K60P144M120SF3 [FREESCALE]

K60 Sub-Family Data Sheet; K60次系列数据手册
K60P144M120SF3
型号: K60P144M120SF3
厂家: Freescale    Freescale
描述:

K60 Sub-Family Data Sheet
K60次系列数据手册

文件: 总82页 (文件大小:1207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K60P144M120SF3  
Rev. 3, 2/2012  
Freescale Semiconductor  
Data Sheet: Advance Information  
K60P144M120SF3  
K60 Sub-Family Data Sheet  
Supports the following:  
MK60FX512VLQ12,  
MK60FN1M0VLQ12,  
MK60FX512VMD12,  
MK60FN1M0VMD12  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
– Hardware random-number generator  
– Hardware encryption supporting DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
– 128-bit unique identification (ID) number per chip  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
Performance  
– Up to 120 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Human-machine interface  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Memories and memory interfaces  
– Up to 1024 KB program flash memory on non-  
FlexMemory devices  
Analog modules  
– Four 16-bit SAR ADCs  
– Up to 512 KB program flash memory on  
FlexMemory devices  
– Programmable gain amplifier (PGA) (up to x64)  
integrated into each ADC  
– Up to 512 KB FlexNVM on FlexMemory devices  
– 16 KB FlexRAM on FlexMemory devices  
– Up to 128 KB RAM  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– NAND flash controller interface  
– Two 12-bit DACs  
– Four analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
Timers  
– Programmable delay block  
– Two 8-channel motor control/general purpose/PWM  
timers  
– Two 2-channel quadrature decoder/general purpose  
timers  
Clocks  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
– IEEE 1588 timers  
System peripherals  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
– 10 low-power modes to provide power optimization  
based on application requirements  
– Memory protection unit with multi-master  
protection  
– 32-channel DMA controller, supporting up to 128  
request sources  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
This document contains information on a new product. Specifications and  
information herein are subject to change without notice.  
© 2012 Freescale Semiconductor, Inc.  
Preliminary  
Communication interfaces  
– Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability  
– USB high-/full-/low-speed On-the-Go controller with ULPI interface  
– USB full-/low-speed On-the-Go controller with on-chip transceiver  
– Two Controller Area Network (CAN) modules  
– Three SPI modules  
– Two I2C modules  
– Six UART modules  
– Secure Digital host controller (SDHC)  
– Two I2S modules  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
2
Freescale Semiconductor, Inc.  
Preliminary  
Table of Contents  
1 Ordering parts...........................................................................5  
5.4.2  
Thermal attributes...............................................23  
1.1 Determining valid orderable parts......................................5  
2 Part identification......................................................................5  
2.1 Description.........................................................................5  
2.2 Format...............................................................................5  
2.3 Fields.................................................................................5  
2.4 Example............................................................................6  
3 Terminology and guidelines......................................................6  
3.1 Definition: Operating requirement......................................6  
3.2 Definition: Operating behavior...........................................6  
3.3 Definition: Attribute............................................................7  
3.4 Definition: Rating...............................................................7  
3.5 Result of exceeding a rating..............................................8  
3.6 Relationship between ratings and operating  
6 Peripheral operating requirements and behaviors....................24  
6.1 Core modules....................................................................24  
6.1.1  
6.1.2  
Debug trace timing specifications.......................24  
JTAG electricals..................................................25  
6.2 System modules................................................................28  
6.3 Clock modules...................................................................28  
6.3.1  
6.3.2  
6.3.3  
MCG specifications.............................................28  
Oscillator electrical specifications.......................30  
32kHz Oscillator Electrical Characteristics.........32  
6.4 Memories and memory interfaces.....................................33  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Flash (FTFE) electrical specifications.................33  
EzPort Switching Specifications.........................36  
NFC specifications..............................................37  
Flexbus Switching Specifications........................40  
requirements......................................................................8  
3.7 Guidelines for ratings and operating requirements............8  
3.8 Definition: Typical value.....................................................9  
3.9 Typical value conditions....................................................10  
4 Ratings......................................................................................10  
4.1 Thermal handling ratings...................................................10  
4.2 Moisture handling ratings..................................................11  
4.3 ESD handling ratings.........................................................11  
4.4 Voltage and current operating ratings...............................11  
5 General.....................................................................................12  
5.1 AC electrical characteristics..............................................12  
5.2 Nonswitching electrical specifications...............................12  
6.5 Security and integrity modules..........................................43  
6.6 Analog...............................................................................43  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
ADC electrical specifications..............................43  
CMP and 6-bit DAC electrical specifications......52  
12-bit DAC electrical characteristics...................54  
Voltage reference electrical specifications..........57  
6.7 Timers................................................................................58  
6.8 Communication interfaces.................................................58  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
6.8.7  
Ethernet switching specifications........................58  
USB electrical specifications...............................60  
USB DCD electrical specifications......................60  
USB VREG electrical specifications...................61  
ULPI timing specifications...................................61  
CAN switching specifications..............................62  
DSPI switching specifications (limited voltage  
range).................................................................63  
DSPI switching specifications (full voltage  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
Voltage and current operating requirements......12  
LVD and POR operating requirements...............13  
Voltage and current operating behaviors............14  
Power mode transition operating behaviors.......15  
Power consumption operating behaviors............16  
EMC radiated emissions operating behaviors....20  
Designing with radiated emissions in mind.........21  
Capacitance attributes........................................21  
6.8.8  
6.8.9  
range).................................................................64  
I2C switching specifications................................66  
5.3 Switching specifications.....................................................21  
6.8.10 UART switching specifications............................66  
6.8.11 SDHC specifications...........................................66  
6.8.12 I2S/SAI Switching Specifications........................67  
6.9 Human-machine interfaces (HMI)......................................69  
5.3.1  
5.3.2  
Device clock specifications.................................21  
General switching specifications.........................22  
5.4 Thermal specifications.......................................................23  
5.4.1  
Thermal operating requirements.........................23  
6.9.1  
TSI electrical specifications................................69  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
3
7 Dimensions...............................................................................70  
7.1 Obtaining package dimensions.........................................71  
8 Pinout........................................................................................71  
8.1 K60 Signal Multiplexing and Pin Assignments..................71  
8.2 K60 Pinouts.......................................................................78  
9 Revision History........................................................................80  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
4
Freescale Semiconductor, Inc.  
Preliminary  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to http://www.freescale.com and perform a part number  
search for the following device numbers: PK60 and MK60.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K60  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
Field  
Description  
Values  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
T
Temperature range (°C)  
• V = –40 to 105  
• C = –40 to 85  
PP  
Package identifier  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 12 = 120 MHz  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK60FN1M0VLQ12  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
7
Preliminary  
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal  
range  
Normal  
operating  
range  
Fatal  
range  
- Probable permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Probable permanent failure  
Handling range  
- No permanent failure  
 
