MC145027P [FREESCALE]

Encoder and Decoder Pairs CMOS; 编码器和译码器对CMOS
MC145027P
型号: MC145027P
厂家: Freescale    Freescale
描述:

Encoder and Decoder Pairs CMOS
编码器和译码器对CMOS

商用集成电路 光电二极管 编码器
文件: 总20页 (文件大小:698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC145026/D  
Rev. 4, 1/2005  
Freescale Semiconductor  
Technical Data  
MC145026, MC145027  
MC145028  
16  
16  
1
1
MC145026, MC145027,  
MC145028  
Encoder and Decoder Pairs  
CMOS  
P Suffix  
Plastic DIP  
Case 648  
D Suffix  
SOG Package  
Case751B  
16  
1
DW Suffix  
SOG Package  
Case 751G  
1 Introduction  
Ordering Information  
These devices are designed to be used as  
encoder/decoder pairs in remote control applications.  
Device  
Package  
MC145026P  
MC145026D  
MC145027P  
MC145027DW  
MC145028P  
MC145028DW  
Plastic DIP  
SOG Package  
Plastic DIP  
The MC145026 encodes nine lines of information and  
serially sends this information upon receipt of a transmit  
enable (TE) signal. The nine lines may be encoded with  
trinary data (low, high, or open) or binary data (low or  
high). The words are transmitted twice per encoding  
sequence to increase security.  
SOG Package  
Plastic DIP  
SOG Package  
Contents  
The MC145027 decoder receives the serial stream and  
interprets five of the trinary digits as an address code.  
Thus, 243 addresses are possible. If binary data is used at  
the encoder, 32 addresses are possible. The remaining  
serial information is interpreted as four bits of binary  
data. The valid transmission (VT) output goes high on  
the MC145027 when two conditions are met. First, two  
addresses must be consecutively received (in one  
encoding sequence) which both match the local address.  
Second, the 4 bits of data must match the last valid data  
received. The active VT indicates that the information at  
the Data output pins has been updated.  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Electrical Specifications . . . . . . . . . . . . . . . . 4  
3 Operating Characteristics . . . . . . . . . . . . . . . 8  
4 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . 9  
5 MC145027 and MC145028 Timing . . . . . . . . 16  
6 Package Dimensions . . . . . . . . . . . . . . . . . . 18  
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its  
products.  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
Introduction  
The MC145028 decoder treats all nine trinary digits as an address which allows 19,683 codes. If binary  
data is encoded, 512 codes are possible. The VT output goes high on the MC145028 when two addresses  
are consecutively received (in one encoding sequence) which both match the local address.  
Operating Temperature Range: - 40 to + 85°C  
Very-Low Standby Current for the Encoder: 300 nA Maximum @ 25°C  
Interfaces with RF, Ultrasonic, or Infrared Modulators and Demodulators  
RC Oscillator, No Crystal Required  
High External Component Tolerance; Can Use ± 5% Components  
Internal Power-On Reset Forces All Decoder Outputs Low  
Operating Voltage Range:  
MC145026 = 2.5 to 18 V  
MC145027, MC145028 = 4.5 to 18 V  
MC145026  
ENCODER  
MC145027  
DECODERS  
MC145028  
DECODERS  
A1  
A2  
A3  
VDD  
A6  
A1  
A2  
A3  
VDD  
D6  
A1  
A2  
A3  
VDD  
Dout  
A7  
D7  
TE  
A4  
A5  
A8  
A4  
A5  
D8  
A4  
A5  
RTC  
CTC  
RS  
A9  
D9  
R1  
VT  
R1  
VT  
A6/D6  
A7/D7  
VSS  
C1  
R2/C2  
Din  
C1  
R2/C2  
Din  
A9/D9  
A8/D8  
VSS  
VSS  
Figure 1. Pin Assignments  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
2
Freescale Semiconductor  
Introduction  
RS  
RTC  
CTC  
