(data out hold time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
13.4  
15  
55  
105  
2.0 x TC + 1.6  
2.0 x TC + 41.6  
2.0 x TC + 91.6  
35 SS assertion to data out valid  
(CPHA = 0)  
Slave  
12.0  
DSP56374 Data Sheet, Rev. 4.2  
36  
Freescale Semiconductor  
Serial Host Interface SPI Protocol Timing  
Table 21. Serial Host Interface SPI Protocol Timing (continued)  
No.  
Characteristics1,3,4  
Mode  
Filter Mode  
Bypassed  
Very Narrow  
Narrow  
Expression  
3.0 x TC + 30  
3.0 x TC + 40  
3.0 x TC + 80  
3.0 x TC + 120  
4.0 x TC  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
36 SCK edge following the first SCK  
sampling edge to HREQ output  
deassertion  
Slave  
60  
100  
Wide  
150  
37 Last SCK sampling edge to HREQ output  
not deasserted (CPHA = 1)  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
57.0  
67.0  
107.0  
157.0  
50.0  
4.0 x TC  
4.0 x TC  
Wide  
4.0 x TC  
38 SS deassertion to HREQ output not  
deasserted (CPHA = 0)  
3.0 x TC + 30  
39 SS deassertion pulse width (CPHA = 0)  
40 HREQ in assertion to first SCK edge  
Slave  
2.0 x TC  
13.4  
63  
ns  
ns  
Master  
Bypassed  
0.5 x TSPICC  
+
3.0 x TC + 5  
Very Narrow  
Narrow  
Wide  
0.5 x TSPICC  
3.0 x TC + 5  
+
63  
125  
225  
0
ns  
ns  
ns  
ns  
0.5 x TSPICC  
3.0 x TC + 5  
+
0.5 x TSPICC  
3.0 x TC + 5  
+
41 HREQ in deassertion to last SCK  
sampling edge (HREQ in set-up time)  
(CPHA = 1)  
Master  
42 First SCK edge to HREQ in not asserted  
(HREQ in hold time)  
Master  
Master  
0
ns  
ns  
43 HREQ assertion width  
3.0 x TC  
20  
Note:  
1
VCORE_VDD = 1.2 5 0.05 V; TJ = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), CL = 50 pF  
Periodically sampled, not 100% tested  
All times assume noise free inputs.  
All times assume internal clock frequency of 150 MHz.  
Equation applies when the result is positive TC.  
2
3
4
5
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
37  
Serial Host Interface SPI Protocol Timing  
SS  
(Input)  
25  
23  
23  
24  
26  
26  
26  
26  
SCK (CPOL = 0)  
(Output)  
24  
25  
SCK (CPOL = 1)  
(Output)  
29  
30  
29  
30  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
34  
33  
MSB  
MOSI  
(Output)  
LSB  
40  
42  
HREQ  
(Input)  
43  
Figure 7. SPI Master Timing (CPHA = 0)  
DSP56374 Data Sheet, Rev. 4.2  
38  
Freescale Semiconductor  
Serial Host Interface SPI Protocol Timing  
SS  
(Input)  
25  
24  
23  
26  
24  
25  
26  
SCK (CPOL = 0)  
(Output)  
23  
26  
26  
SCK (CPOL = 1)  
(Output)  
29  
29  
30  
30  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
33  
34  
MOSI  
(Output)  
MSB  
LSB  
40  
41  
42  
HREQ  
(Input)  
43  
Figure 8. SPI Master Timing (CPHA = 1)  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
39  
Serial Host Interface SPI Protocol Timing  
SS  
(Input)  
25  
23  
23  
28  
24  
26  
26  
26  
39  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
35  
33  
34  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
MOSI  
(Input)  
LSB  
Valid  
36  
38  
HREQ  
(Output)  
Figure 9. SPI Slave Timing (CPHA = 0)  
DSP56374 Data Sheet, Rev. 4.2  
40  
Freescale Semiconductor  
Serial Host Interface (SHI) I2C Protocol Timing  
SS  
(Input)  
25  
23  
28  
24  
26  
26  
26  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
33  
33  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
37  
36  
HREQ  