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
8
Freescale Semiconductor, Inc.  
Preliminary  
Terminology and guidelines  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
9
Preliminary  
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Value  
Unit  
TA  
Ambient temperature  
25  
°C  
V
VDD  
3.3 V supply voltage  
3.3  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TSTG  
Storage temperature  
–55  
150  
°C  
1
TSDR  
Solder temperature, lead-free  
260  
°C  
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
10  
Freescale Semiconductor, Inc.  
Preliminary  
Ratings  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human body model  
-2000  
+2000  
V
1
VCDM  
ILAT  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
-500  
-100  
+500  
+100  
V
2
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage1  
–0.3  
3.8  
V
IDD  
Digital supply current  
300  
5.5  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL0/XTAL0, and  
EXTAL1/XTAL1) 2  
–0.3  
Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input  
voltage  
VAIO  
–0.3  
–25  
VDD + 0.3  
25  
V
ID  
Instantaneous maximum current single pin limit (applies to all  
digital pins except pins)  
mA  
VDDA  
VUSB_DP  
VUSB_DM  
VREGIN  
VBAT  
Analog supply voltage  
USB_DP input voltage  
USB_DM input voltage  
USB regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
V
V
V
–0.3  
3.63  
–0.3  
6.0  
RTC battery supply voltage  
–0.3  
3.8  
1. It applies for all port pins.  
2. It covers digital pins.  
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
11  
Preliminary  
General  
5 General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
VDDA  
Analog supply voltage  
1.71  
–0.1  
–0.1  
1.71  
3.6  
0.1  
0.1  
3.6  
V
V
V
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
VBAT  
RTC battery supply voltage  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
12  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
VIH  
Input high voltage (digital pins)  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage (digital pins)  
• 2.7 V ≤ VDD ≤ 3.6 V  
0.35 × VDD  
0.3 × VDD  
V
V
• 1.7 V ≤ VDD ≤ 2.7 V  
VHYS  
IICDIO  
Input hysteresis (digital pins)  
0.06 × VDD  
-5  
V
Digital pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
3
mA  
Analog2, EXTAL0/XTAL0, and EXTAL1/XTAL1 pin DC  
injection current — single pin  
IICAIO  
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
V
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection  
to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at  
the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current  
limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN  
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting  
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC  
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is  
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.  
5.2.2 LVD and POR operating requirements  
Table 2. LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR  
Falling VDD POR detect voltage  
0.8  
1.1  
1.5  
V
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
13  
General  
Table 2. LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
VLVDL  
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period  
factory trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
14  
Freescale Semiconductor, Inc.  
General  
Notes  
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
IOHT_io60  
VOL  
Output high current total for all ports  
100  
100  
mA  
mA  
Output high current total for fast digital ports  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
IOLT_io60  
IIN  
Output low current total for all ports  
TBD  
TBD  
1
mA  
mA  
μA  
Output low current total for fast digital ports  
Input leakage current (per pin) for full temperature  
range  
1
1
IIN  
Input leakage current (per pin) at 25°C  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
20  
20  
0.025  
1
μA  
μA  
kΩ  
kΩ  
IOZ  
RPU  
RPD  
50  
2
3
Internal pulldown resistors  
50  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = FEI 100 MHz  
• Bus clock = 50 MHz  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
15  
Preliminary  
General  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
1
126  
82  
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
82  
5.0  
TBD  
TBD  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFE_FOPT[LPBOOT]=1)  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
2
65  
65  
TBD  
TBD  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3
95  
95  
TBD  
TBD  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
37  
21  
TBD  
TBD  
mA  
mA  
2
4
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks disabled  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
16  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
Min.  
Typ.  
Max.  
Unit  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
• @ 70°C  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
2.3  
3.1  
1.8  
TBD  
TBD  
TBD  
mA  
mA  
mA  
5
6
7
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
IDD_VLPW Very-low-power wait mode current at 3.0 V  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
200  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_LLS  
Low leakage stop mode current at 3.0 V  
• @ –40 to 25°C  
8
200  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ 70°C  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
#new-  
reference/  
llsramn  
6.5  
37.4  
148.3  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
3.4  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
13.4  
58.5  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
2.9  
9.8  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
44.7  
• @ 105°C  
IDD_VBAT Average current when CPU is not accessing  
RTC registers at 3.0 V  
9
0.91  
1.5  
1.1  
1.85  
4.3  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
4.3  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
17  
Preliminary  
General  
2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus, 50 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks enabled, but peripherals are not in active operation.  
4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.  
5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
6. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
7. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
8. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.  
9. Includes 32kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater  
than 50 MHz frequencies. MCG in PEE mode is greater than 100 MHz frequencies.  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
18  
Freescale Semiconductor, Inc.  
Preliminary  
General  
Figure 2. Run mode supply current vs. core frequency  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
19  
Preliminary  
General  
Figure 3. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors for 256MAPBGA  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
1, 2  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
TBD  
TBD  
TBD  
TBD  
K
dBμV  
dBμV  
dBμV  
dBμV  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
2, 3  
VRE_IEC  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
20  
Freescale Semiconductor, Inc.  
Preliminary  
General  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to http://www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_A  
Input capacitance: analog pins  
7
pF  
CIN_D  
Input capacitance: digital pins  
7
9
pF  
pF  
CIN_D_io60  
Input capacitance: fast digital pins  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
120  
MHz  
MHz  
fSYS_USBFS  
System and core clock when Full Speed USB in  
operation  
20  
fSYS_USBHS  
System and core clock when High Speed USB in  
operation  
60  
MHz  
MHz  
fENET  
System and core clock when ethernet in operation  
• 10 Mbps  
• 100 Mbps  
5
60  
50  
fBUS  
Bus clock  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
50  
25  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
21  
General  
Table 9. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
fLPTMR  
LPTMR clock  
25  
MHz  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
4
1
4
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
fLPTMR  
FlexBus clock  
Flash clock  
LPTMR clock  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CAN, CMT, IEEE 1588 timer, and I2C signals.  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
ns  
ns  
2
2
2
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
tio50  
tio50  
tio60  
Port rise and fall time (high drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
3
4
• Slew enabled  
Port rise and fall time (low drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
3
4
• Slew enabled  
Port rise and fall time (high drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
3
4
• Slew enabled  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
22  
Freescale Semiconductor, Inc.  
General  
Table 10. General switching specifications (continued)  
Symbol  
Description  
Min.  
Max.  
TBD  
TBD  
Unit  
ns  
Notes  
tio60  
Port rise and fall time (low drive strength)  
• Slew disabled  
3
4
ns  
• Slew enabled  
ttamper  
Port rise and fall time (high drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
5
6
• Slew enabled  
ttamper  
Port rise and fall time (low drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
7
8
