MC145151DW2 [FREESCALE]

PLL Frequency Synthesizers (CMOS); PLL频率合成器( CMOS )
MC145151DW2
型号: MC145151DW2
厂家: Freescale    Freescale
描述:

PLL Frequency Synthesizers (CMOS)
PLL频率合成器( CMOS )

光电二极管
文件: 总24页 (文件大小:590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC145151-2/D  
Rev. 5, 12/2004  
Freescale Semiconductor  
Technical Data  
MC145151-2  
MC145152-2  
28  
28  
1
1
MC145151-2 and  
MC145152-2  
PLL Frequency Synthesizers  
(CMOS)  
Package Information  
DW Suffix  
SOG Package  
Case 751F  
P Suffix  
Plastic DIP  
Case 710  
Ordering Information  
Device  
Package  
MC145151P2  
MC145151DW2  
MC145152P2  
MC145152DW2  
Plastic DIP  
SOG Package  
Plastic DIP  
The devices described in this document are typically  
used as low-power, phase-locked loop frequency  
synthesizers. When combined with an external low-pass  
filter and voltage-controlled oscillator, these devices can  
provide all the remaining functions for a PLL frequency  
synthesizer operating up to the device's frequency limit.  
For higher VCO frequency operation, a down mixer or a  
prescaler can be used between the VCO and the  
synthesizer IC.  
SOG Package  
Contents  
1 MC145151-2 Parallel-Input (Interfaces with  
Single-Modulus Prescalers) . . . . . . . . . . . . . 2  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . 3  
1.3 Typical Applications . . . . . . . . . . . . . . . . . . . 6  
2 MC145152-2 Parallel-Input (Interfaces with  
Dual-Modulus Prescalers) . . . . . . . . . . . . . . . 7  
2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . 8  
2.3 Typical Applications . . . . . . . . . . . . . . . . . . 10  
These frequency synthesizer chips can be found in the  
following and other applications:  
CATV  
TV Tuning  
AM/FM Radios  
Two-Way Radios  
Scanning Receivers  
Amateur Radio  
3 MC145151-2 and MC145152-2  
Electrical Characteristics . . . . . . . . . . . . . . 12  
4 Design Considerations . . . . . . . . . . . . . . . . 18  
OSC  
÷ R  
÷ N  
4.1 Phase-Locked Loop — Low-Pass Filter  
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
CONTROL  
LOGIC  
φ
4.2 Crystal Oscillator Considerations . . . . . . . . 19  
4.3 Dual-Modulus Prescaling . . . . . . . . . . . . . . 21  
5 Package Dimensions . . . . . . . . . . . . . . . . . . 23  
÷ A  
÷ P/P + 1  
VCO  
OUTPUT FREQUENCY  
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its  
products.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
MC145151-2 Parallel-Input (Interfaces with Single-Modulus Prescalers)  
1 MC145151-2 Parallel-Input (Interfaces with  
Single-Modulus Prescalers)  
The MC145151-2 is programmed by 14 parallel-input data lines for the N counter and three input lines for  
the R counter. The device features consist of a reference oscillator, selectable-reference divider,  
digital-phase detector, and 14-bit programmable divide-by-N counter.  
The MC145151-2 is an improved-performance drop-in replacement for the MC145151-1. The power  
consumption has decreased and ESD and latch-up performance have improved.  
1.1  
Features  
Operating Temperature Range: - 40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
On- or Off-Chip Reference Oscillator Operation  
Lock Detect Signal  
÷ N Counter Output Available  
Single Modulus/Parallel Programming  
8 User-Selectable ÷ R Values: 8, 128, 256, 512, 1024, 2048, 2410, 8192  
÷ N Range = 3 to 16383  
“Linearized” Digital Phase Detector Enhances Transfer Function Linearity  
Two Error Signal Options: Single-Ended (Three-State) or Double-Ended  
Chip Complexity: 8000 FETs or 2000 Equivalent Gates  
1
2
3
4
fin  
28 LD  
VSS  
27 OSCin  
VDD  
26 OSCout  
25 N11  
24 N10  
23 N13  
22 N12  
21 T/R  
20 N9  
PDout  
RA0 5  
RA1 6  
RA2  
φR  
7
8
9
φV  
fV 10  
N0 11  
N1 12  
19 N8  
18 N7  
17 N6  
N2 13  
N3 14  
16 N5  
15 N4  
Figure 1. MC145151-2 Pin Assignment  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
2
Freescale Semiconductor  
MC145151-2 Parallel-Input (Interfaces with Single-Modulus Prescalers)  
RA2  
RA1  
RA0  
14 x 8 ROM REFERENCE DECODER  
OSCout  
OSCin  
LOCK  
DETECT  
14  
LD  
14-BIT ÷ R COUNTER  
PHASE  
DETECTOR  
A
PDout  
fin  
14-BIT ÷ N COUNTER  
VDD  
PHASE  
DETECTOR  
B
φV  
φR  
14  
TRANSMIT OFFSET ADDER  
T/R  
fV  
N13  
N11 N9  
N7 N6  
N4  
N2  
N0  
NOTE: N0 - N13 inputs and inputs RA0, RA1, and RA2 have pull-up resistors that are not shown.  
Figure 2. MC145151-2 Block Diagram  
1.2  
Pin Descriptions  
1.2.1  
Input Pins  
f
in  
Frequency Input (Pin 1)  
Input to the ÷N portion of the synthesizer. f is typically derived from loop VCO and is ac coupled into  
in  
the device. For larger amplitude signals (standard CMOS logic levels) dc coupling may be used.  
RA0 - RA2  
Reference Address Inputs (Pins 5, 6, 7)  
These three inputs establish a code defining one of eight possible divide values for the total reference  
divider, as defined by the table below.  
Pull-up resistors ensure that inputs left open remain at a logic 1 and require only a SPST switch to alter  
data to the zero state.  
Reference Address Code  
Total  
Divide  
Value  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
128  
256  
512  
1024  
2048  
2410  
8192  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
3
MC145151-2 Parallel-Input (Interfaces with Single-Modulus Prescalers)  
N0 - N11  
N Counter Programming Inputs (Pins 11 - 20, 22 - 25)  
These inputs provide the data that is preset into the ÷N counter when it reaches the count of zero. N0 is  
the least significant and N13 is the most significant. Pull-up resistors ensure that inputs left open remain  
at a logic 1 and require only an SPST switch to alter data to the zero state.  
T/R  
Transmit/Receive Offset Adder Input (Pin 21)  
This input controls the offset added to the data provided at the N inputs. This is normally used for offsetting  