(Output)  
Figure 10. SPI Slave Timing (CPHA = 1)  
2
14 Serial Host Interface (SHI) I C Protocol Timing  
Table 22. SHI I2C Protocol Timing  
Standard I2C  
Standard  
Min Max  
Fast-Mode  
Min  
Unit  
Symbol/  
Expression  
No.  
Characteristics1,2,3,4,5  
Max  
XX Tolerable Spike Width on SCL or SDA  
Filters Bypassed  
0
0
ns  
ns  
ns  
ns  
Very Narrow Filters enabled  
Narrow Filters enabled  
10  
10  
50  
50  
Wide Fileters enabled.  
100  
100  
44 SCL clock frequency  
44 SCL clock cycle  
FSCL  
TSCL  
10  
100  
400  
kHz  
µs  
2.5  
1.3  
0.6  
45 Bus free time  
TBUF  
4.7  
4.7  
µs  
46 Start condition set-up time  
TSUSTA  
µs  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
41  
Serial Host Interface (SHI) I2C Protocol Timing  
Table 22. SHI I2C Protocol Timing (continued)  
Standard I2C  
Standard  
Fast-Mode  
Unit  
Symbol/  
No.  
Characteristics1,2,3,4,5  
Expression  
Min  
Max  
Min  
0.6  
1.3  
1.3  
Max  
47 Start condition hold time  
48 SCL low period  
THD;STA  
TLOW  
4.0  
4.7  
4.0  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
49 SCL high period  
THIGH  
50 SCL and SDA rise time  
51 SCL and SDA fall time  
52 Data set-up time  
T
5.0  
5.0  
5.0  
5.0  
R
T
F
TSU;DAT  
THD;DAT  
FOSC  
250  
0.0  
100  
0.0  
53 Data hold time  
0.9  
54 DSP clock frequency  
• Filters bypassed  
10.6  
10.6  
11.8  
13.1  
28.5  
28.5  
39.7  
61.0  
MHz  
MHz  
MHz  
MHz  
• Very Narrrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
55 SCL low to data out valid  
56 Stop condition setup time  
TVD;DAT  
TSU;STO  
tSU;RQI  
3.4  
0.9  
µs  
µs  
ns  
4.0  
0.0  
0.6  
0.0  
57 HREQ in deassertion to last SCL edge  
(HREQ in set-up time)  
58 First SCL sampling edge to HREQ output  
deassertion2  
TNG;RQO  
4 × TC + 30  
4 × TC + 50  
4 × TC + 130  
4 × TC + 230  
• Filters bypassed  
57.0  
77.0  
57.0  
67.0  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
157.0  
257.0  
157.0  
257.0  
59 Last SCL edge to HREQ output not  
deasserted2  
TAS;RQO  
2 × TC + 30  
2 × TC + 40  
2 × TC + 80  
2 × TC + 130  
44  
54  
44  
54  
ns  
ns  
ns  
ns  
• Filters bypassed  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
94  
94  
144  
144  
60 HREQ in assertion to first SCL edge  
• Filters bypassed  
TAS;RQI  
4327  
4317  
4282  
4227  
927  
917  
877  
827  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
61 First SCL edge to HREQ is not asserted  
(HREQ in hold time.)  
tHO;RQI  
0.0  
0.0  
ns  
DSP56374 Data Sheet, Rev. 4.2  
42  
Freescale Semiconductor  
Programming the Serial Clock  
Table 22. SHI I2C Protocol Timing (continued)  
Standard I2C  
Standard  
Symbol/  
Fast-Mode  
Min Max  
Unit  
No.  
Characteristics1,2,3,4,5  
Expression  
Min  
Max  
Note:  
1
VCORE_VDD = 1.2 5 0.05 V; TJ = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), CL = 50 pF  
Pull-up resistor: R P (min) = 1.5 kOhm  
Capacitive load: C b (max) = 50 pF  
All times assume noise free inputs  
All times assume internal clock frequency of 150MHz  
2
3
4
5
15 Programming the Serial Clock  
2
The programmed serial clock cycle, T  
HCKR (SHI clock control register).  
, is specified by the value of the HDM[7:0] and HRS bits of the  
I CCP  
2
The expression for T  
is  
I CCP  
TI2CCP = [TC × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)]  
Eqn. 1  
where  