13  
11  
14  
12  
3-PIN  
TE  
DATA SELECT  
AND  
15  
÷ 4  
DIVIDER  
OSCILLATOR  
AND  
DOUT  
BUFFER  
ENABLE  
RING COUNTER AND 1-OF-9 DECODER  
9
8
7
6
5
4
3
2
1
1
2
A1  
A2  
A3  
3
4
A4  
5
TRINARY  
DETECTOR  
A5  
6
A6/D6  
A7/D7  
A8/D8  
A9/D9  
7
VDD = PIN 16  
VSS = PIN 8  
9
10  
Figure 2. MC145026 Encoder Block Diagram  
11  
VT  
15  
14  
D6  
CONTROL  
LOGIC  
D7  
13  
12  
D8  
D9  
SEQUENCER CIRCUIT  
5
4
3
2
1
1
2
3
4
A1  
A2  
DATA  
EXTRACTOR  
9
A3  
A4  
Din  
C2  
R2  
C
1 7  
6
10  
VDD = PIN 16  
VSS = PIN 8  
5
A5  
R1  
Figure 3. MC145027 Decoder Block Diagram  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
3
Electrical Specifications  
11  
CONTROL  
LOGIC  
VT  
SEQUENCER CIRCUIT  
9
8
7
6
5
4
3
2
1
1
2
3
4
5
A1  
9-BIT  
SHIFT  
REGISTER  
A2  
A3  
A4  
9
DATA  
EXTRACTOR  
A5  
A6  
A7  
A8  
Din  
15  
14  
13  
12  
C2  
VDD = PIN 16  
VSS = PIN 8  
C
1 7  
6
R1  
10  
R2  
A9  
Figure 4. MC145028 Decoder Block Diagram  
2 Electrical Specifications  
Table 1. Maximum Ratings* (Voltages Referenced to V  
)
SS  
Ratings  
Symbol  
Value  
- 0.5 to + 18  
Unit  
DC Supply Voltage  
VDD  
Vin  
Vout  
Iin  
V
V
DC Input Voltage  
- 0.5 to VDD + 0.5  
DC Output Voltage  
- 0.5 to VDD + 0.5  
V
DC Input Current, per Pin  
DC Output Current, per Pin  
Power Dissipation, per Package  
Storage Temperature  
± 10  
± 10  
mA  
mA  
mW  
°C  
°C  
Iout  
PD  
500  
Tstg  
TL  
- 65 to + 150  
260  
Lead Temperature, 1 mm from Case for 10 Seconds  
* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be  
restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.  
This device contains protection circuitry to guard against damage due to high static voltages or electric  
fields. However, precautions must be taken to avoid applications of any voltage higher than maximum  
rated voltages to this high-impedance circuit. For proper operation, V and V should be constrained to  
in  
out  
the range VSS (V or V ) VDD.  
in  
out  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
4
Freescale Semiconductor  
Electrical Specifications  
Table 2. Electrical Characteristics - MC145026 , MC145027, and MC145028  
1
(Voltage Referenced to V  
)
SS  
Guaranteed Limit  
VDD  
V
Symbol  
Characteristic  
- 40°C  
25°C  
85°C  
Max  
Unit  
Min  
Max  
Min  
Max  
Min  
VOL  
VOH  
VIL  
Low-Level Output Voltage  
(Vin = VDD or 0) 5.0  
-
-
-
0.05  
0.05  
0.05  
-
-
-
0.05  
0.05  
0.05  
-
-
-
0.05  
0.05  
0.05  
V
V
V
10  
15  
High-Level Output Voltage  
(Vin = 0 or VDD  
)
5.0  
10  
15  
4.95  
9.95  
14.95  
-
-
-
4.95  
9.95  
14.95  
-
-
-
4.95  
9.95  
14.95  
-
-
-
Low-Level Input Voltage  
(Vout = 4.5 or 0.5 V) 5.0  
(Vout = 9.0 or 1.0 V) 10  
(Vout = 13.5 or 1.5 V) 15  
-
-
-
1.5  
3.0  
4.0  
-
-
-
1.5  
3.0  
4.0  
-
-
-
1.5  
3.0  
4.0  
VIH  
High-Level Input Voltage  
V
(Vout = 0.5 or 4.5 V) 5.0  
(Vout = 1.0 or 9.0 V) 10  
(Vout = 1.5 or 13.5 V) 15  
3.5  
7.0  
11  
-
-
-
3.5  
7.0  
11  
-
-
-
3.5  
7.0  
11  
-
-
-
IOH  
High-Level Output Current  
mA  
(Vout = 2.5 V) 5.0  
(Vout = 4.6 V) 5.0  
(Vout = 9.5 V) 10  
(Vout = 13.5 V) 15  
- 2.5  
- 0.52  
- 1.3  
-
-
-
-
- 2.1  
- 0.44  
- 1.1  
-
-
-
-
- 1.7  
- 0.36  
- 0.9  
-
-
-
-
- 3.6  
- 3.0  
- 2.4  
IOL  
Low-Level Output Current  
Input Current - TE  
mA  
(Vout = 0.4 V) 5.0  
(Vout = 0.5 V) 10  
(Vout = 1.5 V) 15  
0.52  
1.3  
3.6  
-
-
-
0.44  
1.1  
3.0  
-
-
-
0.36  
0.9  
2.4  
-
-
-
Iin  
5.0  
10  
15  
-
-
-
-
-
-
3.0  
16  
35  
11  
60  
120  
-
-
-
-
-
-
µA  
(MC145026, Pull-Up Device)  
Iin  
