MAC7126CFU50 [FREESCALE]

Microcontroller Family Hardware Specifications; 单片机系列硬件规格
MAC7126CFU50
型号: MAC7126CFU50
厂家: Freescale    Freescale
描述:

Microcontroller Family Hardware Specifications
单片机系列硬件规格

微控制器
文件: 总56页 (文件大小:1236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAC7100EC  
Rev. 1.2, 02/2006  
Freescale Semiconductor  
Advance Information  
MAC7100 Microcontroller Family  
Hardware Specifications  
Covers MAC7101, MAC7106, MAC7111, MAC7116, MAC7121,  
1
MAC7126, MAC7131, MAC7136, MAC7141  
32-bit Embedded Controller Division  
1. With preliminary information on MAC7112, MAC7122, MAC7142 devices.  
Table of Contents  
This document provides electrical specifications, pin  
assignments, and package diagrams for MAC7100  
family of microcontroller devices. For functional  
characteristics, refer to the MAC7100 Microcontroller  
Family Reference Manual (MAC7100RM).  
1 Overview.................................................................1  
2 Ordering Information...............................................2  
3 Electrical Characteristics.........................................4  
3.1 Parameter Classification......................................4  
3.2 Absolute Maximum Ratings.................................4  
3.3 ESD Protection and Latch-up Immunity ..............5  
3.4 Operating Conditions...........................................6  
3.5 Input/Output Characteristics................................7  
3.6 Power Dissipation and Thermal Characteristics..8  
3.7 Power Supply ....................................................11  
3.8 Clock and Reset Generator...............................15  
3.9 External Bus Timing ..........................................20  
3.10 Analog-to-Digital Converter...............................24  
3.11 Serial Peripheral Interface.................................29  
3.12 FlexCAN Interface .............................................32  
3.13 Common Flash Module .....................................32  
4 Device Pin Assignments .......................................36  
4.1 MAC7141 Pin Diagram......................................41  
4.2 MAC7142 Pin Diagram......................................42  
4.3 MAC7121 / MAC7126 Pin Diagram...................43  
4.4 MAC7122 Pin Diagram......................................44  
4.5 MAC7101 / MAC7106 Pin Diagram...................45  
4.6 MAC7111 / MAC7116 Pin Diagram...................46  
4.7 MAC7112 Pin Diagram......................................47  
4.8 MAC7131 Pin Diagram......................................48  
4.9 MAC7136 Pin Diagram......................................49  
5 Mechanical Information.........................................50  
Revision History....................................................51  
1 Overview  
The MAC7100 Family of microcontrollers (MCUs) are  
members of a pin-compatible family of 32-bit  
Flash-memory-based devices developed specifically for  
embedded automotive applications. The pin-compatible  
family concept enables users to select between different  
memory and peripheral options for scalable designs. All  
MAC7100 Family members are composed of a 32-bit  
ARM7TDMI-S™ central processing unit, up to 1 Mbyte  
of embedded Flash EEPROM for program storage, up to  
32 Kbytes of embedded Flash for data and/or program  
storage, and up to 48 Kbytes of RAM. The family is  
implemented with an enhanced DMA (eDMA) controller  
to improve performance for transfers between memory  
and many of the on-chip peripherals. The peripheral set  
includes asynchronous serial communications interfaces  
(eSCI), serial peripheral interfaces (DSPI),  
This document contains information on a new product under development. Freescale  
Semiconductor reserves the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2004-2006. All rights reserved.  
• Preliminary  
Ordering Information  
2
inter-integrated circuit (I C™) bus controllers, FlexCAN interfaces, an enhanced modular I/O subsystem  
(eMIOS), 10-bit analog-to-digital converter (ATD) module(s), general-purpose timers (PIT) and two  
special-purpose timers (RTI and SWT). The peripherals share a large number of general purpose  
input-output (GPIO) pins, all of which are bidirectional and available with interrupt capability to trigger  
wake-up from low-power chip modes. Refer to Table 2 for a comparison of family members and  
availability of peripheral modules on each device.  
The use of a PLL allows power drain and performance to be balanced to best fit requirements. The  
operating frequency of devices in the family is up to a maximum of 50 MHz. The internal data paths  
between the CPU core, eDMA, memory and peripherals are all 32 bits wide, further improving  
performance for 32-bit applications. The MAC7111, MAC7116, MAC7131 and MAC7136 also offer a  
16-bit wide external data bus with 22 address lines. The family of devices is capable of operating over a  
junction temperature range of –40° C to 150° C.  
2 Ordering Information  
Temperature Option  
= –40° C to 85° C  
= –40° C to105° C  
M AC 7 1 0 1 C PV 50 xx  
C
V
Qualification Status  
Core Code  
M = –40° C to125° C  
Core Number  
Generation / Family  
Package Option  
Package Option  
FU = 100 LQFP  
AF = 100 LQFP, RoHS  
PV = 112 / 144 LQFP  
AG = 112 / 144 LQFP, RoHS  
VF = 208 MAP BGA  
Device Number  
Temperature Range  
Package Identifier  
Speed (MHz)  
Optional Package Identifiers  
VM= 208 MAP BGA, RoHS  
Figure 1. Order Part Number Example  
The mask set of a device is marked with a four-character code consisting of a letter, two numerical digits,  
and a letter, for example L49P. Slight variations to the mask set identification code may result in an  
optional numerical digit preceding the standard four-character code, for example 0L49P.  
Table 1. MAC7100 Family Mask Set to Part Number Correspondence  
Mask Set  
Status  
Part Number(s)  
0L49P  
1L49P  
0L47W  
1L47W  
0L61W  
0L38Y  
1L38Y  
Engineering samples  
Limited production, pre-qualification  
Limited production, pre-qualification  
Fully-qualified, production  
Engineering samples  
PAC7101, PAC7111, PAC7121, PAC7131, PAC7141  
PAC7101, PAC7111, PAC7121, PAC7131, PAC7141  
PAC7101, PAC7111, PAC7121, PAC7131, PAC7141  
MAC7101, MAC7111, MAC7121, MAC7131, MAC7141  
PAC7112, PAC7122, PAC7142  
Engineering samples  
PAC7106, PAC7116, PAC7126, PAC7136  
Fully-qualified, production  
MAC7106, MAC7116, MAC7126, MAC7136  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
2
Freescale Semiconductor  
OrderingInformation  
Table 2. MAC7100 Family Device Derivatives  
Module Options  
Program Flash  
Data Flash  
512 KBytes  
256 KBytes  
32 KBytes  
1 MByte  
SRAM  
32 KBytes  
16 KBytes  
48 KBytes  
External Bus  
ATD Modules 1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes 2  
Yes 2  
Yes  
A
B
A
B
C
D
A
B
C
D
A
B
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CAN Modules  
eSCI Modules  
DSPI Modules  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes 3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes 3  
Yes  
Yes  
Yes  
Yes  
Yes 3  
I2C Module  
eMIOS Module  
Timer Module  
Yes  
16 channels, 16-bit  
10 channels, 24-bit  
A
B
C
D
E
F
10  
16  
16  
16  
10  
15  
16  
16  
4
16  
16  
16  
16  
16  
16  
16  
16  
10  
15  
1
4
16  
10  
16  
16  
16  
16  
16  
16  
16  
16  
10  
15  
1
16  
16  
16  
16  
16  
16  
16  
16  
16  
144  
12  
16  
1
16  
12  
10 4  
16 4  
11 4  
16 4  
10 4  
11  
16  
16  
16  
10  
16  
16  
10  
10  
11  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
G
H
I
16  
16  
16  
16  
10  
16  
16  
16  
16  
Total (max.)  
Package  
112 4  
112 4  
85 4  
128 4  
72 4  
112  
144  
85  
112  
72  
100  
112  
144  
112  
144  
85  
112  
144  
144  
112  
208  
100  
208  
LQFP LQFP LQFP  
BGA  
LQFP LQFP LQFP LQFP LQFP LQFP LQFP  
BGA  
NOTES:  
1. 16 channels, 8/10-bit, per module.  
2. Four additional chip selects available.  
3. PB11 / PCS2_B not available on non-L49P-mask devices; PB10 / PCS5_B / PCSS_B not available on mask L47W devices.  
4. Reduce these values by one for mask set L49P devices (PD2 is not available for general-purpose use).  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
3
Preliminary  
Electrical Characteristics  
3 Electrical Characteristics  
This section contains electrical information for MAC7100 Family microcontrollers. The information is  
preliminary and subject to change without notice.  
MAC7100 Family devices are specified and tested over the 5 V and 3.3 V ranges. For operation at any  
voltage within that range, the 3.3 V specifications generally apply. However, no production testing is done  
to verify operation at intermediate supply voltage levels.  
3.1 Parameter Classification  
The electrical parameters shown in this appendix are derived by various methods. To provide a better  
understanding to the designer, the following classification is used. Parameters are tagged accordingly in  
the column labeled “C” of the parametric tables, as appropriate.  
Table 3. Parametric Value Classification  
P
C
Parameters guaranteed during production testing on each individual device.  
Parameters derived by the design characterization and by measuring a statistically relevant sample size across  
process variations.  
T
Parameters derived by design characterization on a small sample size from typical devices under typical conditions  
(unless otherwise noted). All values shown in the typical column are within this classification, even if not so tagged.  
D
Parameters derived mainly from simulations.  
3.2 Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only. Functional operation outside these maximums is not  
guaranteed. Stress beyond these limits may affect reliability or cause permanent damage to the device.  
MAC7100 Family devices contain circuitry protecting against damage due to high static voltage or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs  
1
1
are tied to an appropriate logic voltage level (for example, either V 5 or V 5 ).  
SS  
DD  
Table 4. Absolute Maximum Ratings  
Num  
Rating  
Symbol  
DDX  
Min  
Max  
Unit  
A1a I/O Drivers Supply Voltage  
V
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
+6.0  
+3.0  
+3.0  
+6.0  
+6.0  
+0.3  
+0.3  
+6.0  
V
V
V
V
V
V
V
V
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Digital Logic Supply Voltage 1  
VDD2.5  
1
PLL Supply Voltage  
VDDPLL  
Analog Supply Voltage  
Analog Reference  
VDD  
VRH, VRL  
ΔVDDX  
A
Voltage difference VDDX to VDD  
A
Voltage difference VSSX to VSS  
A
ΔVSSX  
Voltage difference VRH – VRL  
VRH – VRL  
1. Refer to Section 3.7, “Power Supply,” for definition of VSS5 and VDD5.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
4
Freescale Semiconductor  
ElectricalCharacteristics  
Table 4. Absolute Maximum Ratings (continued)  
Num  
Rating  
Symbol  
Min  
Max  
Unit  
A9  
Voltage difference VDDA – VRH  
VDDA – VRH  
VIN  
–0.3  
–0.3  
–0.3  
–0.3  
+6.0  
+6.0  
+3.0  
V
V
V
V
A10 Digital I/O Input Voltage  
A11 XFC, EXTAL, XTAL inputs  
A12 TEST input  
VILV  
2
VTEST  
Instantaneous Maximum Current 3  
A13  
A14  
A15  
A16  
Single pin limit for XFC, EXTAL, XTAL 4  
Single pin limit for all digital I/O pins 5  
Single pin limit for all analog input pins 5  
Single pin limit for TEST 2  
IDL  
ID  
–25  
–25  
+25  
+25  
+25  
0
mA  
mA  
mA  
mA  
°C  
IDA  
IDT  
Tstg  
–25  
–0.25  
–65  
A17 Storage Temperature Range  
NOTES:  
+155  
1. The device contains an internal voltage regulator to generate the logic and PLL supply from the I/O supply. The  
absolute maximum ratings apply when the device is powered from an external source.  
2. This pin is clamped low to VSSX, but not clamped high, and must be tied low in applications.  
3. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
use the larger of the calculated values using VPOSCLAMP = VDDA + 0.3V and VNEGCLAMP = –0.3 V.  
4. These pins are internally clamped to VSSPLL and VDDPLL.  
5. All I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.  
3.3 ESD Protection and Latch-up Immunity  
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body  
Model (HBM), the Machine Model (MM) and the Charge Device Model.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Human Body  
Series Resistance  
R1  
C
1500  
100  
Ohm  
pF  
Storage Capacitance  
Number of Pulses per pin  
positive  
3
negative  
3
Machine  
Series Resistance  
R1  
C
0
Ohm  
pF  
Storage Capacitance  
200  
Number of Pulse per pin  
positive  
3
negative  
3
Latch-up  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
5
Electrical Characteristics  
Table 6. ESD and Latch-Up Protection Characteristics  
Num  
C
Rating  
Symbol  
Min  
Max  
Unit  
B1  
B2  
B3  
B4  
C Human Body Model (HBM)  
C Machine Model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
2000  
200  
V
V
C Charge Device Model (CDM)  
500  
V
C Latch-up Current at TA = 125°C  
mA  
positive  
negative  
+100  
–100  
B5  
C Latch-up Current at TA = 27°C  
ILAT  
mA  
positive  
negative  
+200  
–200  
3.4 Operating Conditions  
Unless otherwise noted, the following conditions apply to all parametric data. Refer to the temperature  
rating of the device (C, V, M) with respect to ambient temperature (T ) and junction temperature (T ). For  
A
J
power dissipation calculations refer to Section 3.6, “Power Dissipation and Thermal Characteristics.”  
Table 7. MAC7100 Family Device Operating Conditions  
Num  
Rating  
Symbol  
DDX  
DD2.5  
VDDPLL  
DDA  
VDDX  
VSSX  
Min  
Typ  
Max  
Unit  
C1 I/O Drivers Supply Voltage  
C2 Digital Logic Supply Voltage 1  
C3 PLL Supply Voltage 1  
V
3.15  
2.35  
2.35  
3.15  
–0.1  
–0.1  
0.5  
5
2.5  
2.5  
5
5.5  
2.75  
2.75  
5.5  
0.1  
0.1  
16  
V
V
V
V
C4 Analog Supply Voltage  
V
V
C5 Voltage Difference VDDX to VDD  
A
Δ
0
V
C6 Voltage Difference VSSX to VSS  
A
Δ
0
V
2
C7 Oscillator Frequency  
fOSC  
fSYS  
TJ  
25  
MHz  
MHz  
°C  
°C  
2
C8 System Clock Frequency  
C9a MAC71xxC Operating Junction Temperature Range 3  
0.5  
50  
–40  
–40  
110  
85  
3
C9b  
C10a MAC71xxV Operating Junction Temperature Range  
C10b Operating Ambient Temperature Range  
C11a MAC71xxM Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TA  
3
3
TJ  
TA  
–40  
–40  
130  
105  
°C  
°C  
25  
3
3
TJ  
TA  
–40  
–40  
150  
125  
°C  
°C  
C11b  
Operating Ambient Temperature Range  
25  
NOTES:  
1. These ratings apply only when the VREG is disabled and the device is powered from an external source.  
2. Throughout this document, tOSC refers to 1 ÷ fOSC, and tSYS refers to 1 ÷ fSYS  
.