• Slew enabled  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 25pF load  
4. 15pF load  
5. 75pF load  
6. 15pF load  
7. 75pF load  
8. 15pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
TJ  
Die junction temperature  
Ambient temperature  
–40  
–40  
125  
105  
°C  
TA  
°C  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
144 LQFP  
144  
MAPBGA  
Unit  
Notes  
Single-layer  
(1s)  
RθJA  
Thermal  
resistance,  
junction to  
45  
50  
°C/W  
1
ambient (natural  
convection)  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
Board type  
Symbol  
Description  
144 LQFP  
144  
MAPBGA  
Unit  
Notes  
Four-layer  
(2s2p)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
36  
30  
41  
27  
17  
°C/W  
1
Single-layer  
(1s)  
RθJMA  
RθJMA  
RθJB  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
36  
30  
24  
°C/W  
°C/W  
°C/W  
1
1
2
Four-layer  
(2s2p)  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
Thermal  
resistance,  
junction to  
board  
RθJC  
Thermal  
resistance,  
junction to case  
9
2
10  
2
°C/W  
°C/W  
3
4
ΨJT  
Thermal  
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2.  
3.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
24  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.1.1 Debug trace timing specifications  
Table 12. Debug trace operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Tcyc  
Clock period  
Frequency dependent  
MHz  
Twl  
Twh  
Tr  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
ns  
ns  
ns  
ns  
ns  
ns  
3
Tf  
3
Ts  
Th  
Data hold  
2
Figure 4. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 5. Trace data specifications  
6.1.2 JTAG electricals  
Table 13. JTAG voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
TCLK frequency of operation  
• JTAG  
2.7  
5.5  
J1  
MHz  
10  
5
• CJTAG  
J2  
TCLK cycle period  
1/J1  
ns  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
Table 13. JTAG voltage range electricals (continued)  
Symbol  
Description  
TCLK clock pulse width  
• JTAG  
Min.  
Max.  
Unit  
J3  
100  
200  
1
ns  
ns  
ns  
ns  
ns  
• CJTAG  
J4  
J5  
TCLK rise and fall times  
TMS input data setup time to TCLK rise  
53  
112  
8
• JTAG  
• CJTAG  
J6  
J7  
TDI input data setup time to TCLK rise  
ns  
ns  
TMS input data hold time after TCLK rise  
3.4  
3.4  
3.4  
• JTAG  
• CJTAG  
J8  
J9  
TDI input data hold time after TCLK rise  
ns  
ns  
TCLK low to TMS data valid  
• JTAG  
48  
85  
48  
3
• CJTAG  
J10  
J11  
TCLK low to TDO data valid  
ns  
ns  
Output data hold/invalid time after clock edge1  
1. They are common for JTAG and CJTAG.  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 6. Test clock input timing  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 7. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 8. Test Access Port timing  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
TCLK  
J14  
J13  
TRST  
Figure 9. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
6.3.1 MCG specifications  
Table 14. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
fints_t  
Iints  
Internal reference frequency (slow clock) —  
factory trimmed at nominal VDD and 25 °C  
32.768  
kHz  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
kHz  
Internal reference (slow clock) current  
TBD  
0.3  
µA  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.6  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
10  
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
4.5  
fintf_ft  
fintf_t  
Iintf  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
4
5
MHz  
MHz  
µA  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
Internal reference (fast clock) current  
TBD  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 14. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
2, 3  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
4, 5  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
Jacc_fll  
FLL accumulated jitter of DCO output over a 1µs  
time window  
TBD  
1
ps  
tfll_acquire FLL target frequency acquisition time  
ms  
6
PLL0,1  
fpll_ref  
PLL reference frequency range  
8
180  
90  
90  
16  
360  
180  
180  
MHz  
MHz  
fvcoclk_2x VCO output frequency  
fvcoclk  
PLL output frequency  
MHz  
MHz  
fvcoclk_90 PLL quadrature output frequency  
Ipll  
PLL operating current (fast)  
7
TBD  
µA  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
29  
Peripheral operating requirements and behaviors  
Table 14. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Ipll  
PLL operating current (fast)  
7
TBD  
µA  
s
100 × 10-6  
+ 1075(1/  
tpll_lock  
Lock detector detection time  
8
fpll_ref  
TBD  
TBD  
)
Jcyc_pll  
Jacc_pll  
Jitter (cycle to cycle)  
Jitter (accumulated)  
50  
ps  
ps  
500  
9
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
9. Accumulated jitter will depend on VCO frequency and VDIV.  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC electrical specifications  
Table 15. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
31  
Preliminary  
Peripheral operating requirements and behaviors  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.3.2.2 Oscillator frequency specifications  
Table 16. Oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Oscillator crystal or resonator frequency — low  
32  
40  
kHz  
frequency mode (MCG_C2[RANGE]=00)  
fosc_hi_1  
Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
(MCG_C2[RANGE]=01)  
3
8
8
MHz  
MHz  
1
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
60  
60  
MHz  
%
2, 3  
4, 5  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
1000  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
500  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Frequencies less than 8 MHz are not in the PLL range.  
2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
3. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it  
remains within the limits of the DCO input clock frequency.  
4. Proper PC board layout procedures must be followed to achieve specifications.  
5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.3.3 32kHz Oscillator Electrical Characteristics  
This section describes the module electrical characteristics.  
6.3.3.1 32kHz oscillator DC electrical specifications  
Table 17. 32kHz oscillator DC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VBAT  
Supply voltage  
1.71  
3.6  
V
RF  
Internal feedback resistor  
100  
MΩ  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 17. 32kHz oscillator DC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Cpara  
Parasitical capacitance of EXTAL32 and XTAL32  
5
7
pF  
1
Peak-to-peak amplitude of oscillation  
0.6  
V
Vpp  
1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
6.3.3.2 32kHz oscillator frequency specifications  
Table 18. 32kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
1. Proper PC board layout procedures must be followed to achieve specifications.  
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 19. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4  
thversscr  
thversblk  
Program Phrase high-voltage time  
7.5  
TBD  
μs  
Erase Flash Sector high-voltage time  
Erase Flash Block high-voltage time  
13  
TBD  
TBD  
ms  
ms  
1
1
425  
1. Maximum time based on expectations at cycling end-of-life.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
6.4.1.2 Flash timing specifications — commands  
Table 20. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk  
trd1sec4k  
tpgmchk  
trdrsrc  
Read 1s Block execution time  
1.5  
TBD  
ms  
Read 1s Section execution time (4KB flash)  
Program Check execution time  
50  
35  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μs  
μs  
1
1
1
Read Resource execution time  
35  
μs  
tpgm8  
Program Phrase execution time  
Erase Flash Block execution time  
Erase Flash Sector execution time  
65  
μs  
tersblk  
450  
15  
ms  
ms  
ms  
ms  
μs  
2
2
tersscr  
tpgmsec4k Program Section execution time (4KB flash)  
20  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.5  
17  
trdonce  
1
tpgmonce Program Once execution time  
65  
μs  
tersall  
Erase All Blocks execution time  
900  
25  
ms  
μs  
2
1
tvfykey  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
• control code 0x02  
• control code 0x04  
• control code 0x08  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
185  
65  
TBD  
TBD  
TBD  
TBD  
μs  
μs  
μs  
μs  
65  
25  
tpgmpart  
Program Partition for EEPROM execution time  
TBD  
TBD  
ms  
Set FlexRAM Function execution time:  
• 64 KB EEPROM backup  
tsetram64k  
tsetram128k  
tsetram256k  
tsetram512k  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
100  
TBD  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b64k  
teewr8b128k  
teewr8b256k  
teewr8b512k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
teewr16bers 16-bit write to erased FlexRAM location  
execution time  
100  
TBD  
μs  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 20. Flash command timing specifications (continued)  
Symbol Description  
16-bit write to FlexRAM execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr16b64k  
teewr16b128k  
teewr16b256k  
teewr16b512k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
200  
TBD  
μs  
teewr32b64k 32-bit-write to FlexRAM execution time:  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
teewr32b128k  
teewr32b256k  
teewr32b512k  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash (FTFE) current and power specfications  