Input Current  
RS (MC145026), Din (MC145027, MC145028)  
15  
-
± 0.3  
-
± 0.3  
-
± 1.0  
µA  
µA  
Iin  
Input Current  
A1 - A5, A6/D6 - A9/D9 (MC145026),  
A1 - A5 (MC145027),  
A1 - A9 (MC145028)  
5.0  
10  
15  
-
-
-
-
-
-
-
-
-
± 110  
± 500  
± 1000  
-
-
-
-
-
-
Cin  
IDD  
Input Capacitance (Vin = 0)  
-
-
-
-
7.5  
-
-
pF  
Quiescent Current - MC145026  
5.0  
10  
15  
-
-
-
-
-
-
-
-
-
0.1  
0.2  
0.3  
-
-
-
-
-
-
µA  
IDD  
Quiescent Current - MC145027, MC145028  
5.0  
10  
15  
-
-
-
-
-
-
-
-
-
50  
100  
150  
-
-
-
-
-
-
µA  
1
Also see next Electrical Characteristics table for 2.5 V specifications.  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
5
Electrical Specifications  
Table 2. Electrical Characteristics - MC145026 , MC145027, and MC145028 (continued)  
1
(Voltage Referenced to V  
)
SS  
Guaranteed Limit  
VDD  
V
Symbol  
Characteristic  
- 40°C  
25°C  
85°C  
Max  
Unit  
Min  
Max  
Min  
Max  
Min  
5.0  
10  
15  
-
-
-
-
-
-
-
-
-
200  
400  
600  
-
-
-
-
-
-
µA  
µA  
Idd  
Dynamic Supply Current - MC145026  
(fc = 20 kHz)  
5.0  
10  
15  
-
-
-
-
-
-
-
-
-
400  
800  
1200  
-
-
-
-
-
-
Idd  
Dynamic Supply Current - MC145027,  
MC145028 (fc = 20 kHz)  
1
Also see next Electrical Characteristics table for 2.5 V specifications.  
Table 3. Electrical Characteristics - MC145026 (Voltage Referenced to V  
)
SS  
Guaranteed Limit  
25°C  
Max  
VDD  
V
Symbol  
Characteristic  
- 40°C  
85°C  
Unit  
Min  
Max  
Min  
Min  
Max  
VOL  
VOH  
VIL  
VIH  
IOH  
IOL  
Iin  
Low-Level Output Voltage  
(Vin = 0 V or VDD  
)
2.5  
2.5  
-
0.05  
-
2.45  
-
0.05  
-
-
0.05  
V
V
High-Level Output Voltage (Vin = 0 V or VDD  
)
2.45  
-
2.45  
-
Low-Level Input Voltage (Vout = 0.5 V or 2.0 V) 2.5  
High-Level Input Voltage (Vout = 0.5 V or 2.0 V) 2.5  
-
0.3  
0.3  
-
-
0.3  
V
2.2  
-
-
-
-
-
-
-
2.2  
0.25  
0.2  
0.09  
-
2.2  
-
-
-
-
-
-
-
V
High-Level Output Current  
Low-Level Output Current  
(Vout = 1.25 V) 2.5  
(Vout = 0.4 V) 2.5  
0.28  
-
0.2  
mA  
mA  
µA  
µA  
µA  
µA  
0.22  
-
0.16  
Input Current (TE - Pull-Up Device)  
Input Current (A1-A5, A6/D6-A9/D9)  
Quiescent Current  
2.5  
2.5  
2.5  
2.5  
-
-
-
-
1.8  
± 25  
0.05  
40  
-
-
-
-
Iin  
IDD  
Idd  
-
Dynamic Supply Current (fc = 20 kHz)  
-
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
6
Freescale Semiconductor  
Electrical Specifications  
Table 4. Switching Characteristics - MC145026 , MC145027, and MC145028 (C = 50 pF, T = 25°C)  
1
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
Characteristic  
Output Transition Time  
VDD  
Unit  
Min  
Max  
tTLH, tTHL  
5, 9  
5.0  
10  
15  
-
-
-
200  
100  
80  
ns  
tr  
tf  
Din Rise Time - Decoders  
6
5.0  
10  
15  
-
-
-
15  
15  
15  
µs  
µs  
Din Fall Time - Decoders  
6
5.0  
10  
15  
-
-
-
15  
5.0  
4.0  
fosc  
Encoder Clock Frequency  
7
5.0  
10  
15  
0.001  
0.001  
0.001  
2.0  
5.0  
10  
MHz  
kHz  
ns  
f
Decoder Frequency - Referenced to Encoder Clock  
TE Pulse Width - Encoders  
13  
8
5.0  
10  
15  
1.0  
1.0  
1.0  
240  
410  
450  
tw  
5.0  
10  
15  
65  
30  
20  
-
-
-
1
Also see next Electrical Characteristics table for 2.5 V specifications.  
Table 5. Switching Characteristics - MC145026 (C = 50 pF, T = 25°C)  
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
Characteristic  
Output Transition Time  
VDD  
Unit  
Min  
Max  
tTLH, tTHL  
5, 9  
7
2.5  
2.5  
2.5  
-
450  
250  
-
ns  
kHz  
µs  
fosc  
tw  
Encoder Clock Frequency  
TE Pulse Width  
1.0  
1.5  
8
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