— HRS is the prescaler rate select bit. When HRS is cleared, the fixed  
divide-by-eight prescaler is operational. When HRS is set, the prescaler is bypassed.  
— HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00  
to $FF) may be selected.  
2
In I C mode, the user may select a value for the programmed serial clock cycle from  
6 × TC (if HDM[7:0] = $02 and HRS = 1)  
Eqn. 2  
to  
4096 × TC (if HDM[7:0] = $FF and HRS = 0)  
Eqn. 3  
2
The programmed serial clock cycle (T  
) should be chosen in order to achieve the desired SCL serial  
I CCP  
clock cycle (T ), as shown in Table 23.  
SCL  
Table 23. SCL Serial Clock Cycle (TSCL) Generated as Master  
2
Nominal  
TI CCP + 3 × TC + 45ns + TR  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
43  
Enhanced Serial Audio Interface Timing  
44  
46  
49  
48  
SCL  
SDA  
50  
53  
51  
45  
52  
MSB  
LSB  
ACK  
Stop  
Stop  
Start  
47  
60  
58  
55  
56  
59  
61  
57  
HREQ  
Figure 11. I2C Timing  
16 Enhanced Serial Audio Interface Timing  
Table 24. Enhanced Serial Audio Interface Timing  
No.  
Characteristics1, 2, 3  
Symbol  
Expression3  
Min  
Max  
Condition4  
Unit  
62 Clock cycle5  
tSSICC  
4 × T  
4 × T  
26.4  
26.4  
x ck  
i ck  
ns  
c
c
63 Clock high period  
tSSICCH  
ns  
ns  
• For internal clock  
• For external clock  
64 Clock low period  
2 × T 0.5  
12.8  
13.4  
c
2 × T  
c
tSSICCL  
• For internal clock  
2 × T  
2 × T  
13.4  
13.4  
c
c
• For external clock  
65 SCKR edge to FSR out (bl) high  
17.0  
7.0  
x ck  
ns  
ns  
ns  
ns  
ns  
i ck a  
66 SCKR edge to FSR out (bl) low  
67 SCKR edge to FSR out (wr) high6  
68 SCKR edge to FSR out (wr) low6  
69 SCKR edge to FSR out (wl) high  
17.0  
7.0  
x ck  
i ck a  
19.0  
9.0  
x ck  
i ck a  
19.0  
9.0  
x ck  
i ck a  
16.0  
6.0  
x ck  
i ck a  
DSP56374 Data Sheet, Rev. 4.2  
44  
Freescale Semiconductor  
Enhanced Serial Audio Interface Timing  
Table 24. Enhanced Serial Audio Interface Timing (continued)  
No.  
Characteristics1, 2, 3  
Symbol  
Expression3  
Min  
Max  
Condition4  
Unit  
70 SCKR edge to FSR out (wl) low  
17.0  
7.0  
x ck  
ns  
i ck a  
71 Data in setup time before SCKR (SCK in  
synchronous mode) edge  
12.0  
19.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
72 Data in hold time after SCKR edge  
73 FSR input (bl, wr) high before SCKR edge 6  
74 FSR input (wl) high before SCKR edge  
75 FSR input hold time after SCKR edge  
76 Flags input setup before SCKR edge  
77 Flags input hold time after SCKR edge  
78 SCKT edge to FST out (bl) high  
79 SCKT edge to FST out (bl) low  
3.5  
9.0  
x ck  
i ck  
2.0  
x ck  
12.0  
i ck a  
2.0  
x ck  
12.0  
i ck a  
2.5  
8.5  
x ck  
i ck a  
0.0  
x ck  
19.0  
i ck s  
6.0  
0.0  
x ck  
i ck s  
18.0  
8.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
80 SCKT edge to FST out (wr) high6  
81 SCKT edge to FST out (wr) low6  
82 SCKT edge to FST out (wl) high  
83 SCKT edge to FST out (wl) low  
20.0  
10.0  
x ck  
i ck  
22.0  
12.0  
x ck  
i ck  
19.0  
9.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
84 SCKT edge to data out enable from high  
impedance  
22.0  
17.0  
x ck  
i ck  
85 SCKT edge to transmitter #0 drive enable  
assertion  
17.0  
11.0  
x ck  
i ck  
86 SCKT edge to data out valid  
18.0  
13.0  
x ck  
i ck  
87 SCKT edge to data out high impedance7  
21.0  
16.0  
x ck  
i ck  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