Table 21. Flash (FTFE) current and power specfications  
Symbol  
Description  
Typ.  
Unit  
mA  
IDD_PGM  
Worst case programming current in program flash  
10  
6.4.1.4 Reliability specifications  
Table 22. NVM reliability specifications  
Typ.1  
Symbol Description  
Min.  
Program Flash  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
tnvmretp100 Data retention after up to 100 cycles  
nnvmcycp Cycling endurance  
5
10  
50  
years  
years  
years  
cycles  
2
2
2
3
100  
100  
35 K  
15  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
tnvmretd100 Data retention after up to 100 cycles  
nnvmcycd Cycling endurance  
5
10  
50  
years  
years  
years  
cycles  
2
2
2
3
100  
100  
35 K  
15  
10 K  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
35  
Peripheral operating requirements and behaviors  
Table 22. NVM reliability specifications (continued)  
Typ.1  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
tnvmretee1 Data retention up to 1% of write endurance  
Write endurance  
5
50  
years  
years  
years  
2
2
2
4
10  
15  
100  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree32k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
writes  
writes  
writes  
writes  
writes  
• EEPROM backup to FlexRAM ratio =  
32,768  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C profile. Engineering Bulletin EB618 does not apply to this technology.  
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).  
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
TBD  
6.4.2 EzPort Switching Specifications  
Table 23. EzPort switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
16  
ns  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
36  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 23. EzPort switching specifications (continued)  
Num  
EP8  
EP9  
Description  
EZP_CK low to EZP_Q output invalid (hold)  
Min.  
Max.  
Unit  
ns  
0
EZP_CS negation to EZP_Q tri-state  
12  
ns  
EZP_CK  
EZP_CS  
EP3  
EP4  
EP2  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 10. EzPort Timing Diagram  
6.4.3 NFC specifications  
The NAND flash controller (NFC) implements the interface to standard NAND flash  
memory devices. This section describes the timing parameters of the NFC.  
In the following table:  
• TH is the flash clock high time and  
• TL is flash clock low time,  
which are defined as:  
Tinput clock  
TNFC = TL + TH  
=
SCALER  
The SCALER value is derived from the fractional divider specified in the SIM's  
CLKDIV4 register:  
SIM_CLKDIV4[NFCFRAC] + 1  
SIM_CLKDIV4[NFCDIV] + 1  
=
SCALER  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
37  
Peripheral operating requirements and behaviors  
In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%,  
means TH = TL. In case the reciprocal of SCALER is not an integer:  
TNFC  
TL = (1 + SCALER / 2) x  
2
TNFC  
TH = (1 – SCALER / 2) x  
2
For example, if SCALER is 0.2, then TH = TL = TNFC/2.  
TNFC  
TH TL  
However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC  
.
TNFC  
TH TL  
NOTE  
The reciprocal of SCALER must be a multiple of 0.5. For  
example, 1, 1.5, 2, 2.5, etc.  
Table 24. NFC specifications  
Num  
Description  
Min.  
Max.  
Unit  
tCLS  
NFC_CLE setup time  
2TH + TL – 1  
ns  
tCLH  
tCS  
NFC_CLE hold time  
NFC_CEn setup time  
NFC_CEn hold time  
NFC_WP pulse width  
NFC_ALE setup time  
NFC_ALE hold time  
Data setup time  
TH + TL – 1  
2TH + TL – 1  
TH + TL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCH  
tWP  
tALS  
tALH  
tDS  
TL – 1  
2TH + TL  
TH + TL  
TL – 1  
tDH  
tWC  
tWH  
tRR  
tRP  
Data hold time  
TH – 1  
Write cycle time  
TH + TL – 1  
TH – 1  
NFC_WE hold time  
Ready to NFC_RE low  
NFC_RE pulse width  
4TH + 3TL + 90  
TL + 1  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
38  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 24. NFC specifications (continued)  
Num  
Description  
Min.  
Max.  
Unit  
tRC  
Read cycle time  
TL + TH – 1  
ns  
tREH  
tIS  
NFC_RE high hold time  
Data input setup time  
TH – 1  
11  
ns  
ns  
NFC_CLE  
tCLS  
tCS  
tCLH  
tCH  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tDH  
Figure 11. Command latch cycle timing  
NFC_ALE  
NFC_CEn  
NFC_WE  
NFC_IOn  
tALS  
tCS  
tALH  
tCH  
tWP  
tDS  
tDH  
address  
Figure 12. Address latch cycle timing  
tCS  
tCH  
tWC  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tWH  
tDH  
data  
data  
data  
Figure 13. Write data latch cycle timing  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
39  
Peripheral operating requirements and behaviors  
tCH  
tRC  
tRP  
NFC_CEn  
tREH  
NFC_RE  
NFC_IOn  
NFC_RB  
tIS  
data  
data  
data  
tRR  
Figure 14. Read data latch cycle timing in non-fast mode  
tCH  
tRC  
tRP  
NFC_CEn  
NFC_RE  
NFC_IOn  
NFC_RB  
tREH  
tIS  
data  
data  
data  
tRR  
Figure 15. Read data latch cycle timing in fast mode  
6.4.4 Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 25. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
20  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 25. Flexbus limited voltage range switching specifications (continued)  
Num  
FB2  
FB3  
FB4  
FB5  
Description  
Min.  
Max.  
11.5  
Unit  
ns  
Notes  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
1
1
2
2
0.5  
8.5  
0.5  
ns  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 26. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
13.5  
ns  
1
1
2
2
0
ns  
13.7  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
41  
Preliminary  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 16. FlexBus read timing diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB2  
FB3  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 17. FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
43  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are  
not direct device pins. Accuracy specifications for these pins are defined in Table 29 and  
Table 30.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 27. 16-bit ADC operating conditions  
Typ.1  
Symbol Description  
Conditions  
Absolute  
Min.  
1.71  
-100  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage  
Supply voltage  
ΔVDDA  
Delta to VDD (VDD  
-
0
+100  
mV  
2
2
VDDA  
)
ΔVSSA  
Ground voltage  
Delta to VSS (VSS  
-
-100  
0
+100  
mV  
VSSA  
)
VREFH  
ADC reference  
voltage high  
1.13  
VSSA  
VREFL  
VDDA  
VSSA  
VDDA  
V
V
VREFL  
Reference  
voltage low  
VSSA  
VADIN  
CADIN  
Input voltage  
VREFH  
V
Input  
capacitance  
• 16 bit modes  
8
4
10  
5
pF  
• 8/10/12 bit  
modes  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
13/12 bit modes  
fADCK < 4MHz  
3
fADCK  
ADC conversion ≤ 13 bit modes  
clock frequency  
4
4
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
fADCK  
ADC conversion 16 bit modes  
clock frequency  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
44  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC operating conditions (continued)  
Typ.1  
Symbol Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
Crate  
ADC conversion ≤ 13 bit modes  
5
rate  
No ADC hardware  
20.000  
818.330  
Ksps  
averaging  
Continuous  
conversions enabled,  
subsequent conversion  
time  
Crate  
ADC conversion 16 bit modes  
5
rate  
No ADC hardware  
37.037  
461.467  
Ksps  
averaging  
Continuous  
conversions enabled,  
subsequent conversion  
time  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the  
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS  
/
CAS time constant should be kept to <1ns.  
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/  
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 18. ADC input impedance equivalency diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
45  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1.2 16-bit ADC electrical characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IDDA_ADC Supply current  
0.215  
1.7  
mA  
3
ADC  
asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
1.2  
3.0  
2.4  
4.4  
2.4  
4.0  
5.2  
6.2  
3.9  
7.3  
6.1  
9.5  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
fADACK  
Sample Time  
See Reference Manual chapter for sample times  
LSB4  
LSB4  
TUE  
DNL  
Total unadjusted  
error  
• 12 bit modes  
• <12 bit modes  
4
6.8  
2.1  
5
5
1.4  
Differential non-  
linearity  
• 12 bit modes  
0.7  
-1.1 to  
+1.9  
-0.3 to 0.5  
• <12 bit modes  
• 12 bit modes  
0.2  
1.0  
LSB4  
INL  
EFS  
Integral non-  
linearity  
-2.7 to  
+1.9  
5
-0.7 to  
+0.5  
• <12 bit modes  
0.5  
LSB4  
LSB4  
Full-scale error  
• 12 bit modes  
• <12 bit modes  
-4  
-5.4  
-1.8  
VADIN =  
VDDA  
-1.4  
5
EQ  
Quantization  
error  
• 16 bit modes  
• ≤13 bit modes  
-1 to 0  
0.5  
ENOB  
Effective number 16 bit differential mode  
6
of bits  
• Avg=32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg=4  
16 bit single-ended mode  
• Avg=32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg=4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16 bit differential mode  
• Avg=32  
7
–94  
-85  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
46  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
SFDR  
Spurious free  
dynamic range  
16 bit differential mode  
• Avg=32  
7
82  
95  
dB  
16 bit single-ended mode  
• Avg=32  
78  
90  
dB  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
–40°C to 105°C  
25°C  
1.715  