3. Refer to Section 3.6, “Power Dissipation and Thermal Characteristics,for more details about the relation between  
ambient temperature TA and device junction temperature TJ.  
3.4.1 Input/Output Pins  
The I/O pins operate at a nominal level of 3.3 V to 5 V. This class of pins is comprised of the clocks, control  
and general purpose/peripheral pins. The internal structure of these pins is identical; however, some  
functionality may be disabled (for example, for analog inputs the output drivers, pull-up/down resistors  
are permanently disabled).  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
6
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
3.4.2 Oscillator Pins  
The pins XFC, EXTAL, XTAL are dedicated to the oscillator and operate at a nominal level of 2.5V.  
3.5 Input/Output Characteristics  
This section describes the characteristics of all I/O pins in both 3.3 V and 5 V operating conditions. All  
parameters are not always applicable; for example, not all pins feature pull up/down resistances.  
Table 8. 5.0 V I/O Characteristics  
Conditions shown in Table 7 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
D1a P Input High Voltage  
VIH  
0.65 ×  
V
VDD5 1  
D1b T Input High Voltage  
D2a P Input Low Voltage  
D2b T Input Low Voltage  
D3 C Input Hysteresis  
VIH  
VIL  
VIL  
VDD5 +  
0.3 1  
V
V
V
0.35 ×  
VDD5 1  
VSS5 –  
0.3 1  
VHYS  
Iin  
–1 2  
250  
1 2  
mV  
D4 P Input Leakage Current (pins in high impedance input mode)  
in = VDD5 or VSS5 1  
μA  
V
D5 P Output High Voltage (pins in output mode)  
Partial Drive I = –2mA  
VOH  
VDD5 –  
0.8  
V
V
OH  
= –10mA  
Full Drive I  
OH  
D6 P Output Low Voltage (pins in output mode)  
Partial Drive I = +2mA  
VOL  
0.8  
OL  
= +10mA  
Full Drive I  
OL  
D7 P Internal Pull Up Device Current,  
tested at VIL Max.  
D8 P Internal Pull Up Device Current,  
tested at VIH Min.  
D9 P Internal Pull Down Device Current,  
tested at VIH Min.  
D10 P Internal Pull Down Device Current,  
tested at VIL Max.  
IPUL  
IPUH  
IPDH  
IPDL  
Cin  
–10  
–130  
μA  
μA  
μA  
μA  
130  
10  
D11 D Input Capacitance  
6
pF  
D12 T Injection current 3  
Single Pin limit  
mA  
IICS  
IICP  
–2.5  
–25  
2.5  
25  
Total Device Limit. Sum of all injected currents  
D13 P Port Interrupt Input Pulse filtered 4  
D14 P Port Interrupt Input Pulse passed 4  
NOTES:  
tPULSE  
tPULSE  
3
μs  
μs  
10  
1. Refer to Section 3.7, “Power Supply,” for definition of VSS5 and VDD5.  
2. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half  
for each 8°C to 12°C in the temperature range from 50°C to 125°C.  
3. Refer to Section 3.7.1, “Current Injection,for more details  
4. Parameter only applies in STOP or Pseudo STOP mode.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
7
Preliminary  
Electrical Characteristics  
Table 9. 3.3 V I/O Characteristics  
Conditions shown in Table 7, with VDDX = 3.3 V –5%/+10% and a temperature maximum of +140°C unless otherwise noted.  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
E1a P Input High Voltage  
VIH  
0.65 ×  
V
V
DD5 1  
E1b T Input High Voltage  
E2a P Input Low Voltage  
E2b T Input Low Voltage  
E3 C Input Hysteresis  
VIH  
VIL  
VIL  
VDD5 +  
0.3 1  
V
V
V
0.35 ×  
VDD5 1  
VSS5 –  
0.3 1  
VHYS  
Iin  
250  
mV  
E4  
P
Input Leakage Current (pins in high impedance input mode)  
in = VDD5 or VSS5 1  
–1 2  
1 2  
μA  
V
E5 P Output High Voltage (pins in output mode)  
Partial Drive I = –0.75mA  
VOH  
VDD5 –  
0.4  
V
V
OH  
= –4.5mA  
Full Drive I  
OH  
E6 P Output Low Voltage (pins in output mode)  
Partial Drive I = +0.9mA  
VOL  
0.4  
OL  
= +5.5mA  
Full Drive I  
OL  
E7 P Internal Pull Up Device Current,  
tested at VIL Max.  
IPUL  
IPUH  
IPDH  
IPDL  
Cin  
–6  
6
–60  
μA  
μA  
μA  
μA  
E8 P Internal Pull Up Device Current,  
tested at VIH Min.  
E9 P Internal Pull Down Device Current,  
tested at VIH Min.  
60  
E10 P Internal Pull Down Device Current,  
tested at VIL Max.  
E11 D Input Capacitance  
6
pF  
E12 T Injection current 3  
Single Pin limit  
mA  
IICS  
IICP  
–2.5  
–25  
2.5  
25  
Total Device Limit. Sum of all injected currents  
E13 P Port Interrupt Input Pulse filtered 4  
E14 P Port Interrupt Input Pulse passed 4  
NOTES:  
tPULSE  
tPULSE  
3
μs  
μs  
10  
1. Refer to Section 3.7, “Power Supply,” for definition of VSS5 and VDD5.  
2. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half  
for each 8°C to 12°C in the temperature range from 50°C to 125°C.  
3. Refer to Section 3.7.1, “Current Injection,for more details  
4. Parameter only applies in STOP or Pseudo STOP mode.  
3.6 Power Dissipation and Thermal Characteristics  
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum  
operating junction temperature is not exceeded.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
8
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
Note that the JEDEC specification reserves the symbol R  
ambient thermal resistance on a 1s test board in natural convection environment. R  
or θ (Theta-JA) strictly for junction-to-  
JA  
θJA  
or θ  
θJMA  
JMA  
(Theta-JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for  
junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated that the  
generic name, θ , will continue to be commonly used.  
JA  
The average chip-junction temperature (T ) in °C is obtained from the formula:  
J
TJ = TA + PD ⋅ ΘJA  
Eqn. 1  
where  
T = Junction Temperature ( C)  
°
°
J
TA = Ambient Temperature ( C)  
PD = Total Chip Power Dissipation (W)  
ΘJA = Package Thermal Resistance ( C/W)  
°
The total power dissipation is calculated as:  
PD = PINT + PIO  
Eqn. 2  
where  
PINT = Chip Internal Power Dissipation (W)  
PIO = Input / Output Power Dissipation (W)  
Two cases must be considered for P  
:
INT  
1. Internal voltage regulator enabled:  
PINT = (IDDR × VDDR) + (IDDA × VDDA)  
Eqn. 3  
Eqn. 4  
Eqn. 5  
Eqn. 6  
Eqn. 7  
2. Internal voltage regulator disabled (V R = V R = system ground):  
DD  
SS  
PINT = (IDD2.5 × VDD2.5) + (IDDPLL × VDDPLL) + (IDDA × VDDA)  
P
is the sum of all output currents on input/output pins associated with V X:  
IO  
DD  
2
PIO  
=
RDSON ⋅ (IIO )  
i
i
where  
or  
VOL  
RDSON = --------- (for outputs driven low)  
IOL  
VDDX VOH  
RDSON = ------------------------------ (for outputs driven high)  
IOL  
Table 10. Thermal Resistance 1/8 Simulation Model Packaging Parameters  
Component  
Mold Compound  
Leadframe (Copper)  
Die Attach  
Conductivity  
0.9 W/m K  
263 W/m K  
1.7 W/m K  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
9
Electrical Characteristics  
3.6.1 Thermal Resistance Simulation Details  
Table 11. Thermal Resistance for Case Outline 983–02, 100 Lead 14x14 mm LQFP, 0.5 mm Pitch  
Rating  
Environment  
Symbol  
Value  
Unit  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
44  
34  
37  
29  
18  
7
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
θJMA  
R
R
R
θJMA  
θJMA  
θJB  
θJC  
Junction to Case  
Junction to Package Top  
R
5
6
Natural Convection  
Ψ
2
JT  
Table 12. Thermal Resistance for Case Outline 987–01, 112 Lead 20x20 mm LQFP, 0.65 mm Pitch  
Rating  
Environment  
Symbol  
Value  
Unit  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
42  
34  
35  
30  
22  
7
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
θJMA  
R
θJMA  
R
θJMA  
R
θJB  
θJC  
Junction to Case  
Junction to Package Top  
R
5
6
Natural Convection  
Ψ
2
JT  
Table 13. Thermal Resistance for Case Outline 918–03, 144 Lead 20x20 mm LQFP, 0.5 mm Pitch  
Rating  
Environment  
Symbol  
Value  
Unit  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
42  
34  
35  
30  
22  
7
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
θJMA  
R
θJMA  
R
θJMA  
R
θJB  
θJC  
Junction to Case  
Junction to Package Top  
R
5
6
Natural Convection  
Ψ
2
JT  
Table 14. Thermal Resistance for Case Outline 1159A-01, 208 Lead 17x17 mm MAP BGA, 1.0 mm Pitch  
Rating  
Environment  
Symbol  
Value  
Unit  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
46  
29  
38  
26  
19  
7
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
θJMA  
R
θJMA  
R
θJMA  
R
θJB  
θJC  
Junction to Case  
Junction to Package Top  
R
5
6
Natural Convection  
Ψ
2
JT  
Comments:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface  
of the board at the center lead. For fused lead packages, the adjacent lead is used.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC  
JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
10  
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
3.7 Power Supply  
The MAC71xx Family utilizes several pins to supply power to the oscillator, PLL, digital core, I/O ports  
and ATD. In the context of this section, V 5 is used for V A, V R or V X; V 5 is used for V A,  
DD  
DD  
DD  
DD  
SS  
SS  
V R or V X unless otherwise noted. I 5 denotes the sum of the currents flowing into the V A,  
SS  
SS  
DD  
DD  
V
X, and V R. V is used for V 2.5, and V PLL, V is used for V 2.5 and V PLL. I is  
DD  
DD DD DD DD SS SS SS DD  
used for the sum of the currents flowing into V 2.5 and V PLL.  
DD  
DD  
3.7.1 Current Injection  
The power supply must maintain regulation within the V 5 or V 2.5 operating range during  
DD  
DD  
instantaneous and operating maximum current conditions. If positive injection current (V > V 5) is  
in  
DD  
greater than I 5, the injection current may flow out of V 5 and could result in the external power supply  
DD  
DD  
going out of regulation. It is important to ensure that the external V 5 load will shunt current greater than  
DD  
the maximum injection current. The greatest risk will be when the MCU is consuming very little power  
(for example, if no system clock is present, or if the clock rate is very low).  
3.7.2 Power Supply Pins  
The V R – V R pair supplies the internal voltage regulator. The V A – V A pair supplies the A/D  
DD  
SS  
DD  
SS  
converter and the reference circuit of the internal voltage regulator. The V X – V X pair supplies the  
DD  
SS  
I/O pins. V PLL – V PLL pair supplies the oscillator and PLL.  
DD  
SS  
All V X pins are internally connected by metal. All V X pins are internally connected by metal. All  
DD  
SS  
V 2.5 pins are internally connected by metal. V A, V X and V R as well as V A, V X and V R  
SS  
DD  
DD  
DD  
SS  
SS  
SS  
are connected by anti-parallel diodes for ESD protection.  
3.7.3 Supply Current Characteristics  
Table 15 and Table 16 list supply current characteristics for MAC71x1 and MAC71x6 devices at 40 MHz  
and 50 MHz operation, respectively. Characteristics for MAC71x2 devices are to be determined (TBD).  
All current measurements are without output loads. Unless otherwise noted the currents are measured in  
single chip mode, internal voltage regulator enabled at the specified system frequency, using a 4 MHz  
oscillator in low power mode. Production testing is performed using a square wave signal at the EXTAL  
input. In expanded modes, the currents are highly dependent on the load and duty cycle on the address,  
data and control signals, thus no general numbers can be given. A good estimate is to take the single chip  
currents and add the currents due to the external loads.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
11  
Preliminary  
Electrical Characteristics  
Table 15. MAC71x1/6 Device Supply Current Characteristics – 40 MHz  
1
Conditions shown in Table 7, with fSYS = 40 MHz.  
Num Rating  
C
Symbol  
DDRreg  
Typ  
Max  
Unit  
F1 P Run Supply Current, Single Chip  
F2 C Doze Supply Current  
I
100  
130  
mA  
IDDDreg  
Run Doze Pseudo Stop  
F3 P Pseudo Stop Supply Current –40° C 2  
I
DDPSreg  
400 / 500 3  
400 / 500 3  
800 / 1000 3  
600 / 700 3  
600 / 700 3  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
(OSC on)  
P
25° C 2  
85° C 2  
C
2000 / 2500 3  
C
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
1200 / 1500 3 3500 / 4000 3  
1500 / 2000 3 5500 / 6000 3  
P
F4 P Stop Supply Current  
IDDSreg  
30  
30  
150  
150  
(TJ = TA assumed)  
P
C
C
P
85° C 2  
330  
470  
660  
2500  
3500  
5000  
105° C 2  
125° C 2  
NOTES:  
1. MAC71x2 characteristics are to be determined (TBD).  
2. 85°C, 105°C, and 125°C refer to the "C", "V", and "M" Temperature Options, respectively.  
3. RTI disabled / enabled.  
1
Table 16. MAC71x1/6 Device Supply Current Characteristics – 50 MHz  
Conditions shown in Table 7, with fSYS = 50 MHz.  
Num  
C
Rating  
Symbol  
Typ  
Max  
Unit  
G1 P Run Supply Current, Single Chip  
G2 C Doze Supply Current  
IDDRreg  
120  
150  
mA  
I
DDDreg  
Run Doze Pseudo Stop  
G3 P Pseudo Stop Supply Current –40° C 2  
I
DDPSreg  
400 / 500 3  
400 / 500 3  
800 / 1000 3  
600 / 700 3  
600 / 700 3  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
(OSC on)  
P
25° C 2  
85° C 2  
C
2000 / 2500 3  
C
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
1200 / 1500 3 3500 / 4000 3  
1500 / 2000 3 5500 / 6000 3  
P
G4 P Stop Supply Current  
IDDSreg  
30  
30  
150  
150  
(TJ = TA assumed)  
P
C
C
P
85° C 2  
330  
470  
660  
2500  
3500  
5000  
105° C 2  
125° C 2  
NOTES:  
1. MAC71x2 characteristics are to be determined (TBD).  
2. 85°C, 105°C, and 125°C refer to the "C", "V", and "M" Temperature Options, respectively.  