45  
Enhanced Serial Audio Interface Timing  
Table 24. Enhanced Serial Audio Interface Timing (continued)  
No.  
Characteristics1, 2, 3  
Symbol  
Expression3  
Min  
Max  
Condition4  
Unit  
88 SCKT edge to transmitter #0 drive enable  
deassertion7  
14.0  
9.0  
x ck  
i ck  
ns  
89 FST input (bl, wr) setup time before SCKT  
edge6  
2.0  
x ck  
i ck  
ns  
ns  
ns  
18.0  
90 FST input (wl) setup time before SCKT  
edge  
2.0  
x ck  
i ck  
18.0  
91 FST input hold time after SCKT edge  
4.0  
5.0  
x ck  
i ck  
92 FST input (wl) to data out enable from high  
impedance  
21.0  
ns  
ns  
ns  
93 FST input (wl) to transmitter #0 drive enable  
assertion  
14.0  
94 Flag output valid after SCKT rising edge  
14.0  
9.0  
x ck  
i ck  
95 HCKR/HCKT clock cycle  
2 x TC  
13.4  
ns  
ns  
ns  
96 HCKT input edge to SCKT output  
97 HCKR input edge to SCKR output  
18.0  
18.0  
Note:  
1
VCORE_VDD = 1.25 0.05 V; TJ = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), CL = 50 pF  
i ck = internal clock  
2
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(asynchronous implies that SCKT and SCKR are two different clocks)  
i ck s = internal clock, synchronous mode  
(synchronous implies that SCKT and SCKR are the same clock)  
bl = bit length  
wl = word length  
wr = word length relative  
SCKT(SCKT pin) = transmit clock  
3
4
SCKR(SCKR pin) = receive clock  
FST(FST pin) = transmit frame sync  
FSR(FSR pin) = receive frame sync  
HCKT(HCKT pin) = transmit high frequency clock  
HCKR(HCKR pin) = receive high frequency clock  
For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.  
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame  
sync signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until  
the one before last bit clock of the first word in frame.  
5
6
7
8
Periodically sampled and not 100% tested.  
ESAI_1 specs match those of ESAI.  
DSP56374 Data Sheet, Rev. 4.2  
46  
Freescale Semiconductor  
Enhanced Serial Audio Interface Timing  
62  
63  
64  
SCKT  
(Input/Output)  
78  
79  
FST (Bit) Out  
83  
84  
FST (Word) Out  
87  
85  
87  
88  
Data Out  
First Bit  
Last Bit  
92  
Transmitter #0  
Drive Enable  
90  
86  
89  
94  
FST (Bit) In  
91  
94  
93  
FST (Word) In  
Flags Out  
95  
See Note  
Note:  
In network mode, output flag transitions can occur at the start of each time slot within the  
frame. In normal mode, the output flag state is asserted for the entire frame period.  
Figure 12 is drawn assuming positive polarity bit clock (TCKP=0) and positive frame sync  
polarity (TFSP=0).  
Figure 12. ESAI Transmitter Timing  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
47  
Enhanced Serial Audio Interface Timing  
62  
63  
64  
SCKR  
(Input/Output)  
65  
66  
FSR (Bit)  
Out  
69  
70  
FSR (Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
FSR (Bit)  
In  
74  
75  
77  
FSR (Word)  
In  
76  
Flags In  
Note:  
Figure 13 is drawn assuming positive polarity bit clock (RCKP=0) and positive frame sync polarity  
(RFSP=0).  
Figure 13. ESAI Receiver Timing  
DSP56374 Data Sheet, Rev. 4.2  
48  
Freescale Semiconductor  
Timer Timing  
HCKT  
95  
SCKT (output)  
96  
Note: Figure 14 is drawn assuming positive polarity high frequency clock (THCKP=0) and positive bit clock polarity (TCKP=0).  
Figure 14. ESAI HCKT Timing  
HCKR  
95  