719  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock  
speed.  
1 LSB = (VREFH - VREFL)/2N  
4.  
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
47  
Preliminary  
Peripheral operating requirements and behaviors  
Figure 19. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Figure 20. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
48  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 29. 16-bit ADC with PGA operating conditions  
Typ.1  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREF_OU VREF_OU VREF_OU  
V
2, 3  
T
T
T
VADIN  
VCM  
Input voltage  
VSSA  
VSSA  
VDDA  
VDDA  
V
V
Input Common  
Mode range  
IN+ to IN-4  
RPGAD  
Differential input Gain = 1, 2, 4, 8  
128  
64  
kΩ  
impedance  
Gain = 16, 32  
Gain = 64  
32  
RAS  
TS  
Analog source  
resistance  
100  
Ω
µs  
5
6
7
ADC sampling  
time  
1.25  
Crate  
ADC conversion ≤ 13 bit modes  
18.484  
450  
Ksps  
rate  
No ADC hardware  
averaging  
Continuous  
conversions enabled  
Peripheral clock = 50  
MHz  
16 bit modes  
37.037  
250  
Ksps  
8
No ADC hardware  
averaging  
Continuous  
conversions enabled  
Peripheral clock = 50  
MHz  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREF_OUT)  
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other  
than the output of the VREF module, the VREF module must be disabled.  
4. For single ended configurations the input impedance of the driven input is RPGAD/2  
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock.  
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1  
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
49  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1.4 16-bit ADC with PGA characteristics  
Table 30. 16-bit ADC with PGA characteristics  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
IDDA_PGA Supply current  
Low power  
420  
644  
μA  
2
(ADC_PGA[PGALPb]=0)  
IDC_PGA  
Input DC current  
A
3
Gain =1, VREFPGA=1.2V,  
VCM=0.5V  
1.54  
0.57  
μA  
μA  
Gain =64, VREFPGA=1.2V,  
VCM=0.1V  
Gain4  
G
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
0.95  
1.9  
1
2
1.05  
2.1  
R
AS < 100Ω  
3.8  
4
4.2  
7.6  
8
8.4  
15.2  
30.0  
58.8  
16  
31.6  
63.3  
16.6  
33.2  
67.8  
BW  
Input signal  
bandwidth  
• 16-bit modes  
• < 16-bit modes  
4
kHz  
kHz  
dB  
40  
PSRR  
Power supply  
rejection ratio  
Gain=1  
-84  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
CMRR  
VOFS  
Common mode  
rejection ratio  
• Gain=1  
-84  
-85  
dB  
dB  
VCM=  
500mVpp,  
fVCM= 50Hz,  
100Hz  
• Gain=64  
Input offset  
voltage  
• Chopping disabled  
(ADC_PGA[PGACHPb]  
=1)  
2.4  
0.2  
TBD  
mV  
mV  
Output offset =  
VOFS*(Gain+1)  
• Chopping enabled  
(ADC_PGA[PGACHPb]  
=0)  
TGSW  
Gain switching  
settling time  
10  
µs  
5
dG/dT  
Gain drift over  
temperature  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ppm/°C  
ppm/°C  
0 to 50°C  
dVOFS/dT Offset drift over  
temperature  
Gain=1  
ppm/°C 0 to 50°C, ADC  
Averaging=32  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
%/V  
%/V  
VDDA from 1.71  
to 3.6V  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
50  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 30. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
EIL  
Input leakage  
error  
All modes  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
VPP,DIFF  
Maximum  
V
6
differential input  
signal swing  
where VX = VREFPGA × 0.583  
SNR  
Signal-to-noise  
ratio  
• Gain=1  
80  
52  
90  
66  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32  
THD  
Total harmonic  
distortion  
• Gain=1  
85  
49  
100  
95  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32,  
fin=100Hz  
SFDR  
ENOB  
Spurious free  
dynamic range  
• Gain=1  
85  
53  
105  
88  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=100Hz  
• Gain=64  
Effective number  
of bits  
• Gain=1, Average=4  
11.6  
TBD  
7.2  
13.4  
12.7  
9.6  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
16-bit  
differential  
mode,fin=100H  
z
• Gain=1, Average=8  
• Gain=64, Average=4  
• Gain=64, Average=8  
• Gain=1, Average=32  
• Gain=2, Average=32  
• Gain=4, Average=32  
• Gain=8, Average=32  
• Gain=16, Average=32  
• Gain=32, Average=32  
• Gain=64, Average=32  
TBD  
12.8  
11.0  
7.9  
8.7  
14.5  
14.3  
13.8  
13.1  
12.5  
11.5  
10.6  
7.3  
6.8  
6.8  
7.5  
SINAD  
Signal-to-noise  
plus distortion  
ratio  
See ENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2. This current is a PGA module adder, in addition to and ADC conversion currents.  
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong  
function of input common mode voltage (VCM) and the PGA gain.  
Gain = 2PGAG  
4.  
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
51  
Preliminary  
Peripheral operating requirements and behaviors  
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 31. Comparator and 6-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDHS  
IDDLS  
VAIN  
VAIO  
VH  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
Analog input offset voltage  
mV  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
5
mV  
mV  
mV  
mV  
10  
20  
30  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
52  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 21. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
53  
Preliminary  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 22. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 32. 12-bit DAC operating requirements  
Symbol  
Desciption  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
VDACR  
TA  
Reference voltage  
Temperature  
1.13  
−40  
3.6  
105  
100  
1
V
1
°C  
pF  
mA  
CL  
Output load capacitance  
Output load current  
2
IL  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
54  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 33. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
150  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DAC Supply current — high-speed mode  
700  
μA  
HP  
tDACLP  
Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
100  
15  
200  
30  
1
μs  
μs  
μs  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
EG  
PSRR  
TCO  
TGE  
Gain error  
Power supply rejection ratio, VDDA > = 2.4 V  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance load = 3 kΩ  
3.7  
0.000421  
μV/C  
%FSR/C  
Ω
6
Rop  
SR  
250  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
0.05  
0.12  
)
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100 mV to VDACR−100 mV  
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V  
5. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
55  
Peripheral operating requirements and behaviors  
6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set  
to 0x800, Temp range from -40C to 105C  
Figure 23. Typical INL error vs. digital code  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
56  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
Figure 24. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 34. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
TA  
CL  
Temperature  
−40  
105  
°C  
nF  
Output load capacitance  
100  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of  
the device.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
57  
Preliminary  
Peripheral operating requirements and behaviors  
Table 35. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1965  
1.2  
1.2027  
V
nominal VDDA and temperature=25C  
Voltage reference output with— factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.198  
1.2376  
1.202  
V
V
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Itr  
Bandgap only current  
80  
µA  
mA  
mV  
1
1
High-power buffer current  
TBD  
ΔVLOAD Load regulation  
• current = + 1.0 mA  
1, 2  
2
5
• current = - 1.0 mA  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 36. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Notes  
TA  
Temperature  
0
50  
°C  
Table 37. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
58  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 38. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 25. MII transmit signal timing diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
59  
Peripheral operating requirements and behaviors  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 26. MII receive signal timing diagram  
6.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 39. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
6.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit http://www.usb.org.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
60  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.3 USB DCD electrical specifications  
Table 40. USB DCD electrical specifications  
Symbol  
Description  
Min.  
0.5  
Typ.  
Max.  
Unit  
VDP_SRC  
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
0.7  
V
VLGC  
0.8  
7
10  
2.0  
13  
V
IDP_SRC  
IDM_SINK  
μA  
μA  
kΩ  
V
USB_DM sink current  
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.325  
6.8.4 USB VREG electrical specifications  
Table 41. USB VREG electrical specifications  
Typ.1  
Symbol Description  
Min.  
2.7  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
1.54  
μA  
Quiescent current — Shutdown mode  
• VREGIN = 5.0 V and temperature=25C  
• Across operating voltage and temperature  
650  
4
nA  
μA  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
61  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.5 ULPI timing specifications  