7
Operating Characteristics  
tf  
tf  
90%  
ANY OUTPUT  
VDD  
VSS  
90%  
10%  
Din  
10%  
tTLH  
tTHL  
Figure 5. Output Transition Time  
Figure 6. D Rise and Fall Time  
in  
t/fOSC  
VDD  
TE  
50%  
tW  
VSS  
50%  
RTC  
Figure 7. Encoder Clock Frequency  
Figure 8. TE Pulse Width  
TEST POINT  
OUTPUT  
DEVICE  
UNDER  
TEST  
CL*  
* Includes all probe and fixture capacitance.  
Figure 9. Test Circuit  
3 Operating Characteristics  
3.1  
MC145026  
The encoder serially transmits trinary data as defined by the state of the A1 - A5 and A6/D6 - A9/D9 input  
pins. These pins may be in either of three states (low, high, or open) allowing 19,683 possible codes. The  
transmit sequence is initiated by a low level on the TE input pin. Upon power-up, the MC145026 can  
continuously transmit as long as TE remains low (also, the device can transmit two-word sequences by  
pulsing TE low). However, no MC145026 application should be designed to rely upon the first data word  
transmitted immediately after power-up because this word may be invalid. Between the two data words,  
no signal is sent for three data periods (see Figure 11).  
Each transmitted trinary digit is encoded into pulses (see Figure 12). A logic 0 (low) is encoded as two  
consecutive short pulses, a logic 1 (high) as two consecutive long pulses, and an open (high impedance)  
as a long pulse followed by a short pulse. The input state is determined by using a weak “output” device  
to try to force each input high then low. If only a high state results from the two tests, the input is assumed  
to be hardwired to V . If only a low state is obtained, the input is assumed to be hardwired to V . If both  
DD  
SS  
a high and a low can be forced at an input, an open is assumed and is encoded as such. The “high” and  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
8
Freescale Semiconductor  
Pin Descriptions  
“low” levels are 70% and 30% of the supply voltage as shown in the Electrical Characteristics table. The  
weak “output” device sinks/sources up to 110 µA at a 5 V supply level, 500 µA at 10 V, and 1 mA at 15 V.  
The TE input has an internal pull-up device so that a simple switch may be used to force the input low.  
While TE is high, the encoder is completely disabled, the oscillator is inhibited, and the current drain is  
reduced to quiescent current. When TE is brought low, the oscillator is started and the transmit sequence  
begins. The inputs are then sequentially selected, and determinations are made as to the input logic states.  
This information is serially transmitted via the D pin.  
out  
3.2  
MC145027  
This decoder receives the serial data from the encoder and outputs the data, if it is valid. The transmitted  
data, consisting of two identical words, is examined bit by bit during reception. The first five trinary digits  
are assumed to be the address. If the received address matches the local address, the next four (data) bits  
are internally stored, but are not transferred to the output data latch. As the second encoded word is  
received, the address must again match. If a match occurs, the new data bits are checked against the  
previously stored data bits. If the two nibbles of data (four bits each) match, the data is transferred to the  
output data latch by VT and remains until new data replaces it. At the same time, the VT output pin is  
brought high and remains high until an error is received or until no input signal is received for four data  
periods (see Figure 11).  