the VCO frequency by an amount equal to the IF frequency of the transceiver. This offset is fixed at 856  
when T/R is low and gives no offset when T/R is high. A pull-up resistor ensures that no connection will  
appear as a logic 1 causing no offset addition.  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 27, 26)  
These pins form an on-chip reference oscillator when connected to terminals of an external parallel  
resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSC to  
in  
ground and OSC to ground. OSC may also serve as the input for an externally-generated reference  
out  
in  
signal. This signal is typically ac coupled to OSC , but for larger amplitude signals (standard CMOS logic  
in  
levels) dc coupling may also be used. In the external reference mode, no connection is required to OSC .  
out  
1.2.2  
Output Pins  
PD  
out  
Phase Detector A Output (Pin 4)  
Three-state output of phase detector for use as loop-error signal. Double-ended outputs are also available  
for this purpose (see φ and φ ).  
V
R
Frequency f > f or f Leading: Negative Pulses  
V
R
V
Frequency f < f or f Lagging: Positive Pulses  
V
R
V
Frequency f = f and Phase Coincidence: High-Impedance State  
V
R
φ , φ  
R
V
Phase Detector B Outputs (Pins 8, 9)  
These phase detector outputs can be combined externally for a loop-error signal. A single-ended output is  
also available for this purpose (see PD ).  
out  
If frequency f is greater than f or if the phase of f is leading, then error information is provided by φ  
V
V
R
V
pulsing low. φ remains essentially high.  
R
If the frequency f is less than f or if the phase of f is lagging, then error information is provided by φ  
V
R
V
R
pulsing low. φ remains essentially high.  
V
If the frequency of f = f and both are in phase, then both φ and φ remain high except for a small  
V
R
V
R
minimum time period when both pulse low in phase.  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
4
Freescale Semiconductor  
MC145151-2 Parallel-Input (Interfaces with Single-Modulus Prescalers)  
f
V
N Counter Output (Pin 10)  
This is the buffered output of the ÷ N counter that is internally connected to the phase detector input. With  
this output available, the ÷ N counter can be used independently.  
LD  
Lock Detector Output (Pin 28)  
Essentially a high level when loop is locked (f , f of same phase and frequency). Pulses low when loop  
R
V
is out of lock.  
1.2.3  
Power Supply  
V
DD  
Positive Power Supply (Pin 3)  
The positive power supply potential. This pin may range from + 3 to + 9 V with respect to V .  
SS  
V
SS  
Negative Power Supply (Pin 2)  
The most negative supply potential. This pin is usually ground.  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
5
MC145151-2 Parallel-Input (Interfaces with Single-Modulus Prescalers)  
1.3  
Typical Applications  
2.048 MHz  
NC  
NC  
OSCin  
OSCout  
fin  
RA2 RA1  
RA0  
PDout  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
MC145151-2  
N13 N12 N11 N10  
N9 N8 N7 N6 N5 N4 N3 N2 N1 N0  
5 - 5.5 MHz  
0 1 1 1 0 0 0 1 0 0 0 = 5 MHz  
1 0 1 0 1 1 1 1 1 0 0 = 5.5 MHz  
Figure 3. 5 MHz to 5.5 MHz Local Oscillator Channel Spacing = 1 kHz  
LOCK DETECT SIGNAL  
TRANSMIT: 440.0 - 470.0 MHz  
RECEIVE: 418.6 - 448.6 MHz  
(25 kHz STEPS)  
“1"  
“1"  
“0"  
CHOICE OF  
DETECTOR  
ERROR  
SIGNALS  
OSCoutRA2  
RA1  
RA0  
LD  
fV  
PDout  
OSCin  
VDD  
VSS  
LOOP  
FILTER  
φR  
fV  
VCO  
X6  
+ V  
MC145151-2  
REF. OSC.  
10.0417 MHz  
(ON-CHIP OSC.  
OPTIONAL)  
fin  
T: 73.3333 - 78.3333 MHz  
R: 69.7667 - 74.7667 MHz  
T/R  
T: 13.0833 - 18.0833 MHz  
R: 9.5167 - 14.5167 MHz  
DOWN  
“0" “0"1"  
MIXER  
CHANNEL PROGRAMMING  
RECEIVE  
÷ N = 2284 TO 3484  
TRANSMIT  
(ADDS 856 TO  
÷ N VALUE)  
X6  
60.2500 MHz  
NOTES:  
1. fR = 4.1667 kHz; ÷ R = 2410; 21.4 MHz low side injection during receive.  
2. Frequency values shown are for the 440 - 470 MHz band. Similar implementation applies to the 406 - 440 MHz band.  
For 470 - 512 MHz, consider reference oscillator frequency X9 for mixer injection signal (90.3750 MHz).  
Figure 4. Synthesizer for Land Mobile Radio UHF Bands  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
6
Freescale Semiconductor  
MC145152-2 Parallel-Input (Interfaces with Dual-Modulus Prescalers)  
2 MC145152-2 Parallel-Input (Interfaces with  
Dual-Modulus Prescalers)  
The MC145152-2 is programmed by sixteen parallel inputs for the N and A counters and three input lines  
for the R counter. The device features consist of a reference oscillator, selectable-reference divider,  
two-output phase detector, 10-bit programmable divide-by-N counter, and 6-bit programmable  
divide-by-A counter.  
The MC145152-2 is an improved-performance drop-in replacement for the MC145152-1. Power  
consumption has decreased and ESD and latch-up performance have improved.  
2.1  
Features  
Operating Temperature Range: -40 to 85°C  
Low Power Consumption Through Use of CMOS Technology  
3.0 to 9.0 V Supply Range  
On- or Off-Chip Reference Oscillator Operation  
Lock Detect Signal  
Dual Modulus/Parallel Programming  
8 User-Selectable ÷ R Values: 8, 64, 128, 256, 512, 1024, 1160, 2048  
÷ N Range = 3 to 1023, ÷ A Range = 0 to 63  
Chip Complexity: 8000 FETs or 2000 Equivalent Gates  
1 •  
fin  
28 LD  
VSS  
2
27 OSCin  
VDD  
3
26 OSCout  
25 A4  
24 A3  
23 A0  
22 A2  
21 A1  
20 N9  
RA0 4  
RA1 5  
RA2 6  
φR  
φV  
7
8
9
MC  
A5 10  
N0 11  
N1 12  
19 N8  
18 N7  
17 N6  
N2 13  
N3 14  
16 N5  
15 N4  
Figure 5. MC145152-2 Pin Assignment  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
7
MC145152-2 Parallel-Input (Interfaces with Dual-Modulus Prescalers)  
RA2  
RA1  
RA0  
12 x 8 ROM REFERENCE DECODER  
12  
OSCout  
OSCin  
LOCK  
DETECT  
LD  
12-BIT ÷ R COUNTER  
MC  
φV  
φR  
CONTROL  