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin  
Interface. Control and data timing requirements for the ULPI pins are given in the  
following table. These timings apply to synchronous mode only. All timings are  
measured with respect to the clock as seen at the USB_CLKIN pin.  
Table 42. ULPI timing specifications  
Num  
Description  
Min.  
Typ.  
Max.  
Unit  
USB_CLKIN  
operating  
60  
MHz  
frequency  
USB_CLKIN duty  
cycle  
5
50  
16.67  
9.5  
%
ns  
ns  
ns  
ns  
ns  
U1  
U2  
U3  
U4  
U5  
USB_CLKIN clock  
period  
Input setup (control  
and data)  
Input hold (control  
and data)  
1
Output valid  
(control and data)  
1
Output hold  
(control and data)  
U1  
USB_CLKIN  
U2  
U3  
ULPI_DIR/ULPI_NXT  
(control input)  
ULPI_DATAn (input)  
U5  
U4  
ULPI_STP  
(control output)  
ULPI_DATAn (output)  
Figure 27. ULPI timing diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
62  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.8.6 CAN switching specifications  
See General switching specifications.  
6.8.7 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 43. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
ns  
(tBUS x 2) −  
2
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 28. DSPI classic SPI timing — master mode  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
63  
Preliminary  
Peripheral operating requirements and behaviors  
Table 44. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
15  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
10  
14  
14  
2
7
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 29. DSPI classic SPI timing — slave mode  
6.8.8 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 45. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
1
15  
MHz  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
64  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 45. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
DSPI_SCK output cycle time  
Min.  
Max.  
Unit  
Notes  
DS1  
4 x tBUS  
ns  
DS2  
DS3  
DSPI_SCK output high/low time  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
ns  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 30. DSPI classic SPI timing — master mode  
Table 46. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
7.5  
Unit  
V
Operating voltage  
Frequency of operation  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DSPI_SCK input high/low time  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
19  
2
7
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
65  
Peripheral operating requirements and behaviors  
Table 46. Slave mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
DS16  
DSPI_SS inactive to DSPI_SOUT not driven  
19  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 31. DSPI classic SPI timing — slave mode  
I2C switching specifications  
6.8.9  
See General switching specifications.  
6.8.10 UART switching specifications  
See General switching specifications.  
6.8.11 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 47. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
66  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 47. SDHC switching specifications  
(continued)  
Num  
Symbol  
fpp  
Description  
Min.  
Max.  
400  
25  
Unit  
kHz  
SD1  
Clock frequency (low speed)  
Clock frequency (SD\SDIO full speed)  
Clock frequency (MMC full speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
0
0
fpp  
MHz  
MHz  
kHz  
fpp  
20  
fOD  
400  
SD2  
SD3  
SD4  
SD5  
tWL  
tWH  
tTLH  
tTHL  
7
7
3
ns  
ns  
ns  
ns  
Clock high time  
Clock rise time  
Clock fall time  
3
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 32. SDHC timing  
6.8.12 I2S/SAI Switching Specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock  
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
67  
Preliminary  
Peripheral operating requirements and behaviors  
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the  
frame sync (FS) signal shown in the following figures.  
Table 48. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
I2S_MCLK cycle time1  
S1  
S2  
S3  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK cycle time (output)1  
I2S_RX_BCLK cycle time (output)1  
I2S_TX_BCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
ns  
160  
S4  
S5  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
25  
S10  
S11  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid2  
0
ns  
ns  
21  
1. This parameter is limited in VLPx modes.  
2. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 33. I2S/SAI timing — master modes  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
68  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 49. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
I2S_RX_BCLK cycle time (input)  
I2S_TX_BCLK cycle time (input)  
ns  
160  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
10  
2
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
29  
21  
ns  
ns  
ns  
ns  
ns  
10  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 34. I2S/SAI timing — slave modes  
6.9 Human-machine interfaces (HMI)  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
69  
Preliminary  
Dimensions  
6.9.1 TSI electrical specifications  
Table 50. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
Target electrode capacitance range  
Reference oscillator frequency  
Electrode oscillator frequency  
Internal reference capacitor  
Oscillator delta voltage  
1
20  
8
500  
TBD  
TBD  
TBD  
TBD  
pF  
MHz  
MHz  
pF  
1
2
2
fREFmax  
fELEmax  
CREF  
0.5  
1
TBD  
TBD  
VDELTA  
IREF  
600  
mV  
μA  
2
Reference oscillator current source base current  
• 1uA setting (REFCHRG=0)  
2, 3  
1.133  
36  
1.5  
50  
• 32uA setting (REFCHRG=31)  
IELE  
Electrode oscillator current source base current  
• 1uA setting (EXTCHRG=0)  
μA  
2, 4  
1.133  
36  
1.5  
50  
• 32uA setting (EXTCHRG=31)  
Pres5  
Electrode capacitance measurement precision  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
12.5  
38.4  
38.4  
38.4  
pF/count  
pF/count  
pF/count  
fF/count  
bits  
5
6
7
8
Pres20  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
0.003  
Res  
Resolution  
16  
TCon20  
Response time @ 20 pF  
8
15  
25  
μs  
9
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
55  
μA  
1.3  
TBD  
μA  
10  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. Fixed external capacitance of 20 pF.  
3. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
4. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
5. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
6. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
7. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
8. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref  
* Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following  
configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The minimum  
sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity  
but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based on the  
following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5 pF  
9. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, EXTCHRG = 15.  
10. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of  
20 pF. Data is captured with an average of 7 periods window.  
7 Dimensions  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
70  
Freescale Semiconductor, Inc.  
Preliminary  
Pinout  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to http://www.freescale.com and perform a keyword  
search for the drawing’s document number:  
If you want the drawing for this package  
144-pin LQFP  
Then use this document number  
98ASS23177W  
98ASA00222D  
144-pin MAPBGA  
8 Pinout  
8.1 K60 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
L5  
RTC_WAKE RTC_WAKE RTC_WAKE  
UP_B  
UP_B  
UP_B  
1
M5  
NC  
NC  
NC  
A10 NC  
B10 NC  
C10 NC  
NC  
NC  
NC  
NC  
NC  
NC  
D3  
D2  
D1  
E4  
PTE0  
ADC1_SE4  
a
ADC1_SE4  
a
PTE0  
SPI1_PCS1 UART1_TX  
SDHC0_D1  
I2C1_SDA  
I2C1_SCL  
RTC_CLKO  
UT  
2
3
4
PTE1/  
LLWU_P0  
ADC1_SE5  
a
ADC1_SE5  
a
PTE1/  
LLWU_P0  
SPI1_SOUT UART1_RX SDHC0_D0  
SPI1_SIN  
PTE2/  
LLWU_P1  
ADC1_SE6  
a
ADC1_SE6  
a
PTE2/  
LLWU_P1  
SPI1_SCK  
SPI1_SIN  
UART1_CT  
S_b  
SDHC0_DC  
LK  
PTE3  
ADC1_SE7  
a
ADC1_SE7  
a
PTE3  
UART1_RT  
S_b  
SDHC0_CM  
D
SPI1_SOUT  
5
6
7
E5  
F6  
E3  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTE4/  
DISABLED  
PTE4/  
SPI1_PCS0 UART3_TX  
SDHC0_D3  
LLWU_P2  
LLWU_P2  
8
E2  
PTE5  
DISABLED  
PTE5  
SPI1_PCS2 UART3_RX SDHC0_D2  
FTM3_CH0  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
71  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
9
E1  
PTE6  
PTE7  
PTE8  
PTE9  
PTE10  
PTE11  
PTE12  
DISABLED  
DISABLED  
PTE6  
SPI1_PCS3 UART3_CT  
S_b  
I2S0_MCLK  
I2S0_RXD0  
FTM3_CH1  
FTM3_CH2  
FTM3_CH3  
FTM3_CH4  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
USB_SOF_  
OUT  
10  
11  
12  
13  
14  
15  
F4  
F3  
F2  
F1  
G4  
G3  
PTE7  
UART3_RT  
S_b  
ADC2_SE1  
6
ADC2_SE1  
6
PTE8  
I2S0_RXD1 UART5_TX  
I2S0_RX_F  
S
ADC2_SE1  
7
ADC2_SE1  
7
PTE9  
I2S0_TXD1  
UART5_RX I2S0_RX_B  
CLK  
DISABLED  
PTE10  
PTE11  
PTE12  
UART5_CT  
S_b  
I2S0_TXD0  
ADC3_SE1  
6
ADC3_SE1  
6
UART5_RT  
S_b  
I2S0_TX_F  
S
ADC3_SE1  
7
ADC3_SE1  
7
I2S0_TX_B  
CLK  
16  
17  
18  
19  
20  
21  
22  
23  
E6  
F7  
H3  
H1  
H2  
G1  
G2  