3. RTI disabled / enabled.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
12  
Freescale Semiconductor  
ElectricalCharacteristics  
3.7.4 Voltage Regulator Characteristics  
Table 17. VREG Operating Conditions  
Num  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
H1  
H2  
P Input Voltages  
VVDDRA  
3.15  
5.5  
V
P Output Voltage, Digital Logic  
Full Performance Mode  
Reduced Power Mode  
Shutdown Mode  
VDD2.5  
2.45  
1.60  
2.5  
2.5  
2.75  
2.75  
V
V
V
1
1
1
H3  
H4  
P Output Voltage, PLL  
Full Performance Mode  
Reduced Power Mode 2  
Reduced Power Mode 3  
Shutdown Mode  
VDDPLL  
2.35  
2.00  
1.60  
2.5  
2.5  
2.5  
2.75  
2.75  
2.75  
V
V
V
V
1
1
1
P Low Voltage Interrupt 4  
Assert Level  
VLVIA  
VLVID  
4.10  
4.25  
4.37  
4.52  
4.66  
4.77  
V
V
Negate Level  
H5  
H6  
P Low Voltage Reset 5  
Assert Level  
VLVRA  
2.25  
2.35  
V
P Power On Reset 6  
Assert Level  
VPORA  
VPORD  
0.97  
2.05  
V
V
Negate Level  
NOTES:  
1. High impedance output.  
2. Current IDDPLL = 1 mA (Low Power Oscillator).  
3. Current IDDPLL = 3 mA (Standard Oscillator).  
4. Monitors VDDA, active only in full performance mode. This interrupt indicates that I/O and ATD performance may be  
degraded due to low supply voltage.  
5. Monitors VDD2.5, active only in full performance mode. Only POR is active in reduced performance mode.  
6. Monitors VDD2.5, active in all modes.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
13  
Preliminary  
Electrical Characteristics  
3.7.5 Chip Power Up and Voltage Drops  
The VREG sub-modules LVI (low voltage interrupt), POR (power on reset) and LVR (low voltage reset)  
handle chip power-up or drops of the supply voltage. Refer to Figure 2.  
Voltage  
VDDA  
VLVID  
VLVIA  
VDD2.5  
VLVRD  
VLVRA  
VPORD  
Time  
LVI Disabled  
due to LVR  
LVI Enabled  
LVI  
POR  
LVR  
Note: Not to scale.  
Figure 2. VREG Chip Power-up and Voltage Monitoring  
3.7.6 Output Loads  
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external  
DC load is allowed. Capacitive loads are specified in Table 18. Capacitors with X7R dielectricum are  
required.  
Table 18. VREG Recommended Load Capacitances  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Load Capacitance per VDD2.5 pin 1  
Load Capacitance on VDDPLL pin  
NOTES:  
CLVDD  
200  
90  
220  
220  
12000  
5000  
nF  
nF  
CLVDDfcPLL  
1. Refer to Table 38 for the specific number of VDD2.5 pins on various packages. Each VDD2.5 pin should have the  
recommended loading as described in Section 3.7.3, “Circuit Board Layout,of the MAC7100 Microcontroller Family  
Reference Manual (MAC7100RM).  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
14  
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
3.8 Clock and Reset Generator  
This section describes the electrical characteristics for the oscillator, phase-locked loop, clock monitor and  
reset generator.  
3.8.1 Oscillator Characteristics  
The MAC7100 Family features an internal low power loop controlled Pierce oscillator and a full swing  
Pierce oscillator/external clock mode. The selection of loop controlled Pierce oscillator or full swing  
Pierce oscillator/external clock depends on the level of the XCLKS signal at the rising edge of the RESET  
signal. Before asserting the oscillator to the internal system clock distribution subsystem, the quality of the  
oscillation is checked for each start from either power on, STOP or oscillator fail. t  
specifies the  
CQOUT  
maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation  
is not detected. The quality check also determines the minimum oscillator start-up time t . The device  
UPOSC  
also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock  
signal is below the Clock Monitor Assert Frequency f  
.
CMFA  
Table 19. Oscillator Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
1
J1a C Crystal oscillator range (loop controlled Pierce)  
J1b C Crystal oscillator range (full swing Pierce) 2 3  
J2 P Startup Current  
fOSC  
4.0  
0.5  
100  
3 4  
100  
7
16  
40  
MHz  
MHz  
μA  
1
fOSC  
IOSC  
tUPOSC  
tCQOUT  
fCMFA  
fEXT  
J3 C Oscillator start-up time (loop controlled Pierce)  
J4 D Clock Quality check time-out  
50 5  
2.5  
200  
50  
ms  
s
0.45  
50  
J5 P Clock Monitor Failure Assert Frequency  
J6 P External square wave input frequency 3  
J7 D External square wave pulse width low  
J8 D External square wave pulse width high  
J9 D External square wave rise time  
J10 D External square wave fall time  
J11 D Input Capacitance (EXTAL, XTAL pins)  
NOTES:  
KHz  
MHz  
ns  
0.5  
9.5  
9.5  
tEXTL  
tEXTH  
tEXTR  
tEXTF  
CIN  
ns  
1
ns  
1
ns  
pF  
1. If CLKSEL[PLLSEL] is clear then the system clock (fSYS) is equal to fOSC, otherwise it is equal to fVCO (table  
Table 20, K3). Throughout this document, tSYS is used to specify a unit of time equal to 1 ÷ fSYS  
.
2. Depending on the crystal; a damping series resistor might be necessary  
3. XCLKS asserted (low) during reset  
4. fOSC = 4 MHz, C = 22 pF (refer to the MAC7100 Microcontroller Family Reference Manual (MAC7100RM) for circuit  
board layout recommendations, including oscillator capacitor placement and values).  
5. Maximum value is for extreme cases using high Q, low frequency crystals  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
15  
Preliminary  
Electrical Characteristics  
3.8.2 PLL Filter Characteristics  
The oscillator provides the reference clock for the PLL as shown in Figure 3. The voltage controlled  
oscillator (VCO) of the PLL is also the system clock source in self clock mode. In order to operate reliably,  
care must be taken to select proper values for external loop filter components.  
VDDPLL  
CS  
CP  
Phase  
Detector  
VCO  
KV  
R
fREF  
1
fOSC  
fVCO  
Δ
K
φ
REFDV+1  
fCMP  
Loop Divider  
1
1
2
SYNR+1  
Figure 3. Basic PLL Functional Diagram  
The procedure described below can be used to calculate the resistance and capacitance values using typical  
values for K , f and i from Table 20. First, the VCO Gain at the desired VCO output frequency is  
1
1
ch  
approximated by:  
(f1 fVCO  
-------------------------  
K1 1V  
)
KV = K1 e  
Eqn. 8  
Eqn. 9  
The phase detector relationship is given by:  
KΦ = – ich KV  
i is the current in tracking mode. The loop bandwidth f should be chosen to fulfill the Gardner’s stability  
ch  
C
criteria by at least a factor of 10, a typical value for the stability factor is 50. ζ = 0.9 ensures a good transient  
response.  
2 ⋅ ζ ⋅ fREF  
fC < ---------------------------------------- ------ fC < ------------- ; = 0.9)  
10  
fREF  
1
Eqn. 10  
4 10  
π ⋅ (ζ + 1 + ζ2)  
And finally the frequency relationship is defined as:  
fVCO  
n = ---------- = 2 ⋅ (SYNR + 1)  
Eqn. 11  
Eqn. 12  
fREF  
With the above inputs the resistance can be calculated as:  
2 ⋅ π ⋅ n fC  
R = ---------------------------  
KΦ  
The capacitance C can now be calculated as:  
S
2 ⋅ ζ2  
π ⋅ fC R  
0.516  
fC R  
--------------------  
CS  
=
------------- ; = 0.9)  
Eqn. 13  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
16  
Freescale Semiconductor  
ElectricalCharacteristics  
The capacitance C should be chosen in the range of:  
P
CS ÷ 20 CP CS ÷ 10  
Eqn. 14  
The stabilization delays shown in Table 20 are dependant on PLL operational settings and external  
component selection (for example, the crystal and XFC filter).  
3.8.2.1 Jitter Information  
With each transition of the clock f  
, the deviation from the reference clock f  
is measured and input  
CMP  
REF  
voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes  
in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the  
control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as  
illustrated in Figure 4. It is important to note that the pre-scaler used by timers and serial modules will  
eliminate the effect of PLL jitter to a large extent.  
0
1
2
3
N–1  
N
tMIN1  
tNOM  
tMAX1  
tMIN(N)  
tMAX(N)  
Figure 4. Jitter Definitions  
The relative deviation of t  
is at its maximum for one clock period, and decreases towards zero for  
NOM  
larger number of clock periods (N). Thus, jitter is defined as:  
tMAX(N)  
-------------------  
N tNOM  
tMIN(N)  
N tNOM  
-------------------  
J(N) = max 1 –  
, 1 –  
Eqn. 15  
For N < 100, the following equation is a good fit for the maximum jitter:  
j1  
J(N) = ------- + j2  
N
Eqn. 16  
J(N)  
0 1  
5
10  
15  
20  
N
Figure 5. Maximum Bus Clock Jitter Approximation  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
17  
Electrical Characteristics  
3.8.3 PLL Characteristics  
Table 20. PLL Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
K1  
PLL reference frequency, crystal oscillator range  
fREF  
fSCM  
0.5  
2
16  
5.5  
50  
4
MHz  
MHz  
MHz  
K2 P Self Clock Mode frequency  
K3 D VCO locking range  
1
fVCO  
8
2
K4  
D
Lock Detector transition from Acquisition to Tracking mode  
trk  
Lock  
unl  
|
3
%
2
K5 D Lock Detection  
|
0
1.5  
2.5  
8
%
2
K6 D Un-Lock Detection  
|
0.5  
6
%
2
K7  
D
Lock Detector transition from Tracking to Acquisition mode unt  
|
%
K8 C PLLON Total Stabilization delay (Auto Mode) 3  
tstab  
tacq  
tal  
0.5 4  
0.3 4  
0.2 4  
38.5  
3.5  
–195  
126  
3 5  
1 5  
2 5  
ms  
ms  
3
K9 D PLLON Acquisition mode stabilization delay  
3
K10 D PLLON Tracking mode stabilization delay  
ms  
K11 D Charge pump current acquisition mode  
K12 D Charge pump current tracking mode  
K13 D Jitter fit VCO loop gain parameter  
K14 D Jitter fit VCO loop frequency parameter  
K15 C Jitter fit parameter 1  
| ich  
| ich  
K1  
f1  
|
|
μA  
μA  
MHz/V  
MHz  
4
j1  
1.3  
0.12  
%
4
K16 C Jitter fit parameter 2  
j2  
%
NOTES:  
1. If CLKSEL[PLLSEL] is set then the system clock (fSYS) is equal to fVCO, otherwise it is equal to fOSC (table Table 19,  
J1a or J1b). Throughout this document, tSYS is used to specify a unit of time equal to 1 ÷ fSYS  
.
2. Percentage deviation from target frequency  
3. PLL stabilization delay is highly dependent on operational requirement and external component values (for  
example, crystal and XFC filter component values). Notes 4 and 5 show component values for a typical  
configurations. Appropriate XFC filter values should be chosen based on operational requirement of system.  
4. fOSC = 4 MHz, fVCO = 40 MHz (REFDV = 0x00, SYNR = 0x04), CS = 2.2 nF, CP = 220 pF, RS = 5.6 KΩ.  
5. fOSC = 4 MHz, fVCO = 16 MHz (REFDV = 0x00, SYNR = 0x01), CS = 4.7 nF, CP = 470 pF, RS = 2.7 KΩ.  
3.8.4 Crystal Monitor Time-out  
The time-out Table 21 shows the delay for the crystal monitor to trigger when the clock stops, either at the high  
or at the low level. The corresponding clock period with an ideal 50% duty cycle is twice this time-out value.  
Table 21. Crystal Monitor Time-Outs  
Min  
Typ  
Max  
Unit  
6
10  
18.5  
μs  
3.8.5 Clock Quality Checker  
The timing for the clock quality check is derived from the oscillator and the VCO frequency range in  
Table 20. These numbers define the upper time limit for the individual check windows to complete.  
Table 22. CRG Maximum Clock Quality Check Timings  
Clock Check Windows  
Check Window  
Value  
9.1 to 20.0  
0.46 to 1.0  
Unit  
ms  
s
Timeout Window  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
18  
Freescale Semiconductor  
ElectricalCharacteristics  
3.8.6 Startup  
Table 23 summarizes several startup characteristics. Refer to Section 4.3.6.10, “CRG Operating Mode  
Details,” in the MAC7100 Microcontroller Family Reference Manual (MAC7100RM) for details.  
Table 23. CRG Startup Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
L1 D Reset input pulse width  
PWRSTL  
nRST  
2
196  
tOSC  
tOSC  
ns  
L2 D Startup from Reset  
192  
20  
L3 D XIRQ, IRQ pulse width, edge-sensitive mode  
PWIRQ  
3.8.6.1 Power On and Low Voltage Reset (POR and LVR)  
The V  
and V  
levels are derived from V 2.5. The V  
level is derived from V 2.5. They  
PORR  
PORA  
DD  
LVRA DD  
are also valid if the device is powered externally. After releasing a POR or LVR reset, the oscillator and  
clock quality checks start. After t (Table 19, J4) if no valid oscillation is detected, the MCU will  
CQOUT  
start using the internal self-generated clock. The minimum startup time is given by t  
(Table 19, J3).  
uposc  
3.8.6.2 SRAM Data Retention  
SRAM content integrity is guaranteed if the CRGFLG[PORF] bit is not set following a reset operation.  
3.8.6.3 External Reset  
When external reset is asserted for a time greater than PW  
, the CRG generates an internal reset and  
RSTL  
the CPU fetches the reset vector without a clock quality check, if there was stable oscillation before reset.  
3.8.6.4 Stop Recovery  
The MCU can return from stop to run mode in response to an external interrupt or an API. Two delays  
occur before the MCU resumes execution. First, the voltage regulator must exit reduced power mode and  
return to full performance mode (this assumes that the internal regulator is used rather than driving V 2.5  
DD  
and V PLL with an external regulator). Second, a clock quality check is performed in the same manner  
DD  
as for a power-on reset before releasing the clocks to the system.  
3.8.6.5 Pseudo Stop Recovery  
Recovery from pseudo stop mode is similar to stop mode in that the VREG must return to FPM, but since  
the oscillator is not stopped there is no delay for clock stabilization. The MCU is returned to run mode by  
internal or external interrupts.  
3.8.6.6 Doze Recovery  
Recovery from doze mode avoids both the VREG and oscillator recovery periods. The MCU is returned  
to run mode by internal or external interrupts.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
19  
Preliminary  
Electrical Characteristics  
3.9 External Bus Timing  
Table 24 lists processor bus input timings, which are shown in Figure 6, Figure 7 and Figure 8.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and output delay  
with respect to the rising edge of a reference clock. The reference clock is the  
CLKOUT output. All other timing relationships can be derived from these values.  