LOGIC  
PHASE  
DETECTOR  
fin  
6-BIT ÷ A COUNTER  
10-BIT ÷ N COUNTER  
A5  
A3 A2  
A0  
N0  
N2  
N4 N5  
N7  
N9  
NOTE: N0 - N9, A0 - A5, and RA0 - RA2 have pull-up resistors that are not shown.  
Figure 6. MC145152-2 Block Diagram  
2.2  
Pin Descriptions  
Input Pins  
2.2.1  
f
in  
Frequency Input (Pin 1)  
Input to the positive edge triggered ÷ N and ÷ A counters. f is typically derived from a dual-modulus  
in  
prescaler and is AC coupled into the device. For larger amplitude signals (standard CMOS logic levels)  
DC coupling may be used.  
RA0, RA1, RA2  
Reference Address Inputs (Pins 4, 5, 6)  
These three inputs establish a code defining one of eight possible divide values for the total reference  
divider. The total reference divide values are as follows:  
Reference Address Code  
Total  
Divide  
Value  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
64  
128  
256  
512  
1024  
1160  
2048  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
8
Freescale Semiconductor  
MC145152-2 Parallel-Input (Interfaces with Dual-Modulus Prescalers)  
N0 - N9  
N Counter Programming Inputs (Pins 11 - 20)  
The N inputs provide the data that is preset into the ÷ N counter when it reaches the count of 0. N0 is the  
least significant digit and N9 is the most significant. Pull-up resistors ensure that inputs left open remain  
at a logic 1 and require only a SPST switch to alter data to the zero state.  
A0 - A5  
A Counter Programming Inputs  
(Pins 23, 21, 22, 24, 25, 10)  
The A inputs define the number of clock cycles of f that require a logic 0 on the MC output (see  
in  
Section 4.3, “Dual-Modulus Prescaling,” on page 21). The A inputs all have internal pull-up resistors that  
ensure that inputs left open will remain at a logic 1.  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 27, 26)  
These pins form an on-chip reference oscillator when connected to terminals of an external parallel  
resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSC to  
in  
ground and OSC to ground. OSC may also serve as the input for an externally-generated reference  
out  
in  
signal. This signal is typically ac coupled to OSC , but for larger amplitude signals (standard CMOS logic  
in  
levels) dc coupling may also be used. In the external reference mode, no connection is required to OSC .  
out  
2.2.2  
Output Pins  
φ , φ  
R
V
Phase Detector B Outputs (Pins 7, 8)  
These phase detector outputs can be combined externally for a loop-error signal.  
If the frequency f is greater than f or if the phase of f is leading, then error information is provided by  
V
R
V
φ pulsing low. φ remains essentially high.  
V
R
If the frequency f is less than f or if the phase of f is lagging, then error information is provided by φ  
R
V
R
V
pulsing low. φ remains essentially high.  
V
If the frequency of f = f and both are in phase, then both φ and φ remain high except for a small  
V
R
V
R
minimum time period when both pulse low in phase.  
MC  
Dual-Modulus Prescale Control Output (Pin 9)  
Signal generated by the on-chip control logic circuitry for controlling an external dual-modulus prescaler.  
The MC level will be low at the beginning of a count cycle and will remain low until the ÷ A counter has  
counted down from its programmed value. At this time, MC goes high and remains high until the ÷ N  
counter has counted the rest of the way down from its programmed value (N - A additional counts since  
both ÷ N and ÷ A are counting down during the first portion of the cycle). MC is then set back low, the  
counters preset to their respective programmed values, and the above sequence repeated. This provides for  
a total programmable divide value (N )= NP+A where P and P + 1 represent the dual-modulus prescaler  
T
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
9
MC145152-2 Parallel-Input (Interfaces with Dual-Modulus Prescalers)  
divide values respectively for high and low MC levels, N the number programmed into the ÷ N counter,  
and A the number programmed into the ÷ A counter.  
LD  
Lock Detector Output (Pin 28)  
Essentially a high level when loop is locked (f , f of same phase and frequency). Pulses low when loop  
R
V
is out of lock.  
2.2.3  
Power Supply  
V
DD  
Positive Power Supply (Pin 3)  
The positive power supply potential. This pin may range from + 3 to + 9 V with respect to V .  
SS  
V
SS  
Negative Power Supply (Pin 2)  
The most negative supply potential. This pin is usually ground.  
2.3  
Typical Applications  
NO CONNECTS  
“1" “1" “1"  
150 - 175 MHz  
5 kHz STEPS  
LOCK DETECT SIGNAL  
R2  
10.24 MHz  
NOTE 1  
C
OSCout  
OSCin  
RA2 RA1 RA0  
LD  
φR  
R1  
R1  
-
+
VCO  
φV  
NOTE 2  
MC145152-2  
R2  
C
MC  
fin  
VDD  
VSS  
+ V  
N9  
N0 A5  
A0  
CHANNEL PROGRAMMING  
÷ 64/65 PRESCALER  
NOTES:  
1. Off-chip oscillator optional.  
2. The φR and φV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page  
for additional information. The φR and φV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the com-  
mon mode input range of the op amp used in the combiner/loop filter.  
Figure 7. Synthesizer for Land Mobile Radio VHF Bands  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
10  
Freescale Semiconductor  
MC145152-2 Parallel-Input (Interfaces with Dual-Modulus Prescalers)  
RECEIVER 2ND L.O.  
30.720 MHz  
REF. OSC.  
15.360 MHz  
(ON-CHIP OSC.  
OPTIONAL)  
NO CONNECTS  
“1" “1" “1"  
RECEIVER FIRST L.O.  
LOCK DETECT SIGNAL  
X2  
825.030 844.980 MHz  
R2  
C
(30 kHz STEPS)  
OSCout  
RA2 RA1 RA0  
LD  
R1  
R1  
φR  
φV  
-
OSCin  
X4  
NOTE 5  
VCO  
+
MC145152-2  
NOTE 6  
VDD  
VSS  
+ V  
R2  
MC  
fin  
C
X4  
NOTE 5  
TRANSMITTER  
MODULATION  
N9  
N0A5  
A0  
÷ 64/65 PRESCALER  
TRANSMITTER SIGNAL  
825.030 844.980 MHz  
(30 kHz STEPS)  
NOTE 5  
CHANNEL PROGRAMMING  