J1  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PGA2_DP/  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PGA2_DP/  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PGA2_DP/  
ADC2_DP0/ ADC2_DP0/ ADC2_DP0/  
ADC3_DP3/ ADC3_DP3/ ADC3_DP3/  
ADC0_DP1  
ADC0_DP1  
ADC0_DP1  
24  
25  
26  
J2  
K1  
K2  
PGA2_DM/  
PGA2_DM/  
PGA2_DM/  
ADC2_DM0/ ADC2_DM0/ ADC2_DM0/  
ADC3_DM3/ ADC3_DM3/ ADC3_DM3/  
ADC0_DM1 ADC0_DM1 ADC0_DM1  
PGA3_DP/  
ADC3_DP0/ ADC3_DP0/ ADC3_DP0/  
ADC2_DP3/ ADC2_DP3/ ADC2_DP3/  
PGA3_DP/  
PGA3_DP/  
ADC1_DP1  
ADC1_DP1  
ADC1_DP1  
PGA3_DM/  
PGA3_DM/  
PGA3_DM/  
ADC3_DM0/ ADC3_DM0/ ADC3_DM0/  
ADC2_DM3/ ADC2_DM3/ ADC2_DM3/  
ADC1_DM1 ADC1_DM1 ADC1_DM1  
27  
28  
29  
L1  
L2  
PGA0_DP/  
ADC0_DP0/ ADC0_DP0/ ADC0_DP0/  
ADC1_DP3  
PGA0_DM/  
ADC0_DM0/ ADC0_DM0/ ADC0_DM0/  
ADC1_DM3 ADC1_DM3 ADC1_DM3  
PGA0_DP/  
PGA0_DP/  
ADC1_DP3  
PGA0_DM/  
ADC1_DP3  
PGA0_DM/  
M1  
PGA1_DP/  
ADC1_DP0/ ADC1_DP0/ ADC1_DP0/  
ADC0_DP3 ADC0_DP3 ADC0_DP3  
PGA1_DP/  
PGA1_DP/  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
72  
Freescale Semiconductor, Inc.  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
30  
M2  
PGA1_DM/  
PGA1_DM/  
PGA1_DM/  
ADC1_DM0/ ADC1_DM0/ ADC1_DM0/  
ADC0_DM3 ADC0_DM3 ADC0_DM3  
31  
32  
33  
34  
35  
H5  
G5  
G6  
H6  
K3  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
ADC1_SE1  
6/  
ADC1_SE1  
6/  
ADC1_SE1  
6/  
CMP2_IN2/  
ADC0_SE2  
2
CMP2_IN2/  
ADC0_SE2  
2
CMP2_IN2/  
ADC0_SE2  
2
36  
37  
J3  
ADC0_SE1  
6/  
CMP1_IN2/  
ADC0_SE2  
1
ADC0_SE1  
6/  
CMP1_IN2/  
ADC0_SE2  
1
ADC0_SE1  
6/  
CMP1_IN2/  
ADC0_SE2  
1
M3  
VREF_OUT/ VREF_OUT/ VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE1  
8
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE1  
8
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE1  
8
38  
39  
L3  
L4  
DAC0_OUT/ DAC0_OUT/ DAC0_OUT/  
CMP1_IN3/  
ADC0_SE2  
3
CMP1_IN3/  
ADC0_SE2  
3
CMP1_IN3/  
ADC0_SE2  
3
DAC1_OUT/ DAC1_OUT/ DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE2  
3
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE2  
3
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE2  
3
40  
41  
42  
43  
44  
45  
M7  
M6  
L6  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
M4  
PTE24  
ADC0_SE1  
7/EXTAL1  
ADC0_SE1  
7/EXTAL1  
PTE24  
CAN1_TX  
CAN1_RX  
UART4_TX  
I2S1_TX_F  
S
EWM_OUT  
_b  
I2S1_RXD1  
I2S1_TXD1  
46  
47  
48  
49  
50  
K5  
K4  
J4  
PTE25  
PTE26  
PTE27  
PTE28  
PTA0  
ADC0_SE1  
8/XTAL1  
ADC0_SE1  
8/XTAL1  
PTE25  
PTE26  
PTE27  
PTE28  
PTA0  
UART4_RX I2S1_TX_B  
CLK  
EWM_IN  
ADC3_SE5  
b
ADC3_SE5  
b
ENET_1588 UART4_CT  
_CLKIN  
I2S1_TXD0  
RTC_CLKO USB_CLKIN  
UT  
S_b  
ADC3_SE4  
b
ADC3_SE4  
b
UART4_RT  
S_b  
I2S1_MCLK  
H4  
J5  
ADC3_SE7  
a
ADC3_SE7  
a
JTAG_TCL  
K/  
TSI0_CH1  
UART0_CT  
S_b/  
FTM0_CH5  
JTAG_TCL  
K/  
EZP_CLK  
SWD_CLK  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
73  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
SWD_CLK/  
EZP_CLK  
UART0_CO  
L_b  
51  
52  
J6  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
PTA1  
UART0_RX FTM0_CH6  
JTAG_TDI  
EZP_DI  
K6  
JTAG_TDO/ TSI0_CH3  
TRACE_SW  
O/EZP_DO  
PTA2  
PTA3  
UART0_TX  
FTM0_CH7  
JTAG_TDO/ EZP_DO  
TRACE_SW  
O
53  
54  
55  
K7  
L7  
PTA3  
JTAG_TMS/ TSI0_CH4  
SWD_DIO  
UART0_RT  
S_b  
FTM0_CH0  
FTM0_CH1  
JTAG_TMS/  
SWD_DIO  
PTA4/  
LLWU_P3  
NMI_b/  
EZP_CS_b  
TSI0_CH5  
PTA4/  
LLWU_P3  
NMI_b  
EZP_CS_b  
M8  
PTA5  
DISABLED  
PTA5  
USB_CLKIN FTM0_CH2  
RMII0_RXE CMP2_OUT I2S0_TX_B  
JTAG_TRS  
T_b  
R/  
CLK  
MII0_RXER  
56  
57  
58  
E7  
G7  
J7  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
PTA6  
ADC3_SE6  
a
ADC3_SE6  
a
PTA6  
PTA7  
PTA8  
PTA9  
PTA10  
PTA11  
PTA12  
ULPI_CLK  
ULPI_DIR  
ULPI_NXT  
ULPI_STP  
FTM0_CH3  
FTM0_CH4  
FTM1_CH0  
FTM1_CH1  
I2S1_RXD0 CLKOUT  
TRACE_CL  
KOUT  
59  
60  
61  
62  
63  
64  
J8  
K8  
L8  
M9  
L9  
K9  
PTA7  
ADC0_SE1  
0
ADC0_SE1  
0
I2S1_RX_B  
CLK  
TRACE_D3  
PTA8  
ADC0_SE1  
1
ADC0_SE1  
1
I2S1_RX_F  
S
FTM1_QD_ TRACE_D2  
PHA  
PTA9  
ADC3_SE5  
a
ADC3_SE5  
a
MII0_RXD3  
FTM1_QD_ TRACE_D1  
PHB  
PTA10  
PTA11  
PTA12  
ADC3_SE4  
a
ADC3_SE4  
a
ULPI_DATA FTM2_CH0  
0
MII0_RXD2  
FTM2_QD_ TRACE_D0  
PHA  
ADC3_SE1  
5
ADC3_SE1  
5
ULPI_DATA FTM2_CH1  
1
MII0_RXCL  
K
FTM2_QD_  
PHB  
CMP2_IN0  
CMP2_IN1  
CMP3_IN0  
CMP3_IN1  
CMP3_IN2  
CMP2_IN0  
CMP2_IN1  
CMP3_IN0  
CMP3_IN1  
CMP3_IN2  
CAN0_TX  
FTM1_CH0  
RMII0_RXD  
1/  
MII0_RXD1  
I2S0_TXD0  
FTM1_QD_  
PHA  
65  
66  
67  
68  
J9  
PTA13/  
LLWU_P4  
PTA13/  
LLWU_P4  
CAN0_RX  
FTM1_CH1  
RMII0_RXD  
0/  
MII0_RXD0  
I2S0_TX_F  
S
FTM1_QD_  
PHB  
L10 PTA14  
L11 PTA15  
K10 PTA16  
PTA14  
PTA15  
PTA16  
SPI0_PCS0 UART0_TX  
RMII0_CRS  
_DV/  
MII0_RXDV  
I2S0_RX_B I2S0_TXD1  
CLK  
SPI0_SCK  
UART0_RX RMII0_TXE  
I2S0_RXD0  
N/  
MII0_TXEN  
SPI0_SOUT UART0_CT  
S_b/  
RMII0_TXD  
0/  
I2S0_RX_F  
S
I2S0_RXD1  
UART0_CO MII0_TXD0  
L_b  
69  
70  
K11 PTA17  
ADC1_SE1  
7
ADC1_SE1  
7
PTA17  
SPI0_SIN  
UART0_RT  
S_b  
RMII0_TXD  
1/  
MII0_TXD1  
I2S0_MCLK  
E8  
VDD  
VDD  
VDD  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
74  
Freescale Semiconductor, Inc.  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
71  
72  
G8  
VSS  
VSS  
VSS  
M12 PTA18  
EXTAL0  
EXTAL0  
PTA18  
FTM0_FLT2 FTM_CLKIN  
0
73  
M11 PTA19  
XTAL0  
XTAL0  
PTA19  
FTM1_FLT0 FTM_CLKIN  
1
LPTMR0_A  
LT1  
74  
75  
L12 RESET_b  
K12 PTA24  
RESET_b  
CMP3_IN4  
RESET_b  
CMP3_IN4  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
ULPI_DATA  
2
MII0_TXD2  
FB_A29  
FB_A28  
FB_A27  
FB_A26  
FB_A25  
FB_A24  
76  
77  
78  
79  
80  
81  
J12 PTA25  
J11 PTA26  
J10 PTA27  
H12 PTA28  
H11 PTA29  
CMP3_IN5  
CMP3_IN5  
ULPI_DATA  
3
MII0_TXCL  
K
ADC2_SE1  
5
ADC2_SE1  
5
ULPI_DATA  
4
MII0_TXD3  
MII0_CRS  
MII0_TXER  
MII0_COL  
ADC2_SE1  
4
ADC2_SE1  
4
ULPI_DATA  
5
ADC2_SE1  
3
ADC2_SE1  
3
ULPI_DATA  
6
ADC2_SE1  
2
ADC2_SE1  
2
ULPI_DATA  
7
H10 PTB0/  
LLWU_P5  
ADC0_SE8/ ADC0_SE8/ PTB0/  
ADC1_SE8/ ADC1_SE8/ LLWU_P5  
ADC2_SE8/ ADC2_SE8/  
ADC3_SE8/ ADC3_SE8/  
TSI0_CH0  
I2C0_SCL  
FTM1_CH0  
FTM1_CH1  
RMII0_MDI  
O/  
MII0_MDIO  
FTM1_QD_  
PHA  
TSI0_CH0  
82  
H9  
PTB1  
ADC0_SE9/ ADC0_SE9/ PTB1  
ADC1_SE9/ ADC1_SE9/  
ADC2_SE9/ ADC2_SE9/  
ADC3_SE9/ ADC3_SE9/  
I2C0_SDA  
RMII0_MDC  
/MII0_MDC  
FTM1_QD_  
PHB  
TSI0_CH6  
TSI0_CH6  
83  
84  
G12 PTB2  
G11 PTB3  
ADC0_SE1  
ADC0_SE1  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
UART0_RT  
S_b  
ENET0_158  
8_TMR0  
FTM0_FLT3  
FTM0_FLT0  
2/TSI0_CH7 2/TSI0_CH7  
ADC0_SE1 ADC0_SE1  
3/TSI0_CH8 3/TSI0_CH8  
UART0_CT  
S_b/  
ENET0_158  
8_TMR1  
UART0_CO  
L_b  
85  
86  
87  
88  
89  
90  
91  
G10 PTB4  
ADC1_SE1  
0
ADC1_SE1  
0
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
ENET0_158  
8_TMR2  
FTM1_FLT0  
FTM2_FLT0  
G9  
PTB5  
ADC1_SE1  
1
ADC1_SE1  
1
ENET0_158  
8_TMR3  
F12 PTB6  
F11 PTB7  
F10 PTB8  
ADC1_SE1  
2
ADC1_SE1  
2
FB_AD23  
FB_AD22  
FB_AD21  
FB_AD20  
FB_AD19  
ADC1_SE1  
3
ADC1_SE1  
3
DISABLED  
UART3_RT  
S_b  
F9  
PTB9  
DISABLED  
SPI1_PCS1 UART3_CT  
S_b  
E12 PTB10  
ADC1_SE1  
4
ADC1_SE1  
4
SPI1_PCS0 UART3_RX I2S1_TX_B  
CLK  
FTM0_FLT1  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
75  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
92  
E11 PTB11  
ADC1_SE1  
5
ADC1_SE1  
5
PTB11  
SPI1_SCK  
UART3_TX  
I2S1_TX_F  
S
FB_AD18  
FTM0_FLT2  
93  
94  
95  
96  
H7  
F5  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
E10 PTB16  
E9 PTB17  
TSI0_CH9  
TSI0_CH9  
PTB16  
SPI1_SOUT UART0_RX I2S1_TXD0  
FB_AD17  
FB_AD16  
EWM_IN  
TSI0_CH10 TSI0_CH10 PTB17  
TSI0_CH11 TSI0_CH11 PTB18  
TSI0_CH12 TSI0_CH12 PTB19  
SPI1_SIN  
CAN0_TX  
CAN0_RX  
SPI2_PCS0  
UART0_TX  
FTM2_CH0  
FTM2_CH1  
I2S1_TXD1  
EWM_OUT  
_b  
97  
98  
99  
D12 PTB18  
D11 PTB19  
D10 PTB20  
I2S0_TX_B  
CLK  
FB_AD15  
FB_OE_b  
FTM2_QD_  
PHA  
I2S0_TX_F  
S
FTM2_QD_  
PHB  
ADC2_SE4  
a
ADC2_SE4  
a
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
FB_AD31/  
NFC_DATA  
15  
CMP0_OUT  
CMP1_OUT  
CMP2_OUT  
CMP3_OUT  
I2S0_TXD1  
I2S0_TXD0  
100  
101  
102  
103  
104  
105  
D9  
PTB21  
ADC2_SE5  
a
ADC2_SE5  
a
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FB_AD30/  
NFC_DATA  
14  
C12 PTB22  
C11 PTB23  
B12 PTC0  
B11 PTC1/  
DISABLED  
DISABLED  
FB_AD29/  
NFC_DATA  
13  
SPI0_PCS5  
FB_AD28/  
NFC_DATA  
12  
ADC0_SE1  
4/  
TSI0_CH13 TSI0_CH13  
ADC0_SE1  
4/  
SPI0_PCS4 PDB0_EXT  
RG  
FB_AD14/  
NFC_DATA  
11  
ADC0_SE1  
5/  
TSI0_CH14 TSI0_CH14  
ADC0_SE1  
5/  
PTC1/  
LLWU_P6  
SPI0_PCS3 UART1_RT  
S_b  
FTM0_CH0  
FTM0_CH1  
FB_AD13/  
NFC_DATA  
10  
LLWU_P6  
A12 PTC2  
ADC0_SE4  
b/  
CMP1_IN0/  
ADC0_SE4  
b/  
CMP1_IN0/  
PTC2  
SPI0_PCS2 UART1_CT  
S_b  
FB_AD12/  
NFC_DATA  
9
I2S0_TX_F  
S
TSI0_CH15 TSI0_CH15  
106  
A11 PTC3/  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LLWU_P7  
SPI0_PCS1 UART1_RX FTM0_CH2  
CLKOUT  
I2S0_TX_B  
CLK  
LLWU_P7  
VSS  
107  
108  
109  
H8  
VSS  
VSS  
VDD  
VDD  
VDD  
A9  
PTC4/  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_PCS0 UART1_TX  
FTM0_CH3  
FB_AD11/  
NFC_DATA  
8
CMP1_OUT I2S1_TX_B  
CLK  
LLWU_P8  
110  
111  
D8  
C8  
PTC5/  
LLWU_P9  
DISABLED  
CMP0_IN0  
PTC5/  
LLWU_P9  
SPI0_SCK  
LPTMR0_A  
LT2  
I2S0_RXD0 FB_AD10/  
CMP0_OUT I2S1_TX_F  
S
NFC_DATA  
7
PTC6/  
LLWU_P10  
CMP0_IN0  
PTC6/  
LLWU_P10  
SPI0_SOUT PDB0_EXT  
RG  
I2S0_RX_B FB_AD9/  