Although the address information may be encoded in trinary, the data information must be either a 1 or 0.  
A trinary (open) data line is decoded as a logic 1.  
3.3  
MC145028  
This decoder operates in the same manner as the MC145027 except that nine address lines are used and  
no data output is available. The VT output is used to indicate that a valid address has been received. For  
transmission security, two identical transmitted words must be consecutively received before a VT output  
signal is issued.  
The MC145028 allows 19,683 addresses when trinary levels are used. 512 addresses are possible when  
binary levels are used.  
4 Pin Descriptions  
4.1  
MC145026 Encoder  
A1 - A5, A6/D6 - A9/D9  
Address, Address/Data Inputs (Pins 1 - 7, 9, and 10)  
These address/data inputs are encoded and the data is sent serially from the encoder via the D pin.  
out  
R , C , R  
TC  
S
TC  
(Pins 11, 12, and 13)  
These pins are part of the oscillator section of the encoder (see Figure 10).  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
9
Pin Descriptions  
If an external signal source is used instead of the internal oscillator, it should be connected to the R input  
S
and the R and C pins should be left open.  
TC  
TC  
TE  
Transmit Enable (Pin 14)  
This active-low transmit enable input initiates transmission when forced low. An internal pull-up device  
keeps this input normally high. The pull-up current is specified in the Electrical Characteristics table.  
D
out  
Data Out (Pin 15)  
This is the output of the encoder that serially presents the encoded data word.  
V
SS  
Negative Power Supply (Pin 8)  
The most-negative supply potential. This pin is usually ground.  
V
DD  
Positive Power Supply (Pin 16)  
The most-positive power supply pin.  
4.2  
MC145027 and MC145028 Decoders  
A1 - A5, A1 - A9  
Address Inputs (Pins 1 - 5)-MC145027,  
Address Inputs (Pins 1 - 5, 15, 14, 13, 12)-MC145028  
These are the local address inputs. The states of these pins must match the appropriate encoder inputs for  
the VT pin to go high. The local address may be encoded with trinary or binary data.  
D6 - D9  
Data Outputs (Pins 15, 14, 13, 12)-MC145027 Only  
These outputs present the binary information that is on encoder inputs A6/D6 through A9/D9. Only binary  
data is acknowledged; a trinary open at the MC145026 encoder is decoded as a high level (logic 1).  
D
in  
Data In (Pin 9)  
This pin is the serial data input to the decoder. The input voltage must be at CMOS logic levels. The signal  
source driving this pin must be dc coupled.  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
10  
Freescale Semiconductor  
Pin Descriptions  
R , C  
1
1
Resistor 1, Capacitor 1 (Pins 6, 7)  
As shown in Figure 3 and Figure 4, these pins accept a resistor and capacitor that are used to determine  
whether a narrow pulse or wide pulse has been received. The time constant R × C should be set to  
1
1
1.72 encoder clock periods:  
R C = 3.95 R C  
TC TC  
1
1
R /C  
2
2
Resistor 2/Capacitor 2 (Pin 10)  
As shown in Figure 3 and Figure 4, this pin accepts a resistor and capacitor that are used to detect both the  
end of a received word and the end of a transmission. The time constant R x C should be 33.5 encoder  
2
2
clock periods (four data periods per Figure 12): R C = 77 R C . This time constant is used to  
2
2
TC TC  
determine whether the D pin has remained low for four data periods (end of transmission). A separate  
in  
on-chip comparator looks at the voltage-equivalent two data periods (0.4 R C ) to detect the dead time  