NOTES:  
1. Receiver 1st I.F. = 45 MHz, low side injection; Receiver 2nd I.F. = 11.7 MHz, low side injection.  
2. Duplex operation with 45 MHz receiver/transmit separation.  
3. fR = 7.5 kHz; ÷ R = 2048.  
4. Ntotal = N • 64 + A = 27501 to 28166; N = 429 to 440; A = 0 to 63.  
5. High frequency prescalers may be used for higher frequency VCO and fref  
implementations.  
6. The φR and φV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for  
additional information. The φR and φV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode  
input range of the op amp used in the combiner/loop filter.  
Figure 8. 666-Channel Computer-Controlled, Mobile Radiotelephone Synthesizer  
for 800 MHz Cellular Radio Systems  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
11  
MC145151-2 and MC145152-2 Electrical Characteristics  
3 MC145151-2 and MC145152-2 Electrical Characteristics  
These devices contain protection circuitry to protect against damage due to high static voltages or electric  
fields. However, precautions must be taken to avoid applications of any voltage higher than maximum  
rated voltages to these high-impedance circuits. For proper operation, V and V should be constrained  
in  
out  
to the range V (V or V ) V except for SW1 and SW2.  
SS  
in  
out  
DD  
SW1 and SW2 can be tied through external resistors to voltages as high as 15 V, independent of the supply  
voltage.  
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V or V ), except  
SS  
DD  
for inputs with pull-up devices. Unused outputs must be left open.  
1
Table 1. Maximum Ratings  
(Voltages Referenced to VSS)  
Ratings  
Symbol  
Value  
Unit  
DC Supply Voltage  
VDD  
Vin, Vout  
Vout  
- 0.5 to + 10.0  
- 0.5 to VDD + 0.5  
- 0.5 to + 15  
V
V
V
Input or Output Voltage (DC or Transient) except SW1, SW2  
Output Voltage (DC or Transient),  
SW1, SW2 (Rpull-up = 4.7 k)  
Input or Output Current (DC or Transient), per Pin  
Supply Current, VDD or VSS Pins  
Iin, Iout  
IDD, ISS  
PD  
± 10  
± 30  
mA  
mA  
mW  
°C  
Power Dissipation, per Package†  
500  
Storage Temperature  
Tstg  
-65 to + 150  
260  
Lead Temperature, 1 mm from Case for 10 seconds  
TL  
°C  
1
Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be  
restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.  
† Power Dissipation Temperature Derating:  
Plastic DIP: - 12 mW/°C from 65 to 85°C  
SOG Package: - 7 mW/°C from 65 to 85°C  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
12  
Freescale Semiconductor  
MC145151-2 and MC145152-2 Electrical Characteristics  
Table 2. Electrical Characteristics  
(Voltages Referenced to V  
)
SS  
- 40°C  
25°C  
85°C  
VDD  
Symbol  
Parameter  
Test Condition  
V
Unit  
Min Max Min Max Min Max  
VDD  
Power Supply Voltage  
Range  
-
3
9
3
9
3
9
V
Iss  
Dynamic Supply  
Current  
fin = OSCin = 10 MHz,  
1 V p-p ac coupled sine wave  
R = 128, A = 32, N = 128  
3
5
9
-
-
-
3.5  
10  
30  
-
-
-
3
7.5  
24  
-
-
-
3
7.5  
24  
mA  
ISS  
Quiescent Supply  
Current (not including Iout = 0 µA  
pull-up current  
Vin = VDD or VSS  
3
5
9
-
-
-
800  
1200  
1600  
-
-
-
800  
1200  
1600  
-
-
-
1600  
2400  
3200  
µA  
component)  
Vin  
VIL  
Input Voltage - fin,  
OSCin  
Input ac coupled sine wave  
-
500  
-
500  
-
500  
-
mV p-p  
V
Low-Level Input  
Voltage - fin, OSCin  
Vout 2.1 V  
Vout 3.5 V  
Vout 6.3 V  
Input dc  
coupled  
square wave  
3
5
9
-
-
-
0
0
0
-
-
-
0
0
0
-
-
-
0
0
0
VIH  
VIL  
VIH  
High-Level Input  
Voltage - fin, OSCin  
Vout 0.9 V  
Vout 1.5 V  
Vout 2.7 V  
Input dc  
coupled  
square wave  
3
5
9
3.0  
5.0  
9.0  
-
-
-
3.0  
5.0  
9.0  
-
-
-
3.0  
5.0  
9.0  
-
-
-
V
V
V
Low-Level Input  
Voltage - except fin,  
OSCin  
3
5
9
-
-
-
0.9  
1.5  
2.7  
-
-
-
0.9  
1.5  
2.7  
-
-
-
0.9  
1.5  
2.7  
High-Level Input  
Voltage - except fin,  
OSCin  
3
5
9
2.1  
3.5  
6.3  
-
-
-
2.1  
3.5  
6.3  
-
-
-
2.1  
3.5  
6.3  
-
-
-
Iin  
Input Current  
(fin, OSCin)  
Vin = VDD or VSS  
9
± 2  
± 50  
± 2  
± 25  
± 2  
± 22  
µA  
µA  
IIL  
Input Leakage  
Current (Data, CLK,  
ENB - without  
pull-ups)  
Vin = VSS  
9
-
- 0.3  
-
- 0.1  
-
- 1.0  
IIH  
Input Leakage  
Vin = VDD  
9
-
0.3  
-
0.1  
-
1.0  
µA  
Current (all inputs  
except fin, OSCin)  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
13  
MC145151-2 and MC145152-2 Electrical Characteristics  
Table 3. DC Electrical Characteristics  
- 40°C  
25°C  
85°C  
VDD  
V
Symbol  
Parameter  
Test Condition  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
IIL  
Pull-up Current (all inputs Vin = VSS  
with pull-ups)  
9
- 20  
- 400  
- 20  
- 200  
- 20  
- 170  
µA  
Cin  
Input Capacitance  
-
-
10  
-
10  
-
10  
pF  
V
VOL  
Low-Level Output  
Voltage - OSCout  
Iout 0 µA  
Vin = VDD  
3
5
9
-
-
-
0.9  
1.5  
2.7  
-
-
-
0.9  
1.5  
2.7  
-
-
-
0.9  
1.5  
2.7  
VOH  
VOL  
VOH  
High-Level Output  
Voltage - OSCout  
Iout 0 µA  
3
5
9
2.1  
3.5  
6.3  
-
-
-
2.1  
3.5  
6.3  
-
-
-
2.1  
3.5  
6.3  
-
-
-
V
Vin = VSS  
Low-Level Output  
Voltage - Other Outputs  
Iout 0 µA  
3
5
9
-
-
-
0.05  
0.05  
0.05  
-
-
-
0.05  
0.05  
0.05  
-
-
-
0.05  
0.05  
0.05  
V
High-Level Output  
Voltage - Other Outputs  
Iout 0 µA  
3
5
9
2.95  
4.95  
8.95  
-
-
-
2.95  
4.95  
8.95  
-
-
-
2.95  
4.95  
8.95  
-
-
-
V
V(BR)DSS Drain-to-Source  
Breakdown Voltage -  
SW1, SW2  
Rpull-up = 4.7 kΩ  
-
15  
-
15  
-
15  
-
V
IOL  
IOH  
IOL  
IOH  
IOL  
IOL  
IOH  
Low-Level Sinking  
Current - MC  
Vout = 0.3 V  
Vout = 0.4 V  
Vout = 0.5 V  
3
5
9
1.30  
1.90  
3.80  
-
-
-
1.10  
1.70  
3.30  
-
-
-
0.66  
1.08  
2.10  
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
High-Level Sourcing  
Current - MC  
Vout = 2.7 V  
Vout = 4.6 V  
Vout = 8.5 V  
3
5
9
- 0.60  
- 0.90  
- 1.50  
-
-
-
- 0.50  
- 0.75  
- 1.25  
-
-
-
- 0.30  