I2S0_MCLK  
CLK  
NFC_DATA  
6
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
76  
Freescale Semiconductor, Inc.  
Pinout  
144  
LQF MAP  
P
144  
Pin Name  
PTC7  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
BGA  
112  
B8  
CMP0_IN1  
CMP0_IN1  
PTC7  
SPI0_SIN  
USB_SOF_ I2S0_RX_F  
OUT  
FB_AD8/  
NFC_DATA  
5
S
113  
114  
115  
A8  
D7  
C7  
PTC8  
ADC1_SE4  
b/  
CMP0_IN2  
ADC1_SE4  
b/  
CMP0_IN2  
PTC8  
PTC9  
PTC10  
FTM3_CH4  
I2S0_MCLK FB_AD7/  
NFC_DATA  
4
PTC9  
ADC1_SE5  
b/  
CMP0_IN3  
ADC1_SE5  
b/  
CMP0_IN3  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
I2S0_RX_B FB_AD6/  
FTM2_FLT0  
I2S1_MCLK  
CLK  
NFC_DATA  
3
PTC10  
ADC1_SE6  
b
ADC1_SE6  
b
I2C1_SCL  
I2C1_SDA  
I2S0_RX_F  
S
FB_AD5/  
NFC_DATA  
2
116  
117  
118  
B7  
A7  
D6  
PTC11/  
LLWU_P11  
ADC1_SE7  
b
ADC1_SE7  
b
PTC11/  
LLWU_P11  
I2S0_RXD1 FB_RW_b/  
NFC_WE  
PTC12  
PTC13  
DISABLED  
PTC12  
PTC13  
UART4_RT  
S_b  
FB_AD27  
FTM3_FLT0  
DISABLED  
UART4_CT  
S_b  
FB_AD26  
119  
120  
121  
122  
123  
C6  
B6  
PTC14  
PTC15  
VSS  
DISABLED  
DISABLED  
VSS  
PTC14  
PTC15  
UART4_RX  
UART4_TX  
FB_AD25  
FB_AD24  
VSS  
VDD  
VDD  
VDD  
A6  
PTC16  
DISABLED  
PTC16  
PTC17  
PTC18  
PTC19  
CAN1_RX  
CAN1_TX  
UART3_RX ENET0_158 FB_CS5_b/  
NFC_RB  
8_TMR0  
FB_TSIZ1/  
FB_BE23_1  
6_b  
124  
125  
D5  
C5  
PTC17  
PTC18  
PTC19  
DISABLED  
DISABLED  
UART3_TX  
ENET0_158 FB_CS4_b/  
NFC_CE0_  
b
8_TMR1  
FB_TSIZ0/  
FB_BE31_2  
4_b  
UART3_RT  
S_b  
ENET0_158 FB_TBST_b NFC_CE1_  
8_TMR2  
/FB_CS2_b/  
FB_BE15_8  
_b  
b
126  
127  
B5  
A5  
DISABLED  
DISABLED  
UART3_CT  
S_b  
ENET0_158 FB_CS3_b/  
FB_TA_b  
I2S1_RXD1  
I2S1_RXD0  
8_TMR3  
FB_BE7_0_  
b
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0 UART2_RT  
S_b  
FTM3_CH0  
FB_ALE/  
FB_CS1_b/  
FB_TS_b  
128  
129  
130  
131  
D4  
C4  
B4  
A4  
PTD1  
ADC0_SE5  
b
ADC0_SE5  
b
PTD1  
SPI0_SCK  
UART2_CT  
S_b  
FTM3_CH1  
FB_CS0_b  
FB_AD4  
FB_AD3  
PTD2/  
LLWU_P13  
DISABLED  
DISABLED  
DISABLED  
PTD2/  
LLWU_P13  
SPI0_SOUT UART2_RX FTM3_CH2  
I2S1_RX_F  
S
PTD3  
PTD3  
SPI0_SIN  
UART2_TX  
FTM3_CH3  
FTM0_CH4  
I2S1_RX_B  
CLK  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1 UART0_RT  
S_b  
FB_AD2/  
NFC_DATA  
1
EWM_IN  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
77  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
132  
A3  
PTD5  
ADC0_SE6  
b
ADC0_SE6  
b
PTD5  
SPI0_PCS2 UART0_CT  
FTM0_CH5  
FB_AD1/  
NFC_DATA _b  
0
EWM_OUT  
S_b/  
UART0_CO  
L_b  
133  
A2  
PTD6/  
LLWU_P15  
ADC0_SE7  
b
ADC0_SE7  
b
PTD6/  
LLWU_P15  
SPI0_PCS3 UART0_RX FTM0_CH6  
FB_AD0  
FTM0_FLT0  
134  
135  
136  
137  
M10 VSS  
VSS  
VSS  
VDD  
F8  
A1  
C9  
VDD  
VDD  
PTD7  
PTD8  
DISABLED  
DISABLED  
PTD7  
PTD8  
CMT_IRO  
I2C0_SCL  
UART0_TX  
UART5_RX  
FTM0_CH7  
FTM0_FLT1  
FB_A16/  
NFC_CLE  
138  
139  
140  
B9  
B3  
B2  
PTD9  
DISABLED  
DISABLED  
DISABLED  
PTD9  
I2C0_SDA  
UART5_TX  
FB_A17/  
NFC_ALE  
PTD10  
PTD11  
PTD10  
PTD11  
UART5_RT  
S_b  
FB_A18/  
NFC_RE  
SPI2_PCS0 UART5_CT  
S_b  
SDHC0_CL  
KIN  
FB_A19  
141  
142  
143  
144  
B1  
C3  
C2  
C1  
PTD12  
PTD13  
PTD14  
PTD15  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTD12  
PTD13  
PTD14  
PTD15  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FTM3_FLT0 SDHC0_D4  
SDHC0_D5  
FB_A20  
FB_A21  
FB_A22  
FB_A23  
SDHC0_D6  
SPI2_PCS1  
SDHC0_D7  
8.2 K60 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
78  
Freescale Semiconductor, Inc.  
Preliminary  
Pinout  
PTE0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
VSS  
PTE1/LLWU_P0  
2
PTE2/LLWU_P1  
3
PTC3/LLWU_P7  
PTC2  
PTE3  
4
VDD  
5
PTC1/LLWU_P6  
PTC0  
VSS  
6
PTE4/LLWU_P2  
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
PTE5  
8
PTE6  
9
PTE7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PTE8  
98  
PTE9  
97  
PTE10  
96  
PTE11  
95  
PTE12  
94  
VDD  
VSS  
93  
VSS  
PTB11  
PTB10  
PTB9  
92  
VSS  
USB0_DP  
91  
90  
USB0_DM  
PTB8  
89  
VOUT33  
PTB7  
88  
VREGIN  
PTB6  
87  
PGA2_DP/ADC2_DP0/ADC3_DP3/ADC0_DP1  
PGA2_DM/ADC2_DM0/ADC3_DM3/ADC0_DM1  
PGA3_DP/ADC3_DP0/ADC2_DP3/ADC1_DP1  
PGA3_DM/ADC3_DM0/ADC2_DM3/ADC1_DM1  
PGA0_DP/ADC0_DP0/ADC1_DP3  
PGA0_DM/ADC0_DM0/ADC1_DM3  
PGA1_DP/ADC1_DP0/ADC0_DP3  
PGA1_DM/ADC1_DM0/ADC0_DM3  
VDDA  
PTB5  
86  
PTB4  
85  
PTB3  
84  
PTB2  
83  
PTB1  
82  
PTB0/LLWU_P5  
PTA29  
PTA28  
PTA27  
PTA26  
PTA25  
PTA24  
RESET_b  
PTA19  
81  
80  
79  
78  
VREFH  
77  
VREFL  
76  
VSSA  
75  
ADC1_SE16/CMP2_IN2/ADC0_SE22  
ADC0_SE16/CMP1_IN2/ADC0_SE21  
74  
73  
Figure 35. K60 144 LQFP Pinout Diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
Freescale Semiconductor, Inc.  
79  
Revision History  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PTC4/  
LLWU_P8  
PTC3/  
LLWU_P7  
PTD6/  
LLWU_P15  
PTD4/  
LLWU_P14  
PTD0/  
LLWU_P12  
A
B
C
D
E
F
PTC8  
NC  
PTC2  
A
B
C
D
E
F
PTD7  
PTD12  
PTD15  
PTD5  
PTC16  
PTC12  
PTC11/  
LLWU_P11  
PTC1/  
LLWU_P6  
PTD11  
PTD14  
PTD10  
PTD13  
PTE0  
PTD3  
PTC19  
PTC18  
PTC17  
VDD  
PTC15  
PTC14  
PTC13  
VDD  
PTC7  
PTD9  
PTD8  
PTB21  
PTB17  
PTB9  
PTB5  
PTB1  
NC  
NC  
PTC0  
PTB22  
PTB18  
PTB10  
PTB6  
PTD2/  
LLWU_P13  
PTC6/  
LLWU_P10  
PTC10  
PTC9  
VDD  
PTB23  
PTB19  
PTB11  
PTB7  
PTE2/  
LLWU_P1  
PTE1/  
LLWU_P0  
PTC5/  
LLWU_P9  
PTD1  
PTE3  
PTB20  
PTB16  
PTB8  
PTB4  
PTE4/  
LLWU_P2  
PTE6  
PTE10  
PTE5  
PTE9  
VDD  
VDD  
VSS  
PTE8  
PTE12  
VSS  
PTE7  
VDD  
VSS  
VSS  
G
H
J
G
H
J
VOUT33  
VREGIN  
PTE11  
PTE28  
PTE27  
PTE26  
VREFH  
VDDA  
PTA0  
VREFL  
VSSA  
PTA1  
PTA2  
VBAT  
VSS  
PTB3  
PTB2  
PTB0/  
LLWU_P5  
USB0_DP  
PGA2_DP/  
USB0_DM  
PGA2_DM/  
VSS  
VSS  
PTA29  
PTA26  
PTA17  
PTA15  
PTA28  
PTA25  
PTA24  
RESET_b  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
ADC2_DP0/ ADC2_DM0/  
ADC3_DP3/ ADC3_DM3/  
PTA13/  
LLWU_P4  
PTA6  
PTA3  
PTA7  
PTA8  
PTA9  
PTA27  
PTA16  
PTA14  
ADC0_DP1  
ADC0_DM1  
PGA3_DM/  
ADC3_DM0/  
ADC2_DM3/  
ADC1_DM1  
PGA3_DP/  
ADC2_DP3/  
ADC1_DP1  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
K
L
K
L
PTE25  
RTC_  
PTA12  
PTA11  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/ WAKEUP_B  
ADC1_SE23  
PGA0_DP/  
PGA0_DM/ DAC0_OUT/  
ADC0_DP0/ ADC0_DM0/ CMP1_IN3/  
PTA4/  
LLWU_P3  
ADC1_DP3  
ADC1_DM3 ADC0_SE23  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
PGA1_DP/  
ADC1_DP0/ ADC1_DM0/  
ADC0_DP3  
PGA1_DM/  
M
M
PTE24  
NC  
EXTAL32  
XTAL32  
PTA5  
PTA10  
VSS  
PTA19  
PTA18  
ADC0_DM3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Figure 36. K60 144 MAPBGA Pinout Diagram  
9 Revision History  
The following table provides a revision history for this document.  
Table 51. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
6/2011  
Initial public revision. Corrected USB conditions.  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Preliminary  
80  
Freescale Semiconductor, Inc.  
Revision History  
Table 51. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
2
11/2011  
• Added AC electrical specifications.  
• Updated Part identification section for 120 MHz CPU frequency.  
• Updated Voltage and current operating ratings section.  
• Updated Voltage and current operating requirements section.  
• Updated LVD and POR operating requirements section.  
• Updated Voltage and current operating behaviors section.  
• Updated Power mode transition operating behaviors section.  
• Updated Power consumption operating behaviors section.  
• In Run mode supply current vs. core frequency section, added Run and VLPR modes  
supply current vs. core frequency diagrams.  
• In Device clock specifications section, updated flash clock frequency and DDR clock  
frequency.  
• Updated Thermal attributes.  
• In MCG specifications section, updated total deviation of trimmed average DCO output  
Frequency, PLL reference frequency range, and lock detector detection time.  
• In Oscillator frequency specifications section, updated crystal startup time — 32 kHz.  
• Updated NFC specifications section.  
• In DSPI switching specifications section, updated master and slave modes frequency  
of operation for limited voltage and full voltage ranges.  
• In I2S/SAI Switching Specifications section, updated cycle time for master and slave  
modes.  
• In USB DCD electrical specifications section, updated data detect voltage.  
• In TSI electrical specifications, updated reference oscillator frequency.  
• Updated Pinouts.  
• Updated Pinouts.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012.  
Freescale Semiconductor, Inc.  
81  
Preliminary  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2012 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Document Number: K60P144M120SF3  
Rev. 3, 2/2012  
Preliminary  

相关型号:

K60P144M120SF3_1210

K60 Sub-Family
FREESCALE

K60P144M150SF3

K60 Sub-Family Data Sheet
FREESCALE

K60P144M150SF3_1210

K60 Sub-Family
FREESCALE

K610012000J0G

Barrier Strip Terminal Block
AMPHENOL

K610014000J0G

Barrier Strip Terminal Block
AMPHENOL

K610015000J0G

Barrier Strip Terminal Block,
AMPHENOL

K610016000J0G

Barrier Strip Terminal Block
AMPHENOL

K610019000J0G

Barrier Strip Terminal Block
AMPHENOL

K61001C000J0G

Barrier Strip Terminal Block
AMPHENOL

K615015000J0G

Barrier Strip Terminal Block,
AMPHENOL

K616015000J0G

Barrier Strip Terminal Block,
AMPHENOL

K616019000J0G

Barrier Strip Terminal Block
AMPHENOL