1
Table 24. External Bus Input Timing Specifications  
Num  
C
Rating  
Symbol Min Max Unit  
M1  
P CLKOUT period 2  
tCYC  
20  
ns  
Control Inputs  
M2a P Control input valid to CLKOUT high 3  
M3a P CLKOUT high to control inputs invalid 3  
tCVCH  
tCHCII  
13  
0
ns  
ns  
Data Inputs  
M4  
M5  
P Data input (DATA[15:0]) valid to CLKOUT high  
P CLKOUT high to data input (DATA[15:0]) invalid  
tDIVCH  
tCHDII  
9
0
ns  
ns  
NOTES:  
1. Assumes CLKOUT is configured for full drive strength (via the PIM CONFIG2_D[RDS] bit).  
2. CLKOUT is equal to the system clock, fSYS. If CLKSEL[PLLSEL] is set then fSYS is equal to fVCO (table Table 20,  
K3); if it is clear then fSYS is equal to fOSC (table Table 19, J1a or J1b). Throughout this document, tCYC is used to  
specify a unit of time equal to 1 ÷ CLKOUT (which is equal to tfsys).  
3. The TA pin is the only control input on MAC7100 family devices.  
CLKOUT (50 MHz)  
Input Setup & Hold  
Input Rise Time  
Input Fall Time  
CLKOUT  
1.5 V  
tSETUP  
Invalid  
tHOLD  
1.5 V Valid 1.5 V  
Invalid  
tRISE = 1.5 ns  
VH = VIH  
VL = VIL  
tFALL = 1.5 ns  
VH = VIH  
VL = VIL  
M4  
M5  
Inputs  
Figure 6. General Input Timing Requirements  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
20  
Freescale Semiconductor  
ElectricalCharacteristics  
3.9.1 Read and Write Bus Cycles  
Table 25 lists processor bus output timings. Read/write bus timings listed in Table 25 are shown in  
Figure 7 and Figure 8.  
1
Table 25. External Bus Output Timing Specifications  
Num  
C
Rating  
Symbol  
Min  
Max  
Unit  
Control Outputs  
M6a  
M6b  
M6c  
M6d  
M7a  
M7b  
M7c  
P CLKOUT high 2 to chip selects (CS[2:0]) valid  
P CLKOUT high 2 to byte selects (BS[1:0]) valid  
P CLKOUT high 2 to output select (OE) valid  
P CLKOUT high 2 to address strobe (AS) valid  
P CLKOUT high 2 to control output (BS[1:0], OE) invalid  
P CLKOUT high 2 to chip selects (CS[2:0]) invalid  
P CLKOUT high 2 to address strobe (AS) invalid  
tCHCV  
tCHBV  
tCHOV  
tCHASV  
0.5tCYC + 10  
0.5tCYC + 10  
0.5tCYC + 10  
0.5tCYC + 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCOI 0.5tCYC + 2  
tCHCI 0.5tCYC + 2  
tCHASI 0.5tCYC + 2  
Address and Attribute Outputs  
M8  
M9  
P CLKOUT high to address (ADDR[21:0]) and control  
(R/W) valid  
tCHAV  
tCHAI  
10  
ns  
ns  
P CLKOUT high to address (ADDR[21:0]) and control  
(R/W) invalid  
2
Data Outputs  
M10  
M11  
P CLKOUT high to data output (DATA[15:0]) valid  
P CLKOUT high to data output (DATA[15:0]) invalid  
tCHDOV  
tCHDOI  
2
13  
9
ns  
ns  
ns  
M12  
D
CLKOUT high to data output (DATA[15:0]) high impedance tCHDOZ  
NOTES:  
1. Assumes CLKOUT, CSn, BSn, OE, AS, ADDR[21:0] and DATA[15:0] are configured for full drive strength (via the PIM).  
2. The CSn, BSn, OE and AS signals are synchronous to the falling edge of CLKOUT. Therefore, changes on these  
signals are triggered by the falling edge of CLKOUT, even though they are specified in relation to the rising edge.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
21  
Preliminary  
Electrical Characteristics  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
S2  
S3  
S4  
S5  
CLKOUT  
M6d  
M6a  
M8  
M6d  
M7c  
M7c  
AS(1)  
M6a  
M8  
M7b  
M7a  
M7a  
M7b  
CSn  
M9  
ADDR[21:0]  
M1  
M6c  
OE  
R/W  
M8  
M9  
M6b  
M6b  
M7a  
BS[1:0]  
M10  
M4  
M11  
M12  
DATA[15:0]  
M5  
TA(1)  
1. The TA / AS signals are multiplexed on a single pin, so only one function may be used during bus transactions.  
Figure 7. Read/Write Bus Cycles, Internal Termination  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
22  
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
CLKOUT  
CSn  
M6a  
M8  
M7b  
M7a  
M7a  
M9  
ADDR[21:0]  
OE  
M6c  
R/W  
M6b  
BS[1:0]  
DATA[15:0]  
M4  
M5  
M2a  
M3a  
TA(1)  
1. The TA / AS signals are multiplexed on a single pin, so AS is not available when external cycle termination is used.  
Figure 8. Read Bus Cycle, External Termination  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
23  
Preliminary  
Electrical Characteristics  
3.10 Analog-to-Digital Converter  
Table 26 and Table 27 show conditions under which the ATD operates. The following constraints exist to  
obtain full-scale, full range results: V A  
V
V
V
V
A. This constraint exists because the  
SS  
RL  
IN  
RH  
DD  
sample buffer amplifier cannot drive beyond the ATD power supply levels. If the input level goes outside of  
this range it will effectively be clipped.  
Table 26. ATD Operating Characteristics in 5.0 V Range  
Conditions shown in Table 7 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
N1 D Reference Potential  
Low  
High  
VRL  
VRH  
VSS  
VDDA ÷ 2  
A
V
DDA ÷ 2  
VDDA  
V
V
N2 C Differential Reference Voltage 1  
N3 D ATD Clock Frequency  
VRH – VRL  
fATDCLK  
4.50  
0.5  
5.00  
5.50  
2.0  
V
MHz  
N4 D ATD 10-bit Conversion PeriodfATDCLK Cycles 2  
NCONV10  
14  
7
28  
14  
Cycles  
μs  
@ 2.0MHz fATDCLK TCONV10  
N5 D ATD 8-bit Conversion PeriodfATDCLK Cycles 2  
NCONV8  
12  
6
26  
13  
Cycles  
μs  
@ 2.0MHz fATDCLK TCONV8  
N6 D Stop Recovery Time (VDDA = 5.0 V)  
TREC  
IREF  
IREF  
20  
μs  
N7 P Reference Supply current 1 ATD module on  
N8 P Reference Supply current 2 ATD modules on  
NOTES:  
0.200  
0.400  
0.255  
0.510  
mA  
mA  
1. Full accuracy is not guaranteed when differential voltage is less than 4.50 V  
2. Minimum time assumes a sample period of 2 ATD clocks; maximum time assumes a sample period of 16 ATD clocks.  
Table 27. ATD Operating Characteristics in 3.3 V Range  
Conditions shown in Table 7, with VDDX = 3.3 V –5/+10% and a temperature maximum of +140°C unless otherwise  
noted.  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
P1 D Reference Potential  
Low  
High  
VRL  
VRH  
VSS  
VDDA ÷ 2  
A
V
DDA ÷ 2  
VDDA  
V
V
P2 C Differential Reference Voltage 1  
P3 D ATD Clock Frequency  
V
RH – VRL  
3.15  
0.5  
3.3  
3.6  
2.0  
V
fATDCLK  
MHz  
P4 D ATD 10-bit Conversion PeriodfATDCLK Cycles 2  
NCONV10  
14  
7
28  
14  
Cycles  
μs  
@ 2.0MHz fATDCLK TCONV10  
P5 D ATD 8-bit Conversion PeriodfATDCLK Cycles 2  
NCONV8  
12  
6
26  
13  
Cycles  
μs  
@ 2.0MHz fATDCLK TCONV8  
P6 D Stop Recovery Time (VDDA = 3.3 V)  
TREC  
IREF  
IREF  
20  
μs  
P7 P Reference Supply current 1 ATD module on  
P8 P Reference Supply current 2 ATD modules on  
NOTES:  
0.130  
0.260  
0.170  
0.340  
mA  
mA  
1. Full accuracy is not guaranteed when differential voltage is less than 3.15 V  
2. Minimum time assumes a sample period of 2 ATD clocks; maximum time assumes a sample period of 16 ATD clocks.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
24  
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
3.10.1 Factors Influencing Accuracy  
Three factors—source resistance, source capacitance and current injection—have an influence on the  
accuracy of the ATD.  
3.10.1.1 Source Resistance  
Due to the input pin leakage current as specified in Table 8 in conjunction with the source resistance there  
will be a voltage drop from the signal source to the ATD input. The maximum specified source resistance  
R , results in an error of less than 1/2 LSB (2.5 mV) at the maximum leakage current. If the device or  
S
operating conditions are less than the worst case, or leakage-induced errors are acceptable, larger values  
of source resistance are allowed.  
3.10.1.2 Source Capacitance  
When sampling, an additional internal capacitor is switched to the input. This can cause a voltage drop due  
to charge sharing with the external capacitance and the pin capacitance. For a maximum sampling error of  
the input voltage 1 LSB, then the external filter capacitor must be calculated as,  
C
1024  
×
(C  
C
).  
f
INS  
INN  
3.10.1.3 Current Injection  
There are two cases to consider:  
1. A current is injected into the channel being converted. The channel being stressed has conversion  
values of 0x3FF (0xFF in 8-bit mode) for analog inputs greater than V and 0x000 for values less  
RH  
than V unless the current is higher than specified as disruptive condition.  
RL  
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this  
current is picked up by the channel (coupling ratio K), This additional current impacts the  
accuracy of the conversion depending on the source resistance. The additional input voltage error  
on the converted channel can be calculated as V  
the currents injected into the two pins adjacent to the converted channel.  
= K × R × I , with I being the sum of  
ERR  
S INJ INJ  
Table 28. ATD Electrical Characteristics  
Conditions are shown in Table 7 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Q1 C Max input Source Resistance  
RS  
1
kΩ  
Q2 C Total Input Capacitance  
Non Sampling  
CINN  
CINS  
10  
22  
pF  
pF  
Sampling  
Q3 C Disruptive Analog Input Current  
INA  
Kp  
Kn  
–2.5  
2.5  
mA  
Q4 C Coupling Ratio positive current injection  
Q5 C Coupling Ratio negative current injection  
TBD  
TBD  
A / A  
A / A  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
25  
Electrical Characteristics  
3.10.2 ATD Accuracy  
Table 29 and Table 30 specify the ATD conversion performance excluding any errors due to current  
injection, input capacitance and source resistance.  
Table 29. ATD Conversion Performance in 5.0 V Range  
Conditions shown in Table 7 except as noted here:  
fATDCLK = 2.0 MHz, 4.5 V VDDA 5.5 V  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
R1 P 10-bit Resolution  
LSB  
DNL  
INL  
AE  
–1  
5 1  
1
mV  
R2 P 10-bit Differential Nonlinearity  
R3 P 10-bit Integral Nonlinearity  
R4 P 10-bit Absolute Error 2  
R5 P 8-bit Resolution  
Counts  
Counts  
Counts  
mV  
–2.5  
–3  
±1.5  
±2.0  
20 1  
2.5  
3
LSB  
DNL  
INL  
AE  
R6 P 8-bit Differential Nonlinearity  
R7 P 8-bit Integral Nonlinearity  
R8 P 8-bit Absolute Error 2  
NOTES:  
–0.5  
–1.0  
–1.5  
0.5  
1.0  
1.5  
Counts  
Counts  
Counts  
±0.5  
±1.0  
1. Assumes VREF = VRH – VRL = 5.12 V, other VREF conditions result in different LSB resolutions.  
2. These values include the quantization error which is inherently ½ count for any A/D converter.  
Table 30. ATD Conversion Performance in 3.3 V Range  
Conditions shown in Table 7 except as noted here:  
fATDCLK = 2.0 MHz, 3.15 V VDDA 3.6 V  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
S1 P 10-bit Resolution  
LSB  
DNL  
INL  
AE  
3.25 1  
1.5  
3.5  
5
mV  
S2 P 10-bit Differential Nonlinearity  
S3 P 10-bit Integral Nonlinearity  
S4 P 10-bit Absolute Error 2  
S5 P 8-bit Resolution  
–1.5  
–3.5  
–5  
Counts  
Counts  
Counts  
mV  
±1.5  
±2.0  
13 1  
LSB  
DNL  
INL  
AE  
S6 P 8-bit Differential Nonlinearity  
S7 P 8-bit Integral Nonlinearity  
S8 P 8-bit Absolute Error 2  
NOTES:  
–0.5  
–1.5  
–1.5  
0.5  
1.5  
1.5  
Counts  
Counts  
Counts  
±1.0  
±1.0  
1. Assumes VREF = VRH – VRL = 3.33 V, other VREF conditions result in different LSB resolutions.  
2. These values include the quantization error which is inherently ½ count for any A/D converter.  
For the following definitions, see Figure 9.  
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps:  
Vi Vi 1  
DNL(i) = ---------------------- 1  
Eqn. 17  
1 LSB  
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:  
n
Vn V0  
INL(n) =  
DNL(i) = ------------------ n  
Eqn. 18  
1 LSB  
i = 1  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
26  
Freescale Semiconductor  
ElectricalCharacteristics  
10-bit Absolute Error Boundary  
0x3FF  
0x3FE  
0x3FD  
0x3FC  
0x3FB  
0x3FA  
0x3F9  
0x3F8  
0x3F7  
0x3F6  
0x3F5  
0x3F4  
0x3F3  
8-bit Absolute Error Boundary  
DNL  
VI–1  
0xFF  
0xFE  
0xFD  
2
LSB  
VI  
9
8
7
6
5
4
3
2
1
0
Ideal Transfer Curve  
10-bit Transfer Curve  
1
8-bit Transfer Curve  
VIN  
mV  
0
10  
20  
30  
40 50  
5055 5065 5075 5085 5095 5105 5115  
5060 5070 5080 5090 5100 5110 5120  
5
15  
25  
35  
Figure 9. ATD Accuracy Definitions  
NOTE  
Figure 9 shows only definitions, for specification values refer to Table 29  
.
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
27  
Preliminary  
Electrical Characteristics  
3.10.3 ATD Timing Specifications  
Table 31. ATD External Trigger Timing Specifications  
Num C  
Parameter Symbol Min  
Max  
Unit  
1
T1 D ETRIG Period (Level-Sensitive Trigger Mode)  
TPERIOD 1 + NCONVn  
fATDCLK Cycles  
fATDCLK Cycles  
T2 D ETRIG Minimum Pulse Width  
Edge-Sensitive Trigger Mode  
tPW  
1
2
Level-Sensitive Trigger Mode  
T3 D ETRIG Level Recovery 2  
T4 D Conversion Start Delay  
NOTES:  
tLR  
1
2
fATDCLK Cycles  
fATDCLK Cycles  
tDLY  
1. NCONVn denotes 8- or 10-bit conversion time (refer to specifications N4, N5, P4 and P5). In order to achieve the  
minimum period between conversions when using level-sensitive triggering, ETRIG must remain asserted this long.  