- 0.50  
- 0.80  
-
-
-
Low-Level Sinking  
Current - LD  
Vout = 0.3 V  
Vout = 0.4 V  
Vout = 0.5 V  
3
5
9
0.25  
0.64  
1.30  
-
-
-
0.20  
0.51  
1.00  
-
-
-
0.15  
0.36  
0.70  
-
-
-
High-Level Sourcing  
Current - LD  
Vout = 2.7 V  
Vout = 4.6 V  
Vout = 8.5 V  
3
5
9
- 0.25  
- 0.64  
- 1.30  
-
-
-
- 0.20  
- 0.51  
- 1.00  
-
-
-
- 0.15  
- 0.36  
- 0.70  
-
-
-
Low-Level Sinking  
Current - SW1, SW2  
Vout = 0.3 V  
Vout = 0.4 V  
Vout = 0.5 V  
3
5
9
0.80  
1.50  
3.50  
-
-
-
0.48  
0.90  
2.10  
-
-
-
0.24  
0.45  
1.05  
-
-
-
Low-Level Sinking  
Current - Other Outputs  
Vout = 0.3 V  
Vout = 0.4 V  
Vout = 0.5 V  
3
5
9
0.44  
0.64  
1.30  
-
-
-
0.35  
0.51  
1.00  
-
-
-
0.22  
0.36  
0.70  
-
-
-
High-Level Sourcing  
Current - Other Outputs  
Vout = 2.7 V  
Vout = 4.6 V  
Vout = 8.5 V  
3
5
9
- 0.44  
- 0.64  
- 1.30  
-
-
-
- 0.35  
- 0.51  
- 1.00  
-
-
-
- 0.22  
- 0.36  
- 0.70  
-
-
-
IOZ  
IOZ  
Output Leakage Current - Vout = VDD or VSS  
PDout Output in Off State  
9
9
-
-
-
-
± 0.3  
± 0.3  
10  
-
-
-
± 0.1  
± 0.1  
10  
-
-
-
± 1.0  
± 3.0  
10  
µA  
µA  
pF  
Output Leakage Current - Vout = VDD or VSS  
SW1, SW2  
Output in Off State  
Cout  
Output Capacitance -  
PDout  
PDout - Three-State  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
14  
Freescale Semiconductor  
MC145151-2 and MC145152-2 Electrical Characteristics  
Table 4. AC Electrical Characteristics  
(C = 50 pF, Input t = t = 10 ns)  
L
r
f
VDD Guaranteed Limit Guaranteed Limit  
Symbol  
Parameter  
Unit  
V
25°C  
-40 to 85°C  
tPLH, tPHL Maximum Propagation Delay, fin to MC  
(Figure 9a and Figure 9d)  
3
5
9
110  
60  
35  
120  
70  
40  
ns  
tPHL  
Maximum Propagation Delay, ENB to SW1, SW2  
(Figure 9a and Figure 9e)  
3
5
9
160  
80  
50  
180  
95  
60  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
Output Pulse Width, φR, φV, and LD with fR in Phase with fV  
(Figure 9b and Figure 9d)  
3
5
9
25 to 200  
20 to 100  
10 to 70  
25 to 260  
20 to 125  
10 to 80  
tTLH  
Maximum Output Transition Time, MC  
(Figure 9c and Figure 9d)  
3
5
9
115  
60  
40  
115  
75  
60  
tTHL  
Maximum Output Transition Time, MC  
(Figure 9c and Figure 9d)  
3
5
9
60  
34  
30  
70  
45  
38  
tTLH, tTHL Maximum Output Transition Time, LD  
(Figure 9c and Figure 9d)  
3
5
9
180  
90  
70  
200  
120  
90  
tTLH, tTHL Maximum Output Transition Time, Other Outputs  
(Figure 9c and Figure 9d)  
3
5
9
160  
80  
60  
175  
100  
65  
VDD  
50%  
tPLH  
INPUT  
- VSS  
tw  
tPHL  
φR, φV, LD*  
50%  
50%  
*fR in phase with fV.  
OUTPUT  
Figure 9a. Maximum Propagation Delay  
Figure 9b. Output Pulse Width  
tTLH  
tTHL  
ANY  
OUTPUT  
90%  
10%  
Figure 9c. Maximum Output Transition Time  
TEST  
POINT  
TEST  
POINT  
VDD  
15 kΩ  
OUTPUT  
OUTPUT  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
CL*  
CL*  
*Includes all probe and fixture capacitance.  
*Includes all probe and fixture capacitance.  
Figure 9d. Test Circuit  
Figure 9e. Test Circuit  
Figure 9. Switching Waveforms  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
15  
MC145151-2 and MC145152-2 Electrical Characteristics  
Table 5. Timing Requirements  
(Input t = t = 10 ns unless otherwise indicated)  
r
f
VDD Guaranteed Limit Guaranteed Limit  
Symbol  
Parameter  
Unit  
V
25°C  
- 40 to 85°C  
fclk  
Serial Data Clock Frequency, Assuming 25% Duty Cycle  
NOTE: Refer to CLK tw(H) below  
(Figure 10a)  
3
5
9
dc to 5.0  
dc to 7.1  
dc to 10  
dc to 3.5  
dc to 7.1  
dc to 10  
MHz  
tsu  
Minimum Setup Time, Data to CLK  
(Figure 10b)  
3
5
9
30  
20  
18  
30  
20  
18  
ns  
ns  
ns  
ns  
ns  
µs  
th  
Minimum Hold Time, CLK to Data  
(Figure 10b)  
3
5
9
40  
20  
15  
40  
20  
15  
tsu  
Minimum Setup Time, CLK to ENB  
(Figure 10b)  
3
5
9
70  
32  
25  
70  
32  
25  
trec  
tw(H)  
tr, tf  
Minimum Recovery Time, ENB to CLK  
(Figure 10b)  
3
5
9
5
10  
20  
5
10  
20  
Minimum Pulse Width, CLK and ENB  
(Figure 10a)  
3
5
9
50  
35  
25  
70  
35  
25  
Maximum Input Rise and Fall Times - Any Input  
(Figure 10c)  
3
5
9
5
4
2
5
4
2
tw(H)  
- VDD  
VSS  
50%  
DATA  
tsu  
- VDD  
VSS  
CLK,  
ENB  
50%  
th  
*
1
- VDD  
VSS  
4 fclk  
LAST  
CLK  
FIRST  
CLK  
50%  
CLK  
ENB  
*Assumes 25% Duty Cycle.  
tsu  
trec  
- VDD  
VSS  
Figure 10a. Serial Data Clock  
Frequency and Minimum Pulse Width  
50%  
PREVIOUS  
DATA  
LATCHED  
tt  
tf  
ANY  
OUTPUT  
- VDD  
VSS  
90%  
10%  
Figure 10b. Minimum Setup, Hold,  
and Recovery Times  
Figure 10c. Maximum Input Rise and Fall Times  
Figure 10. Switching Waveforms  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
16  
Freescale Semiconductor  
MC145151-2 and MC145152-2 Electrical Characteristics  
Table 6. Frequency Characteristics  
(Voltages References to V , C = 50 pF, Input t = t =10 ns unless otherwise indicated)  
SS  
L
r
f
- 40°C  
25°C  
85°C  
VDD  
Symbol  
Parameter  
Test Condition  
Unit  
V
Min  
Max  
Min  
Max  
Min  
Max  
fi  
Input Frequency R 8, A 0, N 8  
(fin, OSCin) Vin = 500 mV p-p ac coupled  
3
5
9
-
-
-
6
15  
15  
-
-
-
6
15  
15  
-
-
-
6
15  
15  
MHz  
sine wave  
R 8, A 0, N 8  
Vin = 1 V p-p ac coupled  
sine wave  
3
5
9
-
-
-
12  
22  
25  
-
-
-
12  
20  
22  
-
-
-
7
20  
22  
MHz  
MHz  
R 8, A 0, N 8  
Vin = VDD to VSS dc coupled  
square wave  
3
5
9
-
-
-
13  
25  
25  
-
-
-
12  
22  
25  
-
-
-
8
22  
25  
Note: Usually, the PLL's propagation delay from fin to MC plus the setup time of the prescaler determines the upper frequency  
limit of the system. The upper frequency limit is found with the following formula: f = P/(tP + tset) where f is the upper frequency  
in Hz, P is the lower of the dual modulus prescaler ratios, tP is the fin to MC propagation delay in seconds, and tset is the prescaler  