SCKR (output)  
97  
Note: Figure 15 is drawn assuming positive polarity high frequency clock (RHCKP=0) and positive bit clock polarity (RCKP=0).  
Figure 15. ESAI HCKR Timing  
17 Timer Timing  
Table 25. Timer Timing  
150 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
15.4  
15.4  
Max  
98  
99  
TIO Low  
TIO High  
2 × TC + 2.0  
2 × TC + 2.0  
ns  
ns  
Note: V  
= 1.25 V 0.05 V; T = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), C = 50 pF  
J L  
CORE_VDD  
TIO  
98  
99  
Figure 16. TIO Timer Event Input Restrictions  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
49  
GPIO Timing  
18 GPIO Timing  
Table 26. GPIO Timing  
No.  
Characteristics1  
Expression  
Min  
Max  
7
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100 EXTAL edge to GPIO out valid (GPIO out delay time)2  
101 EXTAL edge to GPIO out not valid (GPIO out hold time)2  
102 GPIO In valid to EXTAL edge (GPIO in set-up time)2  
103 EXTAL edge to GPIO in not valid (GPIO in hold time)2  
104 Minimum GPIO pulse high width  
7
2
0
TC + 13  
TC + 13  
19.7  
19.7  
105 Minimum GPIO pulse low width  
106 GPIO out rise time  
13.0  
13.0  
107 GPIO out fall time  
Note:  
1
VCORE_VDD = 1.25 V 0.05 V; TJ = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), CL = 50 pF  
PLL Disabled, EXTAL driven by a square wave.  
2
EXTAL  
100  
101  
GPIO  
(Output)  
102  
103  
GPIO  
(Input)  
Valid  
GPIO  
(Output)  
104  
105  
106  
107  
Figure 17. GPIO Timing  
Table 27. JTAG Timing  
19 JTAG Timing  
All frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
108 TCK frequency of operation (1/(TC × 3); maximum 10 MHz)  
10.0  
MHz  
DSP56374 Data Sheet, Rev. 4.2  
50  
Freescale Semiconductor  
JTAG Timing  
Table 27. JTAG Timing (continued)  
Characteristics  
All frequencies  
No.  
Unit  
Min  
100.0  
50.0  
Max  
109 TCK cycle time in Crystal mode  
110 TCK clock pulse width measured at 1.65 V  
111 TCK rise and fall times  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.0  
112 Boundary scan input data setup time  
113 Boundary scan input data hold time  
114 TCK low to output data valid  
115 TCK low to output high impedance  
116 TMS, TDI data setup time  
117 TMS, TDI data hold time  
15.0  
24.0  
40.0  
40.0  
5.0  
25.0  
118 TCK low to TDO data valid  
119 TCK low to TDO high impedance  
Note:  
44.0  
44.0  
1. V  
= 1.25 V 0.05 V; T = -40°C to 110°C (52 LQFP) / -40°C to 105°C (80 LQFP), C = 50 pF  
J L  
CORE_VDD  
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
109  
110  
VM  
110  
VM  
VIH  
111  
Figure 18. Test Clock Input Timing Diagram  
TCK  
(Input)  
VIL  
111  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
51  
JTAG Timing  
VIH  
TCK  
(Input)  
VIL  
112  
113  
Data  
Inputs  
Input Data Valid  
114  
115  
114  
Data  
Output Data Valid  
Outputs  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 19. Debugger Port Timing Diagram  
VIH  
117  
TCK  
(Input)  
VIL  
116  
TDI  
TMS  
Input Data Valid  
(Input)  
118  
TDO  
(Output)  
Output Data Valid  
119  
TDO  
(Output)  
118  
TDO  
(Output)  
Output Data Valid  
Figure 20. Test Access Port Timing Diagram  
DSP56374 Data Sheet, Rev. 4.2  
52  
Freescale Semiconductor  
Watchdog Timer Timing  
20 Watchdog Timer Timing  
Table 28. Watchdog Timer Timing  
Characteristics Expression  
2 × T  
No.  
Min  
13.4  
13.4  
Max  
Unit  
ns  