2. Time prior to the end of a conversion that ETRIG must be negated in order to prevent the start of another conversion.  
Edge Sensitive  
T2  
Falling Edge Active ETRIG  
T4  
T4  
Conversion Activity ANn_x  
Level Sensitive  
T2  
Low Active ETRIG  
Sequence  
Complete Flag  
ASCIF  
T4  
T4  
Conversion Activity ANn_x  
T1  
Level Sensitive  
Low Active ETRIG  
T3  
Sequence  
Complete Flag  
ASCIF  
T4  
Conversion Activity ANn_x  
Figure 10. ATD External Trigger Timing Diagram  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
28  
Freescale Semiconductor  
ElectricalCharacteristics  
3.11 Serial Peripheral Interface  
3.11.1 Master Mode  
Master mode timing values are shown in Table 32 and illustrated in Figure 11 and Figure 12.  
Table 32. SPI Master Mode Timing Characteristics  
Conditions are shown in Table 7 unless otherwise noted, CLOAD = 200 pF on all outputs  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
1
2
1
U1a P Operating Frequency (baud rate)  
fOP  
½
fIPS  
----------------------------  
7 × 32, 678  
1
U1b P SCK Period (tSCK = 1 ÷ fOP, tIPS = 1 ÷ fIPS  
)
tSCK  
2 2  
7 × 32,768 tIPS  
U2 D Enable Lead Time  
tlead  
tlag  
twsck  
tsu  
thi  
½
tSCK  
tSCK  
ns  
U3 D Enable Lag Time  
½
U4 D Clock (SCK) High or Low Time  
U5 D Data Setup Time (Inputs)  
U6 D Data Hold Time (Inputs)  
U9 D Data Valid (after Enable Edge)  
U10 D Data Hold Time (Outputs)  
U11 D Rise Time Inputs and Outputs  
U12 D Fall Time Inputs and Outputs  
NOTES:  
tIPS 30  
1024 tIPS  
25  
0
ns  
ns  
tv  
0
25  
ns  
tho  
tr  
ns  
25  
ns  
tf  
25  
ns  
1. Refer to MAC7100 Microcontroller Family Reference Manual (MAC7100RM) Chapter 22 for all available baud rates.  
2. On mask set L49P and L47W devices, U1a maximum = ¼ and U1b minimum = 4.  
3.11.2 Slave Mode  
Slave mode timing values are shown in Table 33 and illustrated in Figure 13 and Figure 14.  
Table 33. SPI Slave Mode Timing Characteristics  
Conditions are shown in Table 7 unless otherwise noted, CLOAD = 200 pF on all outputs  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
1
1
V1a P Operating Frequency  
fOP  
½
fIPS  
----------------------------  
7 × 32, 678  
V1b P SCK Period (tSCK = 1 ÷ fOP, tIPS = 1 ÷ fIPS  
)
tSCK  
tlead  
tlag  
twsck  
tsu  
thi  
2 1  
7 × 32,768 tIPS  
V2 D Enable Lead Time  
1
1
tIPS  
tIPS  
ns  
V3 D Enable Lag Time  
1
V4 D Clock (SCK) High or Low Time  
V5 D Data Setup Time (Inputs)  
V6 D Data Hold Time (Inputs)  
V7 D Slave Access Time  
tIPS 30  
25  
25  
0
ns  
ns  
ta  
tIPS  
tIPS  
ns  
V8 D Slave SIN Disable Time  
V9 D Data Valid (after SCK Edge)  
V10 D Data Hold Time (Outputs)  
V11 D Rise Time Inputs and Outputs  
V12 D Fall Time Inputs and Outputs  
NOTES:  
tdis  
tv  
1
25  
25  
25  
tho  
tr  
ns  
ns  
tf  
ns  
1. On mask set L49P and L47W devices, V1a maximum = ¼ and V1b minimum = 4.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
29  
Electrical Characteristics  
PCSx  
(OUTPUT)  
U2  
U11  
U12  
U1b  
U3  
SCK  
(CPOL = 0)  
(OUTPUT)  
U4  
U4  
SCK  
(CPOL = 1)  
(OUTPUT)  
U5  
U6  
SIN  
(INPUT)  
MSB In(2)  
Bit 6 ... 1  
LSB In  
U9  
U9  
U10  
SOUT  
(OUTPUT)  
MSB Out(2)  
Bit 6 ... 1  
LSB Out  
1. If configured as output.  
2. LSBFE = 0. For LSBFE = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 11. SPI Master Timing (CPHA = 0)  
PCSx  
(OUTPUT)  
U2  
U11  
U12  
U1b  
U12  
U3  
SCK  
(CPOL = 0)  
(OUTPUT)  
U4  
U5  
U11  
U4  
U6  
SCK  
(CPOL = 1)  
(OUTPUT)  
SIN  
(INPUT)  
MSB In(2)  
Bit 6 ... 1  
LSB In  
U9  
U10  
SOUT  
(OUTPUT)  
MSB Out(2)  
1. If configured as output.  
Port Data  
Bit 6 ... 1  
Master LSB Out  
Port Data  
2. LSBFE = 0. For LSBFE = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 12. SPI Master Timing (CPHA = 1)  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
30  
Freescale Semiconductor  
ElectricalCharacteristics  
SS  
(INPUT)  
V2  
V11  
V12  
V1b  
V12  
V11  
V3  
SCK  
(CPOL = 0)  
(INPUT)  
V4  
V4  
SCK  
(CPOL = 1)  
(INPUT)  
V7  
V8  
V10  
V9  
V10  
SOUT  
(OUTPUT)  
Slave MSB Out  
Bit 6 ... 1  
Slave LSB Out  
V5  
V6  
SIN  
(INPUT)  
MSB In  
Bit 6 ... 1  
LSB In  
Figure 13. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
V2  
V11  
V12  
V1b  
V12  
V11  
V3  
SCK  
(CPOL = 0)  
(INPUT)  
V4  
V4  
SCK  
(CPOL = 1)  
(INPUT)  
V9  
V8  
V10  
V7  
SOUT  
Slave MSB Out  
Bit 6 ... 1  
Slave LSB Out  
LSB In  
(OUTPUT)  
V5  
V6  
SIN  
(INPUT)  
MSB In  
Bit 6 ... 1  
Figure 14. SPI Slave Timing (CPHA = 1)  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
31  
Electrical Characteristics  
3.12 FlexCAN Interface  
Table 34. FlexCAN Wake-up Pulse Characteristics  
Conditions are shown in Table 7 unless otherwise noted  
Num C Rating  
Symbol  
Min  
Typ  
Max  
Unit  
W1 P FlexCAN Wake-up dominant pulse filtered  
W2 P FlexCAN Wake-up dominant pulse passed  
tWUP  
tWUP  
5
2
μs  
μs  
3.13 Common Flash Module  
NOTE  
Unless otherwise noted the abbreviation NVM (Non-Volatile Memory) is  
used for both program Flash and data Flash.  
The time base for all program and data Flash operations, f  
, is derived from the IPS bus clock, f  
,
IPS  
NVMOP  
using the CFMCLKD register to control the divider ratio. Throughout this section, t refers to 1 ÷ f  
,
IPS  
IPS  
and t  
refers to 1 ÷ f  
. An f  
frequency range limit is imposed for performing program  
NVMOP  
NVMOP  
NVMOP  
or erase operations. The CFM does not monitor the frequency and will not prevent program or erase  
operation at frequencies above or below the following limits:  
150 KHz < fNVMOP 200 KHz  
Eqn. 19  
f
= 200 KHz gives the fastest program and erase performance. Setting CFMCLKD to a value such  
NVMOP  
that f  
< 150 KHz should be avoided, as this can damage the Flash memory due to overstress. Setting  
NVMOP  
CFMCLKD to a value such that f  
the Flash memory array cells.  
> 200 KHz can result in incomplete programming or erasure of  
NVMOP  
3.13.1 Mass Erase Timing  
The time required to erase the entire NVM array (both program and data) is calculated using the formula:  
tmass 20000 tNVMOP  
Eqn. 20  
The setup time can be ignored for this operation.  
3.13.2 Blank Check Timing  
The time it takes to perform a blank check on the program or data Flash is dependant on the location of the  
first non-blank word, starting from relative address zero. One f cycle is required per word to be verified,  
IPS  
and the time required for the operation is calculated using the formula:  
tcheck = (locations + 15) ⋅ tIPS  
Eqn. 21  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
32  
Freescale Semiconductor  
ElectricalCharacteristics  
3.13.3 Page Erase Timing  
The time required to erase a 4 Kbyte program or 1 Kbyte data Flash logical page is calculated using the  
formulas:  
terap = 4096 tNVMOP + 15 tIPS  
terad = 1024 tNVMOP + 15 tIPS  
Eqn. 22  
Eqn. 23  
3.13.4 Page Erase Verify Timing  
The time required to verify that a program Flash page is erased depends on the location of the first  
non-blank word. The time required for the operation is calculated using the formula:  
4 × 1024  
tpevp  
=
---------------------- + 15 × tIPS  
Eqn. 24  
4
The time required to verify that a data Flash page is erased is calculated using the formula:  
1 × 1024  
tpevd  
=
---------------------- + 15 × tIPS  
Eqn. 25  
4
3.13.5 Programming Timing  
Programming time is dependant on the f and f  
frequencies, and is calculated for a single word  
IPS  
NVMOP  
using the formula:  
tswpgm = 9 tNVMOP + 25 tIPS  
Eqn. 26  
Burst programming can be utilized with the program Flash, where up to 32 words in a row can be  
programmed consecutively by keeping the command pipeline filled. The time to program a consecutive  
word is calculated using the formula:  
tbwpgm = 4 tNVMOP + 9 tIPS  
Eqn. 27  
Therefore, the time to program a 32-word row is calculated using the formula:  
tbrpgm = tswpgm + 31 tbwpgm  
Eqn. 28  
Note that burst programming is more than 2 times faster than single word programming.  
1
3.13.6 Data Signature Timing  
The time required to perform a data signature command is dependant on the number of words or  
half-words compressed during the operation, and is calculated using the formula:  
tdsig = (Words or Half-Words + 15) ⋅ tIPS  
Eqn. 29  
1. This feature is not available on mask set L49P and L47W devices.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
33  
Preliminary  
Electrical Characteristics  
3.13.7 CFM Timing Specifications  
Table 35 lists the time required to execute various operations described in the Section 3.13.1 through  
Section 3.13.6. For operating conditions other than those assumed below, Equation 19 through  
Equation 29 must be used to calculate the timing for specific commands under those conditions.  
Table 35. CFM Timing Characteristics  
Conditions are shown in Table 7 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
X1 D System Clock  
fNVMfsys  
fNVMfips  
0.5  
1
50 1  
MHz  
MHz  
kHz  
μs  
X2 D Bus frequency for Programming or Erase Operations  
X3 D Program/Erase Operating Frequency  
fNVMOP  
150  
47.1  
48.1  
20.8  
21.3  
693.1  
706.8  
21.0  
21.3  
5.2  
200  
X4 P Programming Time, 2  
Single Word  
fSYS = 50 MHz tswpgm  
fSYS = 40 MHz  
71.0  
71.0  
30.5  
30.5  
1,016.5  
1,016.5  
26.6  
26.6  
6.7  
X5 D Programming Time, 2  
Consecutive Word Burst  
fSYS = 50 MHz tbwpgm  
fSYS = 40 MHz  
μs  
μs  
X6 D Programming Time, 2  
32-word Row Burst  
fSYS = 50 MHz tbrpgm  
fSYS = 40 MHz  
X7a P Page Erase Time, 2  
Program Flash  
fSYS = 50 MHz terap  
fSYS = 40 MHz  
ms  
ms  
ms  
X7b P Page Erase Time, 2  
Data Flash  
fSYS = 50 MHz terad  
fSYS = 40 MHz  
5.3  
6.7  
X8 P Mass Erase Time 2  
tmass  
100  
16  
130  
X9a D Blank Check Time, 3  
Program Flash per Block  
MAC71x1, MAC71x6 tbcheckp  
MAC71x2  
131,087 tIPS  
65,551  
16  
X9b D Blank Check Time, 3  
Data Flash per Block  
tbcheckd  
16  
8,207  
tIPS  
X9c D Page Erase Verify Time 3  
Program Flash tpevp  
Data Flash tpevd  
16  
16  
17  
17  
17  
17  
1,039  
271  
tIPS  
X10 D Data Signature Time 4  
MAC71x6, Program tdsig  
MAC71x1, Program  
MAC71x2, Program  
MAC71xx, Data  
262,159 tIPS  
131,087  
65,551  
16,399  
NOTES:  
1. Subject to restrictions in Table 19 and Table 20 for operating characteristics of the oscillator and PLL.  
2. Minimum erase and programming times are achieved with the indicated maximum fSYS (which is fIPS × 2, and subject to the  
limits of Table 19 and Table 20) and corresponding maximum fNVMOP. Maximum erase and programming times are  
dependent on the combination of fNVMOP and fIPS; values shown are calculated for fIPS = 2 MHz and fNVMOP = 154 KHz.  
3. Minimum blank check or page erase verify time assumes the first word in the array is blank and the second is not. Maximum  
blank check or page erase verify time assumes the entire block or page is blank.  
4. Data signature timing is dependant on the number of words or half-words compressed for the program and data arrays,  
respectively. Minimum time is for two words or half-words; maximum time is for the entire array.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
34  
Freescale Semiconductor  
Preliminary  
ElectricalCharacteristics  
3.13.8 NVM Reliability  
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process  
monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase  
cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is  
incremented every time a sector or mass erase event is executed.  
Table 36. NVM Reliability Characteristics  
Conditions shown in Table 7 unless otherwise noted.  
Num  
C
Rating  
Min  
Unit  
X11  
X12  
C Program/Data Flash Program/Erase endurance (–40C to +125C)  
C Program/Data Flash Data Retention Lifetime  
10,000  
15  
Cycles  
Years  
NOTE  
All values shown in Table 36 are target values and subject to  
characterization. For Flash cycling performance, each program operation  
must be preceded by an erase.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
35  
Preliminary  
Device Pin Assignments  
4 Device Pin Assignments  
The MAC7100 Family is available in 208-pin ball grid array (MAP BGA), 144-pin low profile quad flat  
(LQFP), 112-pin LQFP, and 100-pin LQFP package options. The family of devices offer pin-compatible  
packaged devices to assist with system development and accommodate a direct application enhancement  
path. Refer to Table 2 for a comparison of the peripheral sets and package options for each device.  
Most pins perform two or more functions, which are described in more detail in the MAC7100  
Microcontroller Family Reference Manual (MAC7100RM). Table 37, Table 38 and Figure 15 through  
Figure 22 show the pin assignments for various devices and packages.  