setup time in seconds. For example, with a 5 V supply, the fin to MC delay is 70 ns. If the MC12028A prescaler is used, the setup  
time is 16 ns. Thus, if the 64/65 ratio is utilized, the upper frequency limit is f = P/(tP + tset) = 64/(70 + 16) = 744 MHz.  
fR  
VH  
REFERENCE  
OSC ÷ R  
VL  
VH  
fV  
FEEDBACK  
VL  
(fin ÷ N)  
VH  
*
HIGH IMPEDANCE  
PDout  
VL  
VH  
φR  
φV  
VL  
VH  
VL  
VH  
LD  
VL  
VH=High Voltage Level.  
VL=Low Voltage Level.  
*At this point, when both fR and fV are in phase, the output is forced to near mid-supply.  
NOTE: The PDout generates error pulses during out-of-lock conditions. When locked in phase and frequency the output is high  
and the voltage at this pin is determined by the low-pass filter capacitor.  
Figure 11. Phase Detector/Lock Detector Output Waveforms  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
17  
Design Considerations  
4 Design Considerations  
4.1  
Phase-Locked Loop — Low-Pass Filter Design  
KφKVCO  
NR1C  
A)  
PDout  
VCO  
ωn =  
ζ =  
R1  
φR  
φV  
-
-
C
Nωn  
2KφKVCO  
1
F(s) =  
R1sC + 1  
PDout  
B)  
VCO  
KφKVCO  
NC(R1 + R2)  
R1  
ωn =  
φR  
φV  
-
R2  
C
N
-
ζ = 0.5 ωn R2C+  
)
(
KφKVCO  
R2sC+1  
F(s) =  
(R1+R2)sC+1  
R2  
KφKVCO  
NCR1  
PDout  
-
C)  
ωn =  
ζ =  
C
R1  
_
φR  
φV  
ωnR2C  
A
VCO  
+
2
R1  
Assuming gain A is very large, then:  
R2  
C
R2sC + 1  
F(s) =  
R1sC  
NOTE: Sometimes R1 is split into two series resistors, each R1 ÷ 2. A capacitor CC is then placed from the midpoint to ground to further  
filter φV and φR. The value of CC should be such that the corner frequency of this network does not significantly affect ωn.  
The φR and φV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the  
op amp used in the combiner/loop filter.  
Definitions:  
N = Total Division Ratio in feedback loop  
Kφ (Phase Detector Gain) = VDD/4π for PDout  
Kφ (Phase Detector Gain) = VDD/2π for φV and φR  
2π∆fVCO  
KVCO (VCO Gain) =  
VVCO  
2πfr  
10  
for a typical design wn (Natural Frequency) ≈  
Damping Factor: ζ ≅ 1  
(at phase detector input).  
Figure 12. Phase-Locked Loop — Low-Pass Filter Design  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
18  
Freescale Semiconductor  
Design Considerations  
4.2  
Crystal Oscillator Considerations  
The following options may be considered to provide a reference frequency to Freescale's CMOS frequency  
synthesizers.  
4.2.1  
Use of a Hybrid Crystal Oscillator  
Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data  
clock oscillators provide very stable reference frequencies. An oscillator capable of sinking and sourcing  
50 µA at CMOS logic levels may be direct or dc coupled to OSC . In general, the highest frequency  
in  
capability is obtained utilizing a direct-coupled square wave having a rail-to-rail (V to V ) voltage  
DD  
SS  
swing. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to OSC  
in  
may be used. OSC , an unbuffered output, should be left floating.  
out  
4.2.2  
Design an Off-Chip Reference  
The user may design an off-chip crystal oscillator using ICs specifically developed for crystal oscillator  
applications, or using discrete transistors. The reference signal from the oscillator is ac coupled to OSC .  
in  
For large amplitude signals (standard CMOS logic levels), dc coupling is used. OSC , an unbuffered  
out  
output, should be left floating. In general, the highest frequency capability is obtained with a  
direct-coupled square wave having rail-to-rail voltage swing.  
4.2.3  
Use of the On-Chip Oscillator Circuitry  
The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a  
reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating  
frequency, should be connected as shown in Figure 13.  
FREQUENCY  
SYNTHESIZER  
Rf  
OSCin  
C1  
OSCout  
R1*  
C2  
*
May be deleted in certain cases. See text.  
Figure 13. Pierce Crystal Oscillator Circuit  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
19  
Design Considerations  
For V = 5.0 V, the crystal should be specified for a loading capacitance, C , which does not exceed  
DD  
L
32 pF for frequencies to approximately 8.0 MHz, 20 pF for frequencies in the area of 8.0 to 15 MHz, and  
10 pF for higher frequencies. These are guidelines that provide a reasonable compromise between IC  
capacitance, drive capability, swamping variations in stray and IC input/output capacitance, and realistic  
C values. The shunt load capacitance, C , presented across the crystal can be estimated to be:  
L
L
CinCout  
C1C2  
C1+C2  
CL =  
+ Ca + Co +  
Cin + Cout  
where  
C
C
C
C
= 5 pF (see Figure 14)  
= 6 pF (see Figure 14)  
= 1 pF (see Figure 14)  
in  
out  
a
= the crystal's holder capacitance (see Figure 15)  
O
C1 and C2= external capacitors (see Figure 13)  
Ca  
Cin  
Cout  
Figure 14. Parasitic Capacitances of the Amplifier  
RS  
LS  
CS  
1
2
1
2
CO  
Xe  
2
Re  
1
NOTE: Values are supplied by crystal manufacturer  
(parallel resonant crystal).  
Figure 15. Equivalent Crystal Networks  
The oscillator can be “trimmed” on-frequency by making a portion or all of C1 variable. The crystal and  
associated components must be located as close as possible to the OSC and OSC pins to minimize  
in  
out  
distortion, stray capacitance, stray inductance, and startup stabilization time. In some cases, stray  
capacitance should be added to the value for C and C .  
in  
out  
Power is dissipated in the effective series resistance of the crystal, R , in Figure 15. The drive level  
e
specified by the crystal manufacturer is the maximum stress that a crystal can withstand without damage  
or excessive shift in frequency. R1 in Figure 13 limits the drive level. The use of R1 may not be necessary  
in some cases (i.e., R1 = 0 ).  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
20  
Freescale Semiconductor  
Design Considerations  