2
2
between received words within a transmission.  
VT  
Valid Transmission Output (Pin 11)  
This valid transmission output goes high after the second word of an encoding sequence when the  
following conditions are satisfied:  
1. the received addresses of both words match the local decoder address, and  
2. the received data bits of both words match.  
VT remains high until either a mismatch is received or no input signal is received for four data periods.  
V
SS  
Negative Power Supply (Pin 8)  
The most-negative supply potential. This pin is usually ground.  
V
DD  
Positive Power Supply (Pin 16)  
The most-positive power supply pin.  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
11  
Pin Descriptions  
RS  
CTC  
RTC  
11  
12  
13  
INTERNAL  
ENABLE  
This oscillator operates at a frequency determined by the  
external RC network; i.e.,  
1
(Hz)  
f ≈  
The value for RS should be chosen to be 2 times RTC. This range ensures that  
current through RS is insignificant compared to current through RTC. The upper  
limit for RS must ensure that RS x 5 pF (input capacitance) is small compared to  
2.3 RTC CTC  
for 1 kHz f 400 kHz  
RTC x CTC  
.
where: CTC= CTC + Clayout + 12 pF  
RS 2 RTC  
For frequencies outside the indicated range, the formula is less accurate. The  
minimum recommended oscillation frequency of this circuit is 1 kHz. Susceptibility  
to externally induced noise signals may occur for frequencies below 1 kHz and/or  
when resistors utilized are greater than 1 M.  
RS 20 k  
RTC 10 k  
400 pF < CTC < 15 µF  
Figure 10. Encoder Oscillator Information  
ENCODER  
PWmin  
2 WORD  
TRANSMISSION  
TE  
CONTINUOUS  
TRANSMISSION  
ENCODER  
OSCILLATOR  
(PIN 12)  
1ST  
9TH  
1ST  
9TH  
DIGIT  
DIGIT  
DIGIT  
DIGIT  
Dout  
(PIN 15)  
HIGH  
OPEN  
LOW  
1ST WORD  
2ND WORD  
ENCODING SEQUENCE  
1.1 (R2C2)  
DECODER  
VT  
(PIN 11)  
DATA OUTPUTS  
Figure 11. Timing Diagram  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
12  
Freescale Semiconductor  
Pin Descriptions  
ENCODER  
OSCILLATOR  
(PIN 12)  
ENCODED  
“ONE”  
Dout  
(PIN 15)  
ENCODED  
“ZERO”  
ENCODED  
“OPEN”  
DATA PERIOD  
Figure 12. Encoder Data Waveforms  
500  
400  
V
DD = 15 V  
VDD = 10 V  
300  
200  
100  
VDD = 5 V  
10  
20  
30  
40  
50  
Clayout (pF) ON PINS 1 - 5 (MC145027);  
PINS 1 - 5 AND 12 - 15 (MC145028)  
Figure 13. f  
vs C  
- Decoders Only  
layout  
max  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
13  
Pin Descriptions  
HAS THE  
TRANSMISSION  
BEGUN?  
NO  
YES  
DOES  
THE 5-BIT  
ADDRESS MATCH  
THE ADDRESS  
PINS?  
DISABLE VT  
ON THE 1ST  
ADDRESS MISMATCH  
NO  
YES  
STORE  
THE  
4-BIT  
DATA  
DOES  
THIS DATA  
MATCH THE  
PREVIOUSLY  
STORED  
DISABLE VT  
ON THE 1ST  
DATA MISMATCH  
NO  
NO  
DATA?  
YES  
IS THIS  
AT LEAST THE  
2ND CONSECUTIVE  
MATCH SINCE VT  
DISABLE?  
YES  
LATCH DATA  
ONTO OUTPUT  
PINS AND  
ACTIVATE VT  
HAVE  
4-BIT TIMES  
PASSED?  
YES  
DISABLE  
VT  
NO  
HAS  
A NEW  
NO  
TRANSMISSION  
BEGUN?  
YES  
Figure 14. MC145027 Flowchart  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
14  
Freescale Semiconductor  
Pin Descriptions  
HAS THE  
TRANSMISSION  
BEGUN?  
NO  
YES  
DOES  
THE ADDRESS  
MATCH THE  
ADDRESS  
PINS?  
DISABLE VT ON THE  
1ST ADDRESS  
MISMATCH AND IGNORE  
THE REST OF  
NO  
THIS WORD  
YES  
IS THIS  
AT LEAST THE  
2ND CONSECUTIVE  
MATCH SINCE VT  
DISABLE?  
NO  
YES  
ACTIVATE VT  
HAVE  
4-BIT TIMES  
PASSED?  
YES  
DISABLE VT  
NO  
HAS A  
NEW TRANSMISSION  