Table 37. Signal Pin Assignments  
Pin Number (by Device)  
7121  
Primary /  
GPIO  
Function  
External  
Bus  
Function  
Peripheral  
Function  
Debug  
Function  
Read on  
Reset  
7101 7111  
7106 7116  
7141  
7142  
1
1
7112  
7122 7131 7136  
1
7126  
EXTAL  
XTAL  
XFC  
RESET  
TDI  
MCKO 4  
EVTO  
EVTI  
MDO0  
MDO1  
MSEO  
RDY  
PS 3  
AA 3  
60  
61  
60  
60  
48  
48 T10  
49 T11  
46 T9  
T10  
T11  
T9  
45  
46  
43  
33  
93  
94  
95  
96  
65  
64  
63  
48  
8
61  
58  
61  
58  
49  
46  
36  
102  
103  
104  
105  
58  
48  
48  
48  
36 T7  
T7  
128  
129  
130  
131  
128  
129  
130  
131  
79  
128  
129  
130  
131  
102 A8  
103 B8  
104 A7  
105 B7  
A8  
B8  
A7  
B7  
TDO  
TCK  
TMS  
TA / AS 2  
DATA0 3  
DATA1 3  
DATA2 3  
DATA3 3  
DATA4 3  
DATA5 3  
DATA6 3  
DATA7 3  
DATA8 3  
DATA9 3  
DATA10 3  
DATA11 3  
DATA12 3  
DATA13 3  
DATA14 3  
DATA15 3  
M14 M14  
PA0  
138  
137  
136  
135  
134  
133  
132  
138  
137  
136  
135  
134  
133  
132  
98  
138  
137  
136  
135  
134  
133  
132  
98  
106  
106 B5  
B5  
C5  
A5  
C6  
B6  
A6  
C7  
PA1  
C5  
A5  
C6  
B6  
A6  
C7  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
74  
73  
72  
71  
70  
69  
53  
52  
51  
11  
12  
13  
14  
15  
16  
74 H15 H15  
73 H13 H13  
72 H14 H14  
71 H16 H16  
PA8  
97  
97  
PA9  
96  
96  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
95  
95  
94  
94  
70 J15  
69 J14  
J15  
J14  
93  
93  
67  
67  
67  
53 R12 R12  
52 T12 T12  
51 P11 P11  
66  
65  
15  
16  
17  
18  
19  
20  
66  
66  
65  
65  
SDA  
SCL  
SIN_A  
SOUT_A  
SCK_A  
15  
15  
11 G1  
12 H3  
13 H2  
14 H1  
15 J3  
16 J1  
G1  
H3  
H2  
H1  
J3  
16  
16  
9
17  
17  
10  
11  
12  
13  
18  
18  
19  
19  
PCS0_A /  
SS_A  
20  
20  
J1  
PB6  
PB7  
PCS1_A  
PCS2_A  
21  
22  
21  
22  
21  
22  
17  
18  
17 J2  
18 K1  
J2  
14  
15  
K1  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
36  
Freescale Semiconductor  
DevicePinAssignments  
Table 37. Signal Pin Assignments (continued)  
Pin Number (by Device)  
Primary /  
GPIO  
Function  
External  
Bus  
Function  
Peripheral  
Function  
Debug  
Function  
Read on  
Reset  
7101 7111  
7106 7116  
7121  
7126  
7141  
7142  
1
1
7112  
23  
7122 7131 7136  
1
PB8  
PCS5_A /  
PCSS_A  
23  
72  
73  
23  
19  
19 K2  
56 T14  
K2  
16  
51  
52  
PB9  
PCS0_B /  
SS_B  
72  
73  
72  
73  
56  
T14  
PB10  
PCS5_B /  
PCSS_B  
57 5  
57 R14 R14  
5
PB11  
PB12  
PB13  
PB14  
PB15  
PC0  
PCS2_B  
PCS1_B  
SCK_B  
SOUT_B  
SIN_B  
74  
75  
76  
77  
78  
9
74  
75  
76  
77  
78  
9
74  
75  
76  
77  
78  
9
N14 N14  
58 P15 P15  
59 P16 P16  
60 N15 N15  
61 N16 N16  
53  
54  
55  
56  
57  
49  
50  
58  
59  
60  
86  
87  
88  
89  
90  
66  
67  
58  
59  
60  
61  
ADDR0 3  
ADDR1 3  
ADDR2 3  
ADDR3 3  
ADDR4 3  
ADDR5 3  
ADDR6 3  
ADDR7 3  
ADDR8 3  
ADDR9 3  
ADDR10 3  
ADDR11 3  
ADDR12 3  
ADDR13 3  
ADDR14 3  
ADDR15 3  
BS0 3  
F1  
F3  
G2  
G3  
L3  
F1  
F3  
G2  
G3  
L3  
PC1  
10  
11  
12  
28  
29  
30  
31  
44  
45  
46  
47  
70  
71  
80  
81  
82  
10  
11  
12  
28  
29  
30  
31  
44  
45  
46  
47  
88  
89  
90  
91  
70  
71  
80  
81  
82  
92  
119  
120  
121  
122  
123  
68  
69  
83  
84  
85  
99  
100  
10  
11  
12  
28  
29  
30  
31  
44  
45  
46  
47  
88  
89  
90  
91  
70  
71  
80  
81  
82  
92  
119  
120  
121  
122  
123  
68  
69  
83  
84  
85  
99  
100  
PC2  
PC3  
PC4  
PC5  
M2  
M3  
N3  
P5  
R6  
P6  
T6  
M2  
M3  
N3  
P5  
R6  
P6  
T6  
PC6  
PC7  
PC8  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PD0  
K14 K14  
K13 K13  
K15 K15  
67  
67 J16  
54 T13  
J16  
T13  
MODB  
MODA  
XCLKS  
54  
55  
62  
63  
64  
68  
95  
96  
97  
98  
99  
PD1  
PD2 6  
BS1 3  
55 R13 R13  
62 M16 M16  
63 M15 M15  
CLKOUT  
PD3  
XIRQ  
IRQ  
PD4  
64 L16  
68 J13  
L16  
J13  
PD5  
ADDR16 3  
ADDR17 3  
ADDR18 3  
ADDR19 3  
ADDR20 3  
ADDR21 3  
OE 3  
PD6  
95 C10 C10  
96 D10 D10  
PD7  
PD8  
97 D9  
98 B9  
99 D8  
D9  
B9  
D8  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PE0  
68  
P12 P12  
P13 P13  
CS2 3  
CS1 3  
CS0 3  
R/W 3  
69  
83  
84  
85  
89  
91  
L13  
L14  
L15  
L13  
L14  
L15  
AN0_A  
AN1_A  
MCKO'  
EVTO'  
75  
76  
75 G16 G16  
76 G15 G15  
PE1  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
37  
Device Pin Assignments  
Table 37. Signal Pin Assignments (continued)  
Pin Number (by Device)  
7121  
Primary /  
External  
Bus  
Peripheral  
Debug  
Function  
Read on  
Reset  
GPIO  
7101 7111  
7106 7116  
7141  
7142  
1
1
Function  
Function  
7112  
7122 7131 7136  
1
Function  
7126  
PE2  
PE3  
AN2_A  
AN3_A  
EVTI'  
MDO0'  
MDO1'  
MSEO'  
RDY'  
93  
95  
97  
99  
101  
103  
105  
107  
113  
115  
117  
119  
121  
123  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
27  
26  
25  
24  
141  
142  
143  
144  
1
101  
102  
103  
104  
105  
106  
107  
108  
113  
114  
115  
116  
117  
118  
43  
101  
102  
103  
104  
105  
106  
107  
108  
113  
114  
115  
116  
117  
118  
43  
77  
77 F13  
78 F14  
F13  
F14  
68  
69  
70  
71  
72  
73  
74  
75  
80  
81  
82  
83  
84  
85  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
97  
98  
99  
100  
1
78  
79  
80  
81  
82  
83  
84  
89  
90  
91  
92  
93  
94  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
109  
110  
111  
112  
1
PE4  
AN4_A  
79 E13 E13  
80 E14 E14  
81 D15 D15  
82 C15 C15  
83 C14 C14  
84 D14 D14  
89 B13 B13  
90 C12 C12  
91 A12 A12  
92 B11 B11  
93 A10 A10  
PE5  
AN5_A  
PE6  
AN6_A  
PE7  
AN7_A  
PE8  
AN8_A  
PE9  
AN9_A  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PF0  
AN10_A  
AN11_A  
AN12_A  
AN13_A  
AN14_A  
AN15_A  
eMIOS0  
eMIOS1  
eMIOS2  
eMIOS3  
eMIOS4  
eMIOS5  
eMIOS6  
eMIOS7  
eMIOS8  
eMIOS9  
eMIOS10  
eMIOS11  
eMIOS12  
eMIOS13  
eMIOS14  
eMIOS15  
RXD_B  
94 A9  
35 T5  
34 R5  
33 T4  
32 R4  
31 T3  
30 P4  
29 R3  
28 R1  
27 P2  
26 P1  
25 N2  
24 N1  
23 M1  
22 L2  
21 L1  
20 K3  
109 A3  
110 C4  
111 B3  
112 C2  
A9  
T5  
R5  
T4  
R4  
T3  
P4  
R3  
R1  
P2  
P1  
N2  
N1  
M1  
L2  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
Debug Status 7  
NEXPS  
NEXPR  
PF1  
42  
42  
PF2  
41  
41  
PF3  
40  
40  
PF4  
39  
39  
PF5  
38  
38  
PF6  
37  
37  
PF7  
36  
36  
PF8  
35  
35  
PF9  
34  
34  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
PG10  
PG11  
PG12  
PG13  
33  
33  
32  
32  
27  
27  
26  
26  
25  
25  
L1  
24  
24  
K3  
A3  
C4  
B3  
C2  
D3  
C1  
E1  
F2  
D2  
D1  
E3  
E2  
R7  
R8  
141  
142  
143  
144  
1
141  
142  
143  
144  
1
TXD_B  
RXD_A  
TXD_A  
CNTX_A  
CNRX_A  
CNTX_B  
CNRX_B  
CNTX_C 8  
CNRX_C 8  
CNTX_D 8  
CNRX_D 8  
RXD_D 8  
TXD_D 8  
1
2
7
8
3
4
5
6
D3  
C1  
E1  
F2  
D2  
D1  
E3  
E2  
2
2
2
2
2
7
7
7
7
3
8
8
8
8
4
3
3
3
3
36  
37  
4
4
4
4
5
5
5
5
6
6
6
6
51  
52  
51  
51  
39  
40  
39 R7  
40 R8  
52  
52  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
38  
Freescale Semiconductor  
DevicePinAssignments  
Table 37. Signal Pin Assignments (continued)  
Pin Number (by Device)  
Primary /  
GPIO  
Function  
External  
Bus  
Peripheral  
Function  
Debug  
Function  
Read on  
Reset  
7101 7111  
7106 7116  
7121  
7126  
7141  
7142  
1
1
7112  
7122 7131 7136  
1
Function  
PG14  
PG15  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
PH8  
PH9  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PI0  
RXD_C  
TXD_C  
AN0_B  
AN1_B  
AN2_B  
AN3_B  
AN4_B  
AN5_B  
AN6_B  
AN7_B  
AN8_B  
AN9_B  
AN10_B  
AN11_B  
AN12_B  
AN13_B  
AN14_B  
AN15_B  
PCS3_A  
PCS4_A  
PCS6_A  
PCS7_A  
PCS3_B  
PCS4_B  
PCS6_B  
PCS7_B  
139  
140  
88  
139  
140  
139  
140  
107  
108  
107 A4  
108 B4  
A4  
B4  
G13 G13  
G14 G14  
90  
92  
F16  
F15  
F16  
F15  
94  
96  
E16 E16  
E15 E15  
D16 D16  
C16 C16  
B16 B16  
B14 B14  
D13 D13  
A13 A13  
B12 B12  
C11 C11  
A11 A11  
B10 B10  
98  
100  
102  
104  
106  
108  
114  
116  
118  
120  
122  
C3  
D5  
PI1  
PI2  
D4  
PI3  
E4  
PI4  
G4  
J4  
PI5  
PI6  
K4  
PI7  
L4  
PI8  
N4  
PI9  
P3  
PI10  
PI11  
PI12  
PI13  
PI14  
PI15  
NOTES:  
R2  
R15  
N11  
N12  
N13  
P14  
1. The MAC7100 family maximum peripheral configurations are listed in these columns. Some family members do not implement the full  
complement of ATD, CAN, DSPI and eSCI peripherals. Refer to Table 2 on page 3 for availability of peripheral functions on various devices.  
2. AS function not available on mask set L49P devices.  
3. MAC7111, MAC7116, MAC7131 and MAC7136 only.  
4. The MCKO function cannot be used on MAC7121 devices (the alternate Nexus port must be used).  
5. On MAC7121 mask set L49P devices, PB11 / PCS2_B is bonded out on pin 57.  
6. PD2 function not available on mask set L49P devices.  
7. Optional debug status port not available on mask set L49P devices.  
8. CAN C, CAN D and eSCI D not available on MAC7112, MAC7122 and MAC7142 devices.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
39  
Preliminary  
Device Pin Assignments  
Table 38. Power Supply, Voltage Regulator and Reference Pin Assignments  
Pin Number (by Device)  
Pin Name  
7101 / 7106 /  
7121 / 7122 / 7126  
7131 / 7136  
7141 / 7142  
7111 / 7112 / 7116  
VDD  
X
14, 50, 64, 87, 124  
13, 49, 63, 86, 125  
10, 38, 66  
9, 37, 65  
C9, H4, K16, P7, P10  
6, 35, 62  
5, 34, 61  
VSSX  
A1, A2, B1, B2, F4, G7,  
G8, G9, G10, H7, H8, H9,  
H10, J7, J8, J9, J10, K7,  
K8, K9, K10, M4, M13,  
R9, R10, R16, T1, T2,  
T15, T16  
7101 / 7106 / 7112 only:  
79  
7131 only:  
C3, D4, D5, E4, G4, J4,  
K4, L4, N4, N11, N12,  
N13, P3, P14, R9, R10  
VDD  
VSS  
DD2.5  
R
56  
55  
44  
43  
P9  
N5, N6  
C8, P8  
D6, D7, N7, N8  
T8  
41  
40  
R
V
53, 127  
54, 126  
57  
41, 101  
42, 100  
45  
38, 92  
39, 91  
42  
VSS2.5  
VDDPLL  
V
SSPLL  
VDD  
VSS  
59  
47  
N9, N10  
A16, B15, C13  
D11, D12  
A15  
44  
A
109  
112  
110  
111  
62  
85  
76  
A
88  
79  
VRH  
86  
77  
VRL  
87  
A14  
78  
TEST 1  
N/C  
50  
R11  
47  
7
NOTES:  
1. This pin is reserved for Freescale factory testing, and must be tied to system ground in all applications.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
40  
Freescale Semiconductor  
Preliminary  
DevicePinAssignments  
4.1 MAC7141 Pin Diagram  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_B / PG6  
CNRX_B / PG7  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7  
V
V
X
SS  
DD  
X
N/C  
/ PB0  
SDA  
SCL  
SIN_A  
/ PB1  
/ PB2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SOUT_A / PB3  
SCK_A / PB4  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
PA8  
PA9  
MAC7141  
100 LQFP  
SS_A  
V
V
X
X
DD  
SS  
PCSS_A / PCS5_A / PB8  
eMIOS15 / PF15  
eMIOS14 / PF14  
eMIOS13 / PF13  
eMIOS12 / PF12  
eMIOS11 / PF11  
eMIOS10 / PF10  
eMIOS9 / PF9  
PD4 / IRQ  
PD3 / XIRQ  
(1)  