120 Delay from time-out to fall of TIO1  
121 Delay from timer clear to rise of TIO1  
c
2 x Tc  
ns  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
53  
Watchdog Timer Timing  
Appendix A  
Package Information  
A.1 DSP56374 Pinout  
IO_Vdd  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SDO5_1_PE6  
SDO4_1_PE7  
SDO3_PC8  
SDO2_PC9  
SDO1_PC10  
SDO0_PC11  
SDO3_1_PE8  
SDO2_1_PE9  
Core_Vdd  
MODA_IRQA_PH0  
MODB_IRQB_PH1  
GPIO_PG13  
GPIO_PG12  
MODC_IRQC_PH2  
MODD_IRQD_PH3  
GPIO_PG11  
Core_Vdd  
3
4
5
6
7
8
9
Core_Gnd  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Core_Gnd  
GPIO_PG10  
GPIO_PG9  
SDO1_1_PE10  
SDO0_1_PE11  
PINIT_NMI  
IO_Vdd  
HREQ_PH4  
SS_HA2  
SCK_SCL  
XTAL  
MISO_SDA  
MOSI_HA0  
EXTAL  
PLLD_Vdd  
PLLD_Gnd  
PLLP_Gnd  
PLLP_Vdd  
GPIO_PG8  
GPIO_PG7  
IO_Gnd  
1.25 V  
Filter  
3.3 V  
Figure A-1. 80-Pin Vdd Connections  
DSP56374 Data Sheet, Rev. 4.2  
54  
Freescale Semiconductor  
Watchdog Timer Timing  
IO_Vdd  
1
2
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
SDO3_PC8  
SDO2_PC9  
SDO1_PC10  
SDO0_PC11  
Core_Vdd  
Core_Gnd  
PINIT_NMI  
XTAL  
MODA_IRQA_PH0  
MODB_IRQB_PH1  
MODC_IRQC_PH2  
MODD_IRQD_PH3  
Core_Vdd  
3
4
5
6
Core_Gnd  
7
HREQ_PH4  
SS_HA2  
8
9
EXTAL  
SCK_SCL  
10  
11  
12  
13  
PLLD_Vdd  
PLLD_Gnd  
PLLP_Gnd  
PLLP_Vdd  
MISO_SDA  
MOSI_HA0  
IO_Gnd  
1.25 V  
Filter  
3.3 V  
Figure A-2. 52-pin Vdd Connections  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
55  
Watchdog Timer Timing  
A.2 Package Information  
A.2.1 80-Pin Package  
.
DSP56374 Data Sheet, Rev. 4.2  
56  
Freescale Semiconductor  
Watchdog Timer Timing  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
57  
Watchdog Timer Timing  
DSP56374 Data Sheet, Rev. 4.2  
58  
Freescale Semiconductor  
Watchdog Timer Timing  
.
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
59  
Watchdog Timer Timing  
A.2.2 52-Pin Package  
DSP56374 Data Sheet, Rev. 4.2  
60  
Freescale Semiconductor  
Watchdog Timer Timing  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
61  
Watchdog Timer Timing  
DSP56374 Data Sheet, Rev. 4.2  
62  
Freescale Semiconductor  
Watchdog Timer Timing  
DSP56374 Data Sheet, Rev. 4.2  
Freescale Semiconductor  
63  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
support.asia@freescale.com  
© Freescale Semiconductor, Inc. 2004, 2005, 2006, 2007. All rights reserved.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
DSP56374  
Rev. 4.2, 1/2007  

相关型号:

DSPB56720AG

SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors
FREESCALE

DSPB56721AF

SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors
FREESCALE

DSPB56721AG

SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors
FREESCALE

DSPB56724AG

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors
FREESCALE

DSPB56724CAG

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors
FREESCALE

DSPB56725AF

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors
FREESCALE

DSPB56725CAF

Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors
FREESCALE

DSPB56L007FJ50

Digital Signal Processor
MOTOROLA

DSPB56L007FJ66

Digital Signal Processor
MOTOROLA

DSPC-8601-USBE

1-ch H.264 USB Video Capture Module with SDK
ADVANTECH

DSPC-8661-PCXE

16-ch PCIe Versatile Video Processing Board with SDK
ADVANTECH

DSPC-8661ACY01-AE

16-ch PCIe Versatile Video Processing Board with SDK
ADVANTECH