To verify that the maximum dc supply voltage does not overdrive the crystal, monitor the output frequency  
as a function of voltage at OSC . (Care should be taken to minimize loading.) The frequency should  
out  
increase very slightly as the dc supply voltage is increased. An overdriven crystal will decrease in  
frequency or become unstable with an increase in supply voltage. The operating supply voltage must be  
reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the  
oscillator start-up time is proportional to the value of R1.  
Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have  
developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can  
prove very helpful.  
4.3  
Dual-Modulus Prescaling  
Overview  
4.3.1  
The technique of dual-modulus prescaling is well established as a method of achieving high performance  
frequency synthesizer operation at high frequencies. Basically, the approach allows relatively  
low-frequency programmable counters to be used as high-frequency programmable counters with speed  
capability of several hundred MHz. This is possible without the sacrifice in system resolution and  
performance that results if a fixed (single-modulus) divider is used for the prescaler.  
In dual-modulus prescaling, the lower speed counters must be uniquely configured. Special control logic  
is necessary to select the divide value P or P + 1 in the prescaler for the required amount of time (see  
modulus control definition).  
4.3.2  
Design Guidelines  
The system total divide value, N  
(N ) will be dictated by the application:  
total  
T
frequency into the prescaler  
NT=  
= N P + A  
frequency into the phase detector  
N is the number programmed into the ÷ N counter, A is the number programmed into the ÷ A counter, P  
and P + 1 are the two selectable divide ratios available in the dual-modulus prescalers. To have a range of  
N values in sequence, the ÷ A counter is programmed from zero through P - 1 for a particular value N in  
T
the ÷ N counter. N is then incremented to N + 1 and the ÷ A is sequenced from 0 through P - 1 again.  
There are minimum and maximum values that can be achieved for N . These values are a function of P  
T
and the size of the ÷ N and ÷ A counters.  
The constraint N A always applies. If A  
= P - 1, then N P - 1. Then N  
= (P - 1) P + A or  
Tmin  
max  
min  
(P - 1) P since A is free to assume the value of 0.  
N
= N  
P + A  
max max  
Tmax  
To maximize system frequency capability, the dual-modulus prescaler output must go from low to high  
after each group of P or P + 1 input cycles. The prescaler should divide by P when its modulus control line  
is high and by P + 1 when its MC is low.  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
21  
Design Considerations  
For the maximum frequency into the prescaler (f  
that:  
), the value used for P must be large enough such  
VCOmax  
1. f  
divided by P may not exceed the frequency capability of f (input to the ÷ N and ÷ A  
in  
VCOmax  
counters).  
2. The period of f  
divided by P must be greater than the sum of the times:  
VCO  
a) Propagation delay through the dual-modulus prescaler.  
b) Prescaler setup or release time relative to its MC signal.  
c) Propagation time from f to the MC output for the frequency synthesizer device.  
in  
A sometimes useful simplification in the programming code can be achieved by choosing the values for P  
of 8, 16, 32, or 64. For these cases, the desired value of N results when N in binary is used as the program  
T
T
code to the ÷ N and ÷ A counters treated in the following manner:  
a
1. Assume the ÷ A counter contains “a” bits where 2 P.  
2. Always program all higher order ÷ A counter bits above “a” to 0.  
3. Assume the ÷ N counter and the ÷ A counter (with all the higher order bits above “a” ignored)  
combined into a single binary counter of n + a bits in length (n = number of divider stages in the  
÷ N counter). The MSB of this “hypothetical” counter is to correspond to the MSB of ÷ N and the  
LSB is to correspond to the LSB of ÷ A. The system divide value, N , now results when the value  
T
of N in binary is used to program the “new” n + a bit counter.  
T
By using the two devices, several dual-modulus values are achievable.  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
22  
Freescale Semiconductor  
Package Dimensions  
5 Package Dimensions  
P SUFFIX  
PLASTIC DIP  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
4. CONTROLLING DIMENSION: INCH.  
28  
15  
14  
B
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
36.45  
13.72  
3.94  
MAX  
37.21  
14.22  
5.08  
1
A
B
C
D
F
1.435  
0.540  
0.155  
0.014  
0.040  
1.465  
0.560  
0.200  
0.022  
0.060  
L
A
C
N
0.36  
1.02  
0.56  
1.52  
G
H
J
K
L
0.100 BSC  
2.54 BSC  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
J
H
F
M
K
0.600 BSC  
15.24 BSC  
D
G
SEATING  
PLANE  
M
N
0˚  
0.020  
15˚  
0.040  
0˚  
0.51  
15˚  
1.02  
Figure 16. Outline Dimensions for Plastic DIP  
(Case Outline 710-02, Issue B)  
DW SUFFIX  
SOG PACKAGE  
D
NOTES:  
A
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSIONS.  
28  
15  
4. MAXIMUM MOLD PROTRUSION 0.015 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS  
OF B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
14  
MILLIMETERS  
B
PIN 1 IDENT  
DIM MIN  
MAX  
2.65  
0.29  
0.49  
0.32  
18.05  
7.60  
A
A1  
B
C
D
E
2.35  
0.13  
0.35  
0.23  
17.80  
7.40  
L
0.10  
e
1.27 BSC  
H
L
θ
10.05  
0.41  
0˚  
10.55  
0.90  
8˚  
e
C
SEATING  
PLANE  
B
C
θ
M
S
S
B
0.025  
C A  
Figure 17. Outline Dimensions for SOG Package  
(Case Outline 751F-05, Issue F)  
MC145151-2 and MC145152-2 Technical Data, Rev. 5  
Freescale Semiconductor  
23  
How to Reach Us:  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC145151-2/D  
Rev. 5  
12/2004  
/

相关型号:

MC145151DW2R2

PLL FREQUENCY SYNTHESIZER, 22MHz, PDSO28, SOG-28
NXP

MC145151FN1

IC,FREQUENCY SYNTHESIZER,CMOS,LDCC,28PIN,PLASTIC
MOTOROLA

MC145151FN2

Parallel-Input PLL Frequency Synthesizer
MOTOROLA

MC145151FN2R2

PLL Frequency Synthesizer, CMOS, PQCC28, PLASTIC, LCC-28
MOTOROLA

MC145151L

IC,FREQUENCY SYNTHESIZER,CMOS,DIP,28PIN,CERAMIC
MOTOROLA

MC145151L1DS

PLL/Frequency Synthesis Circuit, CMOS, CDIP28
MOTOROLA

MC145151LDS

IC,FREQUENCY SYNTHESIZER,CMOS,DIP,28PIN,CERAMIC
MOTOROLA

MC145151P

PLL/Frequency Synthesis Circuit, CMOS, PDIP28
MOTOROLA

MC145151P1

PLL/Frequency Synthesis Circuit, CMOS, PDIP28
MOTOROLA

MC145151P2

Parallel-Input PLL Frequency Synthesizer
MOTOROLA

MC145151P2

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
LANSDALE

MC145151P2

PLL Frequency Synthesizers (CMOS)
FREESCALE