PD2 / CLKOUT/ XCLKS  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
PB10 / PCS5_B / PCSS_B  
PB9 / PCS0_B / SS_B  
eMIOS8 / PF8  
eMIOS7 / PF7  
1. PD2 function not available on L49P mask set devices.  
Figure 15. Pin Assignments for MAC7141 in 100-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
41  
Device Pin Assignments  
4.2 MAC7142 Pin Diagram  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_B / PG6  
CNRX_B / PG7  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7  
V
V
X
SS  
DD  
X
N/C  
/ PB0  
SDA  
SCL  
SIN_A  
/ PB1  
/ PB2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SOUT_A / PB3  
SCK_A / PB4  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
PA8  
PA9  
MAC7142  
100 LQFP  
SS_A  
V
V
X
X
DD  
SS  
PCSS_A / PCS5_A / PB8  
eMIOS15 / PF15  
eMIOS14 / PF14  
eMIOS13 / PF13  
eMIOS12 / PF12  
eMIOS11 / PF11  
eMIOS10 / PF10  
eMIOS9 / PF9  
PD4 / IRQ  
PD3 / XIRQ  
PD2 / CLKOUT/ XCLKS  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
PB10 / PCS5_B / PCSS_B  
PB9 / PCS0_B / SS_B  
eMIOS8 / PF8  
eMIOS7 / PF7  
Figure 16. Pin Assignments for MAC7142 in 100-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
42  
Freescale Semiconductor  
DevicePinAssignments  
4.3 MAC7121 / MAC7126 Pin Diagram  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_C / PG8  
CNRX_C / PG9  
CNTX_D / PG10  
CNRX_D / PG11  
CNTX_B / PG6  
CNRX_B / PG7  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7  
PA8  
1
2
3
4
5
6
7
8
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
V
X
X
9
SS  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DD  
SDA  
SCL  
SIN_A  
/ PB0  
/ PB1  
/ PB2  
PA9  
SOUT_A / PB3  
SCK_A / PB4  
MAC7121 / MAC7126  
112 LQFP  
PA10  
PA11  
PA12  
PD5  
PC15  
SS_A  
/ PCS0  
/ PB5  
PCS1_A / PB6  
PCS2_A / PB7  
PCSS_A / PCS5_A / PB8  
V
X
X
DD  
eMIOS15 / PF15  
eMIOS14 / PF14  
eMIOS13 / PF13  
eMIOS12 / PF12  
eMIOS11 / PF11  
eMIOS10 / PF10  
eMIOS9 / PF9  
eMIOS8 / PF8  
eMIOS7 / PF7  
V
SS  
PD4 / IRQ  
PD3 / XIRQ  
(1)  
PD2  
/ CLKOUT/ XCLKS  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB10 / PCS5_B/ PCSS_B  
(2)  
1. PD2 function not available on L49P mask set devices.  
On L49P mask set devices, PB11 / PCS2_B is bonded out on pin 57.  
2
Figure 17. Pin Assignments for MAC7121 / MAC7126 in 112-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
43  
Preliminary  
Device Pin Assignments  
4.4 MAC7122 Pin Diagram  
CNTX_A / PG4  
CNRX_A / PG5  
PG8  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7  
PA8  
PA9  
PA10  
PA11  
PA12  
PD5  
PC15  
1
2
3
4
5
6
7
8
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
PG9  
PG10  
PG11  
CNTX_B / PG6  
CNRX_B / PG7  
V
X
X
9
SS  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DD  
SDA  
SCL  
SIN_A  
/ PB0  
/ PB1  
/ PB2  
SOUT_A / PB3  
SCK_A / PB4  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
MAC7122  
112 LQFP  
SS_A  
PCSS_A / PCS5_A / PB8  
V
X
X
DD  
eMIOS15 / PF15  
eMIOS14 / PF14  
eMIOS13 / PF13  
eMIOS12 / PF12  
eMIOS11 / PF11  
eMIOS10 / PF10  
eMIOS9 / PF9  
eMIOS8 / PF8  
eMIOS7 / PF7  
V
SS  
PD4 / IRQ  
PD3 / XIRQ  
PD2 / CLKOUT/ XCLKS  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB10 / PCS5_B/ PCSS_B  
Figure 18. Pin Assignments for MAC7122 in 112-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
44  
Freescale Semiconductor  
DevicePinAssignments  
4.5 MAC7101 / MAC7106 Pin Diagram  
CNTX_A /PG4  
CNRX_A /PG5  
CNTX_C /PG8  
PH10 / AN10_B  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PE9 / AN9_A  
2
PH9 / AN9_B  
3
/
PE8 / AN8_A  
CNRX_C PG9  
4
/
PH8 / AN8_B  
CNTX_D PG10  
5
/
PE7 / AN7_A  
CNRX_D PG11  
6
/
PH7 / AN7_B  
CNTX_B PG6  
7
/
PE6 / AN6_A / RDY'  
PH6 / AN6_B  
CNRX_B PG7  
8
PC0  
PC1  
PC2  
PC3  
9
PE5 / AN5_A / MSEO'  
PH5 / AN5_B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
PE4 / AN4_A / MDO1'  
PH4 / AN4_B  
97  
V
DD  
X
96  
SS  
V
X
PE3 / AN3_A / MDO0'  
PH3 / AN3_B  
95  
/
/
/
SDA  
PB0  
PB1  
PB2  
94  
SCL  
PE2 / AN2_A / EVTI'  
PH2 / AN2_B  
PE1 / AN1_A / EVTO'  
PH1 / AN1_B  
PE0 / AN0_A / MCKO'  
PH0 / AN0_B  
93  
SIN_A  
92  
/
SOUT_A PB3  
MAC7101 / MAC7106  
144 LQFP  
91  
/
SCK_A  
PB4  
90  
SS_A  
PCS0_A PB5  
/
/
89  
PCS1_A PB6  
/
88  
PCS2_A PB7  
/
V
V
X
87  
DD  
PCSS_A PCS5_A PB8  
/
/
X
SS  
86  
eMIOS15 PF15  
/
PD15  
85  
eMIOS14 PF14  
/
PD14  
PD13  
84  
eMIOS13 PF13  
/
83  
eMIOS12 PF12  
/
PD4 / IRQ  
82  
PC4  
PC5  
PC6  
PC7  
81  
PD3 / XIRQ  
(1)  
PD2  
80  
/ CLKOUT/ XCLKS  
79  
V
X
SS  
78  
PB15 / SIN_B  
eMIOS11 PF11  
/
77  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
PB10 / PCS5_B / PCSS_B  
eMIOS10 PF10  
/
76  
eMIOS9 /PF9  
eMIOS8 /PF8  
eMIOS7 /PF7  
75  
74  
73  
1. PD2 function not available on L49P mask set devices.  
Figure 19. Pin Assignments for MAC7101 / MAC7106 in 144-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
45  
Preliminary  
Device Pin Assignments  
4.6 MAC7111 / MAC7116 Pin Diagram  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_C / PG8  
CNRX_C / PG9  
CNTX_D / PG10  
CNRX_D / PG11  
CNTX_B / PG6  
CNRX_B / PG7  
ADDR0 / PC0  
ADDR1 / PC1  
ADDR2 / PC2  
ADDR3 / PC3  
PE9 / AN9_A  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PE8 / AN8_A  
2
PE7 / AN7_A  
3
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7 / DATA7  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
PA8 / DATA8  
97  
V
V
X
X
PA9 / DATA9  
96  
SS  
PA10 / DATA10  
DD  
/ PB0  
/ PB1  
95  
SDA  
SCL  
PA11 / DATA11  
94  
PA12 / DATA12  
93  
SIN_A / PB2  
SOUT_A / PB3  
SCK_A / PB4  
PD5 / ADDR16  
92  
MAC7111 / MAC7116  
144 LQFP  
PC15 / ADDR15  
91  
PC14 / ADDR14  
90  
SS_A  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
PC13 / ADDR13  
89  
PC12 / ADDR12  
88  
V
V
X
87  
DD  
SS  
PCSS_A / PCS5_A / PB8  
eMIOS15/ PF15  
eMIOS14/ PF14  
eMIOS13/ PF13  
eMIOS12/ PF12  
ADDR4 / PC4  
ADDR5 / PC5  
ADDR6 / PC6  
ADDR7 / PC7  
eMIOS11/ PF11  
eMIOS10/ PF10  
eMIOS9 / PF9  
eMIOS8 / PF8  
eMIOS7 / PF7  
X
86  
PD15 / R/W  
PD14 / CS0  
PD13 / CS1  
PD4 / IRQ  
PD3 / XIRQ  
85  
84  
83  
82  
81  
(1)  
80  
PD2 / CLKOUT/ XCLKS  
79  
TA / AS  
PB15 / SIN_B  
78  
77  
PB14 / SOUT_B  
PB13 / SCK_B  
76  
75  
PB12 / PCS1_B  
PB11 / PCS2_B  
PB10 / PCS5_B / PCSS_B  
74  
73  
1. PD2 function not available on L49P mask set devices.  
Figure 20. Pin Assignments for MAC7111 / MAC7116 in 144-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
46  
Freescale Semiconductor  
Preliminary  
DevicePinAssignments  
4.7 MAC7112 Pin Diagram  
CNTX_A / PG4  
CNRX_A / PG5  
PG8  
PE9 / AN9_A  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PE8 / AN8_A  
2
PE7 / AN7_A  
3
PG9  
PE6 / AN6_A / RDY'  
4
PG10  
PG11  
PE5 / AN5_A / MSEO'  
5
PE4 / AN4_A / MDO1'  
6
CNTX_B / PG6  
CNRX_B / PG7  
PC0  
PE3 / AN3_A / MDO0'  
7
PE2 / AN2_A / EVTI'  
8
PE1 / AN1_A / EVTO'  
9
PC1  
PE0 / AN0_A / MCKO'  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PC2  
PA7  
98  
PC3  
PA8  
97  
V
V
/ PB0  
/ PB1  
X
X
PA9  
96  
SS  
DD  
PA10  
PA11  
PA12  
PD5  
95  
SDA  
SCL  
94  
93  
SIN_A / PB2  
SOUT_A / PB3  
SCK_A / PB4  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
92  
MAC7112  
144 LQFP  
PC15  
PC14  
PC13  
PC12  
91  
90  
SS_A  
89  
88  
V
V
X
87  
DD  
SS  
PCSS_A / PCS5_A / PB8  
eMIOS15/ PF15  
eMIOS14/ PF14  
eMIOS13/ PF13  
eMIOS12/ PF12  
PC4  
X
86  
PD15  
85  
PD14  
PD13  
84  
83  
PD4 / IRQ  
PD3 / XIRQ  
PD2 / CLKOUT/ XCLKS  
82  
81  
PC5  
80  
PC6  
79  
V
X
SS  
PC7  
78  
PB15 / SIN_B  
eMIOS11/ PF11  
eMIOS10/ PF10  
eMIOS9 / PF9  
eMIOS8 / PF8  
eMIOS7 / PF7  
77  
PB14 / SOUT_B  
PB13 / SCK_B  
76  
75  
PB12 / PCS1_B  
PB11 / PCS2_B  
PB10 / PCS5_B / PCSS_B  
74  
73  
Figure 21. Pin Assignments for MAC7112 in 144-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
47  
Device Pin Assignments  
4.8 MAC7131 Pin Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
V A  
A
B
C
D
E
F
V X V X PG0 PG14 PA2  
PA5  
TCK  
TDI PE15 PE14 PH14 PE12 PH11  
V
V
RH  
SS  
SS  
RL  
DD  
V X V X PG2 PG15 PA0  
PA4  
PA3  
TMS TDO PD9 PH15 PE13 PH12 PE10 PH9 VDDA PH8  
SS  
SS  
PG5  
PG3 V X PG1  
PA1  
PA6 VDD2.5 V X PD6 PH13 PE11 V A PE8  
PE7  
PE6  
PH5  
PH3  
PE1  
PH7  
PH6  
PH4  
PH2  
PE0  
SS  
DD  
DD  
PG9  
PG8  
PG4 V X V X V 2.5 V 2.5 PD10 PD8  
PD7 V A V A PH10 PE9  
SS SS  
SS  
SS  
SS  
SS  
PG6 PG11 PG10 V X  
PE4  
PE2  
PH0  
PA8  
PE5  
PE3  
PH1  
PA9  
SS  
PC0  
PB0  
PB3  
PB5  
PB7  
PG7  
PC2  
PB2  
PB6  
PC1 V X  
SS  
G
H
J
PC3 V X  
V X V X V X V X  
SS SS SS SS  
SS  
PB1 V X  
V X V X V X V X  
PA7 PA10  
DD  
SS  
SS  
SS  
SS  
PB4 V X  
V X V X V X V X  
PD5 PA12 PA11 PC15  
SS  
SS  
SS  
SS  
SS  
K
L
PB8 PF15 V X  
V X V X V X V X  
PC13 PC12 PC14 V X  
SS  
SS  
SS  
SS  
SS  
DD  
PF14 PF13 PC4 V X  
PD13 PD14 PD15 PD4  
SS  
M
N
P
R
T
(1)  
PF12 PC5  
PC6 V X  
V X TA/AS  
PD3 PD2(1)  
SS  
SS  
PF11 PF10 PC7 V X V R V R V 2.5 V 2.5 V PLL V PLL V X V X V X PB11 PB14 PB15  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