BEGUN?  
NO  
YES  
Figure 15. MC145028 Flowchart  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
15  
MC145027 and MC145028 Timing  
5 MC145027 and MC145028 Timing  
To verify the MC145027 or MC145028 timing, check the waveforms on C1 (Pin 7) and R2/C2 (Pin 10) as  
compared to the incoming data waveform on D (Pin 9).  
in  
The R-C decay seen on C1 discharges down to 1/3 V before being reset to V . This point of reset  
DD  
DD  
(labelled “DOS” in Figure 16) is the point in time where the decision is made whether the data seen on D  
in  
is a 1 or 0. DOS should not be too close to the D data edges or intermittent operation may occur.  
in  
The other timing to be checked on the MC145027 and MC145028 is on R2/C2 (see Figure 17). The R-C  
decay is continually reset to V as data is being transmitted. Only between words and after the  
DD  
end-of-transmission (EOT) does R2/C2 decay significantly from V . R2/C2 can be used to identify the  
DD  
internal end-of-word (EOW) timing edge which is generated when R2/C2 decays to 2/3 V . The internal  
DD  
EOT timing edge occurs when R2/C2 decays to 1/3 V . When the waveform is being observed, the R-C  
DD  
decay should go down between the 2/3 and 1/3 V levels, but not too close to either level before data  
DD  
transmission on D resumes.  
in  
Verification of the timing described above should ensure a good match between the MC145026 transmitter  
and the MC145027 and MC145028 receivers.  
VDD  
Din  
0 V  
VDD  
2/3  
C1  
1/3  
0 V  
DOS  
DOS  
Figure 16. R-C Decay on Pin 7 (C1)  
EOW  
VDD  
2/3  
1/3  
0 V  
R2/C2  
EOT  
Figure 17. R-C Decay on Pin 10 (R2/C2)  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
16  
Freescale Semiconductor  
MC145027 and MC145028 Timing  
VDD  
VDD  
VDD  
TE  
14  
VDD  
A1  
0.1 µF  
0.1 µF  
A1  
16  
16  
5
A2  
A3  
A4  
A5  
A2  
1
Din  
Dout  
9
6
15  
1
2
3
TRINARY  
ADDRESSES  
5
2
A3  
A4  
A5  
TRINARY  
ADDRESSES  
3
4
5
R1  
C1  
4
5
6
7
9
7
MC145027  
MC145026  
RTC  
13  
12  
11  
15  
14  
13  
12  
11  
D6  
D7  
D8  
D9  
D6  
D7  
D8  
D9  
CTC  
4-BIT  
BINARY  
DATA  
10  
10  
RS  
VT  
R2  
8
C2  
8
CTC= CTC + Clayout + 12 pF  
100 pF CTC 15 µF  
RTC 10 k; RS 2 RTC  
R1 10 kΩ  
1
REPEAT OF ABOVE  
REPEAT OF ABOVE  
fosc  
=
2.3 RTCCTC  
R1C1 = 3.95 RTCCTC  
R2C2 = 77 RTCCTC  
C1 400 pF  
R2 100 kΩ  
C2 700 pF  
Example R/C Values (All Resistors and Capacitors are ± 5%)  
(CTC= CTC + 20 pF)  
fosc (kHz)  
RTC  
CTC′  
RS  
R1  
C1  
R2  
C2  
362  
181  
10 k  
10 k  
10 k  
10 k  
10 k  
10 k  
50 k  
120 pF  
240 pF  
490 pF  
1020 pF  
2020 pF  
5100 pF  
5100 pF  
20 k  
20 k  
20 k  
20 k  
20 k  
20 k  
100 k  
10 k  
10 k  
10 k  
10 k  
10 k  
10 k  
50 k  
470 pF  
910 pF  
100 k  
100 k  
100 k  
100 k  
100 k  
200 k  
200 k  
910 pF  
1800 pF  
3900 pF  
7500 pF  
0.015 µF  
0.02 µF  
0.1 µF  
88.7  
42.6  
21.5  
8.53  
1.71  
2000 pF  
3900 pF  
8200 pF  
0.02 µF  
0.02 µF  
Figure 18. Typical Application  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
17  
Package Dimensions  
6 Package Dimensions  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
-A-  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
B
S
8
INCHES  
MILLIMETERS  
DIM MIN  
MAX MIN MAX  
0.770 18.80 19.55  
F
A
B
C
D
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
0.270  
0.175  
0.021  
0.70  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
SEATING  
PLANE  
-T-  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
M
K
0.008  
0.015  
0.130  
0.305  
10˚  
0.21  
0.38  
3.30  
7.74  
10˚  
H
J
0.110  
0.295  
0˚  
2.80  
7.50  
0˚  
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T
A
Figure 19. Outline Dimensions for P SUFFIX  
PLASTIC DIP (DUAL IN-LINE PACKAGE)  
(Case Outline 648-08, Issue R)  
M
0.25  
B
1.75  
A
6.2  
1.35  
0.25  
0.10  
8X 5.8  
PIN'S  
NUMBER  
0.49  
0.35  
0.25  
16X  
6
1
16  
M
T A B  
14X  
1.27  
PIN 1 INDEX  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
3. DATUMS A AND B TO BE DETERMINED AT THE  
PLANE WHERE THE BOTTOM OF THE LEADS  
EXIT THE PLASTIC BODY.  
10.0  
9.8  
4
A
A
4. THIS DIMENSION DOES NOT INCLUDE MOLD  
FLASH, PROTRUSION OR GATE BURRS. MOLD  
FLASH, PROTRUSION OR GATE BURRS SHALL  
NOT EXCEED 0.15mm PER SIDE.THIS  
DIMENSION IS DETERMINED AT THE PLANE  
WHERE THE BOTTOM OF THE LEADS EXIT  
THE PLASTIC BODY.  
5. THIS DIMENSION DOES NOT INCLUDE  
INTER-LEAD FLASH OR PROTRUSIONS.  
INTER-LEAD FLASH AND PROTRUSIONS  
SHALL NOT EXCEED 0.25mm PER SIDE.THIS  
DIMENSION IS DETERMINED AT THE PLANE  
WHERE THE BOTTOM OF THE LEADS EXIT  
THE PLASTIC BODY.  
8
9
SEATING  
T
16X  
PLANE  
4.0  
B
3.8  
0.1 T  
5
6. THIS DIMENSION DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL NOT CAUSE  
THE LEAD WIDTH TO EXCEED 0.62mm.  
0.50  
0.25 X45˚  
0.25  
0.19  
1.25  
0.40  
7˚  
0˚  
SECTION A-A  
Figure 20. Outline Dimensions for D SUFFIX  
SOG (SMALL OUTLINE GULL-WING) PACKAGE  
(Case Outline 751B-05, Issue K)  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
18  
Freescale Semiconductor  
Package Dimensions  
M
0.25  
B
2.65  
2.35  
A
0.25  
0.10  
10.55  
10.05  
8X  
PIN'S  
NUMBER  
0.49  
16X 0.35  
0.25  
6
M
16  
T A B  
1
PIN 1 INDEX  
14X  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
10.45  
10.15  
1.27  
4
A
2. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
3. DATUMS A AND B TO BE DETERMINED AT THE  
PLANE WHERE THE BOTTOM OF THE LEADS  
EXIT THE PLASTIC BODY.  
A
8
9
4. THIS DIMENSION DOES NOT INCLUDE MOLD  
FLASH, PROTRUSION OR GATE BURRS. MOLD  
FLASH, PROTRUSION OR GATE BURRS SHALL  
NOT EXCEED 0.15mm PER SIDE. THIS  
DIMENSION IS DETERMINED AT THE PLANE  
WHERE THE BOTTOM OF THE LEADS EXIT  
THE PLASTIC BODY.  
5. THIS DIMENSION DOES NOT INCLUDE  
INTER-LEAD FLASH OR PROTRUSIONS.  
INTER-LEAD FLASH AND PROTRUSIONS  
SHALL NOT EXCEED 0.25mm PER SIDE. THIS  
DIMENSION IS DETERMINED AT THE PLANE  
WHERE THE BOTTOM OF THE LEADS EXIT  
THE PLASTIC BODY.  
SEATING  
PLANE  
T
16X  
7.6  
7.4  
B
0.1 T  
5
0.75  
˚
0.25 X45  
0.32  
0.23  
6. THIS DIMENSION DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL NOT CAUSE  
THE LEAD WIDTH TO EXCEED 0.62mm.  
1.0  
0.4  
7˚  
0˚  
SECTION A-A  
Figure 21. Outline Dimensions for DW SUFFIX  
SOG (SMALL OUTLINE GULL-WING) PACKAGE  
(Case Outline 751G-04, Issue D)  
MC145026, MC145027, MC145028 Technical Data, Rev. 4  
Freescale Semiconductor  
19  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC145026/D  
Rev. 4  
1/2005  

相关型号:

MC145028

Encoder and Decoder Pairs
MOTOROLA

MC145028

Encoder and Decoder Pairs CMOS
FREESCALE

MC145028D

Encoder and Decoder Pairs CMOS
MOTOROLA

MC145028DW

Encoder and Decoder Pairs
MOTOROLA

MC145028DW

Encoder and Decoder Pairs
LANSDALE

MC145028DW

Encoder and Decoder Pairs CMOS
FREESCALE

MC145028DW

INFRARED, RECEIVER IC, PDSO16, SOG-16
NXP

MC145028DWR2

SPECIALTY CONSUMER CIRCUIT, PDSO16, SOG-16
NXP

MC145028DWR2

SPECIALTY CONSUMER CIRCUIT, PDSO16, SOG-16
MOTOROLA

MC145028P

Encoder and Decoder Pairs
MOTOROLA

MC145028P

Encoder and Decoder Pairs
LANSDALE

MC145028P

Encoder and Decoder Pairs CMOS
FREESCALE