PF9  
PF8 V X PF5  
PC8 PC10 V X V 2.5 V R V X PA15 PD11 PD12 V X PB12 PB13  
DD DD DD DD SS  
SS  
PF7 V X PF6  
PF3  
PF2  
PF1  
PC9 PG12 PG13 V X V X TEST PA13 PD1 PB10 V X V X  
SS SS SS SS  
SS  
V X V X PF4  
PF0 PC11 RESET V PLL XFC EXTAL XTAL PA14 PD0  
PB9 V X V X  
SS SS  
SS  
SS  
DD  
1. AS and PD2 functions not available on L49P mask set devices.  
Figure 22. Pin Assignments for MAC7131 in 208-pin MAP BGA  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
48  
Freescale Semiconductor  
DevicePinAssignments  
4.9 MAC7136 Pin Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
V A  
A
B
C
D
E
F
V X V X PG0 PG14 PA2  
PA5  
TCK  
TDI PE15 PE14 PH14 PE12 PH11  
V
V
RH  
SS  
SS  
RL  
DD  
V X V X PG2 PG15 PA0  
PA4  
PA3  
TMS TDO PD9 PH15 PE13 PH12 PE10 PH9 VDDA PH8  
SS  
SS  
PG5  
PG3  
PI0  
PG1  
PI2  
PA1  
PA6 VDD2.5 V X PD6 PH13 PE11 V A PE8  
PE7  
PE6  
PH5  
PH3  
PE1  
PH7  
PH6  
PH4  
PH2  
PE0  
DD  
DD  
PG9  
PG8  
PG4  
PI1 V 2.5 V 2.5 PD10 PD8  
PD7 V A V A PH10 PE9  
SS SS  
SS  
SS  
PG6 PG11 PG10 PI3  
PE4  
PE2  
PH0  
PA8  
PE5  
PE3  
PH1  
PA9  
PC0  
PB0  
PB3  
PB5  
PB7  
PG7  
PC2  
PB2  
PB6  
PC1 V X  
SS  
G
H
J
PC3  
PI4  
V X V X V X V X  
SS SS SS SS  
PB1 V X  
V X V X V X V X  
PA7 PA10  
DD  
SS  
SS  
SS  
SS  
PB4  
PI5  
PI6  
PI7  
V X V X V X V X  
PD5 PA12 PA11 PC15  
SS  
SS  
SS  
SS  
K
L
PB8 PF15  
V X V X V X V X  
PC13 PC12 PC14 V X  
SS  
SS  
SS  
SS  
DD  
PF14 PF13 PC4  
PD13 PD14 PD15 PD4  
M
N
P
R
T
PF12 PC5  
PC6 V X  
V X TA/ AS PD3  
PD2  
SS  
SS  
PF11 PF10 PC7  
PI8  
PF5  
PF3  
PF2  
V R V R V 2.5 V 2.5 V PLL V PLL PI12 PI13 PI14 PB11 PB14 PB15  
SS SS SS SS SS SS  
PF9  
PF7  
PF8  
PI9  
PC8 PC10 VDDX V 2.5 V R V X PA15 PD11 PD12 PI15 PB12 PB13  
DD DD DD  
PI10  
PF6  
PF1  
PC9 PG12 PG13 V X V X TEST PA13 PD1 PB10 PI11 V X  
SS SS SS  
V X V X PF4  
PF0 PC11 RESET V PLL XFC EXTAL XTAL PA14 PD0  
PB9 V X V X  
SS SS  
SS  
SS  
DD  
Figure 23. Pin Assignments for MAC7136 in 208-pin MAP BGA  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
49  
Mechanical Information  
5 Mechanical Information  
As indicated in Table 2, MAC7100 Family devices are available in several packages. Please refer to the  
freescale.com web site for the most up-to-date package availability and mechanical information. The table  
below lists available package identifiers and Freescale document numbers for reference.  
Table 39. Package Identifiers and Mechanical Specifications  
Mechanical Specification  
Package Type  
Case Identifier  
Document  
100-lead LQFP  
112-lead LQFP  
983-02  
987-02  
98ASS23308W  
98ASS23330W  
98ASS23177W  
98ARS23882W  
144-lead LQFP  
918-03  
208-lead MAP BGA  
1159A-01  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
50  
Freescale Semiconductor  
MechanicalInformation  
Revision History  
Revision History  
Version No.  
Release Date  
Page  
Numbers  
Description of Changes  
v0.1  
First public customer release (preliminary).  
29-Oct-03  
v1.0  
General  
14-Sep-04  
• Converted to Freescale identity, with blue cross-reference highlights for enhanced PDF  
navigation, and miscellaneous updates for presentation consistency.  
• The order of Section 3.5 and Section 3.6 were reversed for better content flow. This has  
caused specification numbering to change as detailed below.  
7, 8  
Note: Content consolidation and reorganization has resulted in the following table and  
specification number changes (the first spec number of each table is shown):  
Table Title  
Rev. 1.0  
Rev. 0.1  
5.0 V I/O Characteristics  
3.3 V I/O Characteristics  
Section 3.6, Power Dissipation and Thermal Characteristics”  
Table 8  
Table 9  
Table 10 to  
Table 14  
D1a Table 15 F1  
E1a Table 16 G1  
Table 7 to  
Table 11  
MAC71x1/6 Device Supply Current Characteristics – 40 MHz  
MAC71x1/6 Device Supply Current Characteristics – 50 MHz  
VREG Operating Conditions  
VREG Recommended Load Capacitances  
Oscillator Characteristics  
Table 15 F1  
Table 16 G1  
Table 17 H1 Table 13 E1  
Table 18 Table 14  
Table 19 J1a Table 17 H1a  
Table 12 D1a  
N/A  
PLL Characteristics  
Crystal Monitor Time-Outs  
Table 20 K1  
Table 21  
Table 18 J1  
Table 19  
CRG Maximum Clock Quality Check Timings  
CRG Startup Characteristics  
Table 22  
Table 23 L1  
Table 20  
Table 21 K1  
External Bus Input Timing Specifications  
External Bus Output Timing Specifications  
ATD Operating Characteristics in 5.0 V Range  
ATD Operating Characteristics in 3.3 V Range  
ATD Electrical Characteristics  
ATD Conversion Performance in 5.0 V Range  
ATD Conversion Performance in 3.3 V Range  
ATD Electrical Characteristics (Operating)  
ATD Performance Specifications  
Table 24 M1 Table 22 L1  
Table 25 M6a Table 23 L6a  
Table 26 N1 Table 24 M1  
Table 27 P1  
Table 25 N1  
Table 28 Q1 Table 26 P1  
Table 29 R1 Table 27 Q1  
Table 30 S1  
N/A  
N/A  
N/A  
Table 31 T1  
Table 28 R1  
Table 29 S1  
Table 30 T1  
Table 31 U1  
Table 32 V1  
ATD Timing Specifications  
ATD External Trigger Timing Specifications  
SPI Master Mode Timing Characteristics  
SPI Slave Mode Timing Characteristics  
FlexCAN Wake-up Pulse Characteristics  
CFM Timing Characteristics  
Table 32 U1a Table 33 W1a  
Table 33 V1a Table 34 X1a  
Table 34 W1 Table 35 Y1  
Table 35 X1 Table 36 Z1  
Table 36 X9b Table 37 Z10  
NVM Reliability Characteristics  
Section 2, “Ordering Information”  
• Added Table 1, mask set information  
• Updated Table 2 with expanded port pin counts, MAC71x2 and MAC71x6 family members  
• Pin assignment changes for mask set L47W devices:  
2
3
— In Table 37, PB10 / PCS5_B / PCSS_B changed to pin 57, footnote for L49P  
36  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
51  
Preliminary  
Mechanical Information  
Revision History (continued)  
Version No.  
Release Date  
Page  
Numbers  
Description of Changes  
v1.0  
14-Sep-04  
(continued)  
Section 3, “Electrical Characteristics”  
• Section 3.2, “Absolute Maximum Ratings”  
A1a renamed to VDD  
X
4
4
5
A4 “rating” changed to Analog (from ATD)  
A9 minimum changed to –0.3  
A12 maximum value removed, footnote reference added  
5
Table 8, Table 9 footnotes added regarding VDD5/VSS  
5
7, 8  
• Section 3.4, “Operating Conditions”  
C1 renamed to VDD  
X
6
6
6
C4 added (C5 to C11b renumbered)  
C8 maximum changed from 40 MHz to 50 MHz  
• Section 3.5, “Input/Output Characteristics”  
Table 8 spec D4 updated (from TBD)  
7
8
Table 9 spec E4 changed to 1 μA to match D4  
• Section 3.6, “Power Dissipation and Thermal Characteristics”  
— Reworked Equation 1 through Equation 4 and supporting text  
Section 3.6.1 and Table 10 name changed from “Power Dissipation...”  
• Section 3.7, “Power Supply”  
9
10  
— Added MAC71x1 designation and footnotes to Table 15 / Table 16  
Table 15 designated for 40 MHz, and  
12  
– Numerous TBD entries replaced with values  
– Run Supply Current collapsed from fifteen spec items to one  
– Removed separate Core/Regulator/Pins specs for Run/Pseudo Stop/Stop modes  
F1 and F3 descriptions changed  
F1, F2, F3 and F4 values updated  
Table 16 added for 50 MHz specifications  
12  
13  
14  
Table 17, deleted IREG spec (Regulator Current in Reduced Power, Shutdown Modes)  
Table 18, VDD2.5 load capacitance typical changed, with clarification footnote  
• Section 3.8, “Clock and Reset Generator”  
Table 19 updates  
15  
– Changed specs J1b and J6 maximum from 40 MHz to 50 MHz  
– Reversed polarity of XCLKS reference in footnote (3)  
J1b maximum changed to 40 MHz  
– VDCBIAS removed  
– Added footnote to define tfsys as 1 ÷ fSYS for use elsewhere in the document  
— Updated Section 3.8.2, “PLL Filter Characteristics”  
Table 20 updates  
16  
18  
– Changed spec K3 maximum from 40 MHz to 50 MHz  
– Added footnote to define tfsys as 1 ÷ fSYS for use elsewhere in the document  
Table 23 updates  
– Removed VPORR and VPORA, as they duplicated H6  
– Removed tWRS  
• Section 3.9, “External Bus Timing”  
19  
20  
21  
Table 24 updates  
M1 minimum changed from 25 ns to 20 ns (Figure 6 also updated)  
– Reworded footnote (1)  
– Added footnote (2) to define tCYC as 1 ÷ CLKOUT  
Table 25 updates  
– Added footnote (1)  
– Consolidated previous NOTES into footnote (2), (Figure 7, Figure 8 also updated)  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
52  
Freescale Semiconductor  
Preliminary  
MechanicalInformation  
Revision History (continued)  
Version No.  
Release Date  
Page  
Numbers  
Description of Changes  
v1.0  
Section 3, “Electrical Characteristics” (continued)  
14-Sep-04  
(continued)  
• Section 3.10, “Analog-to-Digital Converter”  
— Rev. 0.1 redundant and superfluous content deleted  
24  
– Section 3.10.3, “ATD Electrical Specifications,(included Table 29 and Table 30)  
Table 31, “ATD Performance Specifications” (redundant with v0.1 Table 27 and  
Table 28, now Table 29 and Table 30)  
Table 26 updates  
24  
24  
– Deleted previous spec M6  
– Changed spec N7 and N8 values  
Table 27 updates  
– Deleted previous spec N6  
– Changed spec P7 and P8 values  
– Changed spec P2 and footnote (1) to specify 3.15 V  
Table 28 updates  
– Changed spec Q2 parameter classification from T to C and 10 pF and 22 pF values  
moved from maximum to typical  
Table 29 updates  
– Operating conditions VDDA minimum changed to 4.5 V  
– VREF description moved from “conditions” header to new footnote (1)  
Table 30 updates  
– Operating conditions VDDA minimum changed to 3.15 V  
– VREF description moved from “conditions” header to new footnote (1)  
Table 31 updates  
– Spec T1 description clarified, max removed, min added with footnote  
– Spec T2 modified to show both edge- and level-sensitive modes  
Figure 10 modified to remove “Max Frequency” label and clearly separate edge- and  
level-sensitive mode timing examples  
25  
26  
26  
28  
28  
29  
• Section 3.11, “Serial Peripheral Interface”  
Table 32 updates  
– Changed specs U1a, U1b and U4 to use fIPS and tIPS for clarity and consistency with  
MAC7100RM  
– Changed U1a max to ½ and U1b min to 2 to account for the DBR bit  
Table 33 updates  
29  
– Changed specs V1a, V1b, V2, V3, V4, V7, V8 to use fIPS and tIPS for clarity and  
consistency with MAC7100RM  
– Changed V1a max to ½ and V1b min to 2 to account for the DBR bit  
• Section 3.13, “Common Flash Module”  
— Significant rework to match MAC7100RM clock naming, references and timing  
calculations for clarity and consistency  
— Changed X1 maximum from 40 MHz to 50 MHz (Table 35)  
32 to 35  
34  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Freescale Semiconductor  
53  
Preliminary  
Mechanical Information  
Revision History (continued)  
Version No.  
Release Date  
Page  
Numbers  
Description of Changes  
v1.0  
14-Sep-04  
(continued)  
Section 4, “Device Pin Assignments”  
Table 37 and Table 38 added  
• Added PD2 label / footnote to Figure 15, Figure 17, Figure 19, Figure 20 and Figure 22 41, 43, 45, 46, 48  
36, 40  
Section 4.2, “MAC7142 Pin Diagram” / Figure 16 added  
Section 4.3, “MAC7121 / MAC7126 Pin Diagram” / Figure 17 updated  
— PB10 / PCS5_B / PCSS_B bonded out on pin 57, footnote for L49P  
— Added MAC71x6 device information  
42  
43  
Section 4.4, “MAC7122 Pin Diagram” / Figure 18 added  
Section 4.5, “MAC7101 / MAC7106 Pin Diagram” / Figure 19 updated  
— Added MAC71x6 device information  
44  
45  
Section 4.6, “MAC7111 / MAC7116 Pin Diagram” / Figure 20 updated  
— Added AS to TA pin  
46  
— Added MAC71x6 device information  
Section 4.7, “MAC7112 Pin Diagram” / Figure 21 added  
Section 4.8, “MAC7131 Pin Diagram” / Figure 22 corrected, updated  
— Changed pins C8 & P8 from VSS2.5 to VDD2.5  
— Changed pin T8 from VSSPLL to VDDPLL  
47  
48  
— Added AS to TA pin  
Section 4.9, “MAC7136 Pin Diagram” / Figure 23 added  
49  
v1.1  
Section 3, “Electrical Characteristics”  
1-Dec-04  
• Section 3.7, “Power Supply”  
Table 15 spec F4 –40° C and 25° C max value changed  
Table 16 spec G4 –40° C and 25° C max value changed  
• Section 3.8, “Clock and Reset Generator”  
12  
12  
Table 19 spec J3 typical TBD entry replaced with value  
Table 20 specs K15 and K16 maximum TBD entries replaced with values  
15  
18  
v1.1.1  
Section 3, “Electrical Characteristics”  
3-Dec-04  
• Section 3.7, “Power Supply”  
Table 15 spec F3 –40° C, 25° C and 125° C typ and max values and unit changed  
Table 16 spec G3 –40° C, 25° C and 125° C typ and max value and unit changed  
12  
12  
v1.2  
Section 1, “Overview”  
10-Feb--06  
• Moved 71x6 device numbers from footnote to “covered” list  
1
Section 2, “Ordering Information”  
• Added AF, AG and VM package identifiers to Figure 1  
• Added 1L38Y to Table 1  
2
2
Section 3, “Electrical Characteristics”  
• Replaced TBD values in Table 15 and Table 16 with final qualification data, changed table  
titles and footnotes to reflect 71x6 inclusion.  
12  
50  
Section 5, “Mechanical Information”  
• Removed obsolete package diagrams, replaced with document IDs available on web site.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
54  
Freescale Semiconductor  
Preliminary  
This page intentionally left blank.  
MAC7100 Microcontroller Family Hardware Specifications, Rev. 1.2  
Preliminary  
55  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is  
a trademark of ARM Limited. All other product or service names are the property of their  
respective owners.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see www.freescale.com or contact your Freescale  
sales representative.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
For information on Freescale’s Environmental Products program, go to www.freescale.com/epp.  
© Freescale Semiconductor, Inc. 2004-2006. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MAC7100EC  
Rev. 1.2, 02/2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY