MC68HC08AZ32A [FREESCALE]

Microcontrollers; 微控制器
MC68HC08AZ32A
型号: MC68HC08AZ32A
厂家: Freescale    Freescale
描述:

Microcontrollers
微控制器

微控制器
文件: 总312页 (文件大小:2096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC08AZ32A  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC08AZ32A  
Rev. 2  
07/2005  
freescale.com  
MC68HC08AZ32A  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
Refer to the Revision History for a summary of changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
3
MC68HC08AZ32A Data Sheet, Rev. 2  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Chapter 3 Analog-to-Digital Converter (ADC) Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Chapter 4 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Chapter 5 Computer Operating Properly (COP) Module . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Chapter 6 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Chapter 7 External Interrupt (IRQ) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Chapter 8 Keyboard Interrupt (KBD) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Chapter 9 Low-Voltage Inhibit (LVI) Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Chapter 10 Mask Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Chapter 11 MSCAN08 Controller (MSCAN08). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Chapter 12 Programmable Interrupt Timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Chapter 13 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Chapter 14 Serial Communications Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
Chapter 15 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
Chapter 16 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
Chapter 17 Timer Interface Module A (TIMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
Chapter 18 Timer Interface Module B (TIMB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Chapter 19 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
Chapter 20 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
Chapter 21 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . .297  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
5
List of Chapters  
MC68HC08AZ32A Data Sheet, Rev. 2  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.3  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
1.3.7  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Analog Power Supply Pin (VDDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
ADC Analog Ground Pin (AVSS/VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
ADC Reference High Voltage Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
ADC Analog Power Supply Pin (VDDAREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port A Input/Output (I/O) Pins (PTA7–PTA0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port B I/O Pins (PTB7/ATD7–PTB0/ATD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port C I/O Pins (PTC5–PTC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port D I/O Pins (PTD7–PTD0/ATD8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port E I/O Pins (PTE7/SPSCK–PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port F I/O Pins (PTF6–PTF0/TACH2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port G I/O Pins (PTG2/KBD2–PTG0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port H I/O Pins (PTH1/KBD4–PTH0/KBD3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CAN Transmit Pin (TxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CAN Receive Pin (RxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
1.3.8  
1.3.9  
1.3.10  
1.3.11  
1.3.12  
1.3.13  
1.3.14  
1.3.15  
1.3.16  
1.3.17  
1.3.18  
1.3.19  
1.3.20  
1.4  
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Additional Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Vector Addresses and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Read-Only Memory (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
2.7  
2.7.1  
2.7.1.1  
2.7.1.2  
2.7.1.3  
Electrically Erasable Programmable Read-Only Memory (EEPROM). . . . . . . . . . . . . . . . . . . . 41  
EEPROM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
EEPROM Timebase Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
EEPROM Program/Erase Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
EEPROM Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
7
Table of Contents  
2.7.2  
EEPROM Programming and Erasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2.7.2.1  
2.7.2.2  
2.7.2.3  
2.7.3  
2.7.3.1  
2.7.3.2  
2.7.3.3  
2.7.3.4  
2.7.3.5  
2.7.4  
Program/Erase Using AUTO Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
EEPROM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
EEPROM Erasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
EEPROM Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EEPROM Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EEPROM Array Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
EEPROM Nonvolatile Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
EEPROM Timebase Divider Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
EEPROM Timebase Divider Nonvolatile Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
2.7.4.1  
2.7.4.2  
Chapter 3  
Analog-to-Digital Converter (ADC) Module  
3.1  
3.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.5  
3.5.1  
3.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.6  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC Analog Power Pin (VDDAREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
ADC Analog Ground/ADC Voltage Reference Low Pin (AVSS/VREFL) . . . . . . . . . . . . . . . . 57  
ADC Voltage Reference Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.7  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
3.7.1  
3.7.2  
3.7.3  
Chapter 4  
Clock Generator Module (CGM)  
4.1  
4.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Acquisition and Tracking Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
4.3.1  
4.3.2  
4.3.2.1  
4.3.2.2  
MC68HC08AZ32A Data Sheet, Rev. 2  
8
Freescale Semiconductor  
4.3.2.3  
4.3.2.4  
4.3.2.5  
4.3.3  
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Programming the PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Special Programming Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
4.3.4  
4.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Analog Power Pin (VDDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
4.4.6  
4.4.7  
4.4.8  
4.5  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
PLL Programming Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
4.5.1  
4.5.2  
4.5.3  
4.6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
4.7  
4.7.1  
4.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4.8  
CGM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4.9  
Acquisition/Lock Time Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4.9.1  
4.9.2  
4.9.3  
4.9.4  
Chapter 5  
Computer Operating Properly (COP) Module  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.4  
5.5  
5.6  
COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
9
Table of Contents  
5.7  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.7.1  
5.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.8  
COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Chapter 6  
Central Processor Unit (CPU)  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.5  
6.5.1  
6.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.6  
6.7  
6.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Chapter 7  
External Interrupt (IRQ) Module  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Chapter 8  
Keyboard Interrupt (KBD) Module  
8.1  
8.2  
8.3  
8.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
8.5  
8.5.1  
8.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
8.6  
Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
8.7  
8.7.1  
8.7.2  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
MC68HC08AZ32A Data Sheet, Rev. 2  
10  
Freescale Semiconductor  
Chapter 9  
Low-Voltage Inhibit (LVI) Module)  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
9.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
9.3.1  
9.3.2  
9.3.3  
9.4  
9.5  
LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
9.6  
9.6.1  
9.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Chapter 10  
Mask Options  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Chapter 11  
MSCAN08 Controller (MSCAN08)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.3 External Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4 Message Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4.1  
11.4.2  
11.4.3  
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Receive Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Transmit Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
11.5 Identifier Acceptance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
11.5.1 MSCAN Extended ID Rejected if Stuff Bit Between ID16 and ID15. . . . . . . . . . . . . . . . . . 121  
11.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
11.6.1  
11.6.2  
Interrupt Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Interrupt Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
11.7 Protocol Violation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
11.8 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
11.8.1  
11.8.2  
11.8.3  
11.8.4  
11.8.5  
MSCAN08 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
MSCAN08 Soft Reset Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
MSCAN08 Power Down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
CPU Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Programmable Wakeup Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
11.9 Timer Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
11.10 Clock System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
11.11 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
11  
Table of Contents  
11.12 Programmer’s Model of Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
11.12.1  
11.12.2  
11.12.3  
11.12.4  
11.12.5  
Message Buffer Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Identifier Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Data Length Register (DLR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Data Segment Registers (DSRn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Transmit Buffer Priority Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
11.13 Programmer’s Model of Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
11.13.1  
11.13.2  
11.13.3  
11.13.4  
11.13.5  
11.13.6  
11.13.7  
11.13.8  
11.13.9  
MSCAN08 Module Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
MSCAN08 Module Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
MSCAN08 Bus Timing Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
MSCAN08 Bus Timing Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
MSCAN08 Receiver Flag Register (CRFLG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
MSCAN08 Receiver Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
MSCAN08 Transmitter Flag Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
MSCAN08 Transmitter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
MSCAN08 Identifier Acceptance Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
11.13.10 MSCAN08 Receive Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
11.13.11 MSCAN08 Transmit Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
11.13.12 MSCAN08 Identifier Acceptance Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
11.13.13 MSCAN08 Identifier Mask Registers (CIDMR0–CIDMR3). . . . . . . . . . . . . . . . . . . . . . . . . 146  
Chapter 12  
Programmable Interrupt Timer (PIT)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
12.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
12.4 PIT Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
12.5.1  
12.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
12.6 PIT During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
12.7 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
12.7.1  
12.7.2  
12.7.3  
PIT Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
PIT Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
PIT Counter Modulo Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Chapter 13  
Input/Output (I/O) Ports  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
13.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
13.2.1  
13.2.2  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Data Direction Register A (DDRA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
13.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
13.3.1  
13.3.2  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Data Direction Register B (DDRB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
MC68HC08AZ32A Data Sheet, Rev. 2  
12  
Freescale Semiconductor  
13.4 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
13.4.1  
13.4.2  
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
13.5 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
13.5.1  
13.5.2  
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
13.6 Port E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
13.6.1  
13.6.2  
Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Data Direction Register E (DDRE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
13.7 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
13.7.1  
13.7.2  
Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
13.8 Port G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
13.8.1  
13.8.2  
Port G Data Register (PTG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Data Direction Register G (DDRG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
13.9 Port H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
13.9.1  
13.9.2  
Port H Data Register (PTH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Data Direction Register H (DDRH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Chapter 14  
Serial Communications Interface (SCI)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
14.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
14.4.1  
14.4.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
14.4.2.1  
14.4.2.2  
14.4.2.3  
14.4.2.4  
14.4.2.5  
14.4.2.6  
14.4.3  
14.4.3.1  
14.4.3.2  
14.4.3.3  
14.4.3.4  
14.4.3.5  
14.4.3.6  
14.4.3.7  
14.4.3.8  
14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
14.5.1  
14.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
14.6 SCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
13  
Table of Contents  
14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
14.7.1  
14.7.2  
PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
14.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
14.8.1  
14.8.2  
14.8.3  
14.8.4  
14.8.5  
14.8.6  
14.8.7  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Chapter 15  
System Integration Module (SIM)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
15.2 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
15.2.1  
15.2.2  
15.2.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Clock Start-Up From POR or LVI Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Clocks in Stop and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
15.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
15.3.1  
15.3.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Active Resets From Internal Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
15.3.2.1  
15.3.2.2  
15.3.2.3  
15.3.2.4  
15.3.2.5  
15.3.3  
15.3.4  
15.3.5  
15.3.6  
15.4 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
15.4.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
15.4.1.1  
15.4.1.2  
15.4.2  
15.5 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
15.5.1 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
15.6.1  
15.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
15.7 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
15.7.1  
15.7.2  
15.7.3  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
MC68HC08AZ32A Data Sheet, Rev. 2  
14  
Freescale Semiconductor  
Chapter 16  
Serial Peripheral Interface (SPI)  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
16.3 Pin Name Conventions and I/O Register Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
16.4.1  
16.4.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
16.5 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
16.5.1  
16.5.2  
16.5.3  
16.5.4  
16.5.5  
16.5.6  
16.5.7  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
16.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
16.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
16.8 Resetting the SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
16.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
16.9.1  
16.9.2  
WAIT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
16.10 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
16.11 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
16.11.1  
16.11.2  
16.11.3  
16.11.4  
16.11.5  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
16.12 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
16.12.1  
16.12.2  
16.12.3  
SPI Control Register (SPCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
SPI Status and Control Register (SPSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
SPI Data Register (SPDR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Chapter 17  
Timer Interface Module A (TIMA)  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
17.3.1  
17.3.2  
17.3.3  
17.3.3.1  
17.3.3.2  
TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
15  
Table of Contents  
17.3.4  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
17.3.4.1  
17.3.4.2  
17.3.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
17.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
17.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
17.5.1  
17.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
17.6 TIMA During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
17.7.1  
17.7.2  
TIMA Clock Pin (PTD6/ATD14/TACLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
TIMA Channel I/O Pins (PTF3–PTF0/TACH2 and PTE3/TACH1–PTE2/TACH0). . . . . . . 246  
17.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
17.8.1  
17.8.2  
17.8.3  
17.8.4  
17.8.5  
TIMA Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
TIMA Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
Chapter 18  
Timer Interface Module B (TIMB)  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
18.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
18.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
18.3.1  
18.3.2  
18.3.3  
18.3.3.1  
18.3.3.2  
18.3.4  
18.3.4.1  
18.3.4.2  
18.3.4.3  
TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
18.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
18.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
18.5.1  
18.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
18.6 TIMB During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
18.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
18.7.1  
18.7.2  
TIMB Clock Pin (PTD4/ATD12/TBCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
TIMB Channel I/O Pins (PTF5/TBCH1–PTF4/TBCH0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
18.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
18.8.1  
18.8.2  
18.8.3  
18.8.4  
18.8.5  
TIMB Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
TIMB Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
TIMB Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
MC68HC08AZ32A Data Sheet, Rev. 2  
16  
Freescale Semiconductor  
Chapter 19  
Development Support  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
19.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
19.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
TIM and PIT During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Break Status and Control Register (BRKSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Break Address Registers (BRKH and BRKL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
19.2.1.1  
19.2.1.2  
19.2.1.3  
19.2.2  
19.2.2.1  
19.2.2.2  
19.2.3  
19.2.3.1  
19.2.3.2  
19.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
19.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278  
Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
19.3.1.1  
19.3.1.2  
19.3.1.3  
19.3.1.4  
19.3.1.5  
19.3.2  
19.3.2.1  
Chapter 20  
Electrical Specifications  
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
20.2 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
20.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
20.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
20.5 5.0 Volt DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
20.6 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
20.7 ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
20.8 5.0 Vdc 0.5 V Serial Peripheral Interface (SPI) Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
20.9 CGM Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
20.10 CGM Component Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
20.11 CGM Acquisition/Lock Time Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
20.12 RAM Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
20.13 EEPROM Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Chapter 21  
Ordering Information and Mechanical Specifications  
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
21.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
21.3 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
17  
Table of Contents  
MC68HC08AZ32A Data Sheet, Rev. 2  
18  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC08AZ32A is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the Family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
1.2 Features  
Features include the following:  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
8.4-MHz internal bus frequency at 125°C  
MSCAN08 controller (scalable CAN) (implementing CAN 2.0b protocol as defined in BOSCH  
specification September, 1991)  
Available in 64-pin quad flat pack (QFP)  
32,256 bytes user read-only memory (ROM)  
User ROM data security(1)  
512 bytes of on-chip electrically erasable programmable read-only memory (EEPROM) with  
security feature  
1 Kbyte of on-chip random-access memory (RAM)  
Serial peripheral interface (SPI) module  
Serial communications interface (SCI) module  
16-bit timer interface module (TIMA) with six input capture/output compare channels  
16-bit timer interface module (TIMB) with two input capture/output compare channels  
Programmable interrupt timer (PIT)  
Clock generator module (CGM)  
8-bit, 15-channel analog-to-digital convertor (ADC)  
5-bit keyboard interrupt module (KBI)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the ROM/EEPROM data  
difficult for unauthorized users.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
19  
General Description  
System protection features:  
Computer operating properly (COP) with optional reset  
Low-voltage detection with optional reset  
Illegal opcode detection with optional reset  
Illegal address detection with optional reset  
Low-power design (fully static with stop and wait modes)  
Master reset pin and power-on reset (POR)  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
C language support  
Figure 1-1 shows the structure of the MC68HC08AZ32A.  
MC68HC08AZ32A Data Sheet, Rev. 2  
20  
Freescale Semiconductor  
Features  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 1-1. MC68HC08AZ32A MCU Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
21  
General Description  
1.3 Pin Assignments  
Figure 1-2 shows the 64 QFP pin assignments.  
PTC4  
IRQ  
PTH0/KBD3  
PTD3/ATD11  
PTD2/ATD10  
AVSS/VREFL  
VDDAREF  
1
48  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
RST  
3
PTF0/TACH2  
PTF1/TACH3  
PTF2/TACH4  
PTF3/TACH5  
PTF4/TBCH0  
RxCAN  
4
5
PTD1/ATD9  
6
PTD0/ATD8  
PTB7/ATD7  
7
8
PTB6/ATD6  
PTB5/ATD5  
PTB4/ATD4  
PTB3/ATD3  
PTB2/ATD2  
PTB1/ATD1  
PTB0/ATD0  
PTA7  
9
TxCAN  
10  
11  
12  
13  
14  
15  
PTF5/TBCH1  
PTF6  
PTE0/TxD  
PTE1/RxD  
PTE2/TACH0  
PTE3/TACH1  
16  
33  
Figure 1-2. 64-Pin QFP Pin Assignments  
MC68HC08AZ32A Data Sheet, Rev. 2  
22  
Freescale Semiconductor  
Pin Assignments  
1.3.1 Power Supply Pins (V and V )  
DD  
SS  
VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To  
prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-3  
shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response  
ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that  
require the port pins to source high current levels.  
MCU  
VDD  
VSS  
C1  
0.1 µF  
+
C2  
VDD  
Note: Component values shown represent typical applications.  
Figure 1-3. Power Supply Bypassing  
VSS is also the ground for the port output buffers and the ground return for the serial clock in the SPI  
module. See Chapter 16 Serial Peripheral Interface (SPI).  
NOTE  
V
SS must be grounded for proper MCU operation.  
1.3.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Chapter 4 Clock  
Generator Module (CGM).  
1.3.3 External Reset Pin (RST)  
A 0 on the RST pin forces the MCU to a known start-up state. RST is bidirectional, allowing a reset of the  
entire system. It is driven low when any internal reset source is asserted. See Chapter 15 System  
Integration Module (SIM).  
1.3.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. See Chapter 7 External Interrupt (IRQ) Module.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
23  
General Description  
1.3.5 Analog Power Supply Pin (V  
)
DDA  
VDDA is the power supply pin for the analog portion of the CGM. See Chapter 4 Clock Generator Module  
(CGM).  
1.3.6 Analog Ground Pin (V  
)
SSA  
VSSA is the ground connection for the analog portion of the CGM. See Chapter 4 Clock Generator Module  
(CGM).  
1.3.7 ADC Analog Ground Pin (AV /V  
)
SS REFL  
The AVSS/VREFL pin provides both the analog ground connection and the reference low voltage for the  
ADC. See Chapter 3 Analog-to-Digital Converter (ADC) Module.  
1.3.8 ADC Reference High Voltage Pin (V  
)
REFH  
VREFH provides the reference high voltage for the ADC. See Chapter 3 Analog-to-Digital Converter (ADC)  
Module.  
1.3.9 ADC Analog Power Supply Pin (V  
)
DDAREF  
VDDAREF is the power supply pin for the analog portion of the ADC. See Chapter 3 Analog-to-Digital  
Converter (ADC) Module.  
1.3.10 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See Chapter 4 Clock Generator Module  
(CGM).  
1.3.11 Port A Input/Output (I/O) Pins (PTA7PTA0)  
PTA7–PTA0 are general-purpose bidirectional I/O port pins. See Chapter 13 Input/Output (I/O) Ports.  
1.3.12 Port B I/O Pins (PTB7/ATD7–PTB0/ATD0)  
Port B is an 8-bit special function port that shares all eight pins with the ADC. See Chapter 3  
Analog-to-Digital Converter (ADC) Module and Chapter 13 Input/Output (I/O) Ports.  
1.3.13 Port C I/O Pins (PTC5–PTC0)  
PTC5PTC3 and PTC1PTC0 are general-purpose bidirectional I/O port pins. PTC2/MCLK is a special  
function port that shares its pin with the system clock. See Chapter 13 Input/Output (I/O) Ports.  
1.3.14 Port D I/O Pins (PTD7–PTD0/ATD8)  
Port D is an 8-bit special-function port that shares seven of its pins with the ADC, one of its pins with TIMA,  
and one more of its pins with TIMB. See Chapter 17 Timer Interface Module A (TIMA), Chapter 18 Timer  
Interface Module B (TIMB), Chapter 3 Analog-to-Digital Converter (ADC) Module, and Chapter 13  
Input/Output (I/O) Ports.  
MC68HC08AZ32A Data Sheet, Rev. 2  
24  
Freescale Semiconductor  
Clocks  
1.3.15 Port E I/O Pins (PTE7/SPSCK–PTE0/TxD)  
Port E is an 8-bit special function port that shares two of its pins with TIMA, four of its pins with the SPI,  
and two of its pins with the SCI. See Chapter 14 Serial Communications Interface (SCI), Chapter 16 Serial  
Peripheral Interface (SPI), Chapter 17 Timer Interface Module A (TIMA), and Chapter 13 Input/Output  
(I/O) Ports.  
1.3.16 Port F I/O Pins (PTF6–PTF0/TACH2)  
Port F is a 7-bit special function port that shares two of its pins with TIMB. Four of its pins are shared with  
TIMA. See Chapter 17 Timer Interface Module A (TIMA), Chapter 18 Timer Interface Module B (TIMB),  
and Chapter 13 Input/Output (I/O) Ports.  
1.3.17 Port G I/O Pins (PTG2/KBD2–PTG0/KBD0)  
Port G is a 3-bit special function port that shares all of its pins with the KBD. See Chapter 8 Keyboard  
Interrupt (KBD) Module and Chapter 13 Input/Output (I/O) Ports.  
1.3.18 Port H I/O Pins (PTH1/KBD4–PTH0/KBD3)  
Port H is a 2-bit special-function port that shares all of its pins with the KBD. See Chapter 8 Keyboard  
Interrupt (KBD) Module and Chapter 13 Input/Output (I/O) Ports.  
1.3.19 CAN Transmit Pin (TxCAN)  
TxCAN is the digital output from the MSCAN08 module. See Chapter 11 MSCAN08 Controller  
(MSCAN08).  
1.3.20 CAN Receive Pin (RxCAN)  
RxCAN is the digital input to the MSCAN08 module. See Chapter 11 MSCAN08 Controller (MSCAN08).  
1.4 Clocks  
Details of the clock connections to each of the modules on the MC68HC08AZ32A are shown in Table 1-3.  
A short description of each clock source is also given in Table 1-2.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
25  
General Description  
Pin Name  
Table 1-1. External Pins Summary  
Driver  
Reset  
State  
Hysteresis(1)  
No  
Function  
General purpose I/O  
Type  
Dual state  
Dual state  
Dual state  
Dual state  
PTA7–PTA0  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
PTB7/ATD7–PTB0/ATD0  
PTC5–PTC0  
PTD7  
General purpose I/O/ADC channel  
General purpose I/O  
No  
No  
No  
General purpose I/O  
General purpose I/O/ADC channel/  
timer A external input clock  
Yes (only for  
timer A function)  
PTD6/ATD14/TACLK  
PTD5/ATD13  
Dual state  
Dual state  
Dual state  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
General purpose I/O/ADC channel  
No  
General purpose I/O/ADC channel/  
timer B external input clock  
Yes (only for  
timer B function)  
PTD4/ATD12/TBCLK  
PTD3/ATD11–PTD0/ATD8  
PTE7/SPSCK  
General purpose I/O/ADC channel  
General purpose I/O/SPI clock  
Dual state  
Dual state  
No  
Yes (only for  
(open drain) SPI function)  
Dual state Yes (only for  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
General purpose I/O/SPI data path  
General purpose I/O/SPI data path  
General purpose I/O/SPI slave select  
General purpose I/O/timer A channel 1  
General purpose I/O/timer A channel 0  
General purpose I/O/SCI receive data  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
(open drain) SPI function)  
Dual state Yes (only for  
(open drain) SPI function)  
Yes (only for  
Dual state  
SPI function)  
Yes (only for  
Dual state  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
timer A function)  
Yes (only for  
Dual state  
timer A function)  
Yes (only for  
Dual state  
SCI function)  
PTE0/TxD  
PTF6  
General purpose I/O/SCI transmit data  
General purpose I/O  
Dual state  
Dual state  
No  
No  
Input (Hi-Z)  
Input (Hi-Z)  
Yes (only for  
timer B function)  
PTF5/TBCH1  
PTF4/TBCH0  
PTF3/TACH5  
PTF2/TACH4  
PTF1/TACH3  
PTF0/TACH2  
General purpose I/O/timer B channel 1  
General purpose I/O/ timer B channel 0  
General purpose I/O/timer A channel 5  
General purpose I/O/timer A channel 4  
General purpose I/O/timer A channel 3  
General purpose I/O/timer A channel 2  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
Dual state  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Yes (only for  
timer B function)  
Yes (only for  
timer A function)  
Yes (only for  
timer A function)  
Yes (only for  
timer A function)  
Yes (only for  
timer A function)  
— Continued on next page  
Freescale Semiconductor  
MC68HC08AZ32A Data Sheet, Rev. 2  
26  
Clocks  
Table 1-1. External Pins Summary (Continued)  
Driver  
Reset  
State  
Hysteresis(1)  
Pin Name  
Function  
Type  
Yes (only for  
KBD function)  
PTG2/KBD2–PTG0/KBD0  
PTH1/KBD4–PTH0/KBD3  
General purpose I/O/keyboard wakeup pin  
General purpose I/O/keyboard wakeup pin  
Dual state  
Dual state  
Input (Hi-Z)  
Yes (only for  
KBD function)  
Input (Hi-Z)  
VDD  
Logical chip power supply  
Logical chip ground  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
VSS  
VDDA  
CGM analog power supply  
CGM analog ground  
VSSA  
VREFH  
AVSS/VREFL  
VDDAREF  
ADC reference high voltage  
ADC GND and reference low voltage  
ADC power supply  
External clock in  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
YES  
NA  
NA  
OSC1  
OSC2  
CGMXFC  
IRQ  
NA  
Input (Hi-Z)  
Output  
External clock out  
PLL loop filter cap  
External interrupt request  
Reset  
NA  
NA  
NA  
NA  
Input (Hi-Z)  
Output low  
Input (Hi-Z)  
Output  
RST  
Open drain  
NA  
RxCAN  
TxCAN  
MSCAN08 serial input  
MSCAN08 serial output  
Output  
1. Hysteresis is not 100% tested but is typically a minimum of 300 mV.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
27  
General Description  
Table 1-2. Signal Name Conventions  
Signal name  
CGMXCLK  
CGMOUT  
Bus clock  
SPSCK  
Description  
Buffered version of OSC1 from CGM  
PLL-based or OSC1-based clock output from CGM  
CGMOUT divided by two  
SPI serial clock  
TACLK  
External clock Input for TIMA  
External clock Input for TIMB  
TBCLK  
Table 1-3. Clock Source Summary  
Module  
ADC  
Clock Source  
CGMXCLK or bus clock  
CGMXCLK or CGMOUT  
CGMXCLK  
MSCAN08  
COP  
CPU  
Bus clock  
EEPROM  
ROM  
RAM  
SPI  
CGMXCLK or bus clock  
Bus clock  
Bus clock  
Bus clock/SPSCK  
CGMXCLK  
SCI  
TIMA  
TIMB  
PIT  
Bus clock or PTD6/ATD14/TACLK  
Bus clock or PTD4/ATD12/TBCLK  
Bus clock  
KBI  
Bus clock  
SIM  
CGMOUT and CGMXCLK  
Bus clock  
IRQ  
BRK  
Bus clock  
LVI  
Bus clock  
CGM  
OSC1 and OSC2  
MC68HC08AZ32A Data Sheet, Rev. 2  
28  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory map includes:  
1024 bytes of RAM  
32,256 bytes of user ROM  
512 bytes of EEPROM  
52 bytes of user-defined vectors  
256 bytes of monitor ROM  
The following definitions apply to the memory map representation of reserved and unimplemented  
locations.  
Reserved — Accessing a reserved location can have unpredictable effects on MCU operation.  
Unimplemented — Accessing an unimplemented location can cause an illegal address reset  
(within the constraints as outlined in Chapter 15 System Integration Module (SIM)).  
$0000  
$004F  
I/O REGISTERS (80 BYTES)  
RAM (1024 BYTES)  
$0050  
$044F  
$0450  
UNIMPLEMENTED (176 BYTES)  
CAN CONTROL AND MESSAGE BUFFERS (128 BYTES)  
UNIMPLEMENTED (640 BYTES)  
EEPROM (512 BYTES)  
$04FF  
$0500  
$057F  
$0580  
$07FF  
$0800  
$09FF  
$0A00  
UNIMPLEMENTED (30,108 BYTES)  
$7FFF  
Figure 2-1. MC68HC08AZ32A Memory Map (Sheet 1 of 2)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
29  
Memory  
$8000  
ROM (32,256 BYTES)  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
SIM BREAK STATUS REGISTER (SBSR)  
SIM RESET STATUS REGISTER (SRSR)  
RESERVED  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
$FE04  
$FE08  
RESERVED  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FE10  
$FE11  
MORB  
RESERVED  
RESERVED  
BREAK ADDRESS REGISTER HIGH (BRKH)  
BREAK ADDRESS REGISTER LOW (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVI STATUS REGISTER (LVISR)  
EEPROM EEDIVH NONVOLATILE REGISTER (EEDIVHNVR)  
EEPROM EEDIVL NONVOLATILE REGISTER (EEDIVLNVR)  
$FE12  
$FE19  
RESERVED (8 BYTES)  
$FE1A  
$FE1B  
$FE1C  
$FE1D  
$FE1E  
$FE1F  
EEPROM EEDIVH REGISTER (EEDIVH)  
EEPROM EEDIVL REGISTER (EEDIVL)  
EEPROM NONVOLATILE REGISTER (EENVR)  
EEPROM CONTROL REGISTER (EECR)  
RESERVED  
EEPROM ARRAY CONFIGURATION (EEACR)  
$FE20  
$FF1F  
MONITOR ROM (256 BYTES)  
UNIMPLEMENTED (160 BYTES)  
RESERVED (12 BYTES)  
$FF20  
$FFBF  
$FFC0  
$FFCB  
$FFCC  
$FFFF  
VECTORS (52 BYTES)  
Figure 2-1. MC68HC08AZ32A Memory Map (Sheet 2 of 2)  
MC68HC08AZ32A Data Sheet, Rev. 2  
30  
Freescale Semiconductor  
I/O Section  
2.2 I/O Section  
Addresses $0000–$004F, shown in Figure 2-2, contain the I/O data, status and control registers  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 155.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB25  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
(PTB) Write:  
See page 157.  
Reset:  
Read:  
Port C Data Register  
(PTC) Write:  
See page 159.  
Reset:  
Read:  
Port D Data Register  
PTD7  
PTD6  
$0003  
$0004  
(PTD) Write:  
See page 161.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
DDRA6  
0
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 155.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
DDRB6  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
(DDRB) Write:  
See page 157.  
Reset:  
Read:  
0
0
Data Direction Register C  
MCLKEN  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
(DDRC) Write:  
See page 159.  
Reset:  
Read:  
0
DDRD6  
0
Data Direction Register D  
DDRD7  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
(DDRD) Write:  
See page 162.  
Reset:  
Read:  
Port E Data Register  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 163.  
Reset:  
Read:  
Unaffected by reset  
PTF4 PTF3  
Unaffected by reset  
0
0
0
Port F Data Register  
PTF6  
0
PTF5  
0
PTF2  
PTF1  
PTG1  
PTH1  
PTF0  
PTG0  
PTH0  
(PTF) Write:  
See page 165.  
Reset:  
Read:  
0
0
Port G Data Register  
PTG2  
0
(PTG) Write:  
See page 167.  
Reset:  
Read:  
Unaffected by reset  
0
0
0
0
Port H Data Register  
(PTH) Write:  
See page 169.  
Reset:  
Unaffected by reset  
R
= Unimplemented  
= Reserved  
Figure 2-2. I/O Data, Status and Control Registers (Sheet 1 of 6)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
31  
Memory  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
DDRE0  
0
Read:  
Data Direction Register E  
DDRE7  
DDRE6  
0
DDRE5  
0
DDRE4  
0
DDRE3  
0
DDRE2  
0
DDRE1  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
(DDRE) Write:  
See page 164.  
Reset:  
Read:  
0
0
0
DDRF1  
0
Data Direction Register F  
DDRF6  
DDRF5  
DDRF4  
DDRF3  
DDRF2  
0
DDRF0  
0
(DDRF) Write:  
See page 166.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
Data Direction Register G  
DDRG2  
DDRG1  
0
DDRG0  
0
(DDRG) Write:  
See page 168.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Data Direction Register H  
DDRH1  
0
DDRH0  
0
(DDRH) Write:  
See page 170.  
Reset:  
Read:  
0
0
0
0
0
0
SPI Control Register  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPE  
0
SPTIE  
0
(SPCR) Write:  
See page 230.  
Reset:  
Read:  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
Register (SPSCR) Write:  
See page 231.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 233.  
Reset:  
Unaffected by reset  
Read:  
SCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 186.  
Reset:  
0
TCIE  
0
0
Read:  
SCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 188.  
Reset:  
0
0
0
Read:  
R8  
SCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 190.  
Reset:  
U
U
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1) Write:  
See page 191.  
Reset:  
1
1
0
0
0
0
0
0
Read:  
BKF  
RPF  
SCI Status Register 2  
(SCS2) Write:  
See page 193.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write:  
See page 194.  
Reset:  
Unaffected by reset  
R
= Unimplemented  
= Reserved  
Figure 2-2. I/O Data, Status and Control Registers (Sheet 2 of 6)  
MC68HC08AZ32A Data Sheet, Rev. 2  
32  
Freescale Semiconductor  
I/O Section  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
SCI Baud Rate Register  
SCP1  
SCP0  
R
SCR2  
$0019  
(SCBR) Write:  
See page 194.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
IRQF  
0
IRQ Status and Control  
IMASK  
0
MODE  
0
$001A  
$001B  
Register (ISCR) Write:  
See page 97.  
Reset:  
ACK  
0
0
0
0
0
0
0
0
0
0
Read:  
KEYF  
0
Keyboard Status/Control  
IMASKK  
MODEK  
(KBSCR) Write:  
ACKK  
See page 103.  
Reset:  
Read:  
0
PLLIE  
0
0
0
PLLON  
1
0
BCS  
0
0
1
0
1
0
1
0
1
PLLF  
PLL Control Register  
$001C  
$001D  
(PCTL) Write:  
See page 69.  
Reset:  
Read:  
0
1
1
1
1
LOCK  
0
0
0
0
PLL Bandwidth Control  
AUTO  
0
ACQ  
0
XLD  
0
Register (PBWC) Write:  
See page 70.  
Reset:  
0
MUL6  
1
0
0
0
0
Read:  
PLL Programming Register  
MUL7  
MUL5  
MUL4  
VRS7  
VRS6  
VRS5  
VRS4  
$001E  
$001F  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
(PPG) Write:  
See page 71.  
Reset:  
0
1
0
0
1
1
0
Read: LVISTOP ROMSEC  
LVIRST  
LVIPWR  
SSREC  
COPRS  
STOP  
COPD  
Mask Option Register A  
(MORA) Write:  
See page 109.  
Reset:  
Unaffected by reset  
Read:  
TOF  
0
TRST  
0
0
R
0
Timer A Status and Control  
TOIE  
TSTOP  
PS2  
0
PS1  
0
PS0  
0
Register (TASC) Write:  
See page 247.  
Reset:  
0
0
0
0
0
1
0
Read:  
Keyboard Interrupt Enable  
KBIE4  
KBIE3  
KBIE2  
KBIE1  
KBIE0  
Register (KBIER) Write:  
See page 104.  
Reset:  
0
0
0
0
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer A Counter Register  
High (TACNTH) Write:  
See page 248.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer A Counter Register  
Low (TACNTL) Write:  
See page 248.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
1
1
0
Bit 8  
1
Read:  
Timer A Modulo Register  
High (TAMODH) Write:  
See page 249.  
Reset:  
Read:  
Timer A Modulo Register  
Bit 7  
1
6
5
4
3
2
Bit 0  
1
Low (TAMODL) Write:  
See page 249.  
Reset:  
1
1
1
1
1
= Unimplemented  
R
= Reserved  
Figure 2-2. I/O Data, Status and Control Registers (Sheet 3 of 6)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
33  
Memory  
Addr.  
Name  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Timer A Channel 0 Status  
and Control Register Write:  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
(TASC0) See page 247.  
Reset:  
0
Read:  
Timer A Channel 0 Register  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
High (TACH0H) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 0 Register  
6
5
4
3
2
1
Bit 0  
Low (TACH0L) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
0
R
0
Timer A Channel 1 Status  
and Control Register Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
(TASC1) See page 247.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 1 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH1H) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 1 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH1L) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
CH2F  
Timer A Channel 2 Status  
and Control Register Write:  
CH2IE  
MS2B  
0
MS2A  
0
ELS2B  
ELS2A  
TOV2  
CH2MAX  
0
0
(TASC2) See page 247.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 2 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH2H) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 2 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH2L) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
CH3F  
0
R
0
Timer A Channel 3 Status  
and Control Register Write:  
CH3IE  
MS3A  
0
ELS3B  
ELS3A  
TOV3  
CH3MAX  
0
0
(TASC3) See page 247.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 3 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH3H) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 3 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH3L) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
CH4F  
Timer A Channel 4 Status  
and Control Register Write:  
CH4IE  
0
MS4B  
0
MS4A  
0
ELS4B  
ELS4A  
TOV4  
0
CH4MAX  
0
0
0
(TASC4) See page 247.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. I/O Data, Status and Control Registers (Sheet 4 of 6)  
MC68HC08AZ32A Data Sheet, Rev. 2  
34  
Freescale Semiconductor  
I/O Section  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Timer A Channel 4 Register  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$0033  
High (TACH4H) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 4 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
Low (TACH4L) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
CH5F  
0
R
0
Timer A Channel 5 Status  
and Control Register Write:  
CH5IE  
MS5A  
0
ELS5B  
ELS5A  
TOV5  
CH5MAX  
0
0
(TASC5) See page 247.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 5 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH5H) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 5 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH5L) Write:  
See page 249.  
Reset:  
Indeterminate after reset  
Read: COCO  
ADC Status and Control  
Register (ADSCR) Write:  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
R
0
See page 57.  
Reset:  
0
0
1
1
1
1
1
Read:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR) Write:  
See page 59.  
Reset:  
Indeterminate after reset  
Read:  
0
0
0
0
0
0
0
ADC Input Clock Register  
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADICLK  
(ADICLK) Write:  
See page 59.  
Reset:  
0
0
Read:  
Unimplemented Write:  
Reset:  
$003B  
$003F  
Read:  
TOF  
0
0
TRST  
0
0
R
Timer B Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0040  
$0041  
$0042  
$0043  
Register (TBSC) Write:  
See page 265.  
Reset:  
0
0
1
0
0
0
9
0
8
Read:  
Bit 15  
14  
13  
12  
11  
10  
Timer B Counter Register  
High (TBCNTH) Write:  
See page 266.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Read:  
Bit 7  
Timer B Counter Register  
Low (TBCNTL) Write:  
See page 266.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
0
0
9
1
0
Bit 8  
1
Read:  
Timer B Modulo Register  
11  
10  
High (TBMODH) Write:  
See page 267.  
Reset:  
1
1
= Unimplemented  
R
= Reserved  
Figure 2-2. I/O Data, Status and Control Registers (Sheet 5 of 6)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
35  
Memory  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
1
Read:  
Timer B Modulo Register  
Bit 7  
6
1
5
1
4
1
3
2
1
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
$004F  
Low (TBMODL) Write:  
See page 267.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer B Channel 0 Status  
and Control Register Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
(TBSC0) See page 268.  
Reset:  
0
Read:  
Timer B Channel 0 Register  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
High (TBCH0H) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
Timer B Channel 0 Register  
6
5
4
3
2
1
Bit 0  
Low (TBCH0L) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
0
R
0
Timer B Channel 1 Status  
and Control Register Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
(TBSC1) See page 268.  
Reset:  
0
0
0
0
9
0
Read:  
Timer B Channel 1 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TBCH1H) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
Timer B Channel 1 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TBCH1L) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
POF  
0
0
PRST  
0
0
PIT Status and Control  
POIE  
PSTOP  
PPS2  
PPS1  
PPS0  
Register (PSC) Write:  
See page 150.  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
PIT Counter Register  
High (PCNTH) Write:  
See page 152.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
PIT Counter Register Low  
(PCNTL) Write:  
See page 152.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
1
1
0
Bit 8  
1
Read:  
PIT Modulo Register High  
(PMODH) Write:  
See page 152.  
Reset:  
Read:  
PIT Modulo Register Low  
Bit 7  
1
6
5
4
3
2
Bit 0  
1
(PMODL) Write:  
See page 152.  
Reset:  
1
1
1
1
1
= Unimplemented  
R
= Reserved  
Figure 2-2. I/O Data, Status and Control Registers (Sheet 6 of 6)  
MC68HC08AZ32A Data Sheet, Rev. 2  
36  
Freescale Semiconductor  
Additional Status and Control Registers  
2.3 Additional Status and Control Registers  
Selected addresses in the range $FE00 to $FFCB contain additional status and control registers as  
shown in Figure 2-3. A noted exception is the COP control register (COPCTL) at address $FFFF.  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
BW  
0
Bit 0  
Read:  
SIM Break Status Register  
R
R
R
R
R
R
R
$FE00  
(SBSR) Write:  
See page 210.  
Reset:  
Read:  
0
POR  
PIN  
COP  
ILOP  
ILAD  
0
LVI  
0
SIM Reset Status Register  
$FE01  
$FE03  
$FE09  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FE10  
$FE11  
(SRSR) Write:  
See page 210.  
POR:  
Read:  
1
BCFE  
0
0
0
0
0
0
0
0
SIM Break Flag Control  
R
R
R
R
R
R
R
Register (SBFCR) Write:  
See page 211.  
Reset:  
Read: EEDIVCLK  
0
EESEC EEMONSEC  
AZ32A  
0
0
0
Mask Option Register B  
(MORB) Write:  
See page 110.  
Reset:  
Unaffected by reset  
Read:  
Bit 15  
Break Address Register  
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
High (BRKH) Write:  
See page 277.  
Reset:  
Read:  
0
Bit 7  
0
0
Break Address Register  
6
0
5
4
3
2
Bit 0  
Low (BRKL) Write:  
See page 277.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
See page 276.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
(LVISR) Write:  
LVI Status Register  
See page 107.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
EEDIVS-  
ECD  
EEDIV High Nonvolatile  
R
R
R
R
EEDIV10  
EEDIV9  
EEDIV8  
Register (EEDIVHNVR) Write:  
See page 50.  
Reset:  
Unaffected by reset; $FF when blank  
EEDIV5 EEDIV4 EEDIV3 EE2DIV  
Read:  
EEDIV Low Nonvolatile  
Register (EEDIVLNVR) Write:  
EEDIV7  
EEDIV6  
EEDIV1  
EEDIV0  
See page 50.  
Reset:  
Unaffected by reset; $FF when blank  
= Reserved  
= Unimplemented  
R
Figure 2-3. Additional Status and Control Registers (Sheet 1 of 2)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
37  
Memory  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
EEDIV Divider High  
Register (EEDIVH) Write:  
0
0
0
0
EEDIV  
SECD  
EEDIV10  
EEDIV9  
EEDIV8  
$FE1A  
$FE1B  
$FE1C  
See page 49.  
Reset:  
Contents of EEDIVHNVR ($FE10), Bits [6:3] = 0  
Read:  
Write:  
EEDIV Divider Low  
Register (EEDIVL)  
EEDIV7  
EEDIV6  
EEDIV5  
Contents of EEDIVLNVR ($FE11)  
EEPRTCT EEPB3  
EEDIV4  
EEDIV3  
EE2DIV  
EEDIV1  
EEPB1  
EEDIV0  
EEPB0  
See page 49.  
Reset:  
Read:  
EEPROM Nonvolatile  
Register (EENVR) Write:  
R
R
0
R
EEPB2  
See page 49.  
Reset:  
PV = Programmed value or 1 in the erased state.  
Read:  
EEPROM Control Register  
R
EEOFF  
EERAS1  
EERAS0  
ELAT  
AUTO  
EEPGM  
$FE1D  
$FE1F  
(EECR) Write:  
See page 46.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Write:  
Reset:  
R
R
R
EEPRTCT  
EEBP3  
EEBP2  
EEBP1  
EEBP0  
EEPROM Array  
Configuration Register  
(EEACR)  
See page 47.  
Contents of EENVR ($FE1C)  
Read:  
LOW BYTE OF RESET VECTOR  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 79.  
Reset:  
WRITING TO $FFFF CLEARS COP COUNTER  
Unaffected by reset  
= Unimplemented  
R
= Reserved  
Figure 2-3. Additional Status and Control Registers (Sheet 2 of 2)  
2.4 Vector Addresses and Priority  
Addresses in the range $FFCC to $FFFF contain the user-specified vector locations. The vector  
addresses are shown in Table 2-1.  
MC68HC08AZ32A Data Sheet, Rev. 2  
38  
Freescale Semiconductor  
Memory  
Table 2-1. Vector Addresses(1)  
Address  
Vector  
TIMA Channel 5 Vector (high)  
TIMA Channel 5 Vector (low)  
TIMA Channel 4 Vector (high)  
TIMA Channel 4 Vector (low)  
ADC Vector (high)  
Low  
$FFCC  
$FFCD  
$FFCE  
$FFCF  
$FFD0  
$FFD1  
$FFD2  
$FFD3  
$FFD4  
$FFD5  
$FFD6  
$FFD7  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
ADC Vector (low)  
Keyboard Vector (high)  
Keyboard Vector (low)  
SCI Transmit Vector (high)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
MSCAN08 Transmit Vector (High)  
MSCAN08 Transmit Vector (Low)  
MSCAN08 Receive Vector (High)  
MSCAN08 Receive Vector (Low)  
MSCAN08 Error Vector (High)  
MSCAN08 Error Vector (Low)  
MSCAN08 Wakeup Vector (High)  
MSCAN08 Wakeup Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIMB Overflow Vector (High)  
TIMB Overflow Vector (Low)  
TIMB CH1 Vector (High)  
TIMB CH1 Vector (Low)  
TIMB CH0 Vector (High)  
TIMB CH0 Vector (Low)  
TIMA Overflow Vector (High)  
TIMA Overflow Vector (Low)  
TIMA CH3 Vector (High)  
TIMA CH3 Vector (Low)  
— Continued on next page  
MC68HC08AZ32A Data Sheet, Rev. 2  
39  
Freescale Semiconductor  
Memory  
Table 2-1. Vector Addresses(1) (Continued)  
Address  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
TIMA CH2 Vector (High)  
TIMA CH2 Vector (Low)  
TIMA CH1 Vector (High)  
TIMA CH1 Vector (Low)  
TIMA CH0 Vector (High)  
TIMA CH0 Vector (Low)  
PIT Vector (High)  
PIT Vector (Low)  
PLL Vector (High)  
PLL Vector (Low)  
IRQ Vector (High)  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Reset Vector (Low)  
High  
1. All available ROM locations not defined by the user will by default be filled  
with the software interrupt (SWI, opcode 83) instruction — see Chapter 6  
Central Processor Unit (CPU). Take this into account when defining vector  
addresses. It is recommended that ALL vector addresses are defined.  
2.5 Random-Access Memory (RAM)  
Addresses $0050 through $044F are RAM locations. The location of the stack RAM is programmable.  
The 16-bit stack pointer allows the stack to be anywhere in the 64K byte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero there are 176 bytes of RAM. Because the location of the stack RAM is programmable,  
all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is  
moved from its reset location at $00FF, direct addressing mode instructions can efficiently access all page  
zero RAM locations. Page zero RAM, therefore, provides an ideal location for frequently accessed global  
variables.  
Before processing an interrupt, the CPU uses 5 bytes of the stack to save the contents of the CPU  
registers.  
NOTE  
For M6805 compatibility, the H register is not stacked.  
MC68HC08AZ32A Data Sheet, Rev. 2  
40  
Freescale Semiconductor  
Read-Only Memory (ROM)  
During a subroutine call, the CPU uses 2 bytes of the stack to store the return address. The stack pointer  
decrements during pushes and increments during pulls.  
NOTE  
Care should be taken when using nested subroutines. The CPU may  
overwrite data in the RAM during a subroutine or during the interrupt  
stacking operation.  
2.6 Read-Only Memory (ROM)  
The user ROM consists of up to 32, 256 bytes from addresses $8000–$FDFF. The monitor ROM and  
vectors are located from $FE20–$FF5F.  
Fifty-two user vectors, $FFCC–$FFFF, are dedicated to user-defined reset and interrupt vectors.  
Security has been incorporated into the MC68HC08AZ32A to prevent external viewing of the ROM  
contents(1). This feature is selected by a mask option and ensures that customer-developed software  
remains propriety. See Chapter 10 Mask Options.  
2.7 Electrically Erasable Programmable Read-Only Memory (EEPROM)  
The 512 bytes of EEPROM are located at $0800-$09FF and can be programmed or erased without an  
additional external high voltage supply. The program and erase operations are enabled through the use  
of an internal charge pump. For each byte of EEPROM, the write/erase endurance is 10,000 cycles.  
Features include:  
512 bytes nonvolatile memory  
Byte, block, or bulk erasable  
Nonvolatile EEPROM configuration and block protection options  
On-chip charge pump for programming/erasing  
Program/erase protection option  
Read protection option  
AUTO bit driven programming/erasing time feature  
2.7.1 EEPROM Configuration  
The 8-bit EEPROM nonvolatile register (EENVR) and the 16-bit EEPROM timebase divider nonvolatile  
register (EEDIVNVR) contain the default settings for the following EEPROM configurations:  
EEPROM timebase reference  
EEPROM program/erase protection  
EEPROM block protection  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the ROM difficult for  
unauthorized users.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
41  
Memory  
EENVR and EEDIVNVR are nonvolatile EEPROM registers. They are programmed and erased in the  
same way as EEPROM bytes. The contents of these registers are loaded into their respective volatile  
registers during a MCU reset. The values in these read/write volatile registers define the EEPROM  
configurations.  
For EENVR, the corresponding volatile register is the EEPROM array configuration register (EEACR). For  
the EEDIVNVR (two 8-bit registers: EEDIVHNVR and EEDIVLNVR), the corresponding volatile register  
is the EEPROM divider register (EEDIV: EEDIVH and EEDIVL).  
2.7.1.1 EEPROM Timebase Requirements  
A 35µs timebase is required by the EEPROM control circuit for program and erase of EEPROM content.  
This timebase is derived from dividing the CGMXCLK or bus clock (selected by EEDIVCLK bit in mask  
option register B) using a timebase divider circuit controlled by the 16-bit EEPROM timebase divider  
EEDIV register (EEDIVH and EEDIVL).  
As the CGMXCLK or bus clock is user selected, the EEPROM timebase divider register must be  
configured with the appropriate value to obtain the 35 µs. The timebase divider value is calculated by  
using the following formula:  
EEDIV= INT[Reference Frequency(Hz) x 35 x10–6 +0.5]  
This value is written to the EEPROM timebase divider register (EEDIVH and EEDIVL) or programmed into  
the EEPROM timebase divider nonvolatile register prior to any EEPROM program or erase  
operations(2.7.1 EEPROM Configuration and 2.7.1.1 EEPROM Timebase Requirements).  
2.7.1.2 EEPROM Program/Erase Protection  
The EEPROM has a special feature that designates the 16 bytes of addresses from $08F0 to $08FF to  
be permanently secured. This program/erase protect option is enabled by programming the EEPRTCT  
bit in the EEPROM nonvolatile register (EENVR) to 0.  
Once the EEPRTCT bit is programmed to 0 for the first time:  
Programming and erasing of secured locations $08F0–$08FF is permanently disabled.  
Secured locations $08F0–$08FF can be read as normal.  
Programming and erasing of EENVR is permanently disabled.  
Bulk and block erase operations are disabled for the unprotected locations $0800–$08EF,  
$0900–$09FF.  
Single byte program and erase operations are still available for locations $0800–$08EF and  
$0900–$09FF for all bytes that are not protected by the EEPROM block protect EEBPx bits (see  
2.7.1.3 EEPROM Block Protection and 2.7.3.2 EEPROM Array Configuration Register).  
NOTE  
Once armed, the protect option is permanently enabled. As a consequence,  
all functions in the EENVR will remain in the state they were in immediately  
before the security was enabled.  
MC68HC08AZ32A Data Sheet, Rev. 2  
42  
Freescale Semiconductor  
Electrically Erasable Programmable Read-Only Memory (EEPROM)  
2.7.1.3 EEPROM Block Protection  
The 512 bytes of EEPROM are divided into four 128-byte blocks. Each of these blocks can be protected  
from erase/program operations by setting the EEBPx bit in the EENVR. Table 2-2 shows the address  
ranges for the blocks.  
Table 2-2. EEPROM Array Address Blocks  
Block Number (EEBPx)  
Address Range  
$0800–$087F  
$0880–$08FF  
$0900–$097F  
$0980–$09FF  
EEBP0  
EEBP1  
EEBP2  
EEBP3  
These bits are effective after a reset or a upon read of the EENVR register. The block protect configuration  
can be modified by erasing/programming the corresponding bits in the EENVR register and then reading  
the EENVR register. Please see 2.7.3.2 EEPROM Array Configuration Register for more information.  
NOTE  
Once EEDIVSECD in the EEDIVHNVR is programmed to 0 and after a  
system reset, the EEDIV security feature is permanently enabled because  
the EEDIVSECD bit in the EEDIVH is always loaded with 0 thereafter. Once  
this security feature is armed, erase and program mode are disabled for  
EEDIVHNVR and EEDIVLNVR. Modifications to the EEDIVH and EEDIVL  
registers are also disabled. Therefore, be cautious when programming a  
value into the EEDIVHNVR.  
2.7.2 EEPROM Programming and Erasing  
The unprogrammed or erase state of an EEPROM bit is a 1. The factory default for all bytes within the  
EEPROM array is $FF.  
The programming operation changes an EEPROM bit from 1 to 0 (programming cannot change a bit from  
0 to 1). In a single programming operation, the minimum EEPROM programming size is one bit; the  
maximum is eight bits (one byte).  
The erase operation changes an EEPROM bit from 0 to 1. In a single erase operation, the minimum  
EEPROM erase size is one byte; the maximum is the entire EEPROM array.  
The EEPROM can be programmed such that one or multiple bits are programmed (written to 0) at a time.  
However, the user may never program the same bit location more than once before erasing the entire  
byte. In other words, the user is not allowed to program a 0 to a bit that is already programmed (bit state  
is already 0).  
For some applications it might be advantageous to track more than 10K events with a single byte of  
EEPROM by programming one bit at a time. For that purpose, a special selective bit programming  
technique is available. An example of this technique is illustrated in Table 2-3.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
43  
Memory  
Table 2-3. Example Selective Bit Programming Description  
Program Data  
Description  
Result  
in Binary  
N/A  
in Binary  
1111:1111  
1111:1110  
1111:1100  
1111:1000  
1111:0000  
Original state of byte (erased)  
First event is recorded by programming bit position 0  
Second event is recorded by programming bit position 1  
Third event is recorded by programming bit position 2  
Fourth event is recorded by programming bit position 3  
Events five through eight are recorded in a similar fashion  
1111:1110  
1111:1101  
1111:1011  
1111:0111  
NOTE  
None of the bit locations are actually programmed more than once although  
the byte was programmed eight times.  
When this technique is utilized, a program/erase cycle is defined as multiple program sequences (up to  
eight) to a unique location followed by a single erase operation.  
2.7.2.1 Program/Erase Using AUTO Bit  
An additional feature available for EEPROM program and erase operations is the AUTO mode. When  
enabled, AUTO mode will activate an internal timer that will automatically terminate the program/erase  
cycle and clear the EEPGM bit. Please see 2.7.2.2 EEPROM Programming, 2.7.2.3 EEPROM Erasing,  
and 2.7.3.1 EEPROM Control Register for more information.  
2.7.2.2 EEPROM Programming  
The unprogrammed or erase state of an EEPROM bit is a 1. Programming changes the state to a 0. Only  
EEPROM bytes in the non-protected blocks and the EENVR register can be programmed.  
Use the following procedure to program a byte of EEPROM:  
1. Clear EERAS1 and EERAS0 and set EELAT in the EECR.(A)  
NOTE  
If using the AUTO mode, also set the AUTO bit during step 1.  
2. Write the desired data to the desired EEPROM address.(B)  
3. Set the EEPGM bit.(C) Go to Step 7 if AUTO is set.  
4. Wait for time, tEEPGM, to program the byte.  
5. Clear EEPGM bit.  
6. Wait for time, tEEFPV, for the programming voltage to fall. Go to Step 8.  
7. Poll the EEPGM bit until it is cleared by the internal timer.(D)  
8. Clear EELAT bits.(E)  
NOTE  
A. EERAS1 and EERAS0 must be cleared for programming. Setting the  
EELAT bit configures the address and data buses to latch data for  
programming the array. Only data with a valid EEPROM address will be  
latched. If EELAT is set, other writes to the EECR will be allowed after a  
valid EEPROM write.  
MC68HC08AZ32A Data Sheet, Rev. 2  
44  
Freescale Semiconductor  
Electrically Erasable Programmable Read-Only Memory (EEPROM)  
B. If more than one valid EEPROM write occurs, the last address and data  
will be latched overriding the previous address and data. Once data is  
written to the desired address, do not read EEPROM locations other than  
the written location. (Reading an EEPROM location returns the latched data  
and causes the read address to be latched.)  
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a non-valid  
EEPROM address is latched. This is to ensure proper programming  
sequence. Once EEPGM is set, do not read any EEPROM locations;  
otherwise, the current program cycle will be unsuccessful. When EEPGM  
is set, the on-board programming sequence will be activated.  
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less  
than tEEPGM. However, on other MCUs, this delay time may be different.  
For forward compatibility, software should not make any dependency on  
this delay time.  
E. Any attempt to clear both EEPGM and EELAT bits with a single  
instruction will only clear EEPGM. This is to allow time for removal of high  
voltage from the EEPROM array.  
2.7.2.3 EEPROM Erasing  
The programmed state of an EEPROM bit is 0. Erasing changes the state to a 1. Only EEPROM bytes in  
the non-protected blocks and the EENVR register can be erased.  
Use the following procedure to erase a byte, block or the entire EEPROM array:  
1. Configure EERAS1 and EERAS0 for byte, block or bulk erase; set EELAT in EECR.(A)  
NOTE  
If using the AUTO mode, also set the AUTO bit in step 1.  
2. Byte erase: write any data to the desired address.(B)  
Block erase: write any data to an address within the desired block.(B)  
Bulk erase: write any data to an address within the array.(B)  
3. Set the EEPGM bit.(C) Go to Step 7 if AUTO is set.  
4. Wait for a time: tEEBYTE for byte erase; tEEBLOCK for block erase; tEEBULK. for bulk erase.  
5. Clear EEPGM bit.  
6. Wait for a time, tEEFPV, for the erasing voltage to fall. Go to Step 8.  
7. Poll the EEPGM bit until it is cleared by the internal timer.(D)  
8. Clear EELAT bits.(E)  
NOTE  
A. Setting the EELAT bit configures the address and data buses to latch  
data for erasing the array. Only valid EEPROM addresses will be latched.  
If EELAT is set, other writes to the EECR will be allowed after a valid  
EEPROM write.  
B. If more than one valid EEPROM write occurs, the last address and data  
will be latched overriding the previous address and data. Once data is  
written to the desired address, do not read EEPROM locations other than  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
45  
Memory  
the written location. (Reading an EEPROM location returns the latched data  
and causes the read address to be latched.)  
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a non-valid  
EEPROM address is latched. This is to ensure proper programming  
sequence. Once EEPGM is set, do not read any EEPROM locations;  
otherwise, the current program cycle will be unsuccessful. When EEPGM  
is set, the on-board programming sequence will be activated.  
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less  
than tEEBYTE /tEEBLOCK EEBULK. However, on other MCUs, this delay time  
/t  
may be different. For forward compatibility, software should not make any  
dependency on this delay time.  
E. Any attempt to clear both EEPGM and EELAT bits with a single  
instruction will only clear EEPGM. This is to allow time for removal of high  
voltage from the EEPROM array.  
2.7.3 EEPROM Register Descriptions  
Four I/O registers and three nonvolatile registers control program, erase, and options of the EEPROM  
array.  
2.7.3.1 EEPROM Control Register  
This read/write register controls programming/erasing of the array.  
Address: $FE1D  
Bit 7  
UNUSED  
0
6
0
5
EEOFF  
0
4
EERAS1  
0
3
EERAS0  
0
2
EELAT  
0
1
AUTO  
0
Bit 0  
EEPGM  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 2-4. EEPROM Control Register (EECR)  
Bit 7— Unused  
This read/write bit is software programmable but has no functionality.  
EEOFF — EEPROM Power Down  
This read/write bit disables the EEPROM module for lower power consumption. Any attempts to  
access the array will give unpredictable results. Reset clears this bit.  
1 = Disable EEPROM array  
0 = Enable EEPROM array  
EERAS1 and EERAS0 — Erase/Program Mode Select Bits  
These read/write bits set the erase modes. Reset clears these bits.  
MC68HC08AZ32A Data Sheet, Rev. 2  
46  
Freescale Semiconductor  
Electrically Erasable Programmable Read-Only Memory (EEPROM)  
Table 2-4. EEPROM Program/Erase Mode Select  
EEBPx  
EERAS1  
EERAS0  
Mode  
Byte program  
Byte erase  
0
0
0
1
1
X
0
1
0
1
X
0
0
Block erase  
Bulk erase  
0
1
No erase/program  
X = don’t care  
EELAT — EEPROM Latch Control  
This read/write bit latches the address and data buses for programming the EEPROM array. EELAT  
cannot be cleared if EEPGM is still set. Reset clears this bit.  
1 = Buses configured for EEPROM programming or erase operation  
0 = Buses configured for normal operation  
AUTO — Automatic Termination of Program/Erase Cycle  
When AUTO is set, EEPGM is cleared automatically after the program/erase cycle is terminated by  
the internal timer. For further information, refer to note D under 2.7.2.2 EEPROM Programming and  
2.7.2.3 EEPROM Erasing as well as 20.13 EEPROM Memory Characteristics)  
1 = Automatic clear of EEPGM is enabled  
0 = Automatic clear of EEPGM is disabled  
EEPGM — EEPROM Program/Erase Enable  
This read/write bit enables the internal charge pump and applies the programming/erasing voltage to  
the EEPROM array if the EELAT bit is set and a write to a valid EEPROM location has occurred. Reset  
clears the EEPGM bit.  
1 = EEPROM programming/erasing power switched on  
0 = EEPROM programming/erasing power switched off  
NOTE  
Writing 0s to both the EELAT and EEPGM bits with a single instruction will  
clear EEPGM only to allow time for the removal of high voltage.  
2.7.3.2 EEPROM Array Configuration Register  
The EEPROM array configuration register configures EEPROM security and EEPROM block protection.  
This read-only register is loaded with the contents of the EEPROM nonvolatile register (EENVR) after a  
reset.  
Address:  
$FE1F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: UNUSED UNUSED UNUSED EEPRTCT  
Write:  
EEBP3  
EEBP2  
EEBP1  
EEBP0  
Reset:  
Contents of EENVR ($FE1C)  
= Unimplemented  
Figure 2-5. EEPROM Array Configuration Register (EEACR)  
Bit 7:5 — Unused  
These read/write bits are software programmable but have no functionality.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
47  
Memory  
EEPRTCT — EEPROM Protection Bit  
The EEPRTCT bit is used to enable the security feature in the EEPROM (see 2.7.1.2 EEPROM  
Program/Erase Protection).  
1 = EEPROM security disabled  
0 = EEPROM security enabled  
This feature is a write-once feature. Once the protection is enabled it may not be disabled.  
EEBP[3:0] — EEPROM Block Protection Bits  
These bits prevent blocks of EEPROM array from being programmed or erased. Refer to Table 2-5.  
1 = EEPROM array block is protected  
0 = EEPROM array block is unprotected  
Table 2-5. EEPROM Block Protection Bits  
Block Number (EEBPx)  
Address Range  
$0800–$087F  
$0880–$08FF  
$0900–$097F  
$0980–$09FF  
EEBP0  
EEBP1  
EEBP2  
EEBP3  
Table 2-6. EEPROM Block Protect and Security Summary  
Address Range  
EEBPx  
EEPRTCT = 1  
EEPRTCT = 0  
Byte Programming  
Available  
Bulk, Block and Byte  
Erasing Available  
Byte Programming  
Available  
Only Byte Erasing  
Available  
EEBP0 = 0  
EEBP0 = 1  
EEBP1 = 0  
EEBP1 = 1  
EEBP1 = 0  
EEBP1 = 1  
EEBP2 = 0  
EEBP2 = 1  
EEBP3 = 0  
EEBP3 = 1  
$0800–$087F  
Protected  
Protected  
Byte Programming  
Available  
Bulk, Block and Byte  
Erasing Available  
Byte Programming  
Available  
Only Byte Erasing  
Available  
$0880–$08EF  
$08F0–$08FF  
$0900–$097F  
$0980–$09FF  
Protected  
Protected  
Byte Programming  
Available  
Bulk, Block and Byte  
Erasing Available  
Secured  
(No Programming or  
Erasing)  
Protected  
Byte Programming  
Available  
Bulk, Block and Byte  
Erasing Available  
Byte Programming  
Available  
Only Byte Erasing  
Available  
Protected  
Protected  
Byte Programming  
Available  
Bulk, Block and Byte  
Available  
Byte Programming  
Available  
Only Byte Erasing  
Available  
Protected  
Protected  
MC68HC08AZ32A Data Sheet, Rev. 2  
48  
Freescale Semiconductor  
Electrically Erasable Programmable Read-Only Memory (EEPROM)  
2.7.3.3 EEPROM Nonvolatile Register  
The contents of this register is loaded into the EEPROM array configuration register (EEACR) after a  
reset. This register is erased and programmed in the same way as an EEPROM byte. (See 2.7.3.1  
EEPROM Control Register for individual bit descriptions).  
Address: $FE1C  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
R
R
R
EEPRTCT  
EEBP3  
EEBP2  
EEBP1  
EEBP0  
PV  
PV = Programmed value or 1 in the erased state.  
R
= Reserved  
Figure 2-6. EEPROM Nonvolatile Register (EENVR)  
NOTE  
The EENVR will leave the factory programmed with $F0 such that the full  
array is available and unprotected.  
2.7.3.4 EEPROM Timebase Divider Register  
The 16-bit EEPROM timebase divider register consists of two 8-bit registers: EEDIVH and EEDIVL. The  
11-bit value in this register is used to configure the timebase divider circuit to obtain the 35 µs timebase  
for EEPROM control. These two read/write registers are respectively loaded with the contents of the  
EEPROM timebase divider on volatile registers (EEDIVHNVR and EEDIVLNVR) after a reset.  
Address: $FE1A  
Bit 7  
6
0
5
0
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
EEDIVS-  
ECD  
EEDIV10  
EEDIV9  
EEDIV8  
Contents of EEDIVHNVR ($FE10), Bits [6:3] = 0  
= Unimplemented  
Figure 2-7. EEDIV Divider High Register (EEDIVH)  
Address: $FE1B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
EEDIV7  
Write:  
EEDIV6  
EEDIV5  
EEDIV4  
EEDIV3  
EEDIV2  
EEDIV1  
EEDIV0  
Reset:  
Contents of EEDIVLNVR ($FE11)  
Figure 2-8. EEDIV Divider Low Register (EEDIVL)  
EEDIVSECD — EEPROM Divider Security Disable  
This bit enables/disables the security feature of the EEDIV registers. When EEDIV security feature is  
enabled, the state of the registers EEDIVH and EEDIVL are locked (including the EEDIVSECD bit).  
The EEDIVHNVR and EEDIVLNVR nonvolatile memory registers are also protected from being  
erased/programmed.  
1 = EEDIV security feature disabled  
0 = EEDIV security feature enabled  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
49  
Memory  
EEDIV[10:0] — EEPROM Timebase Prescaler  
These prescaler bits store the value of EEDIV which is used as the divisor to derive a timebase of 35  
µs from the selected reference clock source (CGMXCLK or bus block in the CONFIG-2 register) for  
the EEPROM related internal timer and circuits. EEDIV[10:0] bits are readable at any time. They are  
writable when EELAT = 0 and EEDIVSECD = 1.  
The EEDIV value is calculated by the following formula:  
EEDIV = INT[Reference Frequency(Hz) x 35 x10-6 +0.5]  
Where the result inside the bracket is rounded down to the nearest integer value  
For example, if the reference frequency is 4.9152 MHz, the EEDIV value is 172  
NOTE  
Programming/erasing the EEPROM with an improper EEDIV value may  
result in data lost and reduce endurance of the EEPROM device.  
2.7.3.5 EEPROM Timebase Divider Nonvolatile Register  
The 16-bit EEPROM timebase divider nonvolatile register consists of two 8-bit registers: EEDIVHNVR  
and EEDIVLNVR. The contents of these two registers are respectively loaded into the EEPROM timebase  
divider registers, EEDIVH and EEDIVL, after a reset. These two registers are erased and programmed in  
the same way as an EEPROM byte.  
Address:  
$FE10  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
EEDIVS-  
ECD  
R
R
R
R
EEDIV10  
EEDIV9  
EEDIV8  
Unaffected by reset; $FF when blank  
R
= Reserved  
Figure 2-9. EEPROM Divider Nonvolatile Register High (EEDIVHNVR))  
Address:  
$FE11  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
EEDIV7  
EEDIV6  
EEDIV5  
EEDIV4  
EEDIV3  
EEDIV2  
EEDIV1  
EEDIV0  
Unaffected by reset; $FF when blank  
Figure 2-10. EEPROM Divider Nonvolatile Register Low (EEDIVLNVR)  
These two registers are protected from erase and program operations if the EEDIVSECD is set to 1 in the  
EEDIVH (see 2.7.3.4 EEPROM Timebase Divider Register) or programmed to a 1 in the EEDIVHNVR.  
NOTE  
Once EEDIVSECD in the EEDIVHNVR is programmed to 0 and after a  
system reset, the EEDIV security feature is permanently enabled because  
the EEDIVSECD bit in the EEDIVH is always loaded with 0 thereafter. Once  
this security feature is armed, erase and program mode are disabled for  
EEDIVHNVR and EEDIVLNVR. Modifications to the EEDIVH and EEDIVL  
registers are also disabled. Therefore, care should be taken before  
programming a value into the EEDIVHNVR.  
MC68HC08AZ32A Data Sheet, Rev. 2  
50  
Freescale Semiconductor  
Electrically Erasable Programmable Read-Only Memory (EEPROM)  
2.7.4 Low-Power Modes  
The WAIT and STOP instructions can put the MCU in low power-consumption standby modes.  
2.7.4.1 Wait Mode  
The WAIT instruction does not affect the EEPROM. It is possible to start the program or erase sequence  
on the EEPROM and put the MCU in wait mode.  
2.7.4.2 Stop Mode  
The STOP instruction reduces the EEPROM power consumption to a minimum. The STOP instruction  
should not be executed while a programming or erasing sequence is in progress.  
If stop mode is entered while EELAT and EEPGM are set, the programming sequence will be stopped  
and the programming voltage to the EEPROM array removed. The programming sequence will be  
restarted after leaving stop mode; access to the EEPROM is only possible after the programming  
sequence has completed.  
If stop mode is entered while EELAT and EEPGM is cleared, the programming sequence will be  
terminated abruptly.  
In either case, the data integrity of the EEPROM is not guaranteed.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
51  
Memory  
MC68HC08AZ32A Data Sheet, Rev. 2  
52  
Freescale Semiconductor  
Chapter 3  
Analog-to-Digital Converter (ADC) Module  
3.1 Introduction  
This section describes the 8-bit analog-to-digital converter (ADC) module.  
3.2 Features  
Features include:  
15 channels with multiplexed Input  
Linear successive approximation  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
3.3 Functional Description  
Fifteen ADC channels are available for sampling external sources at pins  
PTD6/ATD14/TACLKPTD0/ATD8 and PTB7/ATD7PTB0/ATD0. An analog multiplexer allows the  
single ADC converter to select one of the 15 ADC channels as ADC voltage input (ADCVIN). ADCVIN is  
converted by the successive approximation register-based counters. When the conversion is completed,  
ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 3-2.  
3.3.1 ADC Port I/O Pins  
PTD6/ATD14/TACLKPTD0/ATD8 and PTB7/ATD7PTB0/ATD0 are general- purpose I/O pins that are  
shared with the ADC channels.  
The channel select bits (ADC status and control register, $0038) define which ADC channel/port pin will  
be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC.  
The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as  
general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is  
selected by the ADC. Read of a port pin which is in use by the ADC will return a 0 if the corresponding  
DDR bit is at 0. If the DDR bit is at 1, the value in the port data latch is read.  
NOTE  
Do not use ADC channels ATD14 or ATD12 when using the  
PTD6/ATD14/TACLK or PTD4/ATD12/TBCLK pins as the clock inputs for  
the 16-bit timers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
53  
Analog-to-Digital Converter (ADC) Module  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 3-1. Block Diagram Highlighting ADC Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
54  
Freescale Semiconductor  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRB/DDRB  
WRITE DDRB/DDRD  
DISABLE  
DDRBx/DDRDx  
PTBx/PTDx  
RESET  
WRITE PTB/PTD  
READ PTB/PTD  
PTBx/PTDx  
ADC CHANNEL x  
DISABLE  
ADC DATA REGISTER  
CONVERSION  
COMPLETE  
ADC VOLTAGE IN  
ADCVIN  
ADCH[4:0]  
INTERRUPT  
LOGIC  
CHANNEL  
SELECT  
ADC  
AIEN  
COCO  
ADC CLOCK  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
ADICLK  
Figure 3-2. ADC Block Diagram  
3.3.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH (see 20.7 ADC Characteristics), the ADC converts the  
signal to $FF (full scale). If the input voltage equals AVSS/VREFL, the ADC converts it to $00. Input  
voltages between VREFH and AVSS/VREFL are a straight-line linear conversion. Conversion accuracy of  
all other input voltages is not guaranteed. Avoid current injection on unused ADC inputs to prevent  
potential conversion error.  
NOTE  
Input voltage should not exceed the analog supply voltages.  
3.3.3 Conversion Time  
Conversion starts after a write to the ADSCR (ADC status and control register, $0038), and requires  
between 16 and 17 ADC clock cycles to complete. Conversion time in terms of the number of bus cycles  
is a function of ADICLK select, CGMXCLK frequency, bus frequency, and ADIV prescaler bits. For  
example, with a CGMXCLK frequency of 4 MHz, bus frequency of 8 MHz, and fixed ADC clock frequency  
of 1 MHz, one conversion will take between 16 and 17 µs and there will be between 128 bus cycles  
between each conversion. Sample rate is approximately 60 kHz.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
55  
Analog-to-Digital Converter (ADC) Module  
Refer to 20.7 ADC Characteristics.  
16 to 17 ADC Clock Cycles  
Conversion Time = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time x Bus Frequency  
3.3.4 Continuous Conversion  
In the continuous conversion mode, the ADC data register will be filled with new data after each  
conversion. Data from the previous conversion will be overwritten whether that data has been read or not.  
Conversions will continue until the ADCO bit (ADC status and control register, $0038) is cleared. The  
COCO bit is set after the first conversion and will stay set for the next several conversions until the next  
write of the ADC status and control register or the next read of the ADC data register.  
3.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes. See 20.7 ADC Characteristics for  
accuracy information.  
3.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC  
conversion. A CPU interrupt is generated if the COCO bit (ADC status and control register, $0038) is at 0.  
The COCO bit is not used as a conversion complete flag when interrupts are enabled.  
3.5 Low-Power Modes  
The following subsections describe the low-power modes.  
3.5.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting the ADCH[4:0] bits in the ADC status and control register before executing the  
WAIT instruction.  
3.5.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the  
analog circuitry before attempting a new ADC conversion after exiting stop mode.  
3.6 I/O Signals  
The ADC module has 15 channels that are shared with I/O ports B and D. Refer to 20.7 ADC  
Characteristics for voltages referenced below.  
MC68HC08AZ32A Data Sheet, Rev. 2  
56  
Freescale Semiconductor  
I/O Registers  
3.6.1 ADC Analog Power Pin (V  
)
DDAREF  
The ADC analog portion uses VDDAREF as its power pin. Connect the VDDAREF pin to the same voltage  
potential as VDD. External filtering may be necessary to ensure clean VDDAREF for good results.  
NOTE  
Route VDDAREF carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package. VDDAREF must be present  
for operation of the ADC.  
3.6.2 ADC Analog Ground/ADC Voltage Reference Low Pin (AV /V  
)
SS REFL  
The ADC analog portion uses AVSS/VREFL as its ground pin. Connect the AVSS/VREFL pin to the same  
voltage potential as VSS.  
VREFL is the lower reference supply for the ADC.  
3.6.3 ADC Voltage Reference Pin (V  
)
REFH  
VREFH is the high reference voltage for all analog-to-digital conversions.  
3.6.4 ADC Voltage In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 15 ADC channels to the ADC module.  
3.7 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADICLK)  
3.7.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and control register.  
Address:  
$0038  
Bit 7  
COCO  
R
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
0
R
= Unimplemented  
Figure 3-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion.  
COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
57  
Analog-to-Digital Converter (ADC) Module  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It  
always reads as a 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled  
(AIEN = 1)  
NOTE  
The write function of the COCO bit is reserved. When writing to the ADSCR  
register, always have a 0 in the COCO bit position.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR register at the end of each  
conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field which is used to select one of 15 ADC  
channels. Channel selection is detailed in Table 3-1. Care should be taken when using a port pin as  
both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog  
signal.  
The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows  
for reduced power consumption for the MCU when the ADC is not used. Reset sets these bits.  
NOTE  
Recovery from the disabled state requires one conversion cycle to stabilize.  
Table 3-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
PTB6/ATD6  
PTB7/ATD7  
PTD0/ATD8  
PTD1/ATD9  
PTD2/ATD10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
— Continued on next page  
MC68HC08AZ32A Data Sheet, Rev. 2  
58  
Freescale Semiconductor  
I/O Registers  
Table 3-1. Mux Channel Select (Continued)  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTD3/ATD11  
PTD4/ATD12/TBCLK  
PTD5/ATD13  
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
1
1
0
1
0
PTD6/ATD14/TACLK  
(1)  
Unused  
Range 01111 ($0F) to 11010 ($1A)  
(1)  
Unused  
1
1
1
1
0
1
1
0
1
0
Reserved  
(1)  
Unused  
(2)  
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
V
REFH  
(2)  
AV /V  
SS REFL  
[ADC power off]  
1. If any unused channels are selected, the resulting ADC conversion will be  
unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the  
table are used to verify the operation of the ADC converter both in production  
test and for user applications.  
3.7.2 ADC Data Register  
One 8-bit result register is provided. This register is updated each time an ADC conversion completes.  
Address:  
$0039  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after Reset  
= Unimplemented  
Figure 3-4. ADC Data Register (ADR)  
3.7.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC.  
Address:  
$003A  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
0
0
0
0
= Unimplemented  
Figure 3-5. ADC Input Clock Register (ADICLK)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
59  
Analog-to-Digital Converter (ADC) Module  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate  
the internal ADC clock. Table 3-2 shows the available clock configurations. The ADC clock should be  
set to approximately 1 MHz.  
Table 3-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC Input Clock ÷ 1  
ADC Input Clock ÷ 2  
ADC Input Clock ÷ 4  
ADC Input Clock ÷ 8  
ADC Input Clock ÷ 16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = don’t care  
ADICLK — ADC Input Clock Register Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock source to generate the internal ADC  
clock. Reset selects CGMXCLK as the ADC clock source.  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz, CGMXCLK can be used as the  
clock source for the ADC. If CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as the  
clock source. As long as the internal ADC clock is at approximately 1 MHz, correct operation can be  
guaranteed. See 20.7 ADC Characteristics.  
1 = Internal bus clock  
0 = External clock (CGMXCLK)  
fXCLK or Bus Frequency  
1 MHz = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  
ADIV[2:0]  
NOTE  
During the conversion process, changing the ADC clock will result in an  
incorrect conversion.  
MC68HC08AZ32A Data Sheet, Rev. 2  
60  
Freescale Semiconductor  
Chapter 4  
Clock Generator Module (CGM)  
4.1 Introduction  
The clock generator module (CGM) generates the crystal clock signal, CGMXCLK, which operates at the  
frequency of the crystal. The CGM also generates the base clock signal, CGMOUT, from which the  
system clocks are derived. CGMOUT is based on either the crystal clock divided by two or the  
phase-locked loop (PLL) clock, CGMVCLK, divided by two. The PLL is a frequency generator designed  
for use with 1-MHz to 8-MHz crystals or ceramic resonators. The PLL can generate an 8-MHz bus  
frequency without using high-frequency crystals.  
4.2 Features  
Features include:  
Phase-locked loop with output frequency in integer multiples of the crystal reference  
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
4.3 Functional Description  
The CGM consists of three major submodules:  
Crystal oscillator circuit — The crystal oscillator circuit generates the constant crystal frequency  
clock, CGMXCLK.  
Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock  
CGMVCLK.  
Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by  
two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The system clocks  
are derived from CGMOUT.  
Figure 4-1 shows the structure of the CGM.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
61  
Clock Generator Module (CGM)  
CGMXCLK  
CGMOUT  
OSC1  
CLOCK  
SELECT  
CIRCUIT  
A
B
÷ 2  
S*  
*When S = 1,  
CGMOUT = B  
CGMRDV  
CGMRCLK  
BCS  
PTC3  
VDDA  
CGMXFC  
VSS  
MONITOR MODE  
VRS7–VRS4  
USER MODE  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
PLL ANALOG  
CGMINT  
LOCK  
DETECTOR  
BANDWIDTH  
CONTROL  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL7–MUL4  
CGMVDV  
CGMVCLK  
FREQUENCY  
DIVIDER  
Figure 4-1. CGM Block Diagram  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
BCS  
0
3
2
1
Bit 0  
Read:  
PLLF  
1
1
1
1
PLL Control Register  
$001C  
(PCTL) Write:  
See page 69.  
Reset:  
Read:  
0
1
0
1
0
1
0
1
0
LOCK  
PLL Bandwidth Control  
$001D  
$001E  
AUTO  
0
ACQ  
0
XLD  
0
Register (PBWC) Write:  
See page 70.  
Reset:  
0
MUL6  
1
0
VRS7  
0
0
VRS6  
1
0
VRS5  
1
0
VRS4  
0
Read:  
PLL Programming Register  
MUL7  
0
MUL5  
MUL4  
0
(PPG) Write:  
See page 71.  
Reset:  
1
= Unimplemented  
Figure 4-2. I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
62  
Freescale Semiconductor  
Functional Description  
4.3.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the  
input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal enables the crystal oscillator  
circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal  
frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of  
CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related  
external components.  
An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the  
external clock to the OSC1 pin and let the OSC2 pin float.  
4.3.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending  
on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes  
either automatically or manually.  
4.3.2.1 Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
The operating range of the VCO is programmable for a wide range of frequencies and for maximum  
immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, fCGMVRS. Modulating the voltage on the  
CGMXFC pin changes the frequency within this range. By design, fCGMVRS is equal to the nominal  
center-of-range frequency, fNOM, (4.9152 MHz) times a linear factor L or (L)fNOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency,  
CGMRCLK, and is fed to the PLL through a buffer. The buffer output is the final reference clock, CGMRDV,  
running at a frequency fCGMRDV = fCGMRCLK  
.
f
.
The VCO’s output clock, CGMVCLK, running at a frequency fCGMVCLK, is fed back through a  
programmable modulo divider. The modulo divider reduces the VCO clock by a factor, N. The divider’s  
output is the VCO feedback clock, CGMVDV, running at a frequency fCGMVDV = fCGMVCLK/N. 4.3.2.4  
Programming the PLL for more information.  
The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock,  
CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The  
loop filter then slightly alters the dc voltage on the external capacitor connected to CGMXFC based on  
the width and direction of the correction pulse. The filter can make fast or slow corrections depending on  
its mode, as described in 4.3.2.2 Acquisition and Tracking Modes. The value of the external capacitor and  
the reference frequency determines the speed of the corrections and the stability of the PLL.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
63  
Clock Generator Module (CGM)  
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final  
reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final  
reference frequency, fCGMRDV. The circuit determines the mode of the PLL and the lock condition based  
on this comparison.  
4.3.2.2 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two operating modes:  
1. Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the  
VCO. This mode is used at PLL startup or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in  
the PLL bandwidth control register. See 4.5.2 PLL Bandwidth Control Register.  
2. Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the  
VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL  
enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected  
as the base clock source (see 4.3.3 Base Clock Selector Circuit). The PLL is automatically in  
tracking mode when not in acquisition mode or when the ACQ bit is set.  
4.3.2.3 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter manually or automatically.  
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between  
acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT (see 4.5.2 PLL  
Bandwidth Control Register). If PLL CPU interrupt requests are enabled, the software can wait for a PLL  
CPU interrupt request and then check the LOCK bit. If CPU interrupts are disabled, software can poll the  
LOCK bit continuously (during PLL startup, usually) or at periodic intervals. In either case, when the LOCK  
bit is set, the VCO clock is safe to use as the source for the base clock (see 4.3.3 Base Clock Selector  
Circuit). If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has  
suffered a severe noise hit and the software must take appropriate action, depending on the application  
(see 4.6 Interrupts).  
These conditions apply when the PLL is in automatic bandwidth control mode:  
The ACQ bit (see 4.5.2 PLL Bandwidth Control Register) is a read-only indicator of the mode of the  
filter. Refer to 4.3.2.2 Acquisition and Tracking Modes.  
The ACQ bit is set when the VCO frequency is within a certain tolerance, TRK, and is cleared when  
the VCO frequency is out of a certain tolerance, UNT. See 20.11 CGM Acquisition/Lock Time  
Information.  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
The LOCK bit is set when the VCO frequency is within a certain tolerance, Lock, and is cleared  
when the VCO frequency is out of a certain tolerance, UNL. See 20.11 CGM Acquisition/Lock Time  
Information.  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling  
the LOCK bit. See 20.11 CGM Acquisition/Lock Time Information.  
The PLL also can operate in manual mode (AUTO = 0). Manual mode is used by systems that do not  
require an indicator of the lock condition for proper operation. Such systems typically operate well below  
f
BUSMAX and require fast startup.  
MC68HC08AZ32A Data Sheet, Rev. 2  
64  
Freescale Semiconductor  
Functional Description  
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual  
mode, the ACQ bit must be clear.  
Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (see 20.11 CGM  
Acquisition/Lock Time Information), after turning on the PLL by setting PLLON in the PLL control  
register (PCTL).  
Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the  
clock source to CGMOUT (BCS = 1).  
The LOCK bit is disabled  
CPU interrupts from the CGM are disabled  
4.3.2.4 Programming the PLL  
Use the following 9-step procedure to program the PLL. Table 4-1 shows the variables used and their  
meaning (please also reference Figure 4-1).  
Table 4-1. Variable Definitions  
Variable  
Definition  
Desired bus clock frequency  
fBUSDES  
fVCLKDES  
fCGMRCLK  
fCGMVCLK  
fBUS  
Desired VCO clock frequency  
Chosen reference crystal frequency  
Calculated VCO clock frequency  
Calculated bus clock frequency  
Nominal VCO center frequency  
Shifted VCO center frequency  
fNOM  
fCGMVRS  
1. Choose the desired bus frequency, fBUSDES  
.
Example: fBUSDES = 8 MHz  
2. Calculate the desired VCO frequency, fVCLKDES  
.
fVCLKDES = 4 × fBUSDES  
Example: fVCLKDES = 4 × 8 MHz = 32 MHz  
3. Using a reference frequency, fRCLK, equal to the crystal frequency, calculate the VCO frequency  
multiplier, N. Round the result to the nearest integer.  
f
VCLKDES  
N = ------------------------------  
f
CGMRCLK  
32 MHz  
Example: N = -------------------- = 8  
4 MHz  
4. Calculate the VCO frequency, fCGMVCLK  
.
f
= N × f  
CGMRCLK  
CGMVCLK  
Example: fCGMVCLK = 8 × 4 MHz = 32 MHz  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
65  
Clock Generator Module (CGM)  
5. Calculate the bus frequency, fBUS, and compare fBUS with fBUSDES  
.
f
CGMVCLK  
f
= ----------------------------  
Bus  
4
32 MHz  
= -------------------- = 8 MHz  
Example:  
f
BUS  
4
6. If the calculated fBUS is not within the tolerance limits of your application, select another fBUSDES  
or another fRCLK  
.
7. Using the value 4.9152 MHz for fNOM, calculate the VCO linear range multiplier, L. The linear range  
multiplier controls the frequency range of the PLL.  
f
CGMVCLK  
----------------------------  
L = round  
f
NOM  
32 MHz  
4.9152 MHz  
-------------------------------  
= 7  
Example:  
L =  
8. Calculate the VCO center-of-range frequency, fCGMVRS. The center-of-range frequency is the  
midpoint between the minimum and maximum frequencies attainable by the PLL.  
fCGMVRS = L × fNOM  
Example: fCGMVRS = 7 × 4.9152 MHz = 34.4 MHz  
NOTE  
f
NOM  
2
For proper operation:  
.
--------------  
f
f  
CGMVCLK  
CGMVRS  
Exceeding the recommended maximum bus frequency or VCO frequency  
can crash the MCU.  
9. Program the PLL registers accordingly:  
a. In the upper four bits of the PLL programming register (PPG), program the binary equivalent  
of N.  
b. In the lower four bits of the PLL programming register (PPG), program the binary equivalent  
of L.  
4.3.2.5 Special Programming Exceptions  
The programming method described in 4.3.2.4 Programming the PLL, does not account for two possible  
exceptions. A value of 0 for N or L is meaningless when used in the equations given. To account for these  
exceptions:  
A 0 value for N is interpreted the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the source for the base clock. See  
4.3.3 Base Clock Selector Circuit.  
4.3.3 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the  
source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits  
up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other.  
During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by  
two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock  
frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK).  
MC68HC08AZ32A Data Sheet, Rev. 2  
66  
Freescale Semiconductor  
Functional Description  
The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock  
cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if  
the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or  
deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the  
factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the  
PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base  
clock.  
4.3.4 CGM External Connections  
In its typical configuration, the CGM requires seven external components. Five of these are for the crystal  
oscillator and two are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 4-3.  
Figure 4-3 shows only the logical representation of the internal components and may not represent actual  
circuitry. The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
SIMOSCEN  
CGMXCLK  
VDD  
CBYP  
*
RS  
CF  
RB  
X1  
C1  
C2  
*RS can be 0 (shorted) when used with  
higher-frequency crystals.  
Refer to manufacturer’s data.  
Figure 4-3. CGM External Connections  
The series resistor (RS) may not be required for all ranges of operation, especially with high-frequency  
crystals. Refer to the crystal manufacturer’s data for more information.  
Figure 4-3 also shows the external components for the PLL:  
Bypass capacitor, CBYP  
Filter capacitor, CF  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
67  
Clock Generator Module (CGM)  
Routing should be done with great care to minimize signal cross talk and noise. See 20.11 CGM  
Acquisition/Lock Time Information for routing information and more information on the filter capacitor’s  
value and its effects on PLL performance.  
4.4 I/O Signals  
The following paragraphs describe the CGM input/output (I/O) signals.  
4.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
4.4.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
4.4.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase corrections. A small external capacitor is  
connected to this pin.  
NOTE  
To prevent noise problems, CF should be placed as close to the CGMXFC  
pin as possible with minimum routing distances and no routing of other  
signals across the CF connection.  
4.4.4 Analog Power Pin (V  
)
DDA  
VDDA is a power pin used by the analog portions of the PLL. Connect the VDDA pin to the same voltage  
potential as the VDD pin.  
NOTE  
Route VDDA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
4.4.5 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal enables the oscillator and PLL.  
4.4.6 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fCGMXCLK) and  
comes directly from the crystal oscillator circuit. Figure 4-3 shows only the logical relation of CGMXCLK  
to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown  
and may depend on the crystal and other external factors. Also, the frequency and amplitude of  
CGMXCLK can be unstable at startup.  
4.4.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal is used to generate the MCU clocks. CGMOUT is  
a 50% duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be  
either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two.  
MC68HC08AZ32A Data Sheet, Rev. 2  
68  
Freescale Semiconductor  
CGM Registers  
4.4.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the CPU interrupt signal generated by the PLL lock detector.  
4.5 CGM Registers  
Three registers control and monitor operation of the CGM:  
PLL control register (PCTL)  
PLL bandwidth control register (PBWC)  
PLL programming register (PPG)  
4.5.1 PLL Control Register  
The PLL control register contains the interrupt enable and flag bits, the on/off switch, and the base clock  
selector bit.  
Address:  
$001C  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
1
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
0
0
1
1
1
1
= Unimplemented  
Figure 4-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate a CPU interrupt request when the LOCK bit toggles,  
setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear,  
PLLIE cannot be written and reads as 0. Reset clears the PLLIE bit.  
1 = PLL CPU interrupt requests enabled  
0 = PLL CPU interrupt requests disabled  
PLLF — PLL Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF generates a CPU interrupt request if the  
PLLIE bit also is set. PLLF always reads as 0 when the AUTO bit in the PLL bandwidth control register  
(PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE  
Do not inadvertently clear the PLLF bit. Be aware that any read or  
read-modify- write operation on the PLL control register clears the PLLF bit.  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be  
cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). See 4.3.3 Base Clock Selector  
Circuit. Reset sets this bit so that the loop can stabilize as the MCU is powering up.  
1 = PLL on  
0 = PLL off  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
69  
Clock Generator Module (CGM)  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock,  
CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the  
frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS,  
it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one  
source clock to the other. During the transition, CGMOUT is held in stasis. See 4.3.3 Base Clock  
Selector Circuit. Reset and the STOP instruction clear the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE  
PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base clock  
if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and  
BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0),  
selecting CGMVCLK requires two writes to the PLL control register. See  
4.3.3 Base Clock Selector Circuit.  
PCTL3–PCTL0 — Unimplemented  
These bits provide no function and always read as 1s.  
4.5.2 PLL Bandwidth Control Register  
The PLL bandwidth control register:  
Selects automatic or manual (software-controlled) bandwidth control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking mode  
Address:  
$001D  
Bit 7  
6
5
ACQ  
0
4
XLD  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
LOCK  
AUTO  
0
0
0
0
0
0
= Unimplemented  
Figure 4-5. PLL Bandwidth Control Register (PBWC)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual  
operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK,  
is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as 0 and  
has no meaning. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
MC68HC08AZ32A Data Sheet, Rev. 2  
70  
Freescale Semiconductor  
CGM Registers  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode  
or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is  
in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is  
stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
XLD — Crystal Loss Detect Bit  
When the VCO output, CGMVCLK, is driving CGMOUT, this read/write bit can indicate whether the  
crystal reference frequency is active or not.  
1 = Crystal reference not active  
0 = Crystal reference active  
To check the status of the crystal reference, do the following:  
1. Write a 1 to XLD.  
2. Wait N × 4 cycles. N is the VCO frequency multiplier.  
3. Read XLD.  
The crystal loss detect function works only when the BCS bit is set, selecting CGMVCLK to drive  
CGMOUT. When BCS is clear, XLD always reads as 0.  
Bits 3–0 — Reserved for Test  
These bits enable test functions not available in user mode. To ensure software portability from  
development systems to user applications, software should write 0s to bits 3–0 when writing to PBWC.  
4.5.3 PLL Programming Register  
The PLL programming register contains the programming information for the modulo feedback divider  
and the programming information for the hardware configuration of the VCO.  
Address:  
$001E  
Bit 7  
6
MUL6  
1
5
MUL5  
1
4
MUL4  
0
3
VRS7  
0
2
VRS6  
1
1
VRS5  
1
Bit 0  
VRS4  
0
Read:  
Write:  
Reset:  
MUL7  
0
Figure 4-6. PLL Programming Register (PPG)  
MUL7–MUL4 — Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects the VCO frequency multiplier,  
N. (See 4.3.2.1 Circuits and 4.3.2.4 Programming the PLL). A value of $0 in the multiplier select bits  
configures the modulo feedback divider the same as a value of $1. Reset initializes these bits to $6 to  
give a default multiply value of 6. Refer to Table 4-2.  
NOTE  
The multiplier select bits have built-in protection that prevents them from  
being written when the PLL is on (PLLON = 1).  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
71  
Clock Generator Module (CGM)  
Table 4-2. VCO Frequency Multiplier (N) Selection  
MUL7:MUL6:MUL5:MUL4  
VCO Frequency Multiplier (N)  
0000  
0001  
0010  
0011  
1
1
2
3
1101  
1110  
1111  
13  
14  
15  
VRS7–VRS4 — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear multiplier L, which controls the  
hardware center-of-range frequency, fVRS. (See 4.3.2.1 Circuits, 4.3.2.4 Programming the PLL, and  
4.5.1 PLL Control Register.) VRS7–VRS4 cannot be written when the PLLON bit in the PLL control  
register (PCTL) is set. See 4.3.2.5 Special Programming Exceptions. A value of $0 in the VCO range  
select bits disables the PLL and clears the BCS bit in the PCTL. (See 4.3.3 Base Clock Selector Circuit  
and 4.3.2.5 Special Programming Exceptions for more information.) Reset initializes the bits to $6 to  
give a default range multiply value of 6.  
NOTE  
The VCO range select bits have built-in protection that prevents them from  
being written when the PLL is on (PLLON = 1) and prevents selection of the  
VCO clock as the source of the base clock (BCS = 1) if the VCO range  
select bits are all clear.  
The VCO range select bits must be programmed correctly. Incorrect  
programming can result in failure of the PLL to achieve lock.  
4.6 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU  
interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL)  
enables CPU interrupt requests from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether  
CPU interrupt requests are enabled or not. When the AUTO bit is clear, CPU interrupt requests from the  
PLL are disabled and PLLF reads as 0.  
Software should read the LOCK bit after a PLL CPU interrupt request to see if the request was due to an  
entry into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two  
can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO  
clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency  
sensitive, CPU interrupt requests should be disabled to prevent PLL interrupt service routines from  
impeding software performance or from exceeding stack limitations.  
NOTE  
Software can select the CGMVCLK divided by two as the CGMOUT source  
even if the PLL is not locked (LOCK = 0). Therefore, software should make  
sure the PLL is locked before setting the BCS bit.  
MC68HC08AZ32A Data Sheet, Rev. 2  
72  
Freescale Semiconductor  
Low-Power Modes  
4.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.7.1 Wait Mode  
The CGM remains active in wait mode. Before entering wait mode, software can disengage and turn off  
the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive  
applications can disengage the PLL without turning it off. Applications that require the PLL to wake the  
MCU from wait mode also can deselect the PLL output without turning off the PLL.  
4.7.2 Stop Mode  
The STOP instruction disables the CGM and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If CGMOUT is being driven by CGMVCLK and a STOP instruction is executed; the PLL will clear the BCS  
bit in the PLL control register, causing CGMOUT to be driven by CGMXCLK. When the MCU recovers  
from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear.  
4.8 CGM During Break Interrupts  
The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the  
break state. See 19.2 Break Module (BRK)).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write the PLL control register during the break state without affecting the PLLF bit.  
4.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design  
parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock  
times.  
4.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified  
tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or  
when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the  
output settles to the desired value plus or minus a percent of the frequency change. Therefore, the  
reaction time is constant in this definition, regardless of the size of the step input. For example, consider  
a system with a 5% acquisition time tolerance. If a command instructs the system to change from 0 Hz to  
1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz 50 kHz. Fifty kHz = 5%  
of the 1-MHz step input. If the system is operating at 1 MHz and suffers a –100 kHz noise hit, the  
acquisition time is the time taken to return from 900 kHz to 1 MHz 5 kHz. Five kHz = 5% of the 100-kHz  
step input.  
Other systems refer to acquisition and lock times as the time the system takes to reduce the error between  
the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
73  
Clock Generator Module (CGM)  
time varies according to the original error in the output. Minor errors may not even be registered. Typical  
PLL applications prefer to use this definition because the system requires the output frequency to be  
within a certain tolerance of the desired frequency regardless of the size of the initial error.  
The discrepancy in these definitions makes it difficult to specify an acquisition or lock time for a typical  
PLL. Therefore, the definitions for acquisition and lock times for this module are:  
Acquisition time, tACQ, is the time the PLL takes to reduce the error between the actual output  
frequency and the desired output frequency to less than the tracking mode entry tolerance, TRK  
.
Acquisition time is based on an initial frequency error, (fDES – fORIG)/fDES, of not more than 100%.  
In automatic bandwidth control mode (see 4.3.2.3 Manual and Automatic PLL Bandwidth Modes),  
acquisition time expires when the ACQ bit becomes set in the PLL bandwidth control register  
(PBWC).  
Lock time, tLock, is the time the PLL takes to reduce the error between the actual output frequency  
and the desired output frequency to less than the lock mode entry tolerance, Lock. Lock time is  
based on an initial frequency error, (fDES – fORIG)/fDES, of not more than 100%. In automatic  
bandwidth control mode, lock time expires when the LOCK bit becomes set in the PLL bandwidth  
control register (PBWC). (See 4.3.2.3 Manual and Automatic PLL Bandwidth Modes).  
Obviously, the acquisition and lock times can vary according to how large the frequency error is and may  
be shorter or longer in many cases.  
4.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while still providing the highest possible  
stability. These reaction times are not constant, however. Many factors directly and indirectly affect the  
acquisition time.  
The most critical parameter which affects the reaction times of the PLL is the reference frequency,  
fCGMRDV (please reference Figure 4-1). This frequency is the input to the phase detector and controls how  
often the PLL makes corrections. For stability, the corrections must be small compared to the desired  
frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the  
reference the longer it takes to make these corrections. This parameter is also under user control via the  
choice of crystal frequency fCGMXCLK  
.
Another critical parameter is the external filter capacitor. The PLL modifies the voltage on the VCO by  
adding or subtracting charge from this capacitor. Therefore, the rate at which the voltage changes for a  
given frequency error (thus a change in charge) is proportional to the capacitor size. The size of the  
capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small  
enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may  
not be able to adjust the voltage in a reasonable time. See 4.9.3 Choosing a Filter Capacitor.  
Also important is the operating voltage potential applied to VDDA. The power supply potential alters the  
characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if  
they vary within a known range at very slow speeds. Noise on the power supply is not acceptable,  
because it causes small frequency errors which continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because the electrical characteristics of the  
PLL change. The part operates as specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of the PLL. These factors include  
noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the  
circuit board, and even humidity or circuit board contamination.  
MC68HC08AZ32A Data Sheet, Rev. 2  
74  
Freescale Semiconductor  
Acquisition/Lock Time Specifications  
4.9.3 Choosing a Filter Capacitor  
As described in 4.9.2 Parametric Influences on Reaction Time, the external filter capacitor, CF, is critical  
to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply  
voltage. The value of the capacitor must, therefore, be chosen with supply potential and reference  
frequency in mind. For proper operation, the external filter capacitor must be chosen according to this  
equation:  
V
DDA  
--------------------------  
C
= C  
FACT  
F
f
CGMRDV  
For acceptable values of CFact, (see 20.9 CGM Operating Conditions). For the value of VDDA, choose the  
voltage potential at which the MCU is operating. If the power supply is variable, choose a value near the  
middle of the range of possible supply values.  
This equation does not always yield a commonly available capacitor size, so round to the nearest  
available size. If the value is between two different sizes, choose the higher value for better stability.  
Choosing the lower size may seem attractive for acquisition time improvement, but the PLL may become  
unstable. Also, always choose a capacitor with a tight tolerance ( 20% or better) and low dissipation.  
4.9.4 Reaction Time Calculation  
The actual acquisition and lock times can be calculated using the equations below. These equations yield  
nominal values under the following conditions:  
Correct selection of filter capacitor, CF (see 4.9.3 Choosing a Filter Capacitor).  
Room temperature operation  
Negligible external leakage on CGMXFC  
Negligible noise  
The K factor in the equations is derived from internal PLL parameters. KACQ is the K factor when the PLL  
is configured in acquisition mode, and KTRK is the K factor when the PLL is configured in tracking mode.  
(See 4.3.2.2 Acquisition and Tracking Modes).  
VDDA  
⎞ ⎛  
------------- -------------  
8
tACQ  
=
⎠ ⎝  
fRDV KACQ  
VDDA  
⎞ ⎛  
------------- -------------  
4
tAL  
=
⎠ ⎝  
fRDV KTRK  
tLock = tACQ + tAL  
NOTE  
The inverse proportionality between the lock time and the reference  
frequency.  
In automatic bandwidth control mode, the acquisition and lock times are quantized into units based on the  
reference frequency. (See 4.3.2.3 Manual and Automatic PLL Bandwidth Modes). A certain number of  
clock cycles, nACQ, is required to ascertain that the PLL is within the tracking mode entry tolerance, TRK  
,
before exiting acquisition mode. A certain number of clock cycles, nTRK, is required to ascertain that the  
PLL is within the lock mode entry tolerance, Lock. Therefore, the acquisition time, tACQ, is an integer  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
75  
Clock Generator Module (CGM)  
multiple of nACQ CGMRDV, and the acquisition to lock time, tAL, is an integer multiple of nTRK/fCGMRDV.  
/f  
Also, since the average frequency over the entire measurement period must be within the specified  
tolerance, the total time usually is longer than tLock as calculated above.  
In manual mode, it is usually necessary to wait considerably longer than tLock before selecting the PLL  
clock (see 4.3.3 Base Clock Selector Circuit), because the factors described in 4.9.2 Parametric  
Influences on Reaction Time, may slow the lock time considerably.  
When defining a limit in software for the maximum lock time, the value must allow for variation due to all  
of the factors mentioned in this section, especially due to the CF capacitor and application specific  
influences.  
The calculated lock time is only an indication and it is the customer’s responsibility to allow enough of a  
guard band for their application. Prior to finalizing any software and while determining the maximum lock  
time, take into account all device to device differences. Typically, applications set the maximum lock time  
as an order of magnitude higher than the measured value. This is considered sufficient for all such device  
to device variation.  
Freescale recommends measuring the lock time of the application system by utilizing dedicated software,  
running in FLASH, EEPROM, or RAM. This should toggle a port pin when the PLL is first configured  
and switched on, then again when it goes from acquisition to lock mode and finally again when the PLL  
lock bit is set. The resultant waveform can be captured on an oscilloscope and used to determine  
the typical lock time for the microcontroller and the associated external application circuit. For example,  
see Figure 4-7  
tLock  
tAL  
tACQ  
INIT. LOW  
SIGNAL ON PORT PIN  
tTRK COMPLETE AND LOCK SET  
t
ACQ COMPLETE  
PLL CONFIGURED AND SWITCHED ON  
Figure 4-7. Typical Lock Time Waveform Example  
NOTE  
The filter capacitor should be fully discharged prior to making any  
measurements.  
MC68HC08AZ32A Data Sheet, Rev. 2  
76  
Freescale Semiconductor  
Chapter 5  
Computer Operating Properly (COP) Module  
5.1 Introduction  
This section describes the computer operating properly (COP) module, a free-running counter that  
generates a reset if allowed to overflow. The COP module helps software recover from runaway code.  
Prevent a COP reset by periodically clearing the COP counter.  
5.2 Functional Description  
Figure 5-1 shows the structure of the COP module.  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. COP timeouts are determined strictly by the CGM crystal oscillator clock signal (CGMXCLK), not  
the CGMOUT signal (see Figure 4-1. CGM Block Diagram).  
If not cleared by software, the COP counter overflows and generates an asynchronous reset after 8176  
or 262,128 CGMXCLK cycles, depending upon COPS bit in the MORA register ($001F). (See Chapter 10  
Mask Options.) With a 4.9152-MHz crystal and the COPS bit in the MORA register ($001F) set to a 1, the  
COP timeout period is approximately 53.3 ms. Writing any value to location $FFFF before overflow occurs  
clears the COP counter, clears stages 12 through 5 of the SIM counter, and prevents reset. A CPU  
interrupt routine can be used to clear the COP.  
NOTE  
The COP should be serviced as soon as possible out of reset and before  
entering or after exiting stop mode to guarantee the maximum selected  
amount of time before the first timeout.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the SIM reset status  
register (SRSR). See 15.7.2 SIM Reset Status Register (SRSR).  
While the microcontroller is in monitor mode, the COP module is disabled if the RST pin or the IRQ pin is  
held at VTST (see 20.5 5.0 Volt DC Electrical Characteristics). During a break state, VTST on the RST pin  
disables the COP module.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
The one exception to this is wait mode (see 5.7.1 Wait Mode).  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
77  
Computer Operating Properly (COP) Module  
SIM  
CGMXCLK  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
SIM RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP MODULE  
COPEN (FROM SIM)  
COPD (FROM MORA)  
6-BIT COP COUNTER  
RESET  
CLEAR  
COPCTL WRITE  
COP COUNTER  
COPS  
1. See 15.3.2 Active Resets From Internal Sources.  
Figure 5-1. COP Block Diagram  
5.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 5-1.  
5.3.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. The CGMXCLK frequency is equal to the crystal  
frequency.  
5.3.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
5.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (5.4 COP Control Register (COPCTL)), clears  
the COP counter and clears stages 12 through 4 of the COP prescaler. Reading the COP control register  
returns the reset vector.  
MC68HC08AZ32A Data Sheet, Rev. 2  
78  
Freescale Semiconductor  
COP Control Register (COPCTL)  
5.3.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up.  
5.3.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
5.3.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the COP prescaler.  
5.3.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the mask option register (MORA).  
See Chapter 10 Mask Options.  
5.3.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit, COPRS in the MORA register (see  
Figure 10-1. Mask Option Register A (MORA)).  
5.4 COP Control Register (COPCTL)  
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to  
$FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 5-2. COP Control Register (COPCTL)  
5.5 Interrupts  
The COP does not generate CPU interrupt requests.  
5.6 Monitor Mode  
The COP is disabled in monitor mode when VTST (see 20.5 5.0 Volt DC Electrical Characteristics) is  
present on the IRQ pin or on the RST pin.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
79  
Computer Operating Properly (COP) Module  
5.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
5.7.1 Wait Mode  
The COP remains active during wait mode. If COP is enabled, a reset will occur at COP timeout.  
5.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
The STOP bit in the MORA register ($001F) (see Chapter 10 Mask Options) enables the STOP  
instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP  
instruction by programming the STOP bit to 0.  
5.8 COP Module During Break Interrupts  
The COP is disabled during a break interrupt when VTST (see 20.5 5.0 Volt DC Electrical Characteristics)  
is present on the RST pin.  
MC68HC08AZ32A Data Sheet, Rev. 2  
80  
Freescale Semiconductor  
Chapter 6  
Central Processor Unit (CPU)  
6.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
6.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
6.3 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
81  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
6.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
MC68HC08AZ32A Data Sheet, Rev. 2  
82  
Freescale Semiconductor  
CPU Registers  
6.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
6.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
83  
Central Processor Unit (CPU)  
6.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC08AZ32A Data Sheet, Rev. 2  
84  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
6.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
6.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
6.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
6.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
85  
Central Processor Unit (CPU)  
6.7 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set.  
Table 6-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC08AZ32A Data Sheet, Rev. 2  
86  
Freescale Semiconductor  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
87  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
DIV  
INH  
52  
7
H Remainder  
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC08AZ32A Data Sheet, Rev. 2  
88  
Freescale Semiconductor  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
89  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC08AZ32A Data Sheet, Rev. 2  
90  
Freescale Semiconductor  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
A (CCR)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
(SP) (H:X) – 1  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
6.8 Opcode Map  
See Table 6-2.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
91  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
3
4
4
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2  
IX1  
SP1  
3
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
3
4
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
3
4
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
BIT  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
SP2  
IX1  
SP1  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
SP2  
IX1  
SP1  
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
LSL  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
SP1  
5
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
2
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
CLI  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
INH  
SP2  
IX1  
SP1  
5
3
3
5
2
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
SEI  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1  
5
INH  
SP2  
IX1  
SP1  
3
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
SP1  
4
INH  
2
DIR  
4
IX1  
3
BMS  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
SP1  
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
BIH  
CLR  
IX1  
CLR  
SP1  
STX  
STX  
STX  
3
DIR  
2
DIR  
REL 2 DIR  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 7  
External Interrupt (IRQ) Module  
7.1 Introduction  
The external interrupt (IRQ) module provides the nonmaskable interrupt input.  
7.2 Features  
Features include:  
Dedicated external interrupt pins (IRQ)  
IRQ interrupt control bit  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
7.3 Functional Description  
A falling edge applied to any of the external interrupt pins can latch a CPU interrupt request. Figure 7-1  
shows the structure of the IRQ module.  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
LATCH  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 7-1. IRQ Module Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
93  
External Interrupt (IRQ) Module  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
IRQ  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 7-2. Block Diagram Highlighting IRQ Block and Pins  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
0
0
0
0
IRQF  
IRQ Status and Control Register  
$001A  
(ISCR) Write:  
See page 97.  
ACK  
0
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 7-3. IRQ I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
94  
Freescale Semiconductor  
IRQ Pin  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of  
the following occurs:  
Vector fetch — a vector fetch automatically generates an interrupt acknowledge signal which  
clears the latch that caused the vector fetch.  
Software clear — software can clear an interrupt latch by writing to the appropriate acknowledge  
bit in the interrupt status and control register (ISCR). Writing a 1 to the ACK bit clears the IRQ latch.  
Reset — a reset automatically clears the interrupt latch  
The external interrupt pin is falling-edge-triggered and is software-configurable to be both falling-edge and  
low-level-triggered. The MODE bit in the ISCR controls the triggering sensitivity of the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software  
clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the interrupt latch remains set until both  
of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to a high level  
The vector fetch or software clear may occur before or after the interrupt pin returns to a high level. As  
long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the ISCR masks all external interrupt requests. A latched interrupt request is  
not presented to the interrupt priority logic unless the corresponding IMASK bit is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests. See Figure 7-4.  
7.4 IRQ Pin  
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software  
clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-level-sensitive. With MODE set,  
both of the following actions must occur to clear the IRQ latch:  
Vector fetch or software clear — a vector fetch generates an interrupt acknowledge signal to clear  
the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in  
the interrupt status and control register (ISCR). The ACK bit is useful in applications that poll the  
IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit can also prevent  
spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ  
pin. A falling edge on IRQ that occurs after writing to the ACK bit latches another interrupt request.  
If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address  
at locations $FFFA and $FFFB.  
Return of the IRQ pin to a high level — as long as the IRQ pin is low, the IRQ latch remains set.  
The vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the latch and the  
MODE control bit, thereby clearing the interrupt even if the pin stays low.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
95  
External Interrupt (IRQ) Module  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
YES  
SWI  
INSTRUCTION?  
NO  
YES  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 7-4. IRQ Interrupt Flowchart  
MC68HC08AZ32A Data Sheet, Rev. 2  
96  
Freescale Semiconductor  
IRQ Module During Break Interrupts  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or  
software clear immediately clears the IRQ latch.  
The IRQF bit in the ISCR register can be used to check for pending interrupts. The IRQF bit is not affected  
by the IMASK bit, which makes it useful in applications where polling is preferred.  
The BIH or BIL instruction is used to read the logic level on the IRQ pin.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
7.5 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ interrupt latch can be cleared during the  
break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the  
latches during the break state. See 15.7.3 SIM Break Flag Control Register (SBFCR).  
To allow software to clear the IRQ latch during a break interrupt, write a 1 to the BCFE bit. If a latch is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
writing to the ACK bit in the IRQ status and control register during the break state has no effect on the  
IRQ latch.  
7.6 IRQ Status and Control Register (ISCR)  
The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module. The ISCR  
performs the following functions:  
Indicates the state of the IRQ interrupt flag  
Clears the IRQ interrupt latch  
Masks IRQ interrupt requests  
Controls triggering sensitivity of the IRQ interrupt pin  
Address:  
$001A  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 7-5. IRQ Status and Control Register (ISCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0. Reset clears ACK.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
97  
External Interrupt (IRQ) Module  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
MC68HC08AZ32A Data Sheet, Rev. 2  
98  
Freescale Semiconductor  
Chapter 8  
Keyboard Interrupt (KBD) Module  
8.1 Introduction  
The keyboard interrupt module (KBD) provides five independently maskable external interrupt pins.  
8.2 Features  
Features include:  
Five keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard  
interrupt mask  
Hysteresis buffers  
Programmable edge-only or edge- and level-interrupt sensitivity  
Automatic interrupt acknowledge  
Exit from low-power modes  
8.3 Functional Description  
Writing to the KBIE4–KBIE0 bits in the keyboard interrupt enable register independently enables or  
disables each port G or port H pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also  
enables its internal pullup device. A low level applied to an enabled keyboard interrupt pin latches a  
keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK  
bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an  
interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on  
one pin because another pin is still low, software can disable the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt request is present as  
long as any keyboard pin is low.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
99  
Keyboard Interrupt (KBD) Module  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 8-1. Block Diagram Highlighting KBD Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
100  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBD0  
ACKK  
VDD  
KEYF  
RESET  
TO PULLUP  
ENABLE  
CLR  
.
.
.
D
Q
SYNCHRONIZER  
CK  
KB0IE  
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBD4  
KEYBOARD  
INTERRUPT  
REQUEST  
TO PULLUP  
ENABLE  
MODEK  
KB4IE  
Figure 8-2. Keyboard Module Block Diagram  
Addr.  
Register Name  
Keyboard Status and Control  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
$001B  
Register (KBSCR) Write:  
See page 103.  
Reset:  
0
0
0
0
0
0
0
KBIE4  
0
0
KBIE3  
0
Read:  
Keyboard Interrupt Enable  
KBIE2  
0
KBIE1  
0
KBIE0  
0
$0021  
Register (KBIER) Write:  
See page 104.  
Reset:  
0
0
0
= Unimplemented  
Figure 8-3. I/O Register Summary  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low- level sensitive, and  
both of the following actions must occur to clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the interrupt request. Software may generate the interrupt acknowledge signal by writing a 1 to the  
ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in  
applications that poll the keyboard interrupt pins and require software to clear the keyboard  
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine also can  
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on  
the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the KBI vector address.  
Return of all enabled keyboard interrupt pins to a high level. As long as any enabled keyboard  
interrupt pin is low, the keyboard interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to a high level may  
occur in any order.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
101  
Keyboard Interrupt (KBD) Module  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only. With MODEK clear, a  
vector fetch or software clear immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt pin stays at low.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending  
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes  
it useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the  
pin as an input and read the data register.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
8.4 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a 1. Therefore, a  
false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register  
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRG bits in data direction  
register G.  
2. Configure the keyboard pins as outputs by setting the appropriate DDRH bits in data direction  
register H.  
3. Write 1s to the appropriate port G and port H data register bits.  
4. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
8.5.1 Wait Mode  
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
MC68HC08AZ32A Data Sheet, Rev. 2  
102  
Freescale Semiconductor  
Keyboard Module During Break Interrupts  
8.5.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
8.6 Keyboard Module During Break Interrupts  
The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the  
break state. See 19.2 Break Module (BRK).  
To allow software to clear the KEYF bit during a break interrupt, write a 1 to the BCFE bit. If KEYF is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the KEYF bit during the break state, write a 0 to the BCFE bit. With BCFE at 0, writing to the  
keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has  
no effect. See 8.7.1 Keyboard Status and Control Register.  
8.7 I/O Registers  
The following registers control and monitor operation of the keyboard module:  
Keyboard status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
8.7.1 Keyboard Status and Control Register  
The keyboard status and control register:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001B  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-4. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
103  
Keyboard Interrupt (KBD) Module  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as 0. Reset  
clears ACKK.  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating  
interrupt requests. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears  
MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
8.7.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register enables or disables each port G and each port H pin to operate as  
a keyboard interrupt pin.  
Address: $0021  
Bit 7  
0
6
0
5
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 8-5. Keyboard Interrupt Enable Register (KBIER)  
KBIE4–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enable the corresponding keyboard interrupt pin to latch interrupt  
requests. Reset clears the keyboard interrupt enable register.  
1 = Port pin enabled as keyboard interrupt pin  
0 = Port pin not enabled as keyboard interrupt pin  
MC68HC08AZ32A Data Sheet, Rev. 2  
104  
Freescale Semiconductor  
Chapter 9  
Low-Voltage Inhibit (LVI) Module)  
9.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin  
and can force a reset when the VDD voltage falls to the LVI trip voltage.  
9.2 Features  
Features include:  
Programmable LVI reset  
Programmable power consumption  
Digital filtering of VDD pin level  
NOTE  
If a low-voltage interrupt (LVI) occurs during programming of EEPROM  
memory, then adequate programming time may not have been allowed to  
ensure the integrity and retention of the data. It is the responsibility of the  
user to ensure that in the event of an LVI any addresses being programmed  
receive specification programming conditions.  
9.3 Functional Description  
Figure 9-1 shows the structure of the LVI module. The LVI module contains a bandgap reference circuit  
and comparator. The LVI power bit, LVIPWR, enables the LVI to monitor VDD voltage. The LVI reset bit,  
LVIRST, enables the LVI module to generate a reset when VDD falls below a voltage, LVITRIPF, and  
remains at or below that level for nine or more consecutive CPU cycles.  
NOTE  
Note that short VDD spikes may not trip the LVI. It is the user’s responsibility  
to ensure a clean VDD signal within the specified operating voltage range if  
normal microcontroller operation is to be guaranteed.  
LVISTOP enables the LVI module during stop mode. This will ensure when the STOP instruction is  
implemented the LVI will continue to monitor the voltage level on VDD  
.
LVIPWR, LVIRST, and LVISTOP are mask options (see Chapter 10 Mask Options). Once an LVI reset  
occurs, the MCU remains in reset until VDD rises above a voltage, LVITRIPR. VDD must be above LVITRIPR  
for only one CPU cycle to bring the MCU out of reset. The output of the comparator controls the state of  
the LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
105  
Low-Voltage Inhibit (LVI) Module)  
VDD  
LVIPWR  
FROM MORA  
FROM MORA  
LVIRST  
CPU CLOCK  
VDD  
DIGITAL FILTER  
VDD > LVITRIP = 0  
DD < LVITRIP = 1  
LVI RESET  
LOW VDD  
DETECTOR  
V
Stop Mode  
Filter Bypass  
ANLGTRIP  
LVIOUT  
LVISTOP  
FROM MORA  
Figure 9-1. LVI Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: LVIOUT  
0
0
0
0
0
0
0
LVI Status Register  
(LVISR) Write:  
See page 107.  
$FE0F  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-2. I/O Register Summary  
9.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the LVITRIPF level, software can monitor VDD by  
polling the LVIOUT bit. In the mask option register, the LVIPWR bit must be at a 1 to enable the LVI  
module and the LVIRST bit must be a 0 to disable LVI resets.  
9.3.2 Forced Reset Operation  
In applications that require VDD to remain above the LVITRIPF level, enabling LVI resets allows the LVI  
module to reset the MCU when VDD falls to the LVITRIPF level and remains at or below that level for nine  
or more consecutive CPU cycles. In the mask option register, the LVIPWR and LVIRST bits must be 1s  
to enable the LVI module and to enable LVI resets.  
9.3.3 False Reset Protection  
The VDD pin level is digitally filtered to reduce false resets due to power supply noise. In order for the LVI  
module to reset the MCU,VDD must remain at or below the LVITRIPF level for nine or more consecutive  
CPU cycles. VDD must be above LVITRIPR for only one CPU cycle to bring the MCU out of reset.  
MC68HC08AZ32A Data Sheet, Rev. 2  
106  
Freescale Semiconductor  
LVI Status Register (LVISR)  
9.4 LVI Status Register (LVISR)  
The LVI status register flags VDD voltages below the LVITRIPF level.  
Address: $FE0F  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-3. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when VDD falls below the LVITRIPF voltage for 32–40 CGMXCLK  
cycles. (See Table 9-1). Reset clears the LVIOUT bit.  
Table 9-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
at level:  
for number of CGMXCLK cycles:  
Any  
VDD > LVITRIPR  
0
VDD < LVITRIPF  
VDD < LVITRIPF  
VDD < LVITRIPF  
LVITRIPF < VDD < LVITRIPR  
< 32 CGMXCLK cycles  
between 32 and 40 CGMXCLK cycles  
> 40 CGMXCLK cycles  
Any  
0
0 or 1  
1
Previous value  
9.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
9.6 Low-Power Modes  
The WAIT instruction puts the MCU in low-power consumption standby mode.  
9.6.1 Wait Mode  
With the LVIPWR bit in the MORA register programmed to 1, the LVI module is active after a WAIT  
instruction.  
With the LVIRST bit in the MORA register programmed to 1, the LVI module can generate a reset and  
bring the MCU out of wait mode.  
9.6.2 Stop Mode  
With LVISTOP = 1 and LVIPWR = 1 in the MORA register, the LVI module will be active after a STOP  
instruction. Because CPU clocks are disabled during stop mode, the LVI trip must bypass the digital filter  
to generate a reset and bring the MCU out of stop.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
107  
Low-Voltage Inhibit (LVI) Module)  
With the LVIPWR bit in the MORA register at a 1 and the LVISTOP bit at a 0, the LVI module will be  
inactive after a STOP instruction.  
NOTE  
The LVI feature is intended to provide the safe shutdown of the  
microcontroller and thus protection of related circuitry prior to any  
application VDD voltage collapsing completely to an unsafe level. Is is not  
intended that users operate the microcontroller at lower than the specified  
operating voltage, VDD  
.
MC68HC08AZ32A Data Sheet, Rev. 2  
108  
Freescale Semiconductor  
Chapter 10  
Mask Options  
10.1 Introduction  
This section describes the mask options and the mask option registers. The mask options are hardwired  
connections specified at the same time as the ROM code, which allow the user to customize the MCU.  
The options control the enable or disable of the following functions:  
Resets caused by the LVI module  
Power to the LVI module  
Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles)  
ROM security(1)  
STOP instruction  
Computer operating properly (COP) module enable  
EEPROM read protection(1)  
COP time-out period  
EEPROM reference clock source  
10.2 Functional Description  
Address: $001F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: LVISTOP ROMSEC  
LVIRST  
LVIPWR  
SSREC  
COPRS  
STOP  
COPD  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 10-1. Mask Option Register A (MORA)  
LVISTOP — LVI Stop Mode Enable Bit  
LVISTOP enables the LVI module in stop mode. See Chapter 9 Low-Voltage Inhibit (LVI) Module).  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
ROMSEC — ROM Security Bit  
ROMSEC enables the ROM security feature. Setting the ROMSEC bit prevents access to the ROM  
contents.  
1 = ROM security enabled  
0 = ROM security disabled  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the ROM/EEPROM data  
difficult for unauthorized users.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
109  
Mask Options  
LVIRST — LVI Reset Enable Bit  
LVIRST enables the reset signal from the LVI module. See Chapter 9 Low-Voltage Inhibit (LVI)  
Module).  
1 = LVI module resets enabled  
0 = LVI module resets disabled  
LVIPWR — LVI Power Enable Bit  
LVIPWR enables the LVI module. See Chapter 9 Low-Voltage Inhibit (LVI) Module).  
1 = LVI module power enabled  
0 = LVI module power disabled  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096  
CGMXCLK cycle delay.  
1 = STOP mode recovery after 32 CGMXCLK cycles  
0 = STOP mode recovery after 4096 CGMXCLK cycles  
If using an external crystal oscillator, the SSREC bit should not be set.  
COPRS — COP Rate Select  
COPRS is similar to COPL (please note that the logic is reversed) as it determines the timeout period  
for the COP.  
1 = COP timeout period is 8176 CGMXCLK cycles.  
0 = COP timeout period is 262,128 CGMXCLK cycles.  
STOP — STOP Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. See Chapter 5 Computer Operating Properly (COP) Module.  
1 = COP module disabled  
0 = COP module enabled  
NOTE  
Extra care should be exercised when selecting mask option registers since  
other M68HC08 Family parts may have different options. It is the user’s  
responsibility to correctly define the mask option registers. If in doubt, check  
with your local field applications representative.  
Address: $FE09  
Bit 7  
Read: EEDIVCLK  
Write:  
6
5
4
3
2
1
Bit 0  
0
EESEC EEMONSEC  
AZ32A  
0
0
0
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 10-2. Mask Option Register B (MORB)  
MC68HC08AZ32A Data Sheet, Rev. 2  
110  
Freescale Semiconductor  
Functional Description  
EEDIVCLK — EEPROM Timebase Divider Clock Select Bit  
EEDIVCLK selects the reference clock source for the EEPROM timebase divider. See 2.7.3.4  
EEPROM Timebase Divider Register.  
1 = CPU bus clock drives the EEPROM timebase divider  
0 = CGMXCLK drives the EEPROM timebase divider  
EESEC  
This bit has no function.  
EEMONSEC — EEPROM Read Protection in Monitor Mode Bit  
When EEMONSEC is set the entire EEPROM array cannot be accessed in monitor mode unless a  
valid security code is entered.  
1 = EEPROM read protection in monitor mode enabled.  
0 = EEPROM read protection in monitor mode disabled.  
AZ32A — Device Indicator  
This bit is used to distinguish a MC68HC08AZ32A from older non-’A’ suffix versions and always reads  
as 1.  
1 = ‘A’ version  
0 = Non-’A’ version  
NOTE  
Extra care should be exercised when selecting mask option registers since  
other M68HC08 Family parts may have different options. It is the user’s  
responsibility to correctly define the mask option registers. If in doubt, check  
with your local field applications representative.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
111  
Mask Options  
MC68HC08AZ32A Data Sheet, Rev. 2  
112  
Freescale Semiconductor  
Chapter 11  
MSCAN08 Controller (MSCAN08)  
11.1 Introduction  
The MSCAN08 is the specific implementation of the MSCAN concept targeted for the Freescale  
M68HC08 Microcontroller Family. The module is a communication controller implementing the CAN 2.0  
A/B protocol as defined in the BOSCH specification dated September 1991.  
The CAN protocol was primarily, but not exclusively, designed to be used as a vehicle serial data bus,  
meeting the specific requirements of this field: real-time processing, reliable operation in the  
electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth.  
MSCAN08 utilizes an advanced buffer arrangement, resulting in a predictable real-time behavior, and  
simplifies the application software.  
11.2 Features  
Basic features are:  
Modular architecture  
Implementation of the CAN Protocol — Version 2.0A/B  
Standard and extended data frames  
0–8 bytes data length  
Programmable bit rate up to 1 Mbps depending on the actual bit timing and the clock jitter of  
the PLL  
Support for remote frames  
Double-buffered receive storage scheme  
Triple-buffered transmit storage scheme with internal prioritization using a local priority concept  
Flexible maskable identifier filter supports alternatively one full size extended identifier filter, two  
16-bit filters, or four 8-bit filters  
Programmable wakeup functionality with integrated low-pass filter  
Programmable loop-back mode supports self-test operation  
Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states  
(warning, error passive, bus off)  
Programmable MSCAN08 clock source either CPU bus cock or crystal oscillator output  
Programmable link to on-chip timer interface module (TIMB) for time-stamping and network  
synchronization  
Low-power sleep mode  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
113  
MSCAN08 Controller (MSCAN08)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 11-1. Block Diagram Highlighting MSCAN08 Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
114  
Freescale Semiconductor  
External Pins  
11.3 External Pins  
The MSCAN08 uses two external pins, one input (RxCAN) and one output (TxCAN). The TxCAN output  
pin represents the logic level on the CAN: 0 is for a dominant state and 1 is for a recessive state.  
A typical CAN system with MSCAN08 is shown in Figure 11-2.  
CAN STATION 1  
CAN NODE 1  
CAN NODE 2  
CAN NODE N  
MCU  
CAN CONTROLLER  
(MSCAN08)  
TxCAN  
RxCAN  
TRANSCEIVER  
CAN_L  
CAN_H  
C A N BUS  
Figure 11-2. The CAN System  
Each CAN station is connected physically to the CAN bus lines through a transceiver chip. The  
transceiver is capable of driving the large current needed for the CAN and has current protection against  
defective CAN or defective stations.  
11.4 Message Storage  
MSCAN08 facilitates a sophisticated message storage system which addresses the requirements of a  
broad range of network applications.  
11.4.1 Background  
Modern application layer software is built under two fundamental assumptions:  
1. Any CAN node is able to send out a stream of scheduled messages without releasing the bus  
between two messages. Such nodes will arbitrate for the bus right after sending the previous  
message and will only release the bus in case of lost arbitration.  
2. The internal message queue within any CAN node is organized as such that the highest priority  
message will be sent out first if more than one message is ready to be sent.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
115  
MSCAN08 Controller (MSCAN08)  
Above behavior cannot be achieved with a single transmit buffer. That buffer must be reloaded right after  
the previous message has been sent. This loading process lasts a definite amount of time and has to be  
completed within the inter-frame sequence (IFS) to be able to send an uninterrupted stream of messages.  
Even if this is feasible for limited CAN bus speeds, it requires that the CPU reacts with short latencies to  
the transmit interrupt.  
A double buffer scheme would de-couple the re-loading of the transmit buffers from the actual message  
being sent and as such reduces the reactiveness requirements on the CPU. Problems may arise if the  
sending of a message would be finished just while the CPU re-loads the second buffer. In that case, no  
buffer would then be ready for transmission and the bus would be released.  
At least three transmit buffers are required to meet the first of the above requirements under all  
circumstances. The MSCAN08 has three transmit buffers.  
The second requirement calls for some sort of internal prioritization which the MSCAN08 implements with  
the local priority concept described in 11.4.2 Receive Structures.  
11.4.2 Receive Structures  
The received messages are stored in a 2-stage input first in first out (FIFO). The two message buffers are  
mapped using a ping pong arrangement into a single memory area (see Figure 11-3). While the  
background receive buffer (RxBG) is exclusively associated to the MSCAN08, the foreground receive  
buffer (RxFG) is addressable by the CPU08. This scheme simplifies the handler software, because only  
one address area is applicable for the receive process.  
Both buffers have a size of 13 bytes to store the CAN control bits, the identifier (standard or extended),  
and the data content (for details, see 11.12 Programmer’s Model of Message Storage).  
The receiver full flag (RXF) in the MSCAN08 receiver flag register (CRFLG) (see 11.13.5 MSCAN08  
Receiver Flag Register (CRFLG)), signals the status of the foreground receive buffer. When the buffer  
contains a correctly received message with matching identifier, this flag is set.  
On reception, each message is checked to see if it passes the filter (for details see 11.5 Identifier  
Acceptance Filter) and in parallel is written into RxBG. The MSCAN08 copies the content of RxBG into  
RxFG(1), sets the RXF flag, and generates a receive interrupt to the CPU(2). The user’s receive handler  
has to read the received message from RxFG and to reset the RXF flag to acknowledge the interrupt and  
to release the foreground buffer. A new message which can follow immediately after the IFS field of the  
CAN frame, is received into RxBG. The overwriting of the background buffer is independent of the  
identifier filter function.  
When the MSCAN08 module is transmitting, the MSCAN08 receives its own messages into the  
background receive buffer, RxBG. It does NOT overwrite RxFG, generate a receive interrupt, or  
acknowledge its own messages on the CAN bus. The exception to this rule is in loop-back mode (see  
11.13.2 MSCAN08 Module Control Register 1), where the MSCAN08 treats its own messages exactly like  
all other incoming messages. The MSCAN08 receives its own transmitted messages in the event that it  
loses arbitration. If arbitration is lost, the MSCAN08 must be prepared to become a receiver.  
1. Only if the RXF flag is not set.  
2. The receive interrupt will occur only if not masked. Also, a polling scheme can be applied on RXF.  
MC68HC08AZ32A Data Sheet, Rev. 2  
116  
Freescale Semiconductor  
Message Storage  
CPU08 IBUS  
MSCAN08  
RxBG  
RxFG  
RXF  
TXE  
Tx0  
Tx1  
Tx2  
PRIO  
TXE  
PRIO  
TXE  
PRIO  
Figure 11-3. User Model for Message Buffer Organization  
An overrun condition occurs when both the foreground and the background receive message buffers are  
filled with correctly received messages with accepted identifiers and another message is correctly  
received from the bus with an accepted identifier. The latter message will be discarded and an error  
interrupt with overrun indication will be generated if enabled. The MSCAN08 is still able to transmit  
messages with both receive message buffers filled, but all incoming messages are discarded.  
11.4.3 Transmit Structures  
The MSCAN08 has a triple transmit buffer scheme to allow multiple messages to be set up in  
advance and to achieve an optimized real-time performance. The three buffers are arranged as shown in  
Figure 11-3.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
117  
MSCAN08 Controller (MSCAN08)  
All three buffers have a 13-byte data structure similar to the outline of the receive buffers (see 11.12  
Programmer’s Model of Message Storage). An additional transmit buffer priority register (TBPR) contains  
an 8-bit local priority field (PRIO) (see 11.12.5 Transmit Buffer Priority Registers).  
To transmit a message, the CPU08 has to identify an available transmit buffer which is indicated by a set  
transmit buffer empty (TXE) flag in the MSCAN08 transmitter flag register (CTFLG) (see 11.13.7  
MSCAN08 Transmitter Flag Register).  
The CPU08 then stores the identifier, the control bits, and the data content into one of the transmit buffers.  
Finally, the buffer has to be flagged ready for transmission by clearing the TXE flag.  
The MSCAN08 then will schedule the message for transmission and will signal the successful  
transmission of the buffer by setting the TXE flag. A transmit interrupt is generated(1) when TXE is set and  
can be used to drive the application software to re-load the buffer.  
In case more than one buffer is scheduled for transmission when the CAN bus becomes available for  
arbitration, the MSCAN08 uses the local priority setting of the three buffers for prioritization. For this  
purpose, every transmit buffer has an 8-bit local priority field (PRIO). The application software sets this  
field when the message is set up. The local priority reflects the priority of this particular message relative  
to the set of messages being emitted from this node. The lowest binary value of the PRIO field is defined  
as the highest priority.  
The internal scheduling process takes place whenever the MSCAN08 arbitrates for the bus. This is also  
the case after the occurrence of a transmission error.  
When a high priority message is scheduled by the application software, it may become necessary to abort  
a lower priority message being set up in one of the three transmit buffers. As messages that are already  
under transmission cannot be aborted, the user has to request the abort by setting the corresponding  
abort request flag (ABTRQ) in the transmission control register (CTCR). The MSCAN08 will then grant  
the request, if possible, by setting the corresponding abort request acknowledge (ABTAK) and the TXE  
flag in order to release the buffer and by generating a transmit interrupt. The transmit interrupt handler  
software can tell from the setting of the ABTAK flag whether the message was actually aborted  
(ABTAK = 1) or sent (ABTAK = 0).  
11.5 Identifier Acceptance Filter  
The identifier acceptance registers (CIDAR0–CIDAR3) define the acceptance patterns of the standard or  
extended identifier (ID10–ID0 or ID28–ID0). Any of these bits can be marked don’t care in the identifier  
mask registers (CIDMR0–CIDMR3).  
A filter hit is indicated to the application software by a set RXF (receive buffer full flag, see 11.13.5  
MSCAN08 Receiver Flag Register (CRFLG)) and two bits in the Identifier acceptance control register (see  
11.13.9 MSCAN08 Identifier Acceptance Control Register). These Identifier hit flags (IDHIT1–IDHIT0)  
clearly identify the filter section that caused the acceptance. They simplify the application software’s task  
to identify the cause of the receiver interrupt. In case that more than one hit occurs (two or more filters  
match) the lower hit has priority.  
A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU  
interrupt loading. The filter is programmable to operate in four different modes:  
1. Single identifier acceptance filter, each to be applied to a) the full 29 bits of the extended identifier  
and to the following bits of the CAN frame: RTR, IDE, SRR or b) the 11 bits of the standard identifier  
1. The transmit interrupt will occur only if not masked. Also, a polling scheme can be applied on TXE.  
MC68HC08AZ32A Data Sheet, Rev. 2  
118  
Freescale Semiconductor  
Identifier Acceptance Filter  
plus the RTR and IDE bits of CAN 2.0A/B messages. This mode implements a single filter for a full  
length CAN 2.0B compliant extended identifier. Figure 11-4 shows how the 32-bit filter bank  
(CIDAR0–CIDAR3, CIDMR0–CIDMR3) produces a filter 0 hit.  
2. Two identifier acceptance filters, each to be applied to a) the 14 most significant bits of the  
extended identifier plus the SRR and the IDE bits of CAN2.0B messages, or b) the 11 bits of the  
identifier plus the RTR and IDE bits of CAN 2.0A/B messages. Figure 11-5 shows how the 32-bit  
filter bank (CIDAR0–CIDAR3, CIDMR0–CIDMR3) produces filter 0 and 1 hits.  
3. Four identifier acceptance filters, each to be applied to the first eight bits of the identifier. This mode  
implements four independent filters for the first eight bits of a CAN 2.0A/B compliant standard  
identifier. Figure 11-6 shows how the 32-bit filter bank (CIDAR0-3, CIDMR0-3) produces filter 0 to  
3 hits.  
4. Closed filter. No CAN message will be copied into the foreground buffer RxFG, and the RXF flag  
will never be set.  
ID28  
ID10  
IDR0  
IDR0  
ID21 ID20  
ID3 ID2  
IDR1  
ID15 ID14  
IDR2  
ID7 ID6  
IDR3  
RTR  
IDR1 IDE  
AM7  
AC7  
CIDMR0  
CIDAR0  
AM0 AM7  
AC0 AC7  
CIDMR1  
CIDAR1  
AM0 AM7  
AC0 AC7  
CIDMR2  
CIDAR2  
AM0 AM7  
AC0 AC7  
CIDMR3  
CIDAR3  
AM0  
AC0  
ID Accepted (Filter 0 Hit)  
Figure 11-4. Single 32-Bit Maskable Identifier Acceptance Filter  
ID28  
ID10  
IDR0  
IDR0  
ID21 ID20  
ID3 ID2  
IDR1  
ID15 ID14  
IDR2  
ID7 ID6  
IDR3  
RTR  
IDR1 IDE  
AM7  
AC7  
CIDMR0  
CIDAR0  
AM0 AM7  
AC0 AC7  
CIDMR1  
CIDAR1  
AM0  
AC0  
ID ACCEPTED (FILTER 0 HIT)  
AM7  
AC7  
CIDMR2  
AM0 AM7  
AC0 AC7  
CIDMR3  
AM0  
AC0  
CIDAR2  
CIDAR3  
ID ACCEPTED (FILTER 1 HIT)  
Figure 11-5. Dual 16-Bit Maskable Acceptance Filters  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
119  
MSCAN08 Controller (MSCAN08)  
ID28  
ID10  
IDR0  
IDR0  
ID21 ID20  
ID3 ID2  
IDR1  
IDR1  
ID15 ID14  
IDE
IDR2  
ID7 ID6  
IDR3  
RTR  
AM7  
AC7  
CIDMR0  
CIDAR0  
AM0  
AC0  
ID ACCEPTED (FILTER 0 HIT)  
AM7  
AC7  
CIDMR1  
CIDAR1  
AM0  
AC0  
ID ACCEPTED (FILTER 1 HIT)  
AM7  
AC7  
CIDMR2  
CIDAR2  
AM0  
AC0  
ID ACCEPTED (FILTER 2 HIT)  
AM7  
AC7  
CIDMR3  
CIDAR3  
AM0  
AC0  
ID ACCEPTED (FILTER 3 HIT)  
Figure 11-6. Quadruple 8-Bit Maskable Acceptance Filters  
MC68HC08AZ32A Data Sheet, Rev. 2  
120  
Freescale Semiconductor  
Interrupts  
11.5.1 MSCAN Extended ID Rejected if Stuff Bit Between ID16 and ID15  
For 32-bit and 16-bit identifier acceptance modes, an extended ID CAN frame with a stuff bit between  
ID16 and ID15 can be erroneously rejected, depending on IDAR0, IDAR1, and IDMR1.  
Extended IDs (ID28–ID0) which generate a stuff bit between ID16 and ID15:  
IDAR0  
IDAR1  
IDAR2  
IDAR3  
********  
***1111x  
xxxxxxxx  
xxxxxxxx  
where: x = 0 or 1 (don't care)  
*= pattern for ID28 to ID18 (see the following).  
Affected extended IDs (ID28 - ID18) patterns:  
a) xxxxxxxxx01 exceptions: 00000000001 01111100001  
xxxx1000001 exception: 11111000001  
b) xxxxx100000 exception: 01111100000  
c) xxxx0111111 exception: 00000111111  
d) x0111110000  
e) 10000000000  
f) 11111111111  
g) 10000011111  
When an affected ID is received, an incorrect value is compared to the 2nd byte of the filter (IDAR1 and  
IDAR5, plus IDAR3 and IDAR7 in 16-bit mode). This incorrect value is the shift register contents before  
ID15 is shifted in (i.e., right shifted by 1).  
Workaround  
If the problematic IDs cannot be avoided, the workaround is to mask certain bits with IDMR1 (and  
IDMR5, plus IDMR3 and IDMR7 in 16-bit mode).  
Example 1: to receive the message IDs  
xxxx xxxx x011 111x xxxx xxxx xxxx xxxx  
IDMR1 etc. must be 111x xxx1, i.e. ID20, 19, 18, 15 must be masked.  
Example 2: to receive the message IDs  
xxxx 0111 1111 111x xxxx xxxx xxxx xxxx  
IDMR1 etc. must be 1xxx xxx1, i.e. ID20 and ID15 must be masked.  
In general, using IDMR1 etc. 1111 xxx1, i.e. masking ID20, ID19, ID18, SRR, ID15, hides the  
problem.  
11.6 Interrupts  
The MSCAN08 supports four interrupt vectors mapped onto eleven different interrupt sources, any of  
which can be individually masked (for details see 11.13.5 MSCAN08 Receiver Flag Register (CRFLG) to  
11.13.8 MSCAN08 Transmitter Control Register).  
Transmit Interrupt: At least one of the three transmit buffers is empty (not scheduled) and can be  
loaded to schedule a message for transmission. The TXE flags of the empty message buffers are  
set.  
Receive Interrupt: A message has been received successfully and loaded into the foreground  
receive buffer. This interrupt will be emitted immediately after receiving the EOF symbol. The RXF  
flag is set.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
121  
MSCAN08 Controller (MSCAN08)  
Wakeup Interrupt: An activity on the CAN bus occurred during MSCAN08 internal sleep mode or  
power-down mode (provided SLPAK = WUPIE = 1).  
Error Interrupt: An overrun, error, or warning condition occurred. The receiver flag register  
(CRFLG) will indicate one of the following conditions:  
Overrun: An overrun condition as described in 11.4.2 Receive Structures has occurred.  
Receiver Warning: The receive error counter has reached the CPU warning limit of 96.  
Transmitter Warning: The transmit error counter has reached the CPU warning limit of 96.  
Receiver Error Passive: The receive error counter has exceeded the error passive limit of 127  
and MSCAN08 has gone to error passive state.  
Transmitter Error Passive: The transmit error counter has exceeded the error passive limit of  
127 and MSCAN08 has gone to error passive state.  
Bus Off: The transmit error counter has exceeded 255 and MSCAN08 has gone to bus off state.  
11.6.1 Interrupt Acknowledge  
Interrupts are directly associated with one or more status flags in either the MSCAN08 receiver flag  
register (CRFLG) or the MSCAN08 transmitter flag register (CTFLG). Interrupts are pending as long as  
one of the corresponding flags is set. The flags in the above registers must be reset within the interrupt  
handler in order to handshake the interrupt. The flags are reset through writing a 1 to the corresponding  
bit position. A flag cannot be cleared if the respective condition still prevails.  
NOTE  
Bit manipulation instructions (BSET) shall not be used to clear interrupt  
flags.  
11.6.2 Interrupt Vectors  
The MSCAN08 supports four interrupt vectors as shown in Table 11-1. The vector addresses and the  
relative interrupt priority are defined in Table 2-1. Vector Addresses  
.
Table 11-1. MSCAN08 Interrupt Vector Addresses  
Local  
Mask  
Global  
Mask  
Function  
Source  
Wakeup  
WUPIF  
RWRNIF  
TWRNIF  
RERRIF  
TERRIF  
BOFFIF  
OVRIF  
RXF  
WUPIE  
RWRNIE  
TWRNIE  
RERRIE  
TERRIE  
BOFFIE  
OVRIE  
Error  
Interrupts  
I Bit  
Receive  
Transmit  
RXFIE  
TXE0  
TXEIE0  
TXEIE1  
TXEIE2  
TXE1  
TXE2  
MC68HC08AZ32A Data Sheet, Rev. 2  
122  
Freescale Semiconductor  
Protocol Violation Protection  
11.7 Protocol Violation Protection  
The MSCAN08 will protect the user from accidentally violating the CAN protocol through programming  
errors. The protection logic implements the following features:  
The receive and transmit error counters cannot be written or otherwise manipulated.  
All registers which control the configuration of the MSCAN08 can not be modified while the  
MSCAN08 is on-line. The SFTRES bit in the MSCAN08 module control register (see 11.13.1  
MSCAN08 Module Control Register 0) serves as a lock to protect the following registers:  
MSCAN08 module control register 1 (CMCR1)  
MSCAN08 bus timing register 0 and 1 (CBTR0 and CBTR1)  
MSCAN08 identifier acceptance control register (CIDAC)  
MSCAN08 identifier acceptance registers (CIDAR0–CIDAR3)  
MSCAN08 identifier mask registers (CIDMR0–CIDMR3)  
The TxCAN pin is forced to recessive when the MSCAN08 is in any of the low-power modes.  
11.8 Low Power Modes  
In addition to normal mode, the MSCAN08 has three modes with reduced power consumption:  
Sleep mode  
Soft reset mode  
Power down modes  
In sleep and soft reset mode, power consumption is reduced by stopping all clocks except those to access  
the registers. In power down mode, all clocks are stopped and no power is consumed.  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes. Table 11-2  
summarizes the combinations of MSCAN08 and CPU modes. A particular combination of modes is  
entered for the given settings of the bits SLPAK and SFTRES. For all modes, an MSCAN wakeup interrupt  
can occur only if SLPAK = WUPIE = 1.  
.
Table 11-2. MSCAN08 versus CPU Operating Modes  
CPU Mode  
MSCAN Mode  
STOP  
WAIT or RUN  
SLPAK = X(1)  
SFTRES = X  
Power Down  
Sleep  
SLPAK = 1  
SFTRES = 0  
SLPAK = 0  
SFTRES = 1  
Soft Reset  
SLPAK = 0  
SFTRES = 0  
Normal  
1. ‘X’ means don’t care.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
123  
MSCAN08 Controller (MSCAN08)  
11.8.1 MSCAN08 Sleep Mode  
The CPU can request the MSCAN08 to enter the low-power mode by asserting the SLPRQ bit in the  
module configuration register (see Figure 11-7). The time when the MSCAN08 enters sleep mode  
depends on its activity:  
If it is transmitting, it continues to transmit until there is no more messages to be transmitted, and  
then goes into sleep mode  
If it is receiving, it waits for the end of this message and then goes into sleep mode  
If it is neither transmitting or receiving, it will immediately go into sleep mode  
NOTE  
The application software must avoid setting up a transmission (by clearing  
one or more TXE flags) and immediately request sleep mode (by setting  
SLPRQ). It then depends on the exact sequence of operations as to  
whether MSCAN08 starts transmitting or goes into sleep mode directly.  
During sleep mode, the SLPAK flag is set. The application software should use SLPAK as a handshake  
indication for the request (SLPRQ) to go into sleep mode. When in sleep mode, the MSCAN08 stops its  
internal clocks. However, clocks to allow register accesses still run. If the MSCAN08 is in bus-off state, it  
stops counting the 128*11 consecutive recessive bits due to the stopped clocks. The TxCAN pin stays in  
recessive state. If RXF = 1, the message can be read and RXF can be cleared. Copying RxGB into RxFG  
doesn’t take place while in sleep mode. It is possible to access the transmit buffers and to clear the TXE  
flags. No message abort takes place while in sleep mode.  
The MSCAN08 leaves sleep mode (wakeup) when:  
Bus activity occurs, or  
The MCU clears the SLPRQ bit, or  
The MCU sets the SFTRES bit  
MSCAN08 RUNNING  
MCU  
or MSCAN08  
SLPRQ = 0  
SLPAK = 0  
MCU  
MSCAN08 SLEEPING  
SLEEP REQUEST  
SLPRQ = 1  
SLPAK = 1  
SLPRQ = 1  
SLPAK = 0  
MSCAN08  
Figure 11-7. Sleep Request/Acknowledge Cycle  
NOTE  
The MCU cannot clear the SLPRQ bit before the MSCAN08 is in sleep  
mode (SLPAK = 1).  
MC68HC08AZ32A Data Sheet, Rev. 2  
124  
Freescale Semiconductor  
Low Power Modes  
After wakeup, the MSCAN08 waits for 11 consecutive recessive bits to synchronize to the bus. As a  
consequence, if the MSCAN08 is woken by a CAN frame, this frame is not received. The receive message  
buffers (RxFG and RxBG) contain messages if they were received before sleep mode was entered. All  
pending actions are executed upon wakeup: copying of RxBG into RxFG, message aborts, and message  
transmissions. If the MSCAN08 is still in bus-off state after sleep mode was left, it continues counting the  
128*11 consecutive recessive bits.  
11.8.2 MSCAN08 Soft Reset Mode  
In soft reset mode, the MSCAN08 is stopped although registers can still be accessed. This mode is used  
to initialize the module configuration, bit timing, and the CAN message filter. See 11.13.1 MSCAN08  
Module Control Register 0 for a complete description of the soft reset mode.  
When setting the SFTRES bit, the MSCAN08 immediately stops all ongoing transmissions and  
receptions, potentially causing CAN protocol violations.  
NOTE  
The user is responsible to take care that the MSCAN08 is not active when  
soft reset mode is entered. The recommended procedure is to bring the  
MSCAN08 into sleep mode before the SFTRES bit is set.  
11.8.3 MSCAN08 Power Down Mode  
The MSCAN08 is in power down mode when the CPU is in stop mode. When entering the power down  
mode, the MSCAN08 immediately stops all ongoing transmissions and receptions, potentially causing  
CAN protocol violations.  
NOTE  
The user is responsible to take care that the MSCAN08 is not active when  
power down mode is entered. The recommended procedure is to bring the  
MSCAN08 into sleep mode before the STOP instruction is executed.  
To protect the CAN bus system from fatal consequences of violations to the above rule, the MSCAN08  
drives the TxCAN pin into recessive state.  
In power down mode, no registers can be accessed.  
MSCAN08 bus activity can wake the MCU from CPU stop/MSCAN08 power-down mode. However, until  
the oscillator starts up and synchronization is achieved the MSCAN08 will not respond to incoming data.  
11.8.4 CPU Wait Mode  
The MSCAN08 module remains active during CPU wait mode. The MSCAN08 will stay synchronized to  
the CAN bus and generates transmit, receive, and error interrupts to the CPU, if enabled. Any such  
interrupt will bring the MCU out of wait mode.  
11.8.5 Programmable Wakeup Function  
The MSCAN08 can be programmed to apply a low-pass filter function to the RxCAN input line while in  
internal sleep mode (see information on control bit WUPM in 11.13.2 MSCAN08 Module Control Register  
1). This feature can be used to protect the MSCAN08 from wakeup due to short glitches on the CAN bus  
lines. Such glitches can result from electromagnetic inference within noisy environments.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
125  
MSCAN08 Controller (MSCAN08)  
11.9 Timer Link  
The MSCAN08 will generate a timer signal whenever a valid frame has been received. Because the CAN  
specification defines a frame to be valid if no errors occurred before the EOF field has been transmitted  
successfully, the timer signal will be generated right after the EOF. A pulse of one bit time is generated.  
As the MSCAN08 receiver engine also receives the frames being sent by itself, a timer signal also will be  
generated after a successful transmission.  
The previously described timer signal can be routed into the on-chip timer interface module B (TIMB). This  
signal is connected to the channel 0 input under the control of the timer link enable (TLNKEN) bit in  
CMCR0.  
After the TIMB module has been programmed to capture rising edge events, it can be used under  
software control to generate 16-bit time stamps which can be stored with the received message.  
11.10 Clock System  
Figure 11-8 shows the structure of the MSCAN08 clock generation circuitry and its interaction with the  
clock generation module (CGM). With this flexible clocking scheme the MSCAN08 is able to handle CAN  
bus rates ranging from 10 kbps up to 1 Mbps.  
CGMXCLK  
OSC  
÷ 2  
CGMOUT  
(TO SIM)  
BCS  
PLL  
÷ 2  
CGM  
MSCAN08  
(2 * BUS FREQUENCY.)  
÷ 2  
MSCANCLK  
PRESCALER  
(1 .. 64)  
CLKSRC  
Figure 11-8. Clocking Scheme  
MC68HC08AZ32A Data Sheet, Rev. 2  
126  
Freescale Semiconductor  
Clock System  
The clock source bit (CLKSRC) in the MSCAN08 module control register (CMCR1) (see 11.13.1  
MSCAN08 Module Control Register 0) defines whether the MSCAN08 is connected to the output of the  
crystal oscillator or to the PLL output.  
The clock source has to be chosen such that the tight oscillator tolerance requirements (up to 0.4%) of  
the CAN protocol are met.  
NOTE  
If the system clock is generated from a PLL, it is recommended to select the  
crystal clock source rather than the system clock source due to jitter  
considerations, especially at faster CAN bus rates.  
A programmable prescaler is used to generate out of the MSCAN08 clock the time quanta (Tq) clock. A  
time quantum is the atomic unit of time handled by the MSCAN08.  
fMSCANCLK  
fTq  
=
Presc value  
A bit time is subdivided into three segments(1) (see Figure 11-9):  
SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to  
happen within this section.  
Time segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN  
standard. It can be programmed by setting the parameter TSEG1 to consist of 4 to 16 time quanta.  
Time segment 2: This segment represents PHASE_SEG2 of the CAN standard. It can be  
programmed by setting the TSEG2 parameter to be 2 to 8 time quanta long.  
fTq  
Bit rate =  
No. of time quanta  
The synchronization jump width (SJW) can be programmed in a range of 1 to 4 time quanta by setting the  
SJW parameter.  
The above parameters can be set by programming the bus timing registers, CBTR0 and CBTR1. See  
11.13.3 MSCAN08 Bus Timing Register 0 and 11.13.4 MSCAN08 Bus Timing Register 1.  
NOTE  
It is the user’s responsibility to make sure that the bit timing settings are in  
compliance with the CAN standard,  
Table 11-8 gives an overview on the CAN conforming segment settings and the related parameter values.  
1. For further explanation of the underlying concepts please refer to ISO/DIS 11 519-1, Section 10.3.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
127  
MSCAN08 Controller (MSCAN08)  
NRZ SIGNAL  
SYNC  
_SEG  
TIME SEGMENT 1  
(PROP_SEG + PHASE_SEG1)  
TIME SEG. 2  
(PHASE_SEG2)  
1
4 ... 16  
2 ... 8  
8... 25 TIME QUANTA  
= 1 BIT TIME  
SAMPLE POINT  
(SINGLE OR TRIPLE SAMPLING)  
Figure 11-9. Segments Within the Bit Time  
.
Table 11-3. Time Segment Syntax  
System expects transitions to occur on the bus during this  
period.  
SYNC_SEG  
A node in transmit mode will transfer a new value to the CAN  
bus at this point.  
Transmit point  
A node in receive mode will sample the bus at this point. If the  
Sample point three samples per bit option is selected then this point marks  
the position of the third sample.  
Table 11-4. CAN Standard Compliant Bit Time Segment Settings  
Time  
Segment 1  
Time  
Segment 2  
Synchronized  
Jump Width  
TSEG1  
TSEG2  
SJW  
5 .. 10  
4 .. 11  
5 .. 12  
6 .. 13  
7 .. 14  
8 .. 15  
9 .. 16  
4 .. 9  
3 .. 10  
4 .. 11  
5 .. 12  
6 .. 13  
7 .. 14  
8 .. 15  
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1 .. 2  
1 .. 3  
1 .. 4  
1 .. 4  
1 .. 4  
1 .. 4  
1 .. 4  
0 .. 1  
0 .. 2  
0 .. 3  
0 .. 3  
0 .. 3  
0 .. 3  
0 .. 3  
MC68HC08AZ32A Data Sheet, Rev. 2  
128  
Freescale Semiconductor  
Memory Map  
11.11 Memory Map  
The MSCAN08 occupies 128 bytes in the CPU08 memory space. The absolute mapping is  
implementation dependent with the base address being a multiple of 128.  
$0500  
CONTROL REGISTERS  
9 BYTES  
$0508  
$0509  
RESERVED  
5 BYTES  
$050D  
$050E  
ERROR COUNTERS  
2 BYTES  
$050F  
$0510  
IDENTIFIER FILTER  
8 BYTES  
$0517  
$0518  
RESERVED  
40 BYTES  
$053F  
$0540  
RECEIVE BUFFER  
$054F  
$0550  
TRANSMIT BUFFER 0  
$055F  
$0560  
TRANSMIT BUFFER 1  
$056F  
$0570  
TRANSMIT BUFFER 2  
$057F  
Figure 11-10. MSCAN08 Memory Map  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
129  
MSCAN08 Controller (MSCAN08)  
11.12 Programmer’s Model of Message Storage  
This section details the organization of the receive and transmit message buffers and the associated  
control registers. For reasons of programmer interface simplification, the receive and transmit message  
buffers have the same outline. Each message buffer allocates 16 bytes in the memory map containing a  
13-byte data structure. An additional transmit buffer priority register (TBPR) is defined for the transmit  
buffers.  
Addr(1)  
Register Name  
$05b0  
$05b1  
$05b2  
$05b3  
$05b4  
$05b5  
$05b6  
$05b7  
$05b8  
$05b9  
$05bA  
$05bB  
$05bC  
$05bD  
$05bE  
$05bF  
IDENTIFIER REGISTER 0  
IDENTIFIER REGISTER 1  
IDENTIFIER REGISTER 2  
IDENTIFIER REGISTER 3  
DATA SEGMENT REGISTER 0  
DATA SEGMENT REGISTER 1  
DATA SEGMENT REGISTER 2  
DATA SEGMENT REGISTER 3  
DATA SEGMENT REGISTER 4  
DATA SEGMENT REGISTER 5  
DATA SEGMENT REGISTER 6  
DATA SEGMENT REGISTER 7  
DATA LENGTH REGISTER  
TRANSMIT BUFFER PRIORITY REGISTER(2)  
UNUSED  
UNUSED  
1. Where b equals the following:  
b = 4 for receive buffer  
b = 5 for transmit buffer 0  
b = 6 for transmit buffer 1  
b = 7 for transmit buffer 2  
2. Not applicable for receive buffers  
Figure 11-11. Message Buffer Organization  
MC68HC08AZ32A Data Sheet, Rev. 2  
130  
Freescale Semiconductor  
Programmer’s Model of Message Storage  
11.12.1 Message Buffer Outline  
Figure 11-12 shows the common 13-byte data structure of receive and transmit buffers for extended  
identifiers. The mapping of standard identifiers into the IDR registers is shown in Figure 11-13. All bits of  
the 13-byte data structure are undefined out of reset.  
NOTE  
The foreground receive buffer can be read anytime but cannot be written.  
The transmit buffers can be read or written anytime.  
Addr.  
Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
$05b0  
IDR0  
IDR1  
IDR2  
IDR3  
ID28  
ID27  
ID26  
ID25  
ID24  
ID23  
ID22  
ID21  
Read:  
Write:  
$05b1  
$05b2  
$05b3  
$05b4  
$05b5  
$05b6  
$05b7  
$05b8  
$05b9  
$05bA  
$05bB  
$05bC  
ID20  
ID14  
ID6  
ID19  
ID13  
ID5  
ID18  
ID12  
ID4  
SRR (=1)  
ID11  
ID3  
IDE (=1)  
ID10  
ID2  
ID17  
ID9  
ID16  
ID8  
ID15  
ID7  
Read:  
Write:  
Read:  
Write:  
ID1  
ID0  
RTR  
DB0  
DB0  
DB0  
DB0  
DB0  
DB0  
DB0  
DB0  
DLC0  
Read:  
Write:  
DSR0  
DSR1  
DSR2  
DSR3  
DSR4  
DSR5  
DSR6  
DSR7  
DLR  
DB7  
DB7  
DB7  
DB7  
DB7  
DB7  
DB7  
DB7  
DB6  
DB6  
DB6  
DB6  
DB6  
DB6  
DB6  
DB6  
DB5  
DB5  
DB5  
DB5  
DB5  
DB5  
DB5  
DB5  
DB4  
DB4  
DB4  
DB4  
DB4  
DB4  
DB4  
DB4  
DB3  
DB3  
DB3  
DB3  
DB3  
DB3  
DB3  
DB3  
DLC3  
DB2  
DB2  
DB2  
DB2  
DB2  
DB2  
DB2  
DB2  
DLC2  
DB1  
DB1  
DB1  
DB1  
DB1  
DB1  
DB1  
DB1  
DLC1  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
= Unimplemented  
Figure 11-12. Receive/Transmit Message Buffer Extended Identifier (IDRn)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
131  
MSCAN08 Controller (MSCAN08)  
Addr.  
Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
$05b0  
IDR0  
IDR1  
IDR2  
IDR3  
ID10  
ID9  
ID8  
ID7  
ID6  
ID5  
ID4  
ID3  
Read:  
Write:  
$05b1  
$05b2  
$05b3  
ID2  
ID1  
ID0  
RTR  
IDE (=0)  
Read:  
Write:  
Read:  
Write:  
= Unimplemented  
Figure 11-13. Standard Identifier Mapping  
11.12.2 Identifier Registers  
The identifiers consist of either 11 bits (ID10–ID0) for the standard, or 29 bits (ID28–ID0) for the extended  
format. ID10/28 is the most significant bit and is transmitted first on the bus during the arbitration  
procedure. The priority of an identifier is defined to be highest for the smallest binary number.  
SRR — Substitute Remote Request  
This fixed recessive bit is used only in extended format. It must be set to 1 by the user for transmission  
buffers and will be stored as received on the CAN bus for receive buffers.  
IDE — ID Extended  
This flag indicates whether the extended or standard identifier format is applied in this buffer. In case  
of a receive buffer, the flag is set as being received and indicates to the CPU how to process the buffer  
identifier registers. In case of a transmit buffer, the flag indicates to the MSCAN08 what type of  
identifier to send.  
1 = Extended format, 29 bits  
0 = Standard format, 11 bits  
RTR — Remote Transmission Request  
This flag reflects the status of the remote transmission request bit in the CAN frame. In case of a  
receive buffer, it indicates the status of the received frame and supports the transmission of an  
answering frame in software. In case of a transmit buffer, this flag defines the setting of the RTR bit to  
be sent.  
1 = Remote frame  
0 = Data frame  
11.12.3 Data Length Register (DLR)  
This register keeps the data length field of the CAN frame.  
DLC3–DLC0 — Data Length Code Bits  
The data length code contains the number of bytes (data byte count) of the respective message. At  
transmission of a remote frame, the data length code is transmitted as programmed while the number  
of transmitted bytes is always 0. The data byte count ranges from 0 to 8 for a data frame. Table 11-5  
shows the effect of setting the DLC bits.  
MC68HC08AZ32A Data Sheet, Rev. 2  
132  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
Table 11-5. Data Length Codes  
Data Length Code  
Data Byte  
Count  
DLC3  
DLC2  
DLC1  
DLC0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
8
11.12.4 Data Segment Registers (DSRn)  
The eight data segment registers contain the data to be transmitted or received. The number of bytes to  
be transmitted or being received is determined by the data length code in the corresponding DLR.  
11.12.5 Transmit Buffer Priority Registers  
Address:  
$05bD  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PRIO7  
PRIO6  
PRIO5  
PRIO4  
PRIO3  
PRIO2  
PRIO1  
PRIO0  
Unaffected by reset  
Figure 11-14. Transmit Buffer Priority Register (TBPR)  
PRIO7–PRIO0 — Local Priority  
This field defines the local priority of the associated message buffer. The local priority is used for the  
internal prioritization process of the MSCAN08 and is defined to be highest for the smallest binary  
number. The MSCAN08 implements the following internal prioritization mechanism:  
All transmission buffers with a cleared TXE flag participate in the prioritization right before the SOF  
is sent.  
The transmission buffer with the lowest local priority field wins the prioritization.  
In case more than one buffer has the same lowest priority, the message buffer with the lower index  
number wins.  
11.13 Programmer’s Model of Control Registers  
The programmer’s model has been laid out for maximum simplicity and efficiency. Figure 11-15 gives an  
overview on the control register block of the MSCAN08.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
133  
MSCAN08 Controller (MSCAN08)  
Addr.  
Register  
CMCR0  
Bit 7  
6
5
4
SYNCH  
3
2
SLPAK  
1
Bit 0  
Read:  
Write:  
0
0
0
$0500  
TLNKEN  
SLPRQ  
SFTRES  
Read:  
Write:  
0
0
0
0
0
$0501  
$0502  
$0503  
$0504  
$0505  
$0506  
$0507  
$0508  
$0509  
$050E  
$050F  
$0510  
$0511  
$0512  
$0513  
$0514  
CMCR1  
CBTR0  
CBTR1  
CRFLG  
CRIER  
LOOPB  
BRP2  
WUPM  
BRP1  
CLKSRC  
BRP0  
Read:  
Write:  
SJW1  
SAMP  
WUPIF  
SJW0  
BRP5  
BRP4  
BRP3  
TSEG13  
TERRIF  
Read:  
Write:  
TSEG22  
RWRNIF  
TSEG21  
TWRNIF  
TSEG20  
RERRIF  
TSEG12  
BOFFIF  
BOFFIE  
TXE2  
TSEG11  
OVRIF  
OVRIE  
TXE1  
TSEG10  
RXF  
Read:  
Write:  
Read:  
Write:  
WUPIE  
0
RWRNIE  
ABTAK2  
TWRNIE  
ABTAK1  
RERRIE  
ABTAK0  
TERRIE  
0
RXFIE  
TXE0  
Read:  
Write:  
CTFLG  
CTCR  
Read:  
Write:  
0
0
0
0
ABTRQ2  
0
ABTRQ1  
IDAM1  
R
ABTRQ0  
IDAM0  
R
TXEIE2  
0
TXEIE1  
IDHIT1  
TXEIE0  
IDHIT0  
Read:  
Write:  
CIDAC  
Read:  
Write:  
Reserved  
CRXERR  
CTXERR  
CIDAR0  
CIDAR1  
CIDAR2  
CIDAR3  
CIDMR0  
R
RXERR7  
TXERR7  
AC7  
R
RXERR6  
TXERR6  
AC6  
R
RXERR3  
TXERR3  
AC3  
R
RXERR2  
TXERR2  
AC2  
R
RXERR1  
TXERR1  
AC1  
R
RXERR0  
TXERR0  
AC0  
Read:  
Write:  
RXERR5  
TXERR5  
AC5  
RXERR4  
TXERR4  
AC4  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AC0  
Read:  
Write:  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AC0  
Read:  
Write:  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AC0  
Read:  
Write:  
AM7  
AM6  
AM5  
AM4  
AM3  
R
AM2  
AM1  
AM0  
= Unimplemented  
= Reserved  
Figure 11-15. MSCAN08 Control Register Structure  
MC68HC08AZ32A Data Sheet, Rev. 2  
134  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
Addr.  
Register  
CIDMR1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
$0515  
AM7  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
AM0  
Read:  
Write:  
$0516  
$0517  
CIDMR2  
CIDMR3  
AM7  
AM7  
AM6  
AM6  
AM5  
AM5  
AM4  
AM4  
AM3  
AM2  
AM1  
AM1  
AM0  
AM0  
Read:  
Write:  
AM3  
R
AM2  
= Unimplemented  
= Reserved  
Figure 11-15. MSCAN08 Control Register Structure (Continued)  
11.13.1 MSCAN08 Module Control Register 0  
Address: $0500  
Bit 7  
0
6
0
5
0
4
3
TLNKEN  
0
2
1
SLPRQ  
0
Bit 0  
Read:  
Write:  
Reset:  
SYNCH  
SLPAK  
SFTRES  
1
0
0
0
0
0
= Unimplemented  
Figure 11-16. Module Control Register 0 (CMCR0)  
SYNCH — Synchronized Status  
This bit indicates whether the MSCAN08 is synchronized to the CAN bus and as such can participate  
in the communication process.  
1 = MSCAN08 synchronized to the CAN bus  
0 = MSCAN08 not synchronized to the CAN bus  
TLNKEN — Timer Enable  
This flag is used to establish a link between the MSCAN08 and the on-chip timer (see 11.9 Timer Link).  
1 = The MSCAN08 timer signal output is connected to the timer input.  
0 = The port is connected to the timer input.  
SLPAK — Sleep Mode Acknowledge  
This flag indicates whether the MSCAN08 is in module internal sleep mode. It shall be used as a  
handshake for the sleep mode request (see 11.8.1 MSCAN08 Sleep Mode). If the MSCAN08 detects  
bus activity while in sleep mode, it clears the flag.  
1 = Sleep – MSCAN08 in internal sleep mode  
0 = Wakeup – MSCAN08 is not in sleep mode  
SLPRQ — Sleep Request, Go to Internal Sleep Mode  
This flag requests the MSCAN08 to go into an internal power-saving mode (see 11.8.1 MSCAN08  
Sleep Mode).  
1 = Sleep — The MSCAN08 will go into internal sleep mode.  
0 = Wakeup — The MSCAN08 will function normally.  
SFTRES — Soft Reset  
When this bit is set by the CPU, the MSCAN08 immediately enters the soft reset state. Any ongoing  
transmission or reception is aborted and synchronization to the bus is lost.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
135  
MSCAN08 Controller (MSCAN08)  
The following registers enter and stay in their hard reset state:  
CMCR0, CRFLG, CRIER, CTFLG, and CTCR.  
The registers CMCR1, CBTR0, CBTR1, CIDAC, CIDAR0–CIDAR3, and CIDMR0–CIDMR3 can only  
be written by the CPU when the MSCAN08 is in soft reset state. The values of the error counters are  
not affected by soft reset.  
When this bit is cleared by the CPU, the MSCAN08 tries to synchronize to the CAN bus. If the  
MSCAN08 is not in bus-off state, it will be synchronized after 11 recessive bits on the bus; if the  
MSCAN08 is in bus-off state, it continues to wait for 128 occurrences of 11 recessive bits.  
Clearing SFTRES and writing to other bits in CMCR0 must be in separate instructions.  
1 = MSCAN08 in soft reset state  
0 = Normal operation  
11.13.2 MSCAN08 Module Control Register 1  
Address:  
$0501  
Bit 7  
0
6
0
5
0
4
0
3
0
2
LOOPB  
0
1
WUPM  
0
Bit 0  
CLKSRC  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 11-17. Module Control Register (CMCR1)  
LOOPB — Loop Back Self-Test Mode  
When this bit is set, the MSCAN08 performs an internal loop back which can be used for self-test  
operation: the bit stream output of the transmitter is fed back to the receiver internally. The CANRX  
input pin is ignored and the CANTX output goes to the recessive state (logic 1). The MSCAN08  
behaves as it does normally when transmitting and treats its own transmitted message as a message  
received from a remote node. In this state the MSCAN08 ignores the bit sent during the ACK slot of  
the CAN frame Acknowledge field to insure proper reception of its own message. Both transmit and  
receive interrupts are generated.  
1 = Activate loop back self-test mode  
0 = Normal operation  
WUPM — Wakeup Mode  
This flag defines whether the integrated low-pass filter is applied to protect the MSCAN08 from  
spurious wakeups (see 11.8.5 Programmable Wakeup Function).  
1 = MSCAN08 will wakeup the CPU only in cases of a dominant pulse on the bus which has a length  
of at least twup  
.
0 = MSCAN08 will wakeup the CPU after any recessive-to-dominant edge on the CAN bus.  
CLKSRC — Clock Source  
This flag defines which clock source the MSCAN08 module is driven from (see 11.10 Clock System).  
1 = The MSCAN08 clock source is CGMOUT (see Figure 11-8).  
0 = The MSCAN08 clock source is CGMXCLK/2 (see Figure 11-8).  
NOTE  
The CMCR1 register can be written only if the SFTRES bit in the MSCAN08  
module control register is set  
MC68HC08AZ32A Data Sheet, Rev. 2  
136  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
11.13.3 MSCAN08 Bus Timing Register 0  
Address:  
$0502  
Bit 7  
6
SJW0  
0
5
BRP5  
0
4
BRP4  
0
3
BRP3  
0
2
BRP2  
0
1
BRP1  
0
Bit 0  
BRP0  
0
Read:  
Write:  
Reset:  
SJW1  
0
Figure 11-18. Bus Timing Register 0 (CBTR0)  
SJW1 and SJW0 — Synchronization Jump Width  
The synchronization jump width (SJW) defines the maximum number of time quanta (Tq) clock cycles  
by which a bit may be shortened, or lengthened, to achieve resynchronization on data transitions on  
the bus (see Table 11-6).  
Table 11-6. Synchronization Jump Width  
Synchronization  
Jump Width  
SJW1  
SJW0  
1 Tq cycle  
0
0
1
1
0
1
0
1
2 Tq cycle  
3 Tq cycle  
4 Tq cycle  
BRP5–BRP0 — Baud Rate Prescaler  
These bits determine the time quanta (Tq) clock, which is used to build up the individual bit timing,  
according to Table 11-7.  
Table 11-7. Baud Rate Prescaler  
Prescaler  
Value (P)  
BRP5  
BRP4  
BRP3  
BRP2  
BRP1  
BRP0  
0
0
0
0
:
0
0
0
0
:
0
0
0
0
:
0
0
0
0
:
0
0
1
1
:
0
1
0
1
:
1
2
3
4
:
:
:
:
:
:
:
:
1
1
1
1
1
1
64  
NOTE  
The CBTR0 register can be written only if the SFTRES bit in the MSCAN08  
module control register is set.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
137  
MSCAN08 Controller (MSCAN08)  
11.13.4 MSCAN08 Bus Timing Register 1  
Address:  
$0503  
Bit 7  
6
TSEG22  
0
5
TSEG21  
0
4
TSEG20  
0
3
TSEG13  
0
2
TSEG12  
0
1
TSEG11  
0
Bit 0  
TSEG10  
0
Read:  
Write:  
Reset:  
SAMP  
0
Figure 11-19. Bus Timing Register 1 (CBTR1)  
SAMP — Sampling  
This bit determines the number of serial bus samples to be taken per bit time. If set, three samples per  
bit are taken, the regular one (sample point) and two preceding samples, using a majority rule. For  
higher bit rates, SAMP should be cleared, which means that only one sample will be taken per bit.  
1 = Three samples per bit(1)  
0 = One sample per bit  
TSEG22–TSEG10 — Time Segment  
Time segments within the bit time fix the number of clock cycles per bit time and the location of the  
sample point. Time segment 1 (TSEG1) and time segment 2 (TSEG2) are programmable as shown in  
Table 11-8.  
The bit time is determined by the oscillator frequency, the baud rate prescaler, and the number of time  
quanta (Tq) clock cycles per bit as shown in Table 11-4).  
Pres value  
Bit time =  
• number of time quanta  
fMSCANCLK  
NOTE  
The CBTR1 register can only be written if the SFTRES bit in the MSCAN08  
module control register is set.  
Table 11-8. Time Segment Values  
Time  
Segment 1  
Time  
Segment 2  
TSEG13 TSEG12 TSEG11 TSEG10  
TSEG22 TSEG21 TSEG20  
1 Tq Cycle(1)  
1 Tq Cycle(1)  
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
2 Tq Cycles(1)  
2 Tq Cycles  
3Tq Cycles(1)  
4 Tq Cycles  
.
.
.
.
.
.
.
0
.
0
.
1
.
1
.
.
8Tq Cycles  
.
1
1
1
.
.
.
.
.
16 Tq Cycles  
1
1
1
1
1. This setting is not valid. Please refer to Table 11-4 for valid settings.  
1. In this case PHASE_SEG1 must be at least 2 time quanta.  
MC68HC08AZ32A Data Sheet, Rev. 2  
138  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
11.13.5 MSCAN08 Receiver Flag Register (CRFLG)  
All bits of this register are read and clear only. A flag can be cleared by writing a 1 to the corresponding  
bit position. A flag can be cleared only when the condition which caused the setting is valid no more.  
Writing a 0 has no effect on the flag setting. Every flag has an associated interrupt enable flag in the  
CRIER register. A hard or soft reset will clear the register.  
Address:  
$0504  
Bit 7  
WUPIF  
0
6
RWRNIF  
0
5
TWRNIF  
0
4
RERRIF  
0
3
TERRIF  
0
2
BOFFIF  
0
1
OVRIF  
0
Bit 0  
RXF  
0
Read:  
Write:  
Reset:  
Figure 11-20. Receiver Flag Register (CRFLG)  
WUPIF — Wakeup Interrupt Flag  
If the MSCAN08 detects bus activity while in sleep mode, it sets the WUPIF flag. If not masked, a  
wakeup interrupt is pending while this flag is set.  
1 = MSCAN08 has detected activity on the bus and requested wakeup.  
0 = No wakeup interrupt has occurred.  
RWRNIF — Receiver Warning Interrupt Flag  
This flag is set when the MSCAN08 goes into warning status due to the receive error counter (REC)  
exceeding 96 and neither one of the error interrupt flags or the bus-off interrupt flag is set(1). If not  
masked, an error interrupt is pending while this flag is set.  
1 = MSCAN08 has gone into receiver warning status.  
0 = No receiver warning status has been reached.  
TWRNIF — Transmitter Warning Interrupt Flag  
This flag is set when the MSCAN08 goes into warning status due to the transmit error counter (TEC)  
exceeding 96 and neither one of the error interrupt flags or the bus-off interrupt flag is set(2). If not  
masked, an error interrupt is pending while this flag is set.  
1 = MSCAN08 has gone into transmitter warning status.  
0 = No transmitter warning status has been reached.  
RERRIF — Receiver Error Passive Interrupt Flag  
This flag is set when the MSCAN08 goes into error passive status due to the receive error counter  
exceeding 127 and the bus-off interrupt flag is not set(3). If not masked, an error interrupt is pending  
while this flag is set.  
1 = MSCAN08 has gone into receiver error passive status.  
0 = No receiver error passive status has been reached.  
1. Condition to set the flag: RWRNIF = (96 REC) & RERRIF & TERRIF & BOFFIF  
2. Condition to set the flag: TWRNIF = (96 TEC) & RERRIF & TERRIF & BOFFIF  
3. Condition to set the flag: RERRIF = (127 REC 255) & BOFFIF  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
139  
MSCAN08 Controller (MSCAN08)  
TERRIF — Transmitter Error Passive Interrupt Flag  
This flag is set when the MSCAN08 goes into error passive status due to the transmit error counter  
exceeding 127 and the bus-off interrupt flag is not set(1). If not masked, an error interrupt is pending  
while this flag is set.  
1 = MSCAN08 went into transmit error passive status.  
0 = No transmit error passive status has been reached.  
BOFFIF — Bus-Off Interrupt Flag  
This flag is set when the MSCAN08 goes into bus-off status, due to the transmit error counter  
exceeding 255. It cannot be cleared before the MSCAN08 has monitored 128 times 11 consecutive  
‘recessive’ bits on the bus. If not masked, an error interrupt is pending while this flag is set.  
1 = MSCAN08has gone into bus-off status.  
0 = No bus-off status has been reached.  
OVRIF — Overrun Interrupt Flag  
This flag is set when a data overrun condition occurs. If not masked, an error interrupt is pending while  
this flag is set.  
1 = A data overrun has been detected since last clearing the flag.  
0 = No data overrun has occurred.  
RXF — Receive Buffer Full  
The RXF flag is set by the MSCAN08 when a new message is available in the foreground receive  
buffer. This flag indicates whether the buffer is loaded with a correctly received message. After the  
CPU has read that message from the receive buffer the RXF flag must be cleared to release the buffer.  
A set RXF flag prohibits the exchange of the background receive buffer into the foreground buffer. If  
not masked, a receive interrupt is pending while this flag is set.  
1 = The receive buffer is full. A new message is available.  
0 = The receive buffer is released (not full).  
NOTE  
To ensure data integrity, no registers of the receive buffer shall be read  
while the RXF flag is cleared.  
The CRFLG register is held in the reset state when the SFTRES bit in  
CMCR0 is set.  
11.13.6 MSCAN08 Receiver Interrupt Enable Register  
Address:  
$0505  
Bit 7  
6
RWRNIE  
0
5
TWRNIE  
0
4
RERRIE  
0
3
TERRIE  
0
2
BOFFIE  
0
1
OVRIE  
0
Bit 0  
RXFIE  
0
Read:  
Write:  
Reset:  
WUPIE  
0
Figure 11-21. Receiver Interrupt Enable Register (CRIER)  
WUPIE — Wakeup Interrupt Enable  
1 = A wakeup event will result in a wakeup interrupt.  
0 = No interrupt will be generated from this event.  
1. Condition to set the flag: TERRIF = (128 TEC 255) & BOFFIF  
MC68HC08AZ32A Data Sheet, Rev. 2  
140  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
RWRNIE — Receiver Warning Interrupt Enable  
1 = A receiver warning status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
TWRNIE — Transmitter Warning Interrupt Enable  
1 = A transmitter warning status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
RERRIE — Receiver Error Passive Interrupt Enable  
1 = A receiver error passive status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
TERRIE — Transmitter Error Passive Interrupt Enable  
1 = A transmitter error passive status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
BOFFIE — Bus-Off Interrupt Enable  
1 = A bus-off event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
OVRIE — Overrun Interrupt Enable  
1 = An overrun event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
RXFIE — Receiver Full Interrupt Enable  
1 = A receive buffer full (successful message reception) event will result in a receive interrupt.  
0 = No interrupt will be generated from this event.  
NOTE  
The CRIER register is held in the reset state when the SFTRES bit in  
CMCR0 is set.  
11.13.7 MSCAN08 Transmitter Flag Register  
The abort acknowledge flags are read only. The transmitter buffer empty flags are read and clear only. A  
flag can be cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag  
setting. The transmitter buffer empty flags each have an associated interrupt enable bit in the CTCR  
register. A hard or soft reset will resets the register.  
Address:  
$0506  
Bit 7  
0
5
6
5
4
3
0
2
TXE2  
1
1
TXE1  
1
Bit 0  
TXE0  
1
Read:  
Write:  
Reset:  
ABTAK2  
ABTAK1  
ABTAK0  
0
0
0
0
0
= Unimplemented  
Figure 11-22. Transmitter Flag Register (CTFLG)  
ABTAK2–ABTAK0 — Abort Acknowledge  
This flag acknowledges that a message has been aborted due to a pending abort request from the  
CPU. After a particular message buffer has been flagged empty, this flag can be used by the  
application software to identify whether the message has been aborted successfully or has been sent.  
The ABTAKx flag is cleared implicitly whenever the corresponding TXE flag is cleared.  
1 = The message has been aborted.  
0 = The message has not been aborted, thus has been sent out.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
141  
MSCAN08 Controller (MSCAN08)  
TXE2–TXE0 — Transmitter Empty  
This flag indicates that the associated transmit message buffer is empty, thus not scheduled for  
transmission. The CPU must handshake (clear) the flag after a message has been set up in the  
transmit buffer and is due for transmission. The MSCAN08 sets the flag after the message has been  
sent successfully. The flag is also set by the MSCAN08 when the transmission request was  
successfully aborted due to a pending abort request (see 11.12.5 Transmit Buffer Priority Registers).  
If not masked, a receive interrupt is pending while this flag is set. Clearing a TXEx flag also clears the  
corresponding ABTAKx flag (ABTAK, see above). When a TXEx flag is set, the corresponding  
ABTRQx bit (ABTRQ) is cleared. See 11.13.8 MSCAN08 Transmitter Control Register  
1 = The associated message buffer is empty (not scheduled).  
0 = The associated message buffer is full (loaded with a message due for transmission).  
NOTE  
To ensure data integrity, no registers of the transmit buffers should be  
written to while the associated TXE flag is cleared.  
The CTFLG register is held in the reset state when the SFTRES bit in  
CMCR0 is set.  
11.13.8 MSCAN08 Transmitter Control Register  
Address:  
$0507  
Bit 7  
0
6
ABTRQ2  
0
5
ABTRQ1  
0
4
ABTRQ0  
0
3
0
2
TXEIE2  
0
1
TXEIE1  
0
Bit 0  
TXEIE0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 11-23. Transmitter Control Register (CTCR)  
ABTRQ2–ABTRQ0 — Abort Request  
The CPU sets an ABTRQx bit to request that an already scheduled message buffer (TXE = 0) be  
aborted. The MSCAN08 will grant the request if the message has not already started transmission, or  
if the transmission is not successful (lost arbitration or error). When a message is aborted the  
associated TXE and the abort acknowledge flag (ABTAK) (see 11.13.7 MSCAN08 Transmitter Flag  
Register) will be set and an TXE interrupt is generated if enabled. The CPU cannot reset ABTRQx.  
ABTRQx is cleared implicitly whenever the associated TXE flag is set.  
1 = Abort request pending  
0 = No abort request  
NOTE  
The software must not clear one or more of the TXE flags in CTFLG and  
simultaneously set the respective ABTRQ bit(s).  
TXEIE2–TXEIE0 — Transmitter Empty Interrupt Enable  
1 = A transmitter empty (transmit buffer available for transmission) event results in a transmitter  
empty interrupt.  
0 = No interrupt is generated from this event.  
NOTE  
The CTCR register is held in the reset state when the SFTRES bit in  
CMCR0 is set.  
MC68HC08AZ32A Data Sheet, Rev. 2  
142  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
11.13.9 MSCAN08 Identifier Acceptance Control Register  
Address:  
$0508  
Bit 7  
0
6
0
5
IDAM1  
0
4
IDAM0  
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
IDHIT1  
IDHIT0  
0
0
0
0
0
0
= Unimplemented  
Figure 11-24. Identifier Acceptance Control Register (CIDAC)  
IDAM1–IDAM0— Identifier Acceptance Mode  
The CPU sets these flags to define the identifier acceptance filter organization (see 11.5 Identifier  
Acceptance Filter). Table 11-9 summarizes the different settings. In “filter closed” mode no messages  
will be accepted so that the foreground buffer will never be reloaded.  
Table 11-9. Identifier Acceptance Mode Settings  
IDAM1  
IDAM0  
Identifier Acceptance Mode  
Single 32-bit acceptance filter  
0
0
1
1
0
1
0
1
Two 16-bit acceptance filter  
Four 8-bit acceptance filters  
Filter closed  
IDHIT1–IDHIT0— Identifier Acceptance Hit Indicator  
The MSCAN08 sets these flags to indicate an identifier acceptance hit (see 11.5 Identifier Acceptance  
Filter). Table 11-9 summarizes the different settings.  
Table 11-10. Identifier Acceptance Hit Indication  
IDHIT1  
IDHIT0  
Identifier Acceptance Hit  
Filter 0 hit  
0
0
1
1
0
1
0
1
Filter 1 hit  
Filter 2 hit  
Filter 3 hit  
The IDHIT indicators are always related to the message in the foreground buffer. When a message gets  
copied from the background to the foreground buffer, the indicators are updated as well.  
NOTE  
The CIDAC register can be written only if the SFTRES bit in the CMCR0 is  
set.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
143  
MSCAN08 Controller (MSCAN08)  
11.13.10 MSCAN08 Receive Error Counter  
Address:  
$050E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-25. Receiver Error Counter (CRXERR)  
This read-only register reflects the status of the MSCAN08 receive error counter.  
11.13.11 MSCAN08 Transmit Error Counter  
Address:  
$050F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: TXERR7  
Write:  
TXERR6  
TXERR5  
TXERR4  
TXERR3  
TXERR2  
TXERR1  
TXERR0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-26. Transmit Error Counter (CTXERR)  
This read-only register reflects the status of the MSCAN08 transmit error counter.  
NOTE  
Both error counters may only be read when in sleep or soft reset mode.  
11.13.12 MSCAN08 Identifier Acceptance Registers  
On reception each message is written into the background receive buffer. The CPU is only signalled to  
read the message, however, if it passes the criteria in the identifier acceptance and identifier mask  
registers (accepted); otherwise, the message will be overwritten by the next message (dropped).  
The acceptance registers of the MSCAN08 are applied on the IDR0 to IDR3 registers of incoming  
messages in a bit by bit manner.  
For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers only  
the first two (CIDMR0/CIDMR1 and CIDAR0/CIDAR1) are applied.  
MC68HC08AZ32A Data Sheet, Rev. 2  
144  
Freescale Semiconductor  
Programmer’s Model of Control Registers  
CIDAR0 Address: $0510  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
Write:  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Reset:  
Unaffected by reset  
CIDAR1 Address: $050511  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Write:  
Reset:  
Unaffected by reset  
CIDAR2 Address: $0512  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
Write:  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Reset:  
Unaffected by reset  
CIDAR3 Address: $0513  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
Write:  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Reset:  
Unaffected by reset  
Figure 11-27. Identifier Acceptance Registers  
(CIDAR0–CIDAR3)  
AC7–AC0 — Acceptance Code Bits  
AC7–AC0 comprise a user-defined sequence of bits with which the corresponding bits of the related  
identifier register (IDRn) of the receive message buffer are compared. The result of this comparison is  
then masked with the corresponding identifier mask register.  
NOTE  
The CIDAR0–CIDAR3 registers can be written only if the SFTRES bit in  
CMCR0 is set  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
145  
MSCAN08 Controller (MSCAN08)  
11.13.13 MSCAN08 Identifier Mask Registers (CIDMR0–CIDMR3)  
The identifier mask registers specify which of the corresponding bits in the identifier acceptance register  
are relevant for acceptance filtering. For standard identifiers it is required to program the last three bits  
(AM2–AM0) in the mask register CIDMR1 to ‘don’t care’.  
CIDMRO Address: $0514  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
Write:  
Reset:  
AM7  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Unaffected by reset  
CIDMR1 Address: $0515  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
AM7  
Write:  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Reset:  
Unaffected by reset  
CIDMR2 Address: $0516  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
AM7  
Write:  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Reset:  
Unaffected by reset  
CIDMR3 Address: $0517  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
AM7  
Write:  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Reset:  
Unaffected by reset  
Figure 11-28. Identifier Mask Registers  
(CIDMR0–CIDMR3)  
AM7–AM0 — Acceptance Mask Bits  
If a particular bit in this register is cleared, this indicates that the corresponding bit in the identifier  
acceptance register must be the same as its identifier bit before a match will be detected. The message  
will be accepted if all such bits match. If a bit is set, it indicates that the state of the corresponding bit  
in the identifier acceptance register will not affect whether or not the message is accepted.  
1 = Ignore corresponding acceptance code register bit.  
0 = Match corresponding acceptance code register and identifier bits.  
NOTE  
The CIDMR0–CIDMR3 registers can be written only if the SFTRES bit in  
the CMCR0 is set  
MC68HC08AZ32A Data Sheet, Rev. 2  
146  
Freescale Semiconductor  
Chapter 12  
Programmable Interrupt Timer (PIT)  
12.1 Introduction  
This section describes the programmable interrupt timer (PIT) which is a periodic interrupt timer whose  
counter is clocked internally via software programmable options. Figure 12-1 is a block diagram of the  
PIT.  
For further information regarding timers on M68HC08 Family devices, please consult the HC08 Timer  
Reference Manual (Freescale document order number TIM08RM/AD).  
12.2 Features  
Features include:  
Programmable PIT clock input  
Free-running or modulo up-count operation  
PIT counter stop and reset bits  
12.3 Functional Description  
Figure 12-1 shows the structure of the PIT. The central component of the PIT is the 16-bit PIT counter  
that can operate as a free-running counter or a modulo up-counter. The counter provides the timing  
reference for the interrupt. The PIT counter modulo registers, PMODH–PMODL, control the modulo value  
of the counter. Software can read the counter value at any time without affecting the counting sequence.  
INTERNAL  
BUS CLOCK  
PRESCALER SELECT  
PRESCALER  
CSTOP  
CRST  
PPS2  
PPS1  
PPS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
POF  
POIE  
16-BIT COMPARATOR  
PMODH:PMODL  
Figure 12-1. PIT Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
147  
Programmable Interrupt Timer (PIT)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 12-2. Block Diagram Highlighting PIT Block  
MC68HC08AZ32A Data Sheet, Rev. 2  
148  
Freescale Semiconductor  
PIT Counter Prescaler  
Addr.  
Register Name  
Bit 7  
POF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
PIT Status and Control  
POIE  
PSTOP  
PPS2  
PPS1  
PPS0  
$004B  
Register (PSC) Write:  
See page 150.  
Reset:  
PRST  
0
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
PIT Counter Register High  
$004C  
$004D  
$004E  
$004F  
(PCNTH) Write:  
See page 152.  
Reset:  
Read:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
PIT Counter Register Low  
(PCNTL) Write:  
See page 152.  
Reset:  
Read:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
1
1
0
Bit 8  
1
PIT Counter Modulo  
Register High (PMODH) Write:  
See page 152.  
Reset:  
Read:  
PIT Counter Modulo  
Register Low (PMODL) Write:  
Bit 7  
1
6
5
4
3
2
Bit 0  
1
See page 152.  
Reset:  
1
1
1
1
1
=Unimplemented  
Figure 12-3. PIT I/O Register Summary  
12.4 PIT Counter Prescaler  
The clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates  
from the internal bus clock. The prescaler select bits, PPS[2:0], in the status and control register select  
the PIT clock source.  
The value in the PIT counter modulo registers and the selected prescaler output determines the frequency  
of the periodic interrupt. The PIT overflow flag (POF) is set when the PIT counter value reaches the  
modulo value programmed in the PIT counter modulo registers. The PIT interrupt enable bit, POIE,  
enables PIT overflow CPU interrupt requests. POF and POIE are in the PIT status and control register.  
12.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
12.5.1 Wait Mode  
The PIT remains active after the execution of a WAIT instruction. In wait mode the PIT registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the PIT can bring the MCU out of wait  
mode.  
If PIT functions are not required during wait mode, reduce power consumption by stopping the PIT before  
executing the WAIT instruction.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
149  
Programmable Interrupt Timer (PIT)  
12.5.2 Stop Mode  
The PIT is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the PIT counter. PIT operation resumes when the MCU exits stop mode  
after an external interrupt.  
12.6 PIT During Break Interrupts  
A break interrupt stops the PIT counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state (see Figure 15-17. SIM Break Status Register (SBSR)).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
12.7 I/O Registers  
The following I/O registers control and monitor operation of the PIT:  
PIT status and control register (PSC)  
PIT counter registers (PCNTH–PCNTL)  
PIT counter modulo registers (PMODH–PMODL)  
12.7.1 PIT Status and Control Register  
The PIT status and control register:  
Enables PIT interrupt  
Flags PIT overflows  
Stops the PIT counter  
Resets the PIT counter  
Prescales the PIT counter clock  
Address:  
$004B  
Bit 7  
POF  
0
6
POIE  
0
5
PSTOP  
1
4
0
3
0
2
PPS2  
0
1
PPS1  
0
Bit 0  
PPS0  
0
Read:  
Write:  
Reset:  
PRST  
0
0
0
= Unimplemented  
Figure 12-4. PIT Status and Control Register (PSC)  
MC68HC08AZ32A Data Sheet, Rev. 2  
150  
Freescale Semiconductor  
I/O Registers  
POF — PIT Overflow Flag Bit  
This read/write flag is set when the PIT counter reaches the modulo value programmed in the PIT  
counter modulo registers. Clear POF by reading the PIT status and control register when POF is set  
and then writing a 0 to POF. If another PIT overflow occurs before the clearing sequence is complete,  
then writing 0 to POF has no effect. Therefore, a POF interrupt request cannot be lost due to  
inadvertent clearing of POF. Reset clears the POF bit. Writing a 1 to POF has no effect.  
1 = PIT counter has reached modulo value  
0 = PIT counter has not reached modulo value  
POIE — PIT Overflow Interrupt Enable Bit  
This read/write bit enables PIT overflow interrupts when the POF bit becomes set. Reset clears the  
POIE bit.  
1 = PIT overflow interrupts enabled  
0 = PIT overflow interrupts disabled  
PSTOP — PIT Stop Bit  
This read/write bit stops the PIT counter. Counting resumes when PSTOP is cleared. Reset sets the  
PSTOP bit, stopping the PIT counter until software clears the PSTOP bit.  
1 = PIT counter stopped  
0 = PIT counter active  
NOTE  
Do not set the PSTOP bit before entering wait mode if the PIT is required  
to exit wait mode.  
PRST — PIT Reset Bit  
Setting this write-only bit resets the PIT counter and the PIT prescaler. Setting PRST has no effect on  
any other registers. Counting resumes from $0000. PRST is cleared automatically after the PIT  
counter is reset and always reads as logic zero. Reset clears the PRST bit.  
1 = Prescaler and PIT counter cleared  
0 = No effect  
NOTE  
Setting the PSTOP and PRST bits simultaneously stops the PIT counter at  
a value of $0000.  
PPS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the PIT counter as Table  
12-1 shows. Reset clears the PPS[2:0] bits.  
Table 12-1. Prescaler Selection  
PPS[2:0]  
000  
PIT Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Internal bus clock ÷ 64  
001  
010  
011  
100  
101  
110  
111  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
151  
Programmable Interrupt Timer (PIT)  
12.7.2 PIT Counter Registers  
The two read-only PIT counter registers contain the high and low bytes of the value in the PIT counter.  
Reading the high byte (PCNTH) latches the contents of the low byte (PCNTL) into a buffer. Subsequent  
reads of PCNTH do not affect the latched PCNTL value until PCNTL is read. Reset clears the PIT counter  
registers. Setting the PIT reset bit (PRST) also clears the PIT counter registers.  
NOTE  
If you read PCNTH during a break interrupt, be sure to unlatch PCNTL by  
reading PCNTL before exiting the break interrupt. Otherwise, PCNTL  
retains the value latched during the break.  
Address: $004C  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
Address: $004D  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-5. PIT Counter Registers (PCNTH–PCNTL)  
12.7.3 PIT Counter Modulo Registers  
The read/write PIT modulo registers contain the modulo value for the PIT counter. When the PIT counter  
reaches the modulo value the overflow flag (POF) becomes set and the PIT counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (PMODH) inhibits the POF bit and overflow  
interrupts until the low byte (PMODL) is written. Reset sets the PIT counter modulo registers.  
Address: $004E  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Address: $004F  
Bit 7  
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Bit 7  
1
Figure 12-6. PIT Counter Modulo Registers (PMODH–PMODL)  
NOTE  
Reset the PIT counter before writing to the PIT counter modulo registers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
152  
Freescale Semiconductor  
Chapter 13  
Input/Output (I/O) Ports  
13.1 Introduction  
Fifty bidirectional input-output (I/O) pins form eight parallel ports. All I/O pins are programmable as inputs  
or outputs.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 155.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB25  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
(PTB) Write:  
See page 157.  
Reset:  
Read:  
Port C Data Register  
(PTC) Write:  
See page 159.  
Reset:  
Read:  
Port D Data Register  
PTD7  
PTD6  
$0003  
$0004  
(PTD) Write:  
See page 161.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 155.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
$0005  
(DDRB) Write:  
See page 157.  
Reset:  
= Unimplemented  
Figure 13-1. I/O Port Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
153  
Input/Output (I/O) Ports  
Addr.  
Name  
Bit 7  
MCLKEN  
0
6
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
0
Data Direction Register C  
$0006  
(DDRC) Write:  
See page 159.  
Reset:  
Read:  
0
DDRD6  
0
Data Direction Register D  
DDRD7  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
$000D  
$000E  
$000F  
(DDRD) Write:  
See page 161.  
Reset:  
Read:  
Port E Data Register  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 163.  
Reset:  
Read:  
Unaffected by reset  
PTF4 PTF3  
Unaffected by reset  
0
0
0
Port F Data Register  
PTF6  
0
PTF5  
0
PTF2  
PTF1  
PTG1  
PTH1  
PTF0  
PTG0  
PTH0  
(PTF) Write:  
See page 165.  
Reset:  
Read:  
0
0
Port G Data Register  
PTG2  
0
(PTG) Write:  
See page 167.  
Reset:  
Read:  
Unaffected by reset  
0
0
0
0
Port H Data Register  
(PTH) Write:  
See page 169.  
Reset:  
Read:  
Unaffected by reset  
Data Direction Register E  
DDRE7  
DDRE6  
0
DDRE5  
0
DDRE4  
0
DDRE3  
0
DDRE2  
0
DDRE1  
DDRE0  
(DDRE) Write:  
See page 164.  
Reset:  
Read:  
0
0
0
0
Data Direction Register F  
DDRF6  
DDRF5  
DDRF4  
DDRF3  
DDRF2  
0
DDRF1  
DDRF0  
(DDRF) Write:  
See page 166.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
DDRG1  
0
0
DDRG0  
0
Data Direction Register G  
DDRG2  
(DDRG) Write:  
See page 168.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Data Direction Register H  
DDRH1  
0
DDRH0  
0
(DDRH) Write:  
See page 170.  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 13-1. I/O Port Register Summary (Continued)  
MC68HC08AZ32A Data Sheet, Rev. 2  
154  
Freescale Semiconductor  
Port A  
13.2 Port A  
Port A is an 8-bit general-purpose bidirectional I/O port.  
13.2.1 Port A Data Register (PTA)  
The port A data register contains a data latch for each of the eight port A pins.  
Address: $0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
Figure 13-2. Port A Data Register (PTA)  
PTA[7:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
13.2.2 Data Direction Register A (DDRA)  
Data direction register A determines whether each port A pin is an input or an output. Writing a 1 to a  
DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
Address: $0004  
Bit 7  
DDRA7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
Figure 13-3. Data Direction Register A (DDRA)  
DDRA[7:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
155  
Input/Output (I/O) Ports  
Figure 13-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
PTAx  
RESET  
WRITE PTA ($0000)  
READ PTA ($0000)  
PTAx  
Figure 13-4. Port A I/O Circuit  
When bit DDRAx is a 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a 0,  
reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 13-1 summarizes the operation of the port A pins.  
Table 13-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTA[7:0](3)  
PTA[7:0]  
0
1
DDRA[7:0]  
Pin  
DDRA[7:0]  
PTA[7:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC08AZ32A Data Sheet, Rev. 2  
156  
Freescale Semiconductor  
Port B  
13.3 Port B  
Port B is an 8-bit special function port that shares all of its pins with the analog-to- digital converter (ADC).  
13.3.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
ATD4 ATD3  
Alternative Functions:  
ATD7  
ATD6  
ATD5  
ATD2  
ATD1  
ATD0  
Figure 13-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
ATD[7:0] — ADC Channels  
NOTE  
PTB7/ATD7–PTB0/ATD0 are eight of the analog-to-digital converter (ADC)  
channels. The ADC channel select bits, CH[4:0], determine whether the  
PTB7/ATD7–PTB0/ATD0 pins are ADC channels or general-purpose I/O  
pins. If an ADC channel is selected and a read of the corresponding bit in  
the port B data register occurs, the data will be 0 if the data direction for this  
bit is programmed as an input. Otherwise, the data will reflect the value in  
the data latch. Data direction register B (DDRB) does not affect the data  
direction of the port B pins that are being used by the ADC. However, the  
DDRB bits always determine whether reading port B returns the states of  
the latches or a 0.  
13.3.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input or an output. Writing 1 to a DDRB  
bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
Address: $0005  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 13-6. Data Direction Register B (DDRB)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
157  
Input/Output (I/O) Ports  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 13-7 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 13-7. Port B I/O Circuit  
When bit DDRBx is a 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a 0,  
reading address $0001 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 13-2 summarizes the operation of the port B pins.  
Table 13-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB[7:0](3)  
PTB[7:0]  
0
1
DDRB[7:0]  
Pin  
DDRB[7:0]  
PTB[7:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC08AZ32A Data Sheet, Rev. 2  
158  
Freescale Semiconductor  
Port C  
13.4 Port C  
Port C is a 6-bit general-purpose bidirectional I/O port.  
13.4.1 Port C Data Register (PTC)  
The port C data register contains a data latch for each of the six port C pins.  
Address: $0002  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Reset:  
Unaffected by reset  
Alternative Functions:  
MCLK  
= Unimplemented  
Figure 13-8. Port C Data Register (PTC)  
PTC[5:0] — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C pin is under the control  
of the corresponding bit in data direction register C. Reset has no effect on port C data.  
MCLK — System Clock Bit  
The system clock is driven out of PTC2 when enabled by MCLKEN in PTC DDR7.  
13.4.2 Data Direction Register C (DDRC)  
Data direction register C determines whether each port C pin is an input or an output. Writing a 1 to a  
DDRC bit enables the output buffer for the corresponding port C pin; a 0 disables the output buffer.  
Address: $0006  
Bit 7  
MCLKEN  
0
6
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 13-9. Data Direction Register C (DDRC)  
MCLKEN — MCLK Enable Bit  
This read/write bit enables MCLK to be an output signal on PTC2. If MCLK is enabled, DDRC2 has no  
effect. Reset clears this bit.  
1 = MCLK output enabled  
0 = MCLK output disabled  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
159  
Input/Output (I/O) Ports  
DDRC[5:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC[7:0], configuring all port C pins  
as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE  
Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 13-10 shows the port C I/O logic.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 13-10. Port C I/O Circuit  
When bit DDRCx is a 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a 0,  
reading address $0002 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 13-3 summarizes the operation of the port C pins.  
Table 13-3. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
DDRC[7]  
Accesses to PTC  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
Read  
Write  
PTC2  
0
1
0
1
2
2
Input, Hi-Z  
Output  
Pin  
0
DDRC[7]  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTC[5:0](3)  
PTC[5:0]  
DDRC[5:0]  
Pin  
DDRC[5:0]  
PTC[5:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC08AZ32A Data Sheet, Rev. 2  
160  
Freescale Semiconductor  
Port D  
13.5 Port D  
Port D is an 8 -bit special function port that shares seven of it’s pins with the ADC module and two with  
the TIMA and TIMB modules  
13.5.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D pins.  
Address: $0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
ATD14  
TACLK  
ATD13  
ATD12  
TBCLK  
ATD11  
ATD10  
ATD9  
ATD8  
Alternative Functions:  
Figure 13-11. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
PTD[7:0] are read/write, software programmable bits. Data direction of PTD[7:0] pins are under the  
control of the corresponding bit in data direction register D.  
ATD[14:8] — ADC Channel Status Bits  
PTD6/ATD14/TACLK–PTD0/ATD8 are seven of the 15 ADC channels. The ATD channel select bits,  
CH[4:0], determine whether the PTD6/ATD14/ TACLK–PTD0/ATD8 pins are ADC channels or  
general-purpose I/O pins. If an ADC channel is selected and a read of this corresponding bit in the port  
B data register occurs, the data will be 0 if the data direction for this bit is programmed as an input.  
Otherwise the data will reflect the value in the data latch.  
NOTE  
Data direction register D (DDRD) does not affect the data direction of port  
D pins that are being used by the TIMA or TIMB. However, the DDRD bits  
always determine whether reading port D returns the states of the latches  
to a 0.  
TACLK/TBCLK — Timer Clock Input  
The PTD6/ATD14/TACLK pin is the external clock input for the TIMA. The PTD4/TBCLK pin is the  
external clock input for the TIMB.The prescaler select bits, PS[2:0], select PTD6/ATD14/TACLK or  
PTD4/TBCLK as the TIM clock input (see 17.8.1 TIMA Status and Control Register and 18.8.1 TIMB  
Status and Control Register). When not selected as the TIM clock, PTD6/TACLK and PTD4/TBCLK  
are available for general-purpose I/O. While TACLK/TBCLK are selected, corresponding DDRD bits  
have no effect.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
161  
Input/Output (I/O) Ports  
13.5.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input or an output. Writing a 1 to a  
DDRD bit enables the output buffer for the corresponding port D pin; a 0 disables the output buffer.  
Address: $0007  
Bit 7  
DDRD7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Figure 13-12. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins  
as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
Figure 13-13 shows the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 13-13. Port D I/O Circuit  
When bit DDRDx is 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a 0, reading  
address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit. Table 13-4 summarizes the operation of the port D pins.  
Table 13-4. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
DDRD  
Bit  
PTD  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTD[7:0](3)  
PTD[7:0]  
0
1
DDRD[7:0]  
Pin  
DDRD[7:0]  
PTD[7:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC08AZ32A Data Sheet, Rev. 2  
162  
Freescale Semiconductor  
Port E  
13.6 Port E  
Port E is an 8-bit special function port that shares two of its pins with the TIMA, two of its pins with the  
serial communications interface module (SCI), and four of its pins with the serial peripheral interface  
module (SPI).  
13.6.1 Port E Data Register (PTE)  
The port E data register contains a data latch for each of the eight port E pins.  
Address: $0008  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Unaffected by reset  
SS TACH1  
Alternative Functions: SPSCK  
MOSI  
MISO  
TACH0  
RxD  
TxD  
Figure 13-14. Port E Data Register (PTE)  
PTE[7:0] — Port E Data Bits  
PTE[7:0] are read/write, software programmable bits. Data direction of each port E pin is under the  
control of the corresponding bit in data direction register E.  
SPSCK — SPI Serial Clock  
The PTE7/SPSCK pin is the serial clock input of a SPI slave module and serial clock output of a SPI  
master modules. When the SPE bit is clear, the PTE7/SPSCK pin is available for general-purpose I/O.  
MOSI — Master Out/Slave In  
The PTE6/MOSI pin is the master out/slave in terminal of the SPI module. When the SPE bit is clear,  
the PTE6/MOSI pin is available for general-purpose I/O. See 16.12.1 SPI Control Register (SPCR).  
MISO — Master In/Slave Out  
The PTE5/MISO pin is the master in/slave out terminal of the SPI module. When the SPI enable bit,  
SPE, is clear, the SPI module is disabled, and the PTE5/MISO pin is available for general-purpose I/O.  
See 16.12.1 SPI Control Register (SPCR).  
SS — Slave Select  
The PTE4/SS pin is the slave select input of the SPI module. When the SPE bit is clear, or when the  
SPI master bit, SPMSTR, is set and MODFEN bit is low, the PTE4/SS pin is available for  
general-purpose I/O. See 16.12.1 SPI Control Register (SPCR). When the SPI is enabled as a slave,  
the DDRF0 bit in data direction register E (DDRE) has no effect on the PTE4/SS pin.  
NOTE  
Data direction register E (DDRE) does not affect the data direction of port  
E pins that are being used by the SPI module. However, the DDRE bits  
always determine whether reading port E returns the states of the latches  
or the states of the pins. See Table 13-5.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
163  
Input/Output (I/O) Ports  
TACH[1:0] — Timer A Channel I/O Bits  
The PTE3/TACH1–PTE2/TACH0 pins are the TIMA input capture/output compare pins. The  
edge/level select bits, ELSxB:ELSxA, determine whether the PTE3/TACH1–PTE2/TACH0 pins are  
timer channel I/O pins or general-purpose I/O pins. See 17.8.1 TIMA Status and Control Register.  
NOTE  
Data direction register E (DDRE) does not affect the data direction of port  
E pins that are being used by the TIMA. However, the DDRE bits always  
determine whether reading port E returns the states of the latches or the  
states of the pins. See Table 13-5.  
RxD — SCI Receive Data Input  
The PTE1/RxD pin is the receive data input for the SCI module. When the enable SCI bit, ENSCI, is  
clear, the SCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See  
14.8.1 SCI Control Register 1.  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the SCI module. When the enable SCI bit, ENSCI, is  
clear, the SCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See  
14.8.2 SCI Control Register 2.  
NOTE  
Data direction register E (DDRE) does not affect the data direction of port  
E pins that are being used by the SCI module. However, the DDRE bits  
always determine whether reading port E returns the states of the latches  
or the states of the pins. See Table 13-5.  
13.6.2 Data Direction Register E (DDRE)  
Data direction register E determines whether each port E pin is an input or an output. Writing a 1 to a  
DDRE bit enables the output buffer for the corresponding port E pin; a 0 disables the output buffer.  
Address: $000C  
Bit 7  
DDRE7  
0
6
DDRE6  
0
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
Figure 13-15. Data Direction Register E (DDRE)  
DDRE[7:0] — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears DDRE[7:0], configuring all port E pins  
as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE  
Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 13-16 shows the port E I/O logic.  
MC68HC08AZ32A Data Sheet, Rev. 2  
164  
Freescale Semiconductor  
Port F  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
PTEx  
RESET  
WRITE PTE ($0008)  
READ PTE ($0008)  
PTEx  
Figure 13-16. Port E I/O Circuit  
When bit DDREx is a 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a 0,  
reading address $0008 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 13-5 summarizes the operation of the port E pins.  
Table 13-5. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE  
Bit  
PTE  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTE[7:0](3)  
PTE[7:0]  
0
1
DDRE[7:0]  
Pin  
DDRE[7:0]  
PTE[7:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
13.7 Port F  
Port F is a 7-bit special function port that shares four of its pins with TIMA and two of its pins with TIMB.  
13.7.1 Port F Data Register (PTF)  
The port F data register contains a data latch for each of the seven port F pins.  
Address: $0009  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTF6  
PTF5  
PTF4  
PTF3  
PTF2  
PTF1  
PTF0  
Reset:  
Unaffected by reset  
TBCH0 TACH5  
Alternative Functions:  
TBCH1  
TACH4  
TACH3  
TACH2  
= Unimplemented  
Figure 13-17. Port F Data Register (PTF)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
165  
Input/Output (I/O) Ports  
PTF[6:0] — Port F Data Bits  
These read/write bits are software programmable. Data direction of each port F pin is under the control  
of the corresponding bit in data direction register F. Reset has no effect on PTF[6:0].  
TACH[5:2] — Timer A Channel I/O Bits  
The PTF3/TACH5–PTF0/TACH2 pins are the TIM input capture/output compare pins. The edge/level  
select bits, ELSxB:ELSxA, determine whether the PTF3/TACH5–PTF0/TACH2 pins are timer channel  
I/O pins or general-purpose I/O pins.  
TBCH[1:0] — Timer B Channel I/O Bits  
The PTF5/TBCH1–PTF4/TBCH0 pins are the TIMB input capture/output compare pins. The edge/level  
select bits, ELSxB:ELSxA, determine whether the PTF5/TBCH1–PTF4/TBCH0 pins are timer channel  
I/O pins or general-purpose I/O pins. See 18.8.1 TIMB Status and Control Register.  
NOTE  
Data direction register F (DDRF) does not affect the data direction of port F  
pins that are being used by TIMA and TIMB. However, the DDRF bits  
always determine whether reading port F returns the states of the latches  
or the states of the pins. See Table 13-6.  
13.7.2 Data Direction Register F (DDRF)  
Data direction register F determines whether each port F pin is an input or an output. Writing a 1 to a  
DDRF bit enables the output buffer for the corresponding port F pin; a 0 disables the output buffer.  
Address: $000D  
Bit 7  
0
6
DDRF6  
0
5
DDRF5  
0
4
DDRF4  
0
3
DDRF3  
0
2
DDRF2  
0
1
DDRF1  
0
Bit 0  
DDRF0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 13-18. Data Direction Register F (DDRF)  
DDRF[6:0] — Data Direction Register F Bits  
These read/write bits control port F data direction. Reset clears DDRF[6:0], configuring all port F pins  
as inputs.  
1 = Corresponding port F pin configured as output  
0 = Corresponding port F pin configured as input  
NOTE  
Avoid glitches on port F pins by writing to the port F data register before  
changing data direction register F bits from 0 to 1.  
MC68HC08AZ32A Data Sheet, Rev. 2  
166  
Freescale Semiconductor  
Port G  
Figure 13-19 shows the port F I/O logic.  
READ DDRF ($000D)  
WRITE DDRF ($000D)  
RESET  
DDRFx  
PTFx  
WRITE PTF ($0009)  
PTFx  
READ PTF ($0009)  
Figure 13-19. Port F I/O Circuit  
When bit DDRFx is a 1, reading address $0009 reads the PTFx data latch. When bit DDRFx is a 0,  
reading address $0009 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 13-6 summarizes the operation of the port F pins.  
Table 13-6. Port F Pin Functions  
Accesses to DDRF  
Read/Write  
Accesses to PTF  
DDRF  
Bit  
PTF  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTF[6:0](3)  
PTF[6:0]  
0
1
DDRF[6:0]  
Pin  
DDRF[6:0]  
PTF[6:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
13.8 Port G  
Port G is a 3-bit special function port that shares all of its pins with the KBD.  
13.8.1 Port G Data Register (PTG)  
The port G data register contains a data latch for each of the three port G pins.  
Address: $000A  
Bit 7  
0
6
0
5
0
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
PTG2  
PTG1  
PTG0  
Reset:  
Unaffected by reset  
Alternative Functions:  
KBD2  
KBD1  
KBD0  
= Unimplemented  
Figure 13-20. Port G Data Register (PTG)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
167  
Input/Output (I/O) Ports  
PTG[2:0] — Port G Data Bits  
These read/write bits are software-programmable. Data direction of each port G pin is under the control  
of the corresponding bit in data direction register G. Reset has no effect on PTG[2:0].  
KBD[2:0] — Keyboard Wakeup Pins  
The keyboard interrupt enable bits, KBIE[2:0], in the keyboard interrupt control register (KBICR),  
enable the port G pins as external interrupt pins. See Chapter 8 Keyboard Interrupt (KBD) Module.  
Enabling an external interrupt pin will override the corresponding DDRGx.  
13.8.2 Data Direction Register G (DDRG)  
Data direction register G determines whether each port G pin is an input or an output. Writing a 1 to a  
DDRG bit enables the output buffer for the corresponding port G pin; a 0 disables the output buffer.  
Address: $000E  
Bit 7  
0
6
0
5
0
4
0
3
0
2
DDRG2  
0
1
DDRG1  
0
Bit 0  
DDRG0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 13-21. Data Direction Register G (DDRG)  
DDRG[2:0] — Data Direction Register G Bits  
These read/write bits control port G data direction. Reset clears DDRG[2:0], configuring all port G pins  
as inputs.  
1 = Corresponding port G pin configured as output  
0 = Corresponding port G pin configured as input  
NOTE  
Avoid glitches on port G pins by writing to the port G data register before  
changing data direction register G bits from 0 to 1.  
Figure 13-22 shows the port G I/O logic.  
READ DDRG ($000E)  
WRITE DDRG ($000E)  
DDRGx  
RESET  
WRITE PTG ($000A)  
PTGx  
PTGx  
READ PTG ($000A)  
Figure 13-22. Port G I/O Circuit  
MC68HC08AZ32A Data Sheet, Rev. 2  
168  
Freescale Semiconductor  
Port H  
When bit DDRGx is a 1, reading address $000A reads the PTGx data latch. When bit DDRGx is a 0,  
reading address $000A reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data. Table 13-7 summarizes the operation of the port G pins.  
Table 13-7. Port G Pin Functions  
Accesses to DDRG  
Read/Write  
Accesses to PTG  
DDRG  
Bit  
PTG  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTG[2:0](3)  
PTG[2:0]  
0
1
DDRG[2:0]  
Pin  
DDRG[2:0]  
PTG[2:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
13.9 Port H  
Port H is a 2-bit special function port that shares all of its pins with the KBD.  
13.9.1 Port H Data Register (PTH)  
The port H data register contains a data latch for each of the two port H pins.  
Address: $000B  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
PTH1  
PTH0  
Reset:  
Unaffected by reset  
Alternative Functions:  
KBD4  
KBD3  
= Unimplemented  
Figure 13-23. Port H Data Register (PTH)  
PTH[1:0] — Port H Data Bits  
These read/write bits are software-programmable. Data direction of each port H pin is under the control  
of the corresponding bit in data direction register H. Reset has no effect on port H data.  
KBD[4:3] — Keyboard Wakeup Pins  
The keyboard interrupt enable bits, KBIE[4:3], in the keyboard interrupt control register (KBICR),  
enable the port H pins as external interrupt pins. See Chapter 8 Keyboard Interrupt (KBD) Module.  
13.9.2 Data Direction Register H (DDRH)  
Data direction register H determines whether each port H pin is an input or an output. Writing a 1 to a  
DDRH bit enables the output buffer for the corresponding port H pin; a 0 disables the output buffer.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
169  
Input/Output (I/O) Ports  
Address: $000F  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
DDRH1  
0
Bit 0  
DDRH0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-24. Data Direction Register H (DDRH)  
DDRH[1:0] — Data Direction Register H Bits  
These read/write bits control port H data direction. Reset clears DDRH[1:0], configuring all port H pins  
as inputs.  
1 = Corresponding port H pin configured as output  
0 = Corresponding port H pin configured as input  
NOTE  
Avoid glitches on port H pins by writing to the port H data register before  
changing data direction register H bits from 0 to 1.  
Figure 13-25 shows the port H I/O logic.  
READ DDRH ($000E)  
WRITE DDRH ($000E)  
DDRHx  
RESET  
WRITE PTH ($000A)  
PTGx  
PTHx  
READ PTH ($000A)  
Figure 13-25. Port H I/O Circuit  
When bit DDRHx is a 1, reading address $000B reads the PTHx data latch. When bit DDRHx is a 0,  
reading address $000B reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data. Table 13-8 summarizes the operation of the port H pins.  
Table 13-8. Port H Pin Functions  
Accesses to DDRH  
Read/Write  
Accesses to PTH  
DDRH  
Bit  
PTH  
Bit  
I/O Pi  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTH[1:0](3)  
PTH[1:0]  
0
1
DDRH[1:0]  
Pin  
DDRH[1:0]  
PTH[1:0]  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC08AZ32A Data Sheet, Rev. 2  
170  
Freescale Semiconductor  
Chapter 14  
Serial Communications Interface (SCI)  
14.1 Introduction  
This section describes the serial communications interface module (SCI), which allows high-speed  
asynchronous communications with peripheral devices and other MCUs.  
14.2 Features  
Features include:  
Full duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
171  
Serial Communications Interface (SCI)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 14-1. Block Diagram Highlighting SCI Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
172  
Freescale Semiconductor  
Pin Name Conventions  
14.3 Pin Name Conventions  
The generic names of the SCI input/output (I/O) pins are:  
RxD (receive data)  
TxD (transmit data)  
SCI I/O lines are implemented by sharing parallel I/O port pins. The full name of an SCI input or output  
reflects the name of the shared port pin. Table 14-1 shows the full names and the generic names of the  
SCI I/O pins.  
The generic pin names appear in the text of this section.  
Table 14-1. Pin Name Conventions  
Generic Pin Names  
Full Pin Names  
RxD  
TxD  
PTE1/RxD  
PTE0/TxD  
14.4 Functional Description  
Figure 14-3 shows the structure of the SCI module. The SCI allows full-duplex, asynchronous, NRZ serial  
communication among the MCU and remote devices, including other MCUs. The transmitter and receiver  
of the SCI operate independently, although they use the same baud rate generator. During normal  
operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes  
received data.  
14.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 14-2.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 14-2. SCI Data Formats  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
173  
Serial Communications Interface (SCI)  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
RxD  
TRANSMIT  
SHIFT REGISTER  
TxD  
SHIFT REGISTER  
TXINV  
SCTIE  
TCIE  
R8  
T8  
SCRIE  
ILIE  
TE  
SCTE  
RE  
TC  
RWU  
SCRF  
SBK  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
PRE- BAUD RATE  
SCALER GENERATOR  
÷ 4  
CGMXCLK  
DATA SELECTION  
CONTROL  
÷ 16  
Figure 14-3. SCI Module Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
174  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
SCI Control Register 1  
TXINV  
$0013  
(SCC1) Write:  
See page 186.  
Reset:  
Read:  
0
0
SCI Control Register 2  
SCTIE  
TCIE  
0
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
(SCC2) Write:  
See page 188.  
Reset:  
Read:  
0
0
0
R8  
SCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 190.  
Reset:  
U
U
0
0
0
0
0
0
Read: SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1) Write:  
See page 191.  
Reset:  
Read:  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2) Write:  
See page 193.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write:  
See page 194.  
Reset:  
Read:  
Unaffected by reset  
SCI Baud Rate Register  
SCP1  
0
SCP0  
R
SCR2  
0
SCR1  
SCR0  
0
(SCBR) Write:  
See page 194.  
Reset:  
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 14-4. SCI I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
175  
Serial Communications Interface (SCI)  
14.4.2 Transmitter  
Figure 14-5 shows the structure of the SCI transmitter.  
14.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1  
(SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3)  
is the ninth bit (bit 8).  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 14-5. SCI Transmitter  
MC68HC08AZ32A Data Sheet, Rev. 2  
176  
Freescale Semiconductor  
Functional Description  
14.4.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data  
register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To  
initiate an SCI transmission:  
1. Enable the SCI by writing a 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in SCI control register 2  
(SCC2).  
3. Clear the SCI transmitter empty bit (SCTE) by first reading SCI status register 1 (SCS1) and then  
writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit  
shift register. A 0 start bit automatically goes into the least significant bit position of the transmit shift  
register. A 1 stop bit goes into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, 1.  
If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port E pins.  
14.4.2.3 Break Characters  
Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A  
break character contains all 0s and has no start, stop, or parity bit. Break character length depends on  
the M bit in SCC1. As long as SBK is at 1, transmitter logic continuously loads break characters into the  
transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last  
break character and then transmits at least one 1. The automatic 1 at the end of a break character  
guarantees the recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by eight or nine 0 data bits and a 0  
where the stop bit should be.  
Receiving a break character has the following effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
177  
Serial Communications Interface (SCI)  
14.4.2.4 Idle Characters  
An idle character contains all 1s and has no start, stop, or parity bit. Idle character length depends on the  
M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
NOTE  
This note does not apply to the L32X mask set of the MC68HC08AZ32A.  
When a break sequence is followed immediately by an idle character, this  
SCI design exhibits a condition in which the break character length is  
reduced by one half bit time. In this instance, the break sequence will  
consist of a valid start bit, eight or nine data bits (as defined by the M bit in  
SCC1) of 0 and one half data bit length of 0 in the stop bit position followed  
immediately by the idle character. To ensure a break character of the  
proper length is transmitted, always queue up a byte of data to be  
transmitted while the final break sequence is in progress.  
NOTE  
When queueing an idle character, return the TE bit to 1 before the stop bit  
of the current character shifts out to the TxD pin. Setting TE after the stop  
bit appears on TxD causes data previously written to the SCDR to be lost.  
A good time to toggle the TE bit for a queued idle character is when the  
SCTE bit becomes set and just before writing the next byte to the SCDR.  
14.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at 1.  
See 14.8.1 SCI Control Register 1.  
14.4.2.6 Transmitter Interrupts  
The following conditions can generate CPU interrupt requests from the SCI transmitter:  
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the  
SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
MC68HC08AZ32A Data Sheet, Rev. 2  
178  
Freescale Semiconductor  
Functional Description  
14.4.3 Receiver  
Figure 14-6 shows the structure of the SCI receiver.  
INTERNAL BUS  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
CGMXCLK  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 14-6. SCI Receiver Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
179  
Serial Communications Interface (SCI)  
14.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
14.4.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that  
the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the  
SCRF bit generates a receiver CPU interrupt request.  
14.4.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following  
times (see Figure 14-7):  
After every start bit  
After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at  
RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples  
returns a valid 0)  
To locate the start bit, data recovery logic does an asynchronous search for a 0 preceded by three 1s.  
When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT DATA  
VERIFICATION SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 14-7. Receiver Data Sampling  
MC68HC08AZ32A Data Sheet, Rev. 2  
180  
Freescale Semiconductor  
Functional Description  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table  
14-2 summarizes the results of the start bit verification samples.  
Table 14-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 14-3 summarizes the results of the data bit samples.  
Table 14-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 14-4  
summarizes the results of the stop bit samples.  
Table 14-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing Error  
Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
181  
Serial Communications Interface (SCI)  
14.4.3.4 Framing Errors  
If the data recovery logic does not detect a 1 where the stop bit should be in an incoming character, it sets  
the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has  
no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
14.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 14-8 shows how much a slow received character can be misaligned without causing a noise  
error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop  
bit data samples at RT8, RT9, and RT10.  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 14-8, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 14-8. Slow Data  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 14-8, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
MC68HC08AZ32A Data Sheet, Rev. 2  
182  
Freescale Semiconductor  
Functional Description  
Fast Data Tolerance  
Figure 14-9 shows how much a fast received character can be misaligned without causing a noise  
error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit  
data samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 14-9. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 14-9, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
·
154 160  
× 100 = 3.90%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 14-9, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
14.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
Address mark — An address mark is a 1 in the most significant bit position of a received character.  
When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing  
the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then  
compare the character containing the address mark to the user-defined address of the receiver. If  
they are the same, the receiver remains awake and processes the characters that follow. If they  
are not the same, software can set the RWU bit and put the receiver back into the standby state.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
183  
Serial Communications Interface (SCI)  
Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting 1s as idle character bits after the start bit  
or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
14.4.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI receiver:  
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting  
the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the  
RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU  
interrupt requests.  
14.4.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate SCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate SCI error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop  
bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU  
interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data.  
The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt  
requests.  
14.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
14.5.1 Wait Mode  
The SCI module remains active in wait mode. Any enabled CPU interrupt request from the SCI module  
can bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
MC68HC08AZ32A Data Sheet, Rev. 2  
184  
Freescale Semiconductor  
SCI During Break Module Interrupts  
14.5.2 Stop Mode  
The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. Any  
enabled CPU interrupt request from the SCI module does not bring the MCU out of Stop mode. SCI  
module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
14.6 SCI During Break Module Interrupts  
The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the  
break state. See 19.2 Break Module (BRK).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
14.7 I/O Signals  
Port E shares two of its pins with the SCI module. The two SCI I/O pins are:  
PTE0/TxD — Transmit data  
PTE1/RxD — Receive data  
14.7.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the SCI transmitter. The SCI shares the PTE0/TxD pin  
with port E. When the SCI is enabled, the PTE0/TxD pin is an output regardless of the state of the DDRE2  
bit in data direction register E (DDRE).  
14.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the SCI receiver. The SCI shares the PTE1/RxD pin with  
port E. When the SCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit  
in data direction register E (DDRE).  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
185  
Serial Communications Interface (SCI)  
14.8 I/O Registers  
The following I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
14.8.1 SCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address:  
$0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILLTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
Figure 14-10. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must  
be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
MC68HC08AZ32A Data Sheet, Rev. 2  
186  
Freescale Semiconductor  
I/O Registers  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 14-5).The  
ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the  
M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a 1 (address mark) in the most  
significant bit position of a received character or an idle condition on the RxD pin. Reset clears the  
WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting 1s as idle character bits. The counting  
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string  
of 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.  
Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 14-5). When enabled, the parity function  
inserts a parity bit in the most significant bit position. (See Table 14-4). Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks for odd parity or even parity.  
(See Table 14-5). Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 14-5. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Character  
Length  
M
Parity  
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
10 Bits  
11 Bits  
10 Bits  
10 Bits  
11 Bits  
11 Bits  
1
1
1
Even  
Odd  
1
1
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
187  
Serial Communications Interface (SCI)  
14.8.2 SCI Control Register 2  
SCI control register 2:  
Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt requests  
Enables the TC bit to generate transmitter CPU interrupt requests  
Enables the SCRF bit to generate receiver CPU interrupt requests  
Enables the IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
Address:  
$0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 14-11. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Setting  
the SCTIE bit in SCC3 enables the SCTE bit to generate CPU interrupt requests. Reset clears the  
SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears  
the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Setting the  
SCRIE bit in SCC3 enables the SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE  
bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
MC68HC08AZ32A Data Sheet, Rev. 2  
188  
Freescale Semiconductor  
I/O Registers  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (1). Clearing and then setting TE  
during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear.  
ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the  
break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter  
continuously transmits break characters with no 1s between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the SCI to send a break character  
instead of a preamble.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
189  
Serial Communications Interface (SCI)  
14.8.3 SCI Control Register 3  
SCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted.  
Enables the following interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address:  
$0015  
Bit 7  
R8  
6
T8  
U
5
R
0
4
3
2
NEIE  
0
1
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R
ORIE  
FEIE  
U
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 14-12. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character.  
R8 is received at the same time that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on  
the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt requests generated by the parity error bit, PE.  
Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
MC68HC08AZ32A Data Sheet, Rev. 2  
190  
Freescale Semiconductor  
I/O Registers  
14.8.4 SCI Status Register 1  
SCI status register 1 contains flags to signal the following conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 14-13. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by  
reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set.  
TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There may  
be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data  
register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE  
generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
191  
Serial Communications Interface (SCI)  
receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after  
the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an SCI error CPU interrupt request if the  
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is  
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears  
the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 14-14 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 14-14. Flag Clearing Sequence  
MC68HC08AZ32A Data Sheet, Rev. 2  
192  
Freescale Semiconductor  
I/O Registers  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an NF  
CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a 0 is accepted as the stop bit. FE generates an SCI error CPU  
interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and  
then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates  
a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
14.8.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
Break character detected  
Incoming data  
Address:  
$0017  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-15. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading  
the SCDR. Once cleared, BKF can become set again only after 1s again appear on the RxD pin  
followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search.  
RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling  
RPF before disabling the SCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
193  
Serial Communications Interface (SCI)  
14.8.6 SCI Data Register  
The SCI data register is the buffer between the internal data bus and the receive and transmit shift  
registers. Reset has no effect on data in the SCI data register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by Reset  
Figure 14-16. SCI Data Register (SCDR)  
R7/T7:R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits, R7:R0. Writing to address $0018  
writes the data to be transmitted, T7:T0. Reset has no effect on the SCI data register.  
NOTE  
Do not use read-modify-write instructions on the SCI data register.  
14.8.7 SCI Baud Rate Register  
The baud rate register selects the baud rate for both the receiver and the transmitter.  
Address:  
$0019  
Bit 7  
0
6
0
5
SCP1  
0
4
3
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
SCP0  
R
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 14-17. SCI Baud Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown in  
Table 14-6. Reset clears SCP1 and SCP0.  
Table 14-6. SCI Baud Rate Prescaling  
SCP[1:0]  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
MC68HC08AZ32A Data Sheet, Rev. 2  
194  
Freescale Semiconductor  
I/O Registers  
SCR2 – SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in Table 14-7. Reset clears  
SCR2–SCR0.  
Table 14-7. SCI Baud Rate Selection  
SCR[2:1:0]  
000  
Baud Rate Divisor (BD)  
1
2
001  
010  
4
011  
8
100  
16  
32  
64  
128  
101  
110  
111  
Use the following formula to calculate the SCI baud rate:  
f
Crystal  
Baud rate = ------------------------------------  
64 × PD × BD  
where:  
Crystal = crystal frequency  
f
PD = prescaler divisor  
BD = baud rate divisor  
Table 14-8 shows the SCI baud rates that can be generated with a 4.9152-MHz crystal.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
195  
Serial Communications Interface (SCI)  
Table 14-8. SCI Baud Rate Selection Examples  
Baud Rate  
= 4.9152 MHz)  
Prescaler  
Divisor (PD)  
Baud Rate  
Divisor (BD)  
SCP[1:0]  
SCR[2:1:0]  
(f  
Crystal  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC08AZ32A Data Sheet, Rev. 2  
196  
Freescale Semiconductor  
Chapter 15  
System Integration Module (SIM)  
15.1 Introduction  
This section describes the system integration module, which supports up to 24 external and/or internal  
interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is  
shown in Figure 15-2. Table 15-1 is a summary of the SIM I/O registers. The SIM is a system state  
controller that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
A block diagram of the SIM is shown in Figure 15-2.  
Figure 15-3 is a summary of the SIM input/output (I/O) registers.  
Table 15-1 shows the internal signal names used in this section.  
Table 15-1. Signal Naming Conventions  
Signal Name  
CGMXCLK  
CGMOUT  
IAB  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL-based or OSC1-based clock output from CGM (bus clock = CGMOUT divided by two)  
Internal address bus  
IDB  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
197  
System Integration Module (SIM)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
IRQ  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 15-1. Block Diagram Highlighting SIM Block and Pin  
MC68HC08AZ32A Data Sheet, Rev. 2  
198  
Freescale Semiconductor  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 15-2. SIM Block Diagram  
Addr.  
Name  
SIM Break Status Register  
Bit 7  
6
5
4
3
2
1
BW  
0
Bit 0  
Read:  
(SBSR) Write:  
R
R
R
R
R
R
R
$FE00  
See page 210.  
Reset:  
Read:  
0
POR  
PIN  
COP  
ILOP  
ILAD  
0
LVI  
0
SIM Reset Status Register  
$FE01  
$FE03  
(SRSR) Write:  
See page 210.  
POR:  
Read:  
1
0
0
0
0
0
0
0
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register (SBFCR) Write:  
See page 211.  
Reset:  
0
R
= Reserved  
= Unimplemented  
Figure 15-3. SIM I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
199  
System Integration Module (SIM)  
15.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 15-4. This clock can  
come from either an external oscillator or from the on-chip PLL. Chapter 4 Clock Generator Module  
(CGM).  
15.2.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four  
or the PLL output (CGMVCLK) divided by four. Chapter 4 Clock Generator Module (CGM).  
15.2.2 Clock Start-Up From POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR  
timeout has been completed. The RST pin is driven low by the SIM during this entire period. The bus  
clocks start upon completion of the timeout.  
15.2.3 Clocks in Stop and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 CGMXCLK cycles. (See 15.6.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. However, some modules can be programmed to be active in  
wait mode. Refer to the wait mode subsection of each module to see if the module is active or inactive in  
wait mode.  
CGMXCLK  
OSC1  
SIM COUNTER  
CLOCK  
SELECT  
CIRCUIT  
A
B
CGMOUT  
BUS CLOCK  
GENERATORS  
÷ 2  
÷ 2  
CGMVCLK  
S*  
*When S = 1,  
CGMOUT = B  
BCS  
SIM  
PLL  
PTC3  
MONITOR MODE  
USER MODE  
CGM  
Figure 15-4. CGM Clock Signals  
MC68HC08AZ32A Data Sheet, Rev. 2  
200  
Freescale Semiconductor  
Reset and System Initialization  
15.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter, 15.3.3 SIM Counter, but an external reset does not. Each of the  
resets sets a corresponding bit in the SIM reset status register (SRSR). (See 15.7 SIM Registers.)  
15.3.1 External Pin Reset  
Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register  
(SRSR) is set as long as RST is held low for at least the minimum tRL time. Figure 15-5 shows the relative  
timing.  
CGMOUT  
RST  
VECT H  
IAB  
PC  
VECT L  
Figure 15-5. External Reset Timing  
15.3.2 Active Resets From Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow for resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles.  
See Figure 15-6. An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI,  
or POR. See Figure 15-7. Note that for LVI or POR resets, the SIM cycles through 4096 CGMXCLK  
cycles, during which the SIM forces the RST pin low. The internal reset signal then follows the sequence  
from the falling edge of RST as shown in Figure 15-6.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
201  
System Integration Module (SIM)  
IRST  
RST  
RST PULLED LOW BY MCU  
32 CYCLES  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 15-6. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 15-7. Sources of Internal Reset  
Table 15-2. Reset Recovery Timing  
Reset Recovery Type  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
POR/LVI  
All Others  
15.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out  
4096 CGMXCLK cycles. Another 64 CGMXCLK cycles later, the CPU and memories are released from  
reset to allow the reset vector sequence to occur.  
At power-on, these events occur:  
A POR pulse is generated  
The internal reset signal is asserted  
The SIM enables CGMOUT  
Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow the  
oscillator to stabilize  
The RST pin is driven low during the oscillator stabilization time  
The POR bit of the SIM reset status register (SRSR) is set  
MC68HC08AZ32A Data Sheet, Rev. 2  
202  
Freescale Semiconductor  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 15-8. POR Recovery  
15.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module timeout, a value (any value) should be written to location $FFFF. Writing to  
location $FFFF clears the COP counter and bits 12 through 4 of the SIM counter. The SIM counter output,  
which occurs at least every 8176 CGMXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum amount of time before the first  
timeout.  
The COP module is disabled if the RST pin or the IRQ pin is held at VDD + VTST while the MCU is in  
monitor mode. The COP module can be disabled only through combinational logic conditioned with the  
high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result  
of external noise. During a break state, VDD + VTST on the RST pin disables the COP module.  
15.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is 0, the SIM treats the STOP instruction as an  
illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
203  
System Integration Module (SIM)  
15.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources.  
NOTE  
Extra care should be exercised if code in this part has been taken from  
another M68HC08 with a different memory map since some legal  
addresses could become illegal addresses on a smaller ROM. It is the  
user’s responsibility to check their code for illegal addresses. Older  
M68HC08s may have a different illegal address reset specification.  
15.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the  
LVITRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin  
(RST) is held low while the SIM counter counts out 4096 CGMXCLK cycles. 64 CGMXCLK cycles later,  
the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down  
the RST pin for all internal reset sources.  
15.3.3 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly (COP) module. The SIM counter overflow supplies the  
clock for the COP module. The SIM counter is 13 bits long and is clocked by the falling edge of  
CGMXCLK.  
15.3.4 SIM Counter During Power-On Reset  
The power-on reset (POR) module detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to  
drive the bus clock state machine.  
15.3.5 SIM Counter During Stop Mode Recovery  
The SIM counter is also used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option  
register. If the SSREC bit is a 1, then the stop recovery is reduced from the normal delay of 4096  
CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned oscillators  
that do not require long startup times from stop mode. External crystal applications should use the full  
stop recovery time, that is, with SSREC cleared.  
15.3.6 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 15.6.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states, see 15.3.2 Active Resets From Internal Sources for counter control and  
internal reset recovery sequences.  
MC68HC08AZ32A Data Sheet, Rev. 2  
204  
Freescale Semiconductor  
Exception Control  
15.4 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
15.4.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents onto the stack and sets the  
interrupt mask (I-bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal processing can resume. Figure 15-9  
shows interrupt entry timing, and Figure 15-10 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt may take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared). See Figure 15-10.  
MODULEINTERRUPT  
I BIT  
IAB  
IDB  
VECT L  
START ADDRESS  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
PC1[7:0]  
V DATA H  
V DATA L  
PC–1[15:8]  
DUMMY  
X
A
CCR  
OPCODE  
R/W  
Figure 15-9. Interrupt Entry  
MODULEINTERRUPT  
I-BIT  
IAB  
SP – 2  
SP – 4  
SP – 3  
SP – 1  
SP  
PC  
PC + 1  
OPCODE  
IDB  
CCR  
A
X
PC – 1[7:0]  
PC–1[15:8]  
OPERAND  
R/W  
Figure 15-10. Interrupt Recovery  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
205  
System Integration Module (SIM)  
15.4.1.1 Hardware Interrupts  
Processing of a hardware interrupt begins after completion of the current instruction. When the instruction  
is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I-bit clear in the  
condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with  
interrupt processing; otherwise, the next instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 15-11 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
CLI  
LDA #$FF  
PSHH  
BACKGROUND ROUTINE  
INT1  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 15-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
15.4.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
MC68HC08AZ32A Data Sheet, Rev. 2  
206  
Freescale Semiconductor  
Break Interrupts  
15.4.2 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
15.5 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting its  
break interrupt output. See 19.2 Break Module (BRK). The SIM puts the CPU into the break state by  
forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how  
each module is affected by the break state.  
15.5.1 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
15.6 Low-Power Modes  
Executing the STOP/WAIT instruction puts the MCU in a low power-consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
15.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 15-12 shows  
the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break  
WAIT bit, BW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option  
register is ‘0’, then the computer operating properly (COP) module is enabled and remains active in wait  
mode.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
207  
System Integration Module (SIM)  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 15-12. WAIT Mode Entry Timing  
Figure 15-13 and Figure 15-14 show the timing for wait recovery.  
IAB  
$6E0B  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB  
$A6  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin or CPU interrupt  
Figure 15-13. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 15-14. Wait Recovery from Internal Reset  
15.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset also causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping  
the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the mask option register  
(MOR). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down  
to 32. This is ideal for applications using canned oscillators that do not require long startup times from  
stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
MC68HC08AZ32A Data Sheet, Rev. 2  
208  
Freescale Semiconductor  
SIM Registers  
The break module is inactive in stop mode. The STOP instruction does not affect break module register  
states.  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period.  
Figure 15-15 shows stop mode entry timing.  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 15-15. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INTERRUPT  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 15-16. Stop Mode Recovery from Interrupt  
15.7 SIM Registers  
The SIM has three memory mapped registers. Table 15-3 shows the mapping of these registers.  
Table 15-3. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
209  
System Integration Module (SIM)  
15.7.1 SIM Break Status Register (SBSR)  
The SIM break status register contains a flag to indicate that a break caused an exit from stop or wait  
mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
BW  
Note(1)  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears BW.  
Figure 15-17. SIM Break Status Register (SBSR)  
BW — SIM Break Wait Bit  
BW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
15.7.2 SIM Reset Status Register (SRSR)  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
0
Read:  
Write:  
Reset:  
POR  
PIN  
COP  
ILOP  
ILAD  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-18. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
MC68HC08AZ32A Data Sheet, Rev. 2  
210  
Freescale Semiconductor  
SIM Registers  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset was caused by the LVI circuit  
0 = POR or read of SRSR  
15.7.3 SIM Break Flag Control Register (SBFCR)  
The SIM break control register contains a bit that enables software to clear status bits while the MCU is  
in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 15-19. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
211  
System Integration Module (SIM)  
MC68HC08AZ32A Data Sheet, Rev. 2  
212  
Freescale Semiconductor  
Chapter 16  
Serial Peripheral Interface (SPI)  
16.1 Introduction  
This section describes the serial peripheral interface module (SPI), which allows full-duplex, synchronous,  
serial communications with peripheral devices.  
16.2 Features  
Features include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts with CPU service:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I2C (inter-integrated circuit) compatibility  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
213  
Serial Peripheral Interface (SPI)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 16-1. Block Diagram Highlighting SPI Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
214  
Freescale Semiconductor  
Pin Name Conventions and I/O Register Addresses  
16.3 Pin Name Conventions and I/O Register Addresses  
The generic names of the SPI input/output (I/O) pins are:  
SS (slave select)  
SPSCK (SPI serial clock)  
MOSI (master out slave in)  
MISO (master in slave out)  
The SPI shares four I/O pins with a parallel I/O port. The full name of an SPI pin reflects the name of the  
shared port pin. Table 16-1 shows the full names of the SPI I/O pins. The generic pin names appear in  
the text that follows.  
Table 16-1. Pin Name Conventions  
SPI Generic Pin Names:  
MISO  
MOSI  
SS  
SCK  
Full SPI Pin Names: PTE5/MISO  
PTE6/MOSI  
PTE4/SS  
PTE7/SPSCK  
16.4 Functional Description  
Figure 16-2 summarizes the SPI I/O registers and Figure 16-3 shows the structure of the SPI module.  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be  
interrupt-driven. All SPI interrupts can be serviced by the CPU.  
The following paragraphs describe the operation of the SPI module.  
Addr.  
Name  
Bit 7  
SPRIE  
0
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPI Control Register  
(SPCR)  
See page 230.  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
$0010  
1
0
1
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
SPI Status and Control Register  
(SPSCR)  
See page 231.  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
See page 233.  
Unaffected by reset  
= Unimplemented  
= Reserved  
R
Figure 16-2. SPI I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
215  
Serial Peripheral Interface (SPI)  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUS CLOCK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
÷ 32  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SELECT  
SPSCK  
SS  
SPMSTR  
SPE  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
MODFEN  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
ERRIE  
SPTIE  
SPRIE  
SPI  
CONTROL  
SPE  
SPRF  
SPTE  
OVRF  
MODF  
Figure 16-3. SPI Module Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
216  
Freescale Semiconductor  
Functional Description  
16.4.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE  
Configure the SPI modules as master and slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave SPI  
before disabling the master SPI. See 16.12.1 SPI Control Register (SPCR).  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the SPI data register. If the shift register is empty, the byte immediately transfers to  
the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI  
pin under the control of the serial clock. See Figure 16-4.  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
See 16.12.2 SPI Status and Control Register (SPSCR). Through the SPSCK pin, the baud rate generator  
of the master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s  
MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that  
SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation,  
SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control  
register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the  
SPTIE bit.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SPSCK  
BAUD RATE  
GENERATOR  
SS  
SS  
VDD  
Figure 16-4. Full-Duplex Master Slave Connections  
16.4.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode the SPSCK pin is the input  
for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave MCU  
must be at low. SS must remain low until the transmission is complete. See 16.5.7 Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,  
and the SPRF bit is set. To prevent an overflow condition, slave software must then read the SPI data  
register before another byte enters the shift register.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
217  
Serial Peripheral Interface (SPI)  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is  
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any particular SPI baud rate. The baud rate  
only controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the  
frequency of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the  
bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a a transmission remains in a buffer until the end  
of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. See 16.5 Transmission Formats.  
If the write to the data register is late, the SPI transmits the data already in the shift register from the  
previous transmission.  
NOTE  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
16.5 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock line synchronizes shifting and sampling on the two serial data lines. A slave  
select line allows individual selection of a slave SPI device; slave devices that are not selected do not  
interfere with SPI bus activities. On a master SPI device, the slave select line can optionally be used to  
indicate a multiple-master bus contention.  
16.5.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in  
the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an  
active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The  
clock phase and polarity should be identical for the master SPI device and the communicating slave  
device. In some cases, the phase and polarity are changed between transmissions to allow a master  
device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit, the SPI should be disabled  
by clearing the SPI enable bit (SPE).  
MC68HC08AZ32A Data Sheet, Rev. 2  
218  
Freescale Semiconductor  
Transmission Formats  
16.5.2 Transmission Format When CPHA = 0  
Figure 16-5 shows an SPI transmission in which CPHA is 0. The figure should not be used as a  
replacement for data sheet parametric information.Two waveforms are shown for SCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the  
serial clock (SCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly  
connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI  
signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives  
its MISO output only when its slave select input (SS) is low, so that only the selected slave drives to the  
master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master  
must be high or must be reconfigured as general purpose I/O not affecting the SPI. See 16.5.7 Mode Fault  
Error. When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore the slave must begin  
driving its data before the first SPSCK edge, and a falling edge on the SS pin is used to start the  
transmission. The SS pin must be toggled high and then low again between each byte transmitted.  
SCK CYCLE #  
(FOR REFERENCE)  
1
2
3
4
5
6
7
8
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
(FROM MASTER)  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
MISO  
(FROM SLAVE)  
MSB  
SS (TO SLAVE)  
CAPTURE STROBE  
Figure 16-5. Transmission Format (CPHA = 0)  
16.5.3 Transmission Format When CPHA = 1  
Figure 16-6 shows an SPI transmission in which CPHA is 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the  
serial clock (SCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly  
connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI  
signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives  
its MISO output only when its slave select input (SS) is low, so that only the selected slave drives to the  
master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master  
must be high or must be reconfigured as general-purpose I/O not affecting the SPI. See 16.5.7 Mode Fault  
Error. When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge. Therefore the  
slave uses the first SPSCK edge as a start transmission signal. The SS pin can remain low between  
transmissions. This format may be preferable in systems having only one master and only one slave  
driving the MISO data line.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
219  
Serial Peripheral Interface (SPI)  
SCK CYCLE #  
(FOR REFERENCE)  
1
2
3
4
5
6
7
8
SCK (CPOL =0)  
SCK (CPOL =1)  
MOSI  
(FROM MASTER)  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
MISO  
(FROM SLAVE)  
LSB  
SS (TO SLAVE)  
CAPTURE STROBE  
Figure 16-6. Transmission Format (CPHA = 1)  
16.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), transmissions are started by a software write to  
the SPDR. CPHA has no effect on the delay to the start of the transmission, but it does affect the initial  
state of the SCK signal. When CPHA = 0, the SCK signal remains inactive for the first half of the first SCK  
cycle. When CPHA = 1, the first SCK cycle begins with an edge on the SCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. See Figure 16-7. The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. It is only enabled when both the SPE and SPMSTR bits are set to  
conserve power. SCK edges occur halfway through the low time of the internal MCU clock. Since the SPI  
clock is free-running, it is uncertain where the write to the SPDR will occur relative to the slower SCK. This  
uncertainty causes the variation in the initiation delay shown in Figure 16-7. This delay will be no longer  
than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight MCU bus  
cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.  
16.5.5 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — failing to read the SPI data register before the next byte enters the shift  
register results in the OVRF bit becoming set. The new byte does not transfer to the receive data  
register, and the unread byte still can be read by accessing the SPI data register. OVRF is in the  
SPI status and control register.  
Mode fault error (MODF) — the MODF bit indicates that the voltage on the slave select pin (SS) is  
inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
MC68HC08AZ32A Data Sheet, Rev. 2  
220  
Freescale Semiconductor  
Transmission Formats  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SCK  
(CPHA = 1)  
SCK  
(CPHA =0)  
SCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
(SCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS)  
EARLIEST LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
WRITE  
(SCK = INTERNAL CLOCK ÷ 8;  
8 POSSIBLE START POINTS)  
LATEST  
LATEST  
LATEST  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
(SCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS)  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
(SCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS)  
Figure 16-7. Transmission Start Delay (Master)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
221  
Serial Peripheral Interface (SPI)  
16.5.6 Overflow Error  
The overflow flag (OVRF) becomes set if the SPI receive data register still has unread data from a  
previous transmission when the capture strobe of bit 1 of the next transmission occurs. See Figure 16-5  
and Figure 16-6. If an overflow occurs, the data being received is not transferred to the receive data  
register so that the unread data can still be read. Therefore, an overflow error always indicates the loss  
of data.  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. MODF and OVRF can generate a receiver/error CPU interrupt request. See Figure 16-10. It is not  
possible to enable only MODF or OVRF to generate a receiver/error CPU interrupt request. However,  
leaving MODFEN low prevents MODF from being set.  
If an end-of-block transmission interrupt was meant to pull the MCU out of wait, having an overflow  
condition without overflow interrupts enabled causes the MCU to hang in wait mode. If the OVRF is  
enabled to generate an interrupt, it can pull the MCU out of wait mode instead.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 16-8 shows how it is possible to miss an overflow.  
The first part of Figure 16-8 shows how to read the SPSCR and SPDR to clear the SPRF without  
problems. However, as illustrated by the second transmission example, the OVRF flag can be set in the  
interval between SPSCR and SPDR being read.  
In this case, an overflow can easily be missed. Since no more SPRF interrupts can be generated until this  
OVRF is serviced, it will not be obvious that bytes are being lost as more transmissions are completed.  
To prevent this, the OVRF interrupt should be enabled, or alternatively another read of the SPSCR should  
be carried out following the read of the SPDR. This ensures that the OVRF was not set before the SPRF  
was cleared and that future transmissions will terminate with an SPRF interrupt. Figure 16-9 illustrates  
this process. Generally, to avoid this second SPSCR read, enable the OVRF to the CPU by setting the  
ERRIE bit.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
2
5
READ SPSCR  
READ SPDR  
3
7
1
2
8
BYTE 1 SETS SPRF BIT.  
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS SET. BYTE 4 IS LOST.  
5
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
Figure 16-8. Missed Read of Overflow Condition  
MC68HC08AZ32A Data Sheet, Rev. 2  
222  
Freescale Semiconductor  
Transmission Formats  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
2
4
6
9
12  
14  
READ SPSCR  
READ SPDR  
3
8
10  
13  
1
2
5
6
10  
BYTE 1 SETS SPRF BIT.  
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
7
8
9
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPFR BIT.  
CPU READS SPSCR AGAIN TO CHECK OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 16-9. Clearing SPRF When OVRF Interrupt is Not Enabled  
16.5.7 Mode Fault Error  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the  
MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is  
cleared.  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. MODF and OVRF can  
generate a receiver/error CPU interrupt request. See Figure 16-10. It is not possible to enable only MODF  
or OVRF to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents  
MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes low. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all data direction register (DDR) bits associated with the SPI shared  
port pins.  
Setting the MODF flag (SPSCR) does not clear the SPMSTR bit. Reading  
SPMSTR when MODF = 1 will indicate a MODE fault error occurred in  
either master mode or slave mode.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
223  
Serial Peripheral Interface (SPI)  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes  
back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins  
when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK  
returns to its IDLE level following the shift of the last data bit. See 16.5 Transmission Formats.  
NOTE  
When CPHA = 0, a MODF occurs if a slave is selected (SS is low) and later  
deselected (SS is high) even if no SPSCK is sent to that slave. This  
happens because SS at 0 indicates the start of the transmission (MISO  
driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave  
can be selected and then later deselected with no transmission occurring.  
Therefore, MODF does not occur since a transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the  
ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort  
the SPI transmission by toggling the SPE bit of the slave.  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high-impedance  
state. Also, the slave SPI ignores all incoming SPSCK clocks, even if a  
transmission has begun.  
To clear the MODF flag, read the SPSCR and then write to the SPCR register. This entire clearing  
procedure must occur with no MODF condition existing or else the flag will not be cleared.  
16.6 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests. See Table 16-2 and  
Figure 16-10.  
Table 16-2. SPI Interrupts  
Flag  
Request  
SPTE (transmitter empty)  
SPRF (receiver full)  
OVRF (overflow)  
SPI transmitter CPU interrupt request (SPTIE = 1)  
SPI receiver CPU interrupt request (SPRIE = 1)  
SPI receiver/error interrupt request (SPRIE = 1, ERRIE = 1)  
SPI receiver/error interrupt request (SPRIE = 1, ERRIE = 1, MODFEN = 1)  
MODF (mode fault)  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU  
interrupt requests.  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt  
requests, provided that the SPI is enabled (SPE = 1).  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF flags to generate a  
receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
flag is enabled to generate receiver/error CPU interrupt requests.  
MC68HC08AZ32A Data Sheet, Rev. 2  
224  
Freescale Semiconductor  
Queuing Transmission Data  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 16-10. SPI Interrupt Request Generation  
Two sources in the SPI status and control register can generate CPU interrupt requests:  
SPI receiver full bit (SPRF) — the SPRF bit becomes set every time a byte transfers from the shift  
register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF can generate an SPI receiver/error CPU interrupt request.  
SPI transmitter empty (SPTE) — the SPTE bit becomes set every time a byte transfers from the  
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE can generate an SPTE CPU interrupt request.  
16.7 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready  
to accept new data. Write to the SPI data register only when the SPTE bit is high. Figure 16-11 shows the  
timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0).  
For a slave, the transmit data buffer allows back-to-back transmissions to occur without the slave having  
to time the write of its data between the transmissions. Also, if no new data is written to the data buffer,  
the last value contained in the shift register will be the next data word transmitted.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
225  
Serial Peripheral Interface (SPI)  
1
3
8
WRITE TO SPDR  
5
10  
SPTE  
2
SPSCK (CPHA:CPOL = 1:0)  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
5
4
3
2
1
6
5
4
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
5
10  
PU WRITES BYTE 1 TO SPDR, CLEARING  
PTE BIT.  
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING  
SPTE BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT  
DATA REGISTER TO SHIFT REGISTER,  
SETTING SPTE BIT.  
YTE 1 TRANSFERS FROM TRANSMIT DATA  
EGISTER TO SHIFT REGISTER,  
ETTING SPTE BIT.  
6
7
8
CPU READS SPSCR WITH SPRF BIT SET.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
CPU READS SPDR, CLEARING SPRF BIT.  
PU WRITES BYTE 2 TO SPDR, QUEUEING  
YTE 2 AND CLEARING SPTE BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING  
BYTE 3 AND CLEARING SPTE BIT.  
RST INCOMING BYTE TRANSFERS FROM SHIFT  
HIFT REGISTER TO RECEIVE DATA REGISTER,  
ETTING SPRF BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM  
SHIFT REGISTER TO RECEIVE DATA REGISTER,  
SETTING SPRF BIT.  
Figure 16-11. SPRF/SPTE CPU Interrupt Timing  
16.8 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is  
low. Whenever SPE is low, the following occurs:  
The SPTE flag is set  
Any transmission currently in progress is aborted  
The shift register is cleared  
The SPI state counter is cleared, making it ready for a new complete transmission  
All the SPI port logic is defaulted back to being general purpose I/O.  
The following items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to set all control bits again when SPE is set back high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
MC68HC08AZ32A Data Sheet, Rev. 2  
226  
Freescale Semiconductor  
Low-Power Modes  
16.9 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
16.9.1 WAIT Mode  
The SPI module remains active after the execution of a WAIT instruction. In WAIT mode the SPI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can  
bring the MCU out of WAIT mode.  
If SPI module functions are not required during WAIT mode, power consumption can be reduced by  
disabling the SPI module before executing the WAIT instruction.  
To exit WAIT mode when an overflow condition occurs, the OVRF bit should be enabled to generate CPU  
interrupt requests by setting the error interrupt enable bit (ERRIE). See 16.6 Interrupts.  
16.9.2 STOP Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after an external interrupt. If STOP mode is exited by  
reset, any transfer in progress is aborted, and the SPI is reset.  
16.10 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 15.7.3 SIM Break Flag Control Register (SBFCR).  
To allow software to clear status bits during a break interrupt, a 1 should be written to the BCFE bit. If a  
status bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, a 0 should be written to the BCFE bit. With BCFE at 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a two-step read/write clearing procedure. If software does the first step on such a  
bit before the break, the bit cannot change during the break state as long as BCFE is a 0. After the break,  
the second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the data register  
in break mode will not initiate a transmission, nor will this data be transferred into the shift register.  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect.  
16.11 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel I/O port.  
MISO — data received  
MOSI — data transmitted  
SPSCK — serial clock  
SS — slave select  
VSS — clock ground  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
227  
Serial Peripheral Interface (SPI)  
The SPI has limited inter-integrated circuit (I2C) capability (requiring software support) as a master in a  
single-master environment. To communicate with I2C peripherals, MOSI becomes an open-drain output  
when the SPWOM bit in the SPI control register is set. In I2C communication, the MOSI and MISO pins  
are connected to a bidirectional pin from the I2C peripheral and through a pullup resistor to VDD  
.
16.11.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is 0 and its SS pin is at 1. To support a multiple-slave system,  
a 1 on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
16.11.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
16.11.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
16.11.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission.  
See 16.5 Transmission Formats. Since it is used to indicate the start of a transmission, the SS must be  
toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low  
throughout the transmission for the CPHA = 1 format. See Figure 16-12.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
(CPHA = 0)  
SLAVE SS  
(CPHA = 1)  
Figure 16-12. CPHA/SS Timing  
MC68HC08AZ32A Data Sheet, Rev. 2  
228  
Freescale Semiconductor  
I/O Registers  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of the SS from creating a MODF error. See 16.12.2 SPI Status and Control Register  
(SPSCR).  
NOTE  
A 1 on the SS pin of a slave SPI puts the MISO pin in a high-impedance  
state. The slave SPI ignores all incoming SPSCK clocks, even if  
transmission has already begun.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. See 16.5.7 Mode Fault Error. For the state of  
the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit  
is low for an SPI master, the SS pin can be used as a general purpose I/O under the control of the data  
direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless  
of the state of the data direction register of the shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and  
reading the data register. See Table 16-3.  
Table 16-3. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI CONFIGURATION  
Not Enabled  
STATE OF SS LOGIC  
General-purpose I/O;  
SS ignored by SPI  
0
1
1
1
X
0
1
1
X
X
0
1
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
Master without MODF  
Master with MODF  
Input-only to SPI  
X = don’t care  
16.11.5 V (Clock Ground)  
SS  
VSS is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. To  
reduce the ground return path loop and minimize radio frequency (RF) emissions, connect the ground pin  
of the slave to the VSS pin.  
16.12 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
229  
Serial Peripheral Interface (SPI)  
16.12.1 SPI Control Register (SPCR)  
The SPI control register does the following:  
Enables SPI module interrupt requests  
Selects CPU interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address: $0010  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
0
0
R
= Reserved  
Figure 16-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set  
when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master  
This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR  
bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity  
This read/write bit determines the logic state of the SPSCK pin between transmissions. See  
Figure 16-5 and Figure 16-6. To transmit data between SPI modules, the SPI modules must have  
identical CPOL bits. Reset clears the CPOL bit.  
CPHA — Clock Phase  
This read/write bit controls the timing relationship between the serial clock and SPI data. See Figure  
16-5 and Figure 16-6. To transmit data between SPI modules, the SPI modules must have identical  
CPHA bits. When CPHA = 0, the SS pin of the slave SPI module must be set to logic one between  
bytes. See Figure 16-12. Reset sets the CPHA bit.  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once  
the transmission begins, no new data is allowed into the shift register from the data register. Therefore,  
the slave data register must be loaded with the desired transmit data before the falling edge of SS. Any  
data written after the falling edge is stored in the data register and transferred to the shift register at  
the current transmission.  
MC68HC08AZ32A Data Sheet, Rev. 2  
230  
Freescale Semiconductor  
I/O Registers  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission.  
The same applies when SS is high for a slave. The MISO pin is held in a high-impedance state, and  
the incoming SPSCK is ignored. In certain cases, it may also cause the MODF flag to be set. See  
16.5.7 Mode Fault Error. A 1 on the SS pin does not affect the state of the SPI state machine in any  
way.  
SPWOM — SPI Wired-OR Mode  
This read/write bit disables the pull-up devices on pins SPSCK, MOSI, and MISO so that those pins  
become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. See 16.8  
Resetting the SPI. Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
16.12.2 SPI Status and Control Register (SPSCR)  
The SPI status and control register contains flags to signal the following conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform the following functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address: $0011  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 16-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
231  
Serial Peripheral Interface (SPI)  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register  
with SPRF set and then reading the SPI data register. Any read of the SPI data register clears the  
SPRF bit.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable  
This read-only bit enables the MODF and OVRF flags to generate CPU interrupt requests. Reset  
clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Flag  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the SPI data register. Reset clears the  
OVRF flag.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault  
This clearable, ready-only flag is set in a slave SPI if the SS pin goes high during a transmission. In a  
master SPI, the MODF flag is set if the SS pin goes low at any time. Clear the MODF bit by reading  
the SPI status and control register with MODF set and then writing to the SPI data register. Reset  
clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE CPU interrupt request if the SPTIE bit in the SPI control register is  
set also.  
NOTE  
The SPI data register should not be written to unless the SPTE bit is high.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE will be set  
again within two bus cycles since the transmit buffer empties into the shift register. This allows the user  
to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot  
occur until the transmission is completed. This implies that a back-to-back write to the transmit data  
register is not possible. The SPTE indicates when the next write can occur.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable  
This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the  
MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general purpose I/O.  
MC68HC08AZ32A Data Sheet, Rev. 2  
232  
Freescale Semiconductor  
I/O Registers  
If the MODFEN bit is set, then this pin is not available as a general purpose I/O. When the SPI is  
enabled as a slave, the SS pin is not available as a general purpose I/O regardless of the value of  
MODFEN. See 16.11.4 SS (Slave Select).  
If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. See 16.5.7 Mode Fault  
Error.  
SPR1 and SPR0 — SPI Baud Rate Select  
In master mode, these read/write bits select one of four baud rates as shown in Table 16-4. SPR1 and  
SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.  
Table 16-4. SPI Master Baud Rate Selection  
SPR1:SPR0  
0 0  
Baud Rate Divisor (BD)  
2
8
0 1  
1 0  
32  
128  
1 1  
The following formula is used to calculate the SPI baud rate:  
CGMOUT  
Baud rate = ---------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
16.12.3 SPI Data Register (SPDR)  
The SPI data register is the read/write buffer for the receive data register and the transmit data register.  
Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register  
reads data from the receive data register. The transmit data and receive data registers are separate  
buffers that can contain different values. See Figure 16-3.  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Indeterminate after reset  
Figure 16-15. SPI Data Register (SPDR)  
R7:R0/T7:T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register since the  
buffer read is not the same as the buffer written.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
233  
Serial Peripheral Interface (SPI)  
MC68HC08AZ32A Data Sheet, Rev. 2  
234  
Freescale Semiconductor  
Chapter 17  
Timer Interface Module A (TIMA)  
17.1 Introduction  
This section describes the timer interface module (TIMA). The TIMA is a 6-channel timer that provides a  
timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 17-2  
is a block diagram of the TIMA.  
For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer  
Reference Manual, Freescale order number TIM08RM/AD.  
17.2 Features  
Features of the TIMA include:  
Six input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal generation  
Programmable TIMA clock input  
Seven frequency internal bus clock prescaler selection  
External TIMA clock input (4 MHz maximum frequency)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMA counter stop and reset bits  
17.3 Functional Description  
Figure 17-2 shows the TIMA structure. The central component of the TIMA is the 16-bit TIMA counter that  
can operate as a free-running counter or a modulo up-counter. The TIMA counter provides the timing  
reference for the input capture and output compare functions. The TIMA counter modulo registers,  
TAMODH–TAMODL, control the modulo value of the TIMA counter. Software can read the TIMA counter  
value at any time without affecting the counting sequence.  
The six TIMA channels are programmable independently as input capture or output compare channels.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
235  
Timer Interface Module A (TIMA)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 17-1. Block Diagram Highlighting TIMA Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
236  
Freescale Semiconductor  
Functional Description  
TCLK  
PTD6/ATD14/TACLK  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
ELS0B  
ELS0A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
TOV0  
CH0MAX  
PTE2  
LOGIC  
PTE2/TACH0  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
ELS1B ELS1A  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
TOV1  
CH1MAX  
PTE3  
LOGIC  
PTE3/TACH1  
CH1F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
ELS2B ELS2A  
CHANNEL 2  
16-BIT COMPARATOR  
TCH2H:TCH2L  
TOV2  
CH2MAX  
PTF0  
LOGIC  
PTF0/TACH2  
CH2F  
MS2B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH2IE  
MS2A  
ELS3B ELS3A  
CHANNEL 3  
16-BIT COMPARATOR  
TCH3H:TCH3L  
TOV3  
CH3MAX  
PTF1  
LOGIC  
PTF1/TACH3  
CH3F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH3IE  
MS3A  
ELS4B ELS4A  
CHANNEL 4  
16-BIT COMPARATOR  
TCH4H:TCH4L  
TOV4  
CH5MAX  
PTF2  
LOGIC  
PTF2/TACH4  
CH4F  
MS4B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH4IE  
MS4A  
ELS5B ELS5A  
CHANNEL 5  
16-BIT COMPARATOR  
TCH5H:TCH5L  
TOV5  
CH5MAX  
PTF3  
LOGIC  
PTF3/TACH5  
CH5F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH5IE  
MS5A  
Figure 17-2. TIMA Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
237  
Timer Interface Module A (TIMA)  
Addr.  
Name  
Bit 7  
TOF  
0
6
5
4
0
3
0
2
1
Bit 0  
Read:  
Timer A Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Register (TASC) Write:  
See page 247.  
Reset:  
TRST  
0
R
0
0
0
1
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer A Counter Register  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
High (TACNTH) Write:  
See page 248.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer A Counter Register  
Low (TACNTL) Write:  
See page 248.  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer A Modulo Register  
14  
13  
12  
11  
10  
9
Bit 8  
High (TAMODH) Write:  
See page 249.  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer A Modulo Register  
Bit 7  
6
1
5
1
4
1
3
2
1
Low (TAMODL) Write:  
See page 249.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer A Channel 0 Status  
and Control Register Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
(TASC0) See page 249.  
Reset:  
0
Read:  
Timer A Channel 0 Register  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
High (TACH0H) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 0 Register  
6
5
4
3
2
1
Bit 0  
Low (TACH0L) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
0
R
0
Timer A Channel 1 Status  
and Control Register Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
(TASC1) See page 249.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 1 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH1H) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 1 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH1L) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
CH2F  
Timer A Channel 2 Status  
and Control Register Write:  
CH2IE  
MS2B  
0
MS2A  
0
ELS2B  
ELS2A  
TOV2  
CH2MAX  
0
0
(TASC2) See page 249.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 2 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH2H) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 17-3. TIMA I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
238  
Freescale Semiconductor  
Functional Description  
Addr.  
Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Timer A Channel 2 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
$002E  
Low (TACH2L) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
CH3F  
0
R
0
Timer A Channel 3 Status  
and Control Register Write:  
CH3IE  
MS3A  
0
ELS3B  
ELS3A  
TOV3  
CH3MAX  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
0
0
(TASC3) See page 249.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 3 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH3H) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 3 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH3L) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
CH4F  
Timer A Channel 4 Status  
and Control Register Write:  
CH4IE  
MS4B  
0
MS4A  
0
ELS4B  
ELS4A  
TOV4  
CH4MAX  
0
0
(TASC4) See page 249.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 4 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH4H) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 4 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH4L) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
CH5F  
0
R
0
Timer A Channel 5 Status  
and Control Register Write:  
CH5IE  
MS5A  
0
ELS5B  
ELS5A  
TOV5  
CH5MAX  
0
0
(TASC5) See page 249.  
Reset:  
0
0
0
0
9
0
Read:  
Timer A Channel 5 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TACH5H) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
Read:  
Timer A Channel 5 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TACH5L) Write:  
See page 253.  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 17-3. TIMA I/O Register Summary (Continued)  
17.3.1 TIMA Counter Prescaler  
The TIMA clock source can be one of the seven prescaler outputs or the TIMA clock pin,  
PTD6/ATD14/TACLK. The prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIMA status and control register select the TIMA clock source.  
17.3.2 Input Capture  
An input capture function has three basic parts: edge select logic, an input capture latch and a 16-bit  
counter. Two 8-bit registers, which make up the 16-bit input capture register, are used to latch the value  
of the free-running counter after the corresponding input capture edge detector senses a defined  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
239  
Timer Interface Module A (TIMA)  
transition. The polarity of the active edge is programmable. The level transition which triggers the counter  
transfer is defined by the corresponding input edge bits (ELSxB and ELSxA in TASC0 through TASC5  
control registers with x referring to the active channel number). When an active edge occurs on the pin of  
an input capture channel, the TIMA latches the contents of the TIMA counter into the TIMA channel  
registers, TACHxH–TACHxL. Input captures can generate TIMA CPU interrupt requests. Software can  
determine that an input capture event has occurred by enabling input capture interrupts or by polling the  
status flag bit.  
The free-running counter contents are transferred to the TIMA channel register (TACHxH–TACHxL see  
17.8.5 TIMA Channel Registers) on each proper signal transition regardless of whether the TIMA channel  
flag (CH0F–CH5F in TASC0–TASC5 registers) is set or clear. When the status flag is set, a CPU interrupt  
is generated if enabled. The value of the count latched or “captured” is the time of the event. Because this  
value is stored in the input capture register 2 bus cycles after the actual event occurs, user software can  
respond to this event at a later time and determine the actual time of the event. However, this must be  
done prior to another input capture on the same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal, software can determine the period  
and/or pulse width of the signal. To measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are captured. Software should track the  
overflows at the 16-bit module counter to extend its range.  
Another use for the input capture function is to establish a time reference. In this case, an input capture  
function is used in conjunction with an output compare function. For example, to activate an output signal  
a specified number of clock cycles after detecting an input event (edge), use the input capture function to  
record the time at which the edge occurred. A number corresponding to the desired delay is added to this  
captured value and stored to an output compare register (see 17.8.5 TIMA Channel Registers). Because  
both input captures and output compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of software latencies.  
Reset does not affect the contents of the TIMA channel register (TACHxH–TACHxL).  
17.3.3 Output Compare  
With the output compare function, the TIMA can generate a periodic pulse with a programmable polarity,  
duration and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIMA can set, clear or toggle the channel pin. Output compares can generate TIMA CPU  
interrupt requests.  
17.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 17.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIMA overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMA may pass the new value before it is  
written.  
MC68HC08AZ32A Data Sheet, Rev. 2  
240  
Freescale Semiconductor  
Functional Description  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIMA overflow interrupts and write the  
new value in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
17.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
PTE2/TACH0 pin. The TIMA channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and  
channel 1. The output compare value in the TIMA channel 0 registers initially controls the output on the  
PTE2/TACH0 pin. Writing to the TIMA channel 1 registers enables the TIMA channel 1 registers to  
synchronously control the output after the TIMA overflows. At each subsequent overflow, the TIMA  
channel registers (0 or 1) that control the output are the ones written to last. TASC0 controls and monitors  
the buffered output compare function and TIMA channel 1 status and control register (TASC1) is unused.  
While the MS0B bit is set, the channel 1 pin, PTE3/TACH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered output compare channel whose output appears on the  
PTF0/TACH2 pin. The TIMA channel registers of the linked pair alternately control the output.  
Setting the MS2B bit in TIMA channel 2 status and control register (TASC2) links channel 2 and  
channel 3. The output compare value in the TIMA channel 2 registers initially controls the output on the  
PTF0/TACH2 pin. Writing to the TIMA channel 3 registers enables the TIMA channel 3 registers to  
synchronously control the output after the TIMA overflows. At each subsequent overflow, the TIMA  
channel registers (2 or 3) that control the output are the ones written to last. TASC2 controls and monitors  
the buffered output compare function, and TIMA channel 3 status and control register (TASC3) is unused.  
While the MS2B bit is set, the channel 3 pin, PTF1/TACH3, is available as a general-purpose I/O pin.  
Channels 4 and 5 can be linked to form a buffered output compare channel whose output appears on the  
PTF2 pin. The TIMA channel registers of the linked pair alternately control the output.  
Setting the MS4B bit in TIMA channel 4 status and control register (TASC4) links channel 4 and  
channel 5. The output compare value in the TIMA channel 4 registers initially controls the output on the  
PTF2 pin. Writing to the TIMA channel 5 registers enables the TIMA channel 5 registers to synchronously  
control the output after the TIMA overflows. At each subsequent overflow, the TIMA channel registers (4  
or 5) that control the output are the ones written to last. TASC4 controls and monitors the buffered output  
compare function and TIMA channel 5 status and control register (TASC5) is unused. While the MS4B bit  
is set, the channel 5 pin, PTF3, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
241  
Timer Interface Module A (TIMA)  
17.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIMA can generate a PWM  
signal. The value in the TIMA counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIMA counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 17-4 shows, the output compare value in the TIMA channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIMA  
to clear the channel pin on output compare if the state of the PWM pulse is 1. Program the TIMA to set  
the pin if the state of the PWM pulse is 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 17-4. PWM Period and Pulse Width  
The value in the TIMA counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMA counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000 (see 17.8.1 TIMA Status and Control Register).  
The value in the TIMA channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIMA channel registers  
produces a duty cycle of 128/256 or 50%.  
17.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 17.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change a pulse width value could cause  
incorrect operation for up to two PWM periods. For example, writing a new value before the counter  
reaches the old value but after the counter reaches the new value prevents any compare during that PWM  
period. Also, using a TIMA overflow interrupt routine to write a new, smaller pulse width value may cause  
the compare to be missed. The TIMA may pass the new value before it is written to the TIMA channel  
registers.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
MC68HC08AZ32A Data Sheet, Rev. 2  
242  
Freescale Semiconductor  
Functional Description  
When changing to a longer pulse width, enable TIMA overflow interrupts and write the new value  
in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
17.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the  
PTE2/TACH0 pin. The TIMA channel registers of the linked pair alternately control the pulse width of the  
output.  
Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and  
channel 1. The TIMA channel 0 registers initially control the pulse width on the PTE2/TACH0 pin. Writing  
to the TIMA channel 1 registers enables the TIMA channel 1 registers to synchronously control the pulse  
width at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers  
(0 or 1) that control the pulse width are the ones written to last. TASC0 controls and monitors the buffered  
PWM function and TIMA channel 1 status and control register (TASC1) is unused. While the MS0B bit is  
set, the channel 1 pin, PTE3/TACH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered PWM channel whose output appears on the  
PTF0/TACH2 pin. The TIMA channel registers of the linked pair alternately control the pulse width of the  
output.  
Setting the MS2B bit in TIMA channel 2 status and control register (TASC2) links channel 2 and  
channel 3. The TIMA channel 2 registers initially control the pulse width on the PTF0/TACH2 pin. Writing  
to the TIMA channel 3 registers enables the TIMA channel 3 registers to synchronously control the pulse  
width at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers  
(2 or 3) that control the pulse width are the ones written to last. TASC2 controls and monitors the buffered  
PWM function and TIMA channel 3 status and control register (TASC3) is unused. While the MS2B bit is  
set, the channel 3 pin, PTF1/TACH3, is available as a general-purpose I/O pin.  
Channels 4 and 5 can be linked to form a buffered PWM channel whose output appears on the PTF2 pin.  
The TIMA channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS4B bit in TIMA channel 4 status and control register (TASC4) links channel 4 and  
channel 5. The TIMA channel 4 registers initially control the pulse width on the PTF2 pin. Writing to the  
TIMA channel 5 registers enables the TIMA channel 5 registers to synchronously control the pulse width  
at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers  
(4 or 5) that control the pulse width are the ones written to last. TASC4 controls and monitors the buffered  
PWM function and TIMA channel 5 status and control register (TASC5) is unused. While the MS4B bit is  
set, the channel 5 pin, PTF3, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
243  
Timer Interface Module A (TIMA)  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
17.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIMA status and control register (TASC):  
a. Stop the TIMA counter and prescaler by setting the TIMA stop bit, TSTOP.  
b. Reset the TIMA counter and prescaler by setting the TIMA reset bit, TRST.  
2. In the TIMA counter modulo registers (TAMODH–TAMODL) write the value for the required PWM  
period.  
3. In the TIMA channel x registers (TACHxH–TACHxL) write the value for the required pulse width.  
4. In TIMA channel x status and control register (TASCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB–MSxA (see Table 17-2).  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB–ELSxA. The output action on compare must force the output to the  
complement of the pulse width level (see Table 17-2).  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIMA status control register (TASC) clear the TIMA stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIMA  
channel 0 registers (TACH0H–TACH0L) initially control the buffered PWM output. TIMA status control  
register 0 (TASC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Setting MS2B links channels 2 and 3 and configures them for buffered PWM operation. The TIMA  
channel 2 registers (TACH2H–TACH2L) initially control the buffered PWM output. TIMA status control  
register 2 (TASC2) controls and monitors the PWM signal from the linked channels. MS2B takes priority  
over MS2A.  
Setting MS4B links channels 4 and 5 and configures them for buffered PWM operation. The TIMA  
channel 4 registers (TACH4H–TACH4L) initially control the buffered PWM output. TIMA status control  
register 4 (TASC4) controls and monitors the PWM signal from the linked channels. MS4B takes priority  
over MS4A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIMA overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
MC68HC08AZ32A Data Sheet, Rev. 2  
244  
Freescale Semiconductor  
Interrupts  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output (see 17.8.4 TIMA Channel Status and Control Registers).  
17.4 Interrupts  
The following TIMA sources can generate interrupt requests:  
TIMA overflow flag (TOF) — The TOF bit is set when the TIMA counter reaches the modulo value  
programmed in the TIMA counter modulo registers. The TIMA overflow interrupt enable bit, TOIE,  
enables TIMA overflow CPU interrupt requests. TOF and TOIE are in the TIMA status and control  
register.  
TIMA channel flags (CH5F–CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIMA CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
17.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
17.5.1 Wait Mode  
The TIMA remains active after the execution of a WAIT instruction. In wait mode, the TIMA registers are  
not accessible by the CPU. Any enabled CPU interrupt request from the TIMA can bring the MCU out of  
wait mode.  
If TIMA functions are not required during wait mode, reduce power consumption by stopping the TIMA  
before executing the WAIT instruction.  
17.5.2 Stop Mode  
The TIMA is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIMA counter. TIMA operation resumes when the MCU exits stop  
mode.  
17.6 TIMA During Break Interrupts  
A break interrupt stops the TIMA counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state (see 15.7.3 SIM Break Flag Control Register (SBFCR)).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
245  
Timer Interface Module A (TIMA)  
17.7 I/O Signals  
Port D shares one of its pins with the TIMA. Port E shares two of its pins with the TIMA and port F shares  
four of its pins with the TIMA. PTD6/ATD14/TACLK is an external clock input to the TIMA prescaler. The  
six TIMA channel I/O pins are PTE2/TACH0, PTE3/TACH1, PTF0/TACH2, PTF1/TACH3, PTF2, and  
PTF3.  
17.7.1 TIMA Clock Pin (PTD6/ATD14/TACLK)  
PTD6/ATD14/TACLK is an external clock input that can be the clock source for the TIMA counter instead  
of the prescaled internal bus clock. Select the PTD6/ATD14/TACLK input by writing 1s to the three  
prescaler select bits, PS[2:0] (see 17.8.1 TIMA Status and Control Register). The minimum TCLK pulse  
width, TCLKLMIN or TCLKHMIN, is:  
1
------------------------------------- + t  
SU  
bus frequency  
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.  
PTD6/ATD14/TACLK is available as a general-purpose I/O pin or ADC channel when not used as the  
TIMA clock input. When the PTD6/ATD14/TACLK pin is the TIMA clock input, it is an input regardless of  
the state of the DDRD6 bit in data direction register D.  
17.7.2 TIMA Channel I/O Pins (PTF3–PTF0/TACH2 and PTE3/TACH1–PTE2/TACH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
PTE2/TACH0, PTF0/TACH2 and PTF2 can be configured as buffered output compare or buffered PWM  
pins.  
17.8 I/O Registers  
These I/O registers control and monitor TIMA operation:  
TIMA status and control register (TASC)  
TIMA control registers (TACNTH–TACNTL)  
TIMA counter modulo registers (TAMODH–TAMODL)  
TIMA channel status and control registers (TASC0–TASC5)  
TIMA channel registers (TACH0H–TACH0L through TACH5H–TACH5L)  
17.8.1 TIMA Status and Control Register  
The TIMA status and control register:  
Enables TIMA overflow interrupts  
Flags TIMA overflows  
Stops the TIMA counter  
Resets the TIMA counter  
Prescales the TIMA counter clock  
MC68HC08AZ32A Data Sheet, Rev. 2  
246  
Freescale Semiconductor  
I/O Registers  
Address:  
$0020  
Bit 7  
TOF  
0
6
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
TRST  
0
R
0
0
0
R
= Reserved  
Figure 17-5. TIMA Status and Control Register (TASC)  
TOF — TIMA Overflow Flag Bit  
This read/write flag is set when the TIMA counter reaches the modulo value programmed in the TIMA  
counter modulo registers. Clear TOF by reading the TIMA status and control register when TOF is set  
and then writing a 0 to TOF. If another TIMA overflow occurs before the clearing sequence is complete,  
then writing a 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.  
1 = TIMA counter has reached modulo value.  
0 = TIMA counter has not reached modulo value.  
TOIE — TIMA Overflow Interrupt Enable Bit  
This read/write bit enables TIMA overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIMA overflow interrupts enabled  
0 = TIMA overflow interrupts disabled  
TSTOP — TIMA Stop Bit  
This read/write bit stops the TIMA counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIMA counter until software clears the TSTOP bit.  
1 = TIMA counter stopped  
0 = TIMA counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIMA is required  
to exit wait mode. Also, when the TSTOP bit is set and input capture mode  
is enabled, input captures are inhibited until TSTOP is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIMA Reset Bit  
Setting this write-only bit resets the TIMA counter and the TIMA prescaler. Setting TRST has no effect  
on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIMA  
counter is reset and always reads as 0. Reset clears the TRST bit.  
1 = Prescaler and TIMA counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIMA counter  
at a value of $0000.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
247  
Timer Interface Module A (TIMA)  
PS[2:0] — Prescaler Select Bits  
These read/write bits select either the PTD6/ATD14/TACLK pin or one of the seven prescaler outputs  
as the input to the TIMA counter as Table 17-1 shows. Reset clears the PS[2:0] bits.  
Table 17-1. Prescaler Selection  
PS[2:0]  
000  
TIMA Clock Source  
Internal Bus Clock ÷1  
Internal Bus Clock ÷ 2  
Internal Bus Clock ÷ 4  
Internal Bus Clock ÷ 8  
Internal Bus Clock ÷ 16  
Internal Bus Clock ÷ 32  
Internal Bus Clock ÷ 64  
PTD6/ATD14/TACLK  
001  
010  
011  
100  
101  
110  
111  
17.8.2 TIMA Counter Registers  
The two read-only TIMA counter registers contain the high and low bytes of the value in the TIMA counter.  
Reading the high byte (TACNTH) latches the contents of the low byte (TACNTL) into a buffer. Subsequent  
reads of TACNTH do not affect the latched TACNTL value until TACNTL is read. Reset clears the TIMA  
counter registers. Setting the TIMA reset bit (TRST) also clears the TIMA counter registers.  
NOTE  
If TACNTH is read during a break interrupt, be sure to unlatch TACNTL by  
reading TACNTL before exiting the break interrupt. Otherwise, TACNTL  
retains the value latched during the break.  
Register Name and Address  
Bit 7  
TACNTH — $0022  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
0
0
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TACNTL — $0023  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-6. TIMA Counter Registers (TACNTH and TACNTL)  
17.8.3 TIMA Counter Modulo Registers  
The read/write TIMA modulo registers contain the modulo value for the TIMA counter. When the TIMA  
counter reaches the modulo value, the overflow flag (TOF) becomes set and the TIMA counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte (TAMODH) inhibits the TOF bit and  
overflow interrupts until the low byte (TAMODL) is written. Reset sets the TIMA counter modulo registers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
248  
Freescale Semiconductor  
I/O Registers  
Register Name and Address  
Bit 7  
TAMODH — $0024  
6
BIT 14  
1
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
BIT 15  
Write:  
Reset:  
1
Register Name and Address  
Bit 7  
TAMODL — $0025  
6
BIT 6  
1
5
BIT 5  
1
4
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
BIT 7  
Write:  
BIT 4  
1
Reset:  
1
Figure 17-7. TIMA Counter Modulo Registers (TAMODH and TAMODL)  
NOTE  
Reset the TIMA counter before writing to the TIMA counter modulo registers.  
17.8.4 TIMA Channel Status and Control Registers  
Each of the TIMA channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare or PWM operation  
Selects high, low or toggling output on output compare  
Selects rising edge, falling edge or any edge as the active input capture trigger  
Selects output toggling on TIMA overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address  
Bit 7  
TASC0 — $0026  
5
6
CH0IE  
0
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
MS0B  
0
MS0A  
0
0
0
Register Name and Address  
Bit 7  
TASC1 — $0029  
6
5
0
4
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1F  
CH1IE  
MS1A  
0
0
0
R
0
0
R
= Reserved  
Figure 17-8. TIMA Channel Status and Control Registers  
(TASC0–TASC5) (Sheet 1 of 2)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
249  
Timer Interface Module A (TIMA)  
Register Name and Address  
Bit 7  
TASC2 — $002C  
5
6
CH2IE  
0
4
3
ELS2B  
0
2
ELS2A  
0
1
TOV2  
0
Bit 0  
CH2MAX  
0
Read:  
Write:  
Reset:  
CH2F  
MS2B  
0
MS2A  
0
0
0
Register Name and Address  
Bit 7  
TASC3 — $002F  
6
CH3IE  
0
5
0
4
3
ELS3B  
0
2
ELS3A  
0
1
TOV3  
0
Bit 0  
CH3MAX  
0
Read:  
Write:  
Reset:  
CH3F  
MS3A  
0
0
0
R
0
Register Name and Address  
Bit 7  
TASC4 — $0032  
5
6
CH4IE  
0
4
3
ELS4B  
0
2
ELS4A  
0
1
TOV4  
0
Bit 0  
CH4MAX  
0
Read:  
Write:  
Reset:  
CH4F  
MS4B  
MS4A  
0
0
0
0
Register Name and Address  
Bit 7  
TASC5 — $0035  
6
5
0
4
3
ELS5B  
0
2
ELS5A  
0
1
TOV5  
0
Bit 0  
CH5MAX  
0
Read:  
Write:  
Reset:  
CH5F  
CH5IE  
MS5A  
0
0
0
R
0
0
R
= Reserved  
Figure 17-8. TIMA Channel Status and Control Registers  
(TASC0–TASC5) (Sheet 2 of 2)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIMA counter registers matches the value in the TIMA channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMA channel x status and control register with CHxF set and  
then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete,  
then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent  
clearing of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIMA CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMA  
channel 0, TIMA channel 2 and TIMA channel 4 status and control registers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
250  
Freescale Semiconductor  
I/O Registers  
Setting MS0B disables the channel 1 status and control register and reverts TACH1 pin to  
general-purpose I/O.  
Setting MS2B disables the channel 3 status and control register and reverts TACH3 pin to  
general-purpose I/O.  
Setting MS4B disables the channel 5 status and control register and reverts TACH5 pin to  
general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 17-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TACHx pin once PWM,  
output compare mode or input capture mode is enabled. See Table 17-2. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIMA status and control register (TASC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port E or port F and pin  
PTEx/TACHx or pin PTFx/TACHx is available as a general-purpose I/O pin. However, channel x is at  
a state determined by these bits and becomes transparent to the respective pin when PWM, input  
capture mode or output compare operation mode is enabled. Table 17-2 shows how ELSxB and  
ELSxA work. Reset clears the ELSxB and ELSxA bits.  
NOTE  
Before enabling a TIMA channel register for input capture operation, make  
sure that the PTEx/TACHx pin or PTFx/TACHx pin is stable for at least two  
bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIMA counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMA counter overflow.  
0 = Channel x pin does not toggle on TIMA counter overflow.  
NOTE  
When TOVx is set, a TIMA counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
251  
Timer Interface Module A (TIMA)  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1 and clear output on compare is selected, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 17-9 shows, the CHxMAX bit  
takes effect in the cycle after it is set or cleared. The output stays at 100% duty cycle level until the  
cycle after CHxMAX is cleared.  
NOTE  
The 100% PWM duty cycle is defined as a continuous high level if the PWM  
polarity is 1 and a continuous low level if the PWM polarity is 0. Conversely,  
a 0% PWM duty cycle is defined as a continuous low level if the PWM  
polarity is 1 and a continuous high level if the PWM polarity is 0.  
Table 17-2. Mode, Edge, and Level Selection  
MSxB MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X
X
0
1
0
0
Output preset  
Pin under port control;  
initial output level low  
0
0
0
0
0
0
0
1
1
0
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising  
or falling edge  
0
0
1
1
0
0
0
0
1
1
1
1
1
1
X
X
0
0
1
1
0
1
0
1
0
1
1
0
Software compare only  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Output compare  
or PWM  
Buffered  
output  
compare or  
buffered PWM  
1
X
1
1
Set output on compare  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 17-9. CHxMAX Latency  
MC68HC08AZ32A Data Sheet, Rev. 2  
252  
Freescale Semiconductor  
I/O Registers  
17.8.5 TIMA Channel Registers  
These read/write registers contain the captured TIMA counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIMA channel registers after reset  
is unknown.  
In input capture mode (MSxB–MSxA = 0:0) reading the high byte of the TIMA channel x registers  
(TACHxH) inhibits input captures until the low byte (TACHxL) is read.  
In output compare mode (MSxB–MSxA 0:0) writing to the high byte of the TIMA channel x registers  
(TACHxH) inhibits output compares and the CHxF bit until the low byte (TACHxL) is written.  
Register Name and Address  
Bit 7  
TACH0H — $0027  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after Reset  
TACH0L — $0028  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after Reset  
TACH1H — $002A  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after Reset  
TACH1L — $002B  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after Reset  
TACH2H — $002D  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after Reset  
Figure 17-10. TIMA Channel Registers (TACH0H/L–TACH5H/L) (Sheet 1 of 2)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
253  
Timer Interface Module A (TIMA)  
Register Name and Address  
Bit 7  
TACH2L — $002E  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after Reset  
TACH3H — $0030  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after Reset  
TACH3L — $0031  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after Reset  
TACH4H — $0033  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after Reset  
TACH4L — $0034  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after Reset  
TACH5H — $0036  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after Reset  
TACH5L — $0037  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after Reset  
Figure 17-10. TIMA Channel Registers (TACH0H/L–TACH5H/L) (Sheet 2 of 2)  
MC68HC08AZ32A Data Sheet, Rev. 2  
254  
Freescale Semiconductor  
Chapter 18  
Timer Interface Module B (TIMB)  
18.1 Introduction  
This section describes the timer interface module (TIMB). The TIMB is a 2-channel timer that provides a  
timing reference with input capture, output compare, and pulse width modulation functions. Figure 18-2  
is a block diagram of the TIMB.  
For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer  
Reference Manual, Freescale document order number TIM08RM/AD.  
18.2 Features  
Features include:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal generation  
Programmable TIMB clock input  
Seven frequency internal bus clock prescaler selection  
External TIMB clock input (4 MHz maximum frequency)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMB counter stop and reset bits  
18.3 Functional Description  
Figure 18-2 shows the TIMB structure. The central component of the TIMB is the 16-bit TIMB counter that  
can operate as a free-running counter or a modulo up-counter. The TIMB counter provides the timing  
reference for the input capture and output compare functions. The TIMB counter modulo registers,  
TBMODH–TBMODL, control the modulo value of the TIMB counter. Software can read the TIMB counter  
value at any time without affecting the counting sequence.  
The two TIMB channels are programmable independently as input capture or output compare channels.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
255  
Timer Interface Module B (TIMB)  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 18-1. Block Diagram Highlighting TIMB Block and Pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
256  
Freescale Semiconductor  
Functional Description  
TCLK  
PTD4/ATD12/TBCLK  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
ELS0B  
ELS0A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
TOV0  
CH0MAX  
PTF4  
LOGIC  
PTF4/TBCH0  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
ELS1B ELS1A  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
TOV1  
CH1MAX  
PTF5  
LOGIC  
PTF5/TBCH1  
CH1F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 18-2. TIMB Block Diagram  
Addr.  
Name  
Bit 7  
TOF  
0
6
5
4
0
3
0
2
1
Bit 0  
Read:  
Timer B Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0040  
Register (TBSC) Write:  
See page 265.  
Reset:  
TRST  
0
R
0
0
0
1
0
0
9
0
8
Read:  
Bit 15  
14  
13  
12  
11  
10  
Timer B Counter Register  
$0041  
$0042  
$0043  
$0044  
High (TBCNTH) Write:  
See page 266.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Read:  
Bit 7  
Timer B Counter Register  
Low (TBCNTL) Write:  
See page 266.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
1
1
0
Bit 8  
1
Read:  
Timer B Modulo Register  
High (TBMODH) Write:  
See page 267.  
Reset:  
Read:  
Timer B Modulo Register  
Bit 7  
1
6
5
4
3
2
Bit 0  
1
Low (TBMODL) Write:  
See page 267.  
Reset:  
1
1
1
1
1
= Unimplemented  
R
= Reserved  
Figure 18-3. TIMB I/O Register Summary  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
257  
Timer Interface Module B (TIMB)  
Addr.  
Name  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Timer B Channel 0 Status  
and Control Register Write:  
$0045  
(TBSC0) See page 268.  
Reset:  
0
Read:  
Timer B Channel 0 Register  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
$0046  
$0047  
$0048  
$0049  
$004A  
High (TBCH0H) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
Timer B Channel 0 Register  
6
5
4
3
2
1
Bit 0  
Low (TBCH0L) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
0
R
0
Timer B Channel 1 Status  
and Control Register Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
(TBSC1) See page 268.  
Reset:  
0
0
0
0
9
0
Read:  
Timer B Channel 1 Register  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
High (TBCH1H) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
Read:  
Timer B Channel 1 Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Low (TBCH1L) Write:  
See page 271.  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 18-3. TIMB I/O Register Summary (Continued)  
18.3.1 TIMB Counter Prescaler  
The TIMB clock source can be one of the seven prescaler outputs or the TIMB clock pin,  
PTD4/ATD12/TBCLK. The prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIMB status and control register select the TIMB clock source.  
18.3.2 Input Capture  
An input capture function has three basic parts: edge select logic, an input capture latch and a 16-bit  
counter. Two 8-bit registers, which make up the 16-bit input capture register, are used to latch the value  
of the free-running counter after the corresponding input capture edge detector senses a defined  
transition. The polarity of the active edge is programmable. The level transition which triggers the counter  
transfer is defined by the corresponding input edge bits (ELSxB and ELSxA in TBSC0 through TBSC1  
control registers with x referring to the active channel number). When an active edge occurs on the pin of  
an input capture channel, the TIMB latches the contents of the TIMB counter into the TIMB channel  
registers, TBCHxH–TBCHxL. Input captures can generate TIMB CPU interrupt requests. Software can  
determine that an input capture event has occurred by enabling input capture interrupts or by polling the  
status flag bit.  
The free-running counter contents are transferred to the TIMB channel register (TBCHxH–TBCHxL, see  
18.8.5 TIMB Channel Registers) on each proper signal transition regardless of whether the TIMB channel  
flag (CH0F–CH1F in TBSC0–TBSC1 registers) is set or clear. When the status flag is set, a CPU interrupt  
is generated if enabled. The value of the count latched or “captured” is the time of the event. Because this  
value is stored in the input capture register 2 bus cycles after the actual event occurs, user software can  
MC68HC08AZ32A Data Sheet, Rev. 2  
258  
Freescale Semiconductor  
Functional Description  
respond to this event at a later time and determine the actual time of the event. However, this must be  
done prior to another input capture on the same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal, software can determine the period  
and/or pulse width of the signal. To measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are captured. Software should track the  
overflows at the 16-bit module counter to extend its range.  
Another use for the input capture function is to establish a time reference. In this case, an input capture  
function is used in conjunction with an output compare function. For example, to activate an output signal  
a specified number of clock cycles after detecting an input event (edge), use the input capture function to  
record the time at which the edge occurred. A number corresponding to the desired delay is added to this  
captured value and stored to an output compare register (see 18.8.5 TIMB Channel Registers). Because  
both input captures and output compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of software latencies.  
Reset does not affect the contents of the input capture channel register (TBCHxH–TBCHxL).  
18.3.3 Output Compare  
With the output compare function, the TIMB can generate a periodic pulse with a programmable polarity,  
duration and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIMB can set, clear or toggle the channel pin. Output compares can generate TIMB CPU  
interrupt requests.  
18.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 18.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIMB overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMB may pass the new value before it is  
written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIMB overflow interrupts and write the  
new value in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
259  
Timer Interface Module B (TIMB)  
18.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
PTF4/TBCH0 pin. The TIMB channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and  
channel 1. The output compare value in the TIMB channel 0 registers initially controls the output on the  
PTF4/TBCH0 pin. Writing to the TIMB channel 1 registers enables the TIMB channel 1 registers to  
synchronously control the output after the TIMB overflows. At each subsequent overflow, the TIMB  
channel registers (0 or 1) that control the output are the ones written to last. TBSC0 controls and monitors  
the buffered output compare function and TIMB channel 1 status and control register (TBSC1) is unused.  
While the MS0B bit is set, the channel 1 pin, PTF5/TBCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
18.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIMB can generate a PWM  
signal. The value in the TIMB counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIMB counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 18-4 shows, the output compare value in the TIMB channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIMB  
to clear the channel pin on output compare if the state of the PWM pulse is 1. Program the TIMB to set  
the pin if the state of the PWM pulse is 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 18-4. PWM Period and Pulse Width  
The value in the TIMB counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMB counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000 (see TIMB Status and Control Register).  
MC68HC08AZ32A Data Sheet, Rev. 2  
260  
Freescale Semiconductor  
Functional Description  
The value in the TIMB channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIMB channel registers  
produces a duty cycle of 128/256 or 50%.  
18.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 18.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change a pulse width value could cause  
incorrect operation for up to two PWM periods. For example, writing a new value before the counter  
reaches the old value but after the counter reaches the new value prevents any compare during that PWM  
period. Also, using a TIMB overflow interrupt routine to write a new, smaller pulse width value may cause  
the compare to be missed. The TIMB may pass the new value before it is written to the TIMB channel  
registers.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIMB overflow interrupts and write the new value  
in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
18.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the  
PTF4/TBCH0 pin. The TIMB channel registers of the linked pair alternately control the pulse width of the  
output.  
Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and  
channel 1. The TIMB channel 0 registers initially control the pulse width on the PTF4/TBCH0 pin. Writing  
to the TIMB channel 1 registers enables the TIMB channel 1 registers to synchronously control the pulse  
width at the beginning of the next PWM period. At each subsequent overflow, the TIMB channel registers  
(0 or 1) that control the pulse width are the ones written to last. TBSC0 controls and monitors the buffered  
PWM function, and TIMB channel 1 status and control register (TBSC1) is unused. While the MS0B bit is  
set, the channel 1 pin, PTF5/TBCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
261  
Timer Interface Module B (TIMB)  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
18.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIMB status and control register (TBSC):  
a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.  
b. Reset the TIMB counter and prescaler by setting the TIMB reset bit, TRST.  
2. In the TIMB counter modulo registers (TBMODH–TBMODL) write the value for the required PWM  
period.  
3. In the TIMB channel x registers (TBCHxH–TBCHxL) write the value for the required pulse width.  
4. In TIMB channel x status and control register (TBSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB–MSxA (see Table 18-2).  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB–ELSxA. The output action on compare must force the output to the  
complement of the pulse width level (see Table 18-2).  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIMB status control register (TBSC) clear the TIMB stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIMB  
channel 0 registers (TBCH0H–TBCH0L) initially control the buffered PWM output. TIMB status control  
register 0 (TBSC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIMB overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output (see 18.8.4 TIMB Channel Status and Control Registers).  
MC68HC08AZ32A Data Sheet, Rev. 2  
262  
Freescale Semiconductor  
Interrupts  
18.4 Interrupts  
The following TIMB sources can generate interrupt requests:  
TIMB overflow flag (TOF) — The TOF bit is set when the TIMB counter value reaches the value in  
the TIMB counter modulo registers. The TIMB overflow interrupt enable bit, TOIE, enables TIMB  
overflow CPU interrupt requests. TOF and TOIE are in the TIMB status and control register.  
TIMB channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIMB CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
18.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
18.5.1 Wait Mode  
The TIMB remains active after the execution of a WAIT instruction. In wait mode, the TIMB registers are  
not accessible by the CPU. Any enabled CPU interrupt request from the TIMB can bring the MCU out of  
wait mode.  
If TIMB functions are not required during wait mode, reduce power consumption by stopping the TIMB  
before executing the WAIT instruction.  
18.5.2 Stop Mode  
The TIMB is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIMB counter. TIMB operation resumes when the MCU exits stop  
mode.  
18.6 TIMB During Break Interrupts  
A break interrupt stops the TIMB counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state (see 15.7.3 SIM Break Flag Control Register (SBFCR)).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
263  
Timer Interface Module B (TIMB)  
18.7 I/O Signals  
Port D shares one of its pins with the TIMB. Port F shares two of its pins with the TIMB.  
PTD4/ATD12/TBCLK is an external clock input to the TIMB prescaler. The two TIMB channel I/O pins are  
PTF4/TBCH0 and PTF5/TBCH1.  
18.7.1 TIMB Clock Pin (PTD4/ATD12/TBCLK)  
PTD4/ATD12/TBCLK is an external clock input that can be the clock source for the TIMB counter instead  
of the prescaled internal bus clock. Select the PTD4/ATD12/TBCLK input by writing 1s to the three  
prescaler select bits, PS[2:0] (see TIMB Status and Control Register). The minimum TCLK pulse width,  
TCLKLMIN or TCLKHMIN, is:  
1
--------------------------------------- + t  
SU  
Bus Frequency  
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.  
PTD4/ATD12/TBCLK is available as a general-purpose I/O pin or ADC channel when not used as the  
TIMB clock input. When the PTD4/ATD12/TBCLK pin is the TIMB clock input, it is an input regardless of  
the state of the DDRD4 bit in data direction register D.  
18.7.2 TIMB Channel I/O Pins (PTF5/TBCH1–PTF4/TBCH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
PTF4/TBCH0 and PTF5/TBCH1 can be configured as buffered output compare or buffered PWM pins.  
18.8 I/O Registers  
These I/O registers control and monitor TIMB operation:  
TIMB status and control register (TBSC)  
TIMB control registers (TBCNTH–TBCNTL)  
TIMB counter modulo registers (TBMODH–TBMODL)  
TIMB channel status and control registers (TBSC0 and TBSC1)  
TIMB channel registers (TBCH0H–TBCH0L and TBCH1H–TBCH1L)  
18.8.1 TIMB Status and Control Register  
The TIMB status and control register:  
Enables TIMB overflow interrupts  
Flags TIMB overflows  
Stops the TIMB counter  
Resets the TIMB counter  
Prescales the TIMB counter clock  
MC68HC08AZ32A Data Sheet, Rev. 2  
264  
Freescale Semiconductor  
I/O Registers  
Address:  
$0040  
Bit 7  
TOF  
0
6
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
TRST  
0
R
0
0
0
R
= Reserved  
Figure 18-5. TIMB Status and Control Register (TBSC)  
TOF — TIMB Overflow Flag Bit  
This read/write flag is set when the TIMB counter reaches the modulo value programmed in the TIMB  
counter modulo registers. Clear TOF by reading the TIMB status and control register when TOF is set  
and then writing a 0 to TOF. If another TIMB overflow occurs before the clearing sequence is complete,  
then writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.  
1 = TIMB counter has reached modulo value  
0 = TIMB counter has not reached modulo value  
TOIE — TIMB Overflow Interrupt Enable Bit  
This read/write bit enables TIMB overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIMB overflow interrupts enabled  
0 = TIMB overflow interrupts disabled  
TSTOP — TIMB Stop Bit  
This read/write bit stops the TIMB counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIMB counter until software clears the TSTOP bit.  
1 = TIMB counter stopped  
0 = TIMB counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIMB is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until  
TSTOP is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIMB Reset Bit  
Setting this write-only bit resets the TIMB counter and the TIMB prescaler. Setting TRST has no effect  
on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIMB  
counter is reset and always reads as 0. Reset clears the TRST bit.  
1 = Prescaler and TIMB counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIMB counter  
at a value of $0000.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
265  
Timer Interface Module B (TIMB)  
PS[2:0] — Prescaler Select Bits  
These read/write bits select either the PTD4/ATD12/TBCLK pin or one of the seven prescaler outputs  
as the input to the TIMB counter as Table 18-1 shows. Reset clears the PS[2:0] bits.  
Table 18-1. Prescaler Selection  
PS[2:0]  
000  
TIMB Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTD4/ATD12/TBCLK  
001  
010  
011  
100  
101  
110  
111  
18.8.2 TIMB Counter Registers  
The two read-only TIMB counter registers contain the high and low bytes of the value in the TIMB counter.  
Reading the high byte (TBCNTH) latches the contents of the low byte (TBCNTL) into a buffer. Subsequent  
reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL is read. Reset clears the TIMB  
counter registers. Setting the TIMB reset bit (TRST) also clears the TIMB counter registers.  
NOTE  
If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL by  
reading TBCNTL before exiting the break interrupt. Otherwise, TBCNTL  
retains the value latched during the break.  
Register Name and Address  
Bit 7  
TBCNTH — $0041  
6
14  
R
5
13  
R
4
3
11  
R
2
10  
R
1
9
Bit 0  
Bit 8  
R
Read:  
Write:  
Reset:  
Bit 15  
12  
R
R
0
R
0
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TBCNTL — $0042  
6
5
5
4
3
3
2
2
1
1
Bit 0  
Bit 0  
R
Read:  
Write:  
Reset:  
Bit 7  
R
6
4
R
0
R
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 18-6. TIMB Counter Registers (TBCNTH and TBCNTL)  
MC68HC08AZ32A Data Sheet, Rev. 2  
266  
Freescale Semiconductor  
I/O Registers  
18.8.3 TIMB Counter Modulo Registers  
The read/write TIMB modulo registers contain the modulo value for the TIMB counter. When the TIMB  
counter reaches the modulo value, the overflow flag (TOF) becomes set and the TIMB counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte (TBMODH) inhibits the TOF bit and  
overflow interrupts until the low byte (TBMODL) is written. Reset sets the TIMB counter modulo registers.  
Register Name and Address  
Bit 7  
TBMODH — $0043  
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Bit 15  
Write:  
Reset:  
1
Register Name and Address  
Bit 7  
TBMODL — $0044  
6
6
1
5
5
1
4
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Bit 7  
Write:  
4
1
Reset:  
1
Figure 18-7. TIMB Counter Modulo Registers (TBMODH and TBMODL)  
NOTE  
Reset the TIMB counter before writing to the TIMB counter modulo registers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
267  
Timer Interface Module B (TIMB)  
18.8.4 TIMB Channel Status and Control Registers  
Each of the TIMB channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare or PWM operation  
Selects high, low or toggling output on output compare  
Selects rising edge, falling edge or any edge as the active input capture trigger  
Selects output toggling on TIMB overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address  
Bit 7  
TBSC0 — $0045  
5
6
CH0IE  
0
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
MS0B  
0
MS0A  
0
0
0
Register Name and Address  
Bit 7  
TBSC1 — $0048  
6
5
0
4
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1F  
CH1IE  
MS1A  
0
0
0
R
0
0
R
= Reserved  
Figure 18-8. TIMB Channel Status and Control Registers (TBSC0–TBSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIMB counter registers matches the value in the TIMB channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMB channel x status and control register with CHxF set,  
and then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is  
complete, then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to  
inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIMB CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MC68HC08AZ32A Data Sheet, Rev. 2  
268  
Freescale Semiconductor  
I/O Registers  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMB  
channel 0.  
Setting MS0B disables the channel 1 status and control register and reverts TBCH1 to  
general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation (see Table 18-2).  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TBCHx pin once PWM,  
input capture or output compare operation is enabled (see Table 18-2). Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIMB status and control register (TBSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port F and pin PTFx/TBCHx is  
available as a general-purpose I/O pin. However, channel x is at a state determined by these bits and  
becomes transparent to the respective pin when PWM, input capture, or output compare mode is  
enabled. Table 18-2 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
NOTE  
Before enabling a TIMB channel register for input capture operation, make  
sure that the PTFx/TBCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel x  
output when the TIMB counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMB counter overflow.  
0 = Channel x pin does not toggle on TIMB counter overflow.  
NOTE  
When TOVx is set, a TIMB counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
269  
Timer Interface Module B (TIMB)  
MSxB MSxA  
Table 18-2. Mode, Edge, and Level Selection  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X
X
0
1
0
0
Output preset  
Pin under port control;  
initial output level low  
0
0
0
0
0
0
0
1
1
0
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising  
or falling edge  
0
0
1
1
0
0
0
0
1
1
1
1
1
1
X
X
0
0
1
1
0
1
0
1
0
1
1
0
Software compare only  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Output compare  
or PWM  
Buffered  
output  
compare or  
buffered PWM  
1
X
1
1
Set output on compare  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1 and clear output on compare is selected, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 18-9 shows, the CHxMAX bit  
takes effect in the cycle after it is set or cleared. The output stays at 100% duty cycle level until the  
cycle after CHxMAX is cleared.  
NOTE  
The 100% PWM duty cycle is defined as a continuous high level if the PWM  
polarity is 1 and a continuous low level if the PWM polarity is 0. Conversely,  
a 0% PWM duty cycle is defined as a continuous low level if the PWM  
polarity is 1 and a continuous high level if the PWM polarity is 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 18-9. CHxMAX Latency  
MC68HC08AZ32A Data Sheet, Rev. 2  
270  
Freescale Semiconductor  
I/O Registers  
18.8.5 TIMB Channel Registers  
These read/write registers contain the captured TIMB counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIMB channel registers after reset  
is unknown.  
In input capture mode (MSxB–MSxA = 0:0) reading the high byte of the TIMB channel x registers  
(TBCHxH) inhibits input captures until the low byte (TBCHxL) is read.  
In output compare mode (MSxB–MSxA 0:0) writing to the high byte of the TIMB channel x registers  
(TBCHxH) inhibits output compares and the CHxF bit until the low byte (TBCHxL) is written.  
Register Name and Address  
Bit 7  
TBCH0H — $0046  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
14  
13  
12  
11  
10  
Reset:  
Indeterminate after Reset  
TBCH0L — $0047  
Register Name and Address  
Bit 7  
6
6
5
4
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
5
4
3
Reset:  
Indeterminate after Reset  
TBCH1H — $0049  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
14  
13  
12  
11  
10  
Reset:  
Indeterminate after Reset  
TBCH1L — $004A  
Register Name and Address  
Bit 7  
6
6
5
4
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
5
4
3
Reset:  
Indeterminate after Reset  
Figure 18-10. TIMB Channel Registers  
(TBCH0H/L–TBCH1H/L)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
271  
Timer Interface Module B (TIMB)  
MC68HC08AZ32A Data Sheet, Rev. 2  
272  
Freescale Semiconductor  
Chapter 19  
Development Support  
19.1 Introduction  
This section describes the break module, the monitor read-only memory (MON), and the monitor mode  
entry methods.  
19.2 Break Module (BRK)  
The break module can generate a break interrupt which stops normal program flow at a defined address  
in order to begin execution of a background program.  
Features include:  
Accessible I/O registers during the break interrupt  
CPU-generated break Interrupts  
Software-generated break interrupts  
COP disabling during break interrupts  
19.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction  
register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The  
program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register (BRKSCR).  
When a CPU-generated address matches the contents of the break address registers, the break interrupt  
begins after the CPU completes its current instruction. A return from interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal operation. Figure 19-2 shows the structure  
of the break module.  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
273  
Development Support  
M68HC08 CPU  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTA7–PTA0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
RxCAN  
TxCAN  
PTB7/ATD7–  
PTB0/ATD0  
CONTROL AND STATUS REGISTERS  
USER RAM — 1024 BYTES  
MSCAN08 CONTROLLER  
MODULE  
PTC5–PTC3  
BREAK  
MODULE  
PTC2/MCLK  
PTC1–PTC0  
USER EEPROM — 512 BYTES  
USER ROM — 32,256 BYTES  
PTD7  
LOW-VOLTAGE INHIBIT  
MODULE  
PTD6/ATD14/TACLK  
PTD5/ATD13  
PTD4/ATD12/TBCLK  
COMPUTER OPERATING PROPERLY  
MODULE  
PTD3/ATD11–  
PTD0/ATD8  
MONITOR ROM — 256 BYTES  
USER ROM VECTOR SPACE — 52 BYTES  
TIMER A INTERFACE  
MODULE  
(6 CHANNELS)  
PTE7/SPSCK  
PTE6/MOSI  
PTE5/MISO  
PTE4/SS  
PTE3/TACH1  
PTE2/TACH0  
PTE1/RxD  
OSC1  
OSC2  
CGMXFC  
CLOCK GENERATOR  
MODULE  
TIMER B INTERFACE  
MODULE  
(2 CHANNELS)  
PTE0/TxD  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SERIAL PERIPHERAL INTERFACE  
MODULE  
PTF6  
PTF5/TBCH1–  
PTF4/TBCHO  
IRQ  
MODULE  
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
PTF3/TACH5–  
PTF0/TACH2  
POWER-ON RESET  
MODULE  
PROGRAMMABLE INTERRUPT TIMER  
MODULE  
PTG2/KBD2–  
PTG0/KBD0  
KEYBOARD INTERRUPT  
MODULE  
PTH1/KBD4–  
PTH0/KBD3  
VDD  
VSS  
VREFH  
POWER  
AVSS/VREFL  
VDDAREF  
VSSA  
VDDA  
Figure 19-1. Block Diagram Highlighting BRK and MON Blocks  
MC68HC08AZ32A Data Sheet, Rev. 2  
274  
Freescale Semiconductor  
Break Module (BRK)  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 19-2. Break Module Block Diagram  
Addr.  
Name  
Bit 7  
Bit 15  
0
6
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
1
Bit 0  
Bit 8  
0
Read:  
(BRKH) Write:  
Break Address Register High  
14  
$FE0C  
See page 277.  
Reset:  
Read:  
0
Break Address Register Low  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
$FE0D  
$FE0E  
(BRKL) Write:  
See page 277.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
BRKA  
Register (BRKSCR) Write:  
See page 276.  
Reset:  
R
0
R
0
R
0
R
0
R
0
R
0
0
0
= Reserved  
R
Figure 19-3. Break I/O Register Summary  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is executed  
before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode.  
When software does not change the break address and clears the BRKA  
bit in the first break interrupt routine, the next break interrupt will not be  
generated after exiting the interrupt routine even when the internal address  
bus matches the value written in the break address registers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
275  
Development Support  
19.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See Chapter 15 System Integration Module (SIM), and the Break  
Interrupts subsection for each module.  
19.2.1.2 TIM and PIT During Break Interrupts  
A break interrupt stops the timer counter.  
19.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on the RST pin. For VTST see 20.5 5.0  
Volt DC Electrical Characteristics.  
19.2.2 Break Module Registers  
Three registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
19.2.2.1 Break Status and Control Register (BRKSCR)  
The break status and control register contains break module enable and status bits.  
Address: $FE0E  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
BRKA  
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 19-4. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to  
bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
19.2.2.2 Break Address Registers (BRKH and BRKL)  
The break address registers contain the high and low bytes of the desired breakpoint address. Reset  
clears the break address registers.  
MC68HC08AZ32A Data Sheet, Rev. 2  
276  
Freescale Semiconductor  
Monitor Module (MON)  
Address: $FE0C  
Bit 7  
6
BIT 13  
0
5
BIT 13  
0
4
BIT 12  
0
3
BIT 11  
0
2
BIT 10  
0
1
BIT 9  
0
Bit 0  
BIT 8  
0
Read:  
BIT 15  
Write:  
Reset:  
0
Figure 19-5. Break Address Register (BRKH)  
Address: $FE0D  
Bit 7  
6
BIT 6  
0
5
BIT 5  
0
4
BIT 4  
0
3
BIT 3  
0
2
BIT 2  
0
1
BIT 1  
0
Bit 0  
BIT 0  
0
Read:  
BIT 7  
Write:  
Reset:  
0
Figure 19-6. Break Address Register (BRKL)  
19.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
19.2.3.1 Wait Mode  
If enabled, the break module is active in wait mode. The SIM break wait bit (BW) in the SIM break status  
register indicates whether wait was exited by a break interrupt. If so, the user can modify the return  
address on the stack by subtracting one from it. See Chapter 15 System Integration Module (SIM).  
19.2.3.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does not affect break module register  
states.  
19.3 Monitor Module (MON)  
This subsection describes the monitor module (MON) and the monitor mode entry methods. The monitor  
allows debugging and programming of the microcontroller unit (MCU) through a single-wire interface with  
a host computer.  
Features include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM and host computer  
Standard mark/space non-return-to-zero (NRZ) communication with host computer  
Up to 28.8K baud communication with host computer  
Execution of code in RAM or ROM  
EEPROM programming  
ROM security (read protection)(1)  
EEPROM read protection(1)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the ROM/EEPROM data  
difficult for unauthorized users  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
277  
Development Support  
19.3.1 Functional Description  
Figure 19-7 shows a simplified diagram of monitor mode entry.  
The monitor module receives and executes commands from a host computer. Figure 19-8 shows an  
example circuit used to enter monitor mode and communicate with a host computer via a standard  
RS-232 interface.  
POR RESET  
NO  
IRQ = VTST  
?
YES  
PTA0 = 1,  
PTC0 = 1, AND  
PTC1 = 0?  
CONDITIONS  
FROM Table 19-1  
NO  
YES  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE ROM  
DISABLE ROM  
MONITOR MODE ENTRY  
DEBUGGING  
AND EEPROM  
PROGRAMMING  
(IF EEPROM  
EXECUTE  
MONITOR CODE  
IS ENABLED)  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 19-7. Simplified Monitor Mode Entry Flowchart  
MC68HC08AZ32A Data Sheet, Rev. 2  
278  
Freescale Semiconductor  
Monitor Module (MON)  
VDD  
MC68HC08AZ32A  
VDD  
10 k  
RST  
VDD  
47 pF  
27 pF  
VDDA  
OSC2  
MAX232  
VDD  
0.1 µF  
10 MΩ  
1
16  
15  
VCC  
C1+  
VDD  
+
+
+
OSC1  
IRQ  
1 µF  
1 µF  
4.9152 MHz  
10 k  
3
4
1 µF  
GND  
C1–  
C2+  
PTC3  
PTC0  
+
10 k  
1 kΩ  
2
6
V+  
V–  
VDD  
1 µF  
9.1 V  
10 k  
5
C2–  
1 µF  
PTC1  
+
10 kΩ  
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSSA  
VSS  
74HC125  
3
2
4
3
5
1
Figure 19-8. Normal Monitor Mode Circuit  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
19.3.1.1 Monitor Mode Entry  
Table 19-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a power-on reset (POR) and will allow communication provided the pin and clock  
conditions are met.  
The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the  
values on PTC0, PTC1, and PTC3 pins can be changed.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 19.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is  
ready to receive a command.  
Table 19-1. Mode Selection  
IRQ  
PTC0  
PTC1  
PTA0  
PTC3  
Mode  
CGMOUT  
Bus Frequency  
CGMXCLK  
-----------------------------  
2
or  
CGMOUT  
--------------------------  
(1)  
1
0
1
1
Monitor  
VTSTI  
2
CGMVCLK  
-----------------------------  
2
CGMOUT  
--------------------------  
(1)  
1
0
1
0
Monitor  
CGMXCLK  
VTSTI  
2
1. For VTST, 20.5 5.0 Volt DC Electrical Characteristics and 20.2 Maximum Ratings.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
279  
Development Support  
19.3.1.2 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code. The COP module is disabled in  
monitor mode as long as VTST is applied to either the IRQ pin or the RST pin.  
Table 19-2 summarizes the differences between user mode and monitor mode regarding vectors.  
Table 19-2. Mode Differences  
Functions  
Modes  
Reset  
Vector High  
Reset  
Vector Low  
Break  
Vector High  
Break  
Vector Low  
SWI  
Vector High  
SWI  
Vector Low  
COP  
User  
Enabled  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Disabled(1)  
Monitor  
1. If the high voltage (VTST) is removed from the IRQ pin while in monitor mode, the SIM asserts its COP enable output. The  
COP is a mask option enabled or disabled by the COPD bit in the configuration register. See 20.5 5.0 Volt DC Electrical  
Characteristics.  
19.3.1.3 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 19-9. Monitor Data Format  
19.3.1.4 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal,  
it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 19-10. Break Transaction  
19.3.1.5 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
MC68HC08AZ32A Data Sheet, Rev. 2  
280  
Freescale Semiconductor  
Monitor Module (MON)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 19-11. Read Transaction  
FROM HOST  
WRITE  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 19-12. Write Transaction  
A brief description of each monitor mode command is given in Table 19-3 through Table 19-8.  
Table 19-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
281  
Development Support  
Table 19-4. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by data  
byte  
Operand  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
Table 19-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand 2-byte address in high byte:low byte order  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 19-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HC08AZ32A Data Sheet, Rev. 2  
282  
Freescale Semiconductor  
Monitor Module (MON)  
Table 19-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Returns incremented stack pointer value (SP + 1) in  
high-byte:low-byte order  
Opcode $0C  
Data Returned  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
ECHO  
READSP  
RETURN  
Table 19-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
ECHO  
RUN  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 19-13. Stack Pointer at Monitor Mode Entry  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
283  
Development Support  
19.3.2 Security  
A security feature discourages unauthorized reading of ROM locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all ROM locations and execute code from ROM. Security remains bypassed  
until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. See Figure 19-14.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a ROM location returns an invalid value and trying to execute code from ROM causes an illegal  
address reset. After receiving the eight security bytes from the host, the MCU transmits a break character,  
signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry.  
VDD  
4096 + 32 CGMXCLK CYCLES  
RST  
FROM HOST  
PA0  
1
4
3
1
2
3
1
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Wait 1 bit time before sending next byte  
4 = Wait until clock is stable and monitor runs  
Figure 19-14. Monitor Mode Entry Timing  
MC68HC08AZ32A Data Sheet, Rev. 2  
284  
Freescale Semiconductor  
Monitor Module (MON)  
19.3.2.1 Baud Rate  
The MC68HC08AZ32A features a monitor mode which is optimized to operate with either a 4.9152-MHz  
crystal clock source (or multiples of 4.9152 MHz) or a 4-MHz crystal (or multiples of 4 MHz). This supports  
designs which use the MSCAN08 module, which is generally clocked from a 4 MHz, 8 MHz, or 16 MHz  
internal reference clock. The table below outlines the available baud rates for a range of crystals and how  
they can match to a PC baud rate.  
Table 19-9. Monitor Baud Rate Selection  
Baud Rate  
Closest PC Baud Rate  
Error Percent  
Clock  
Frequency  
PTC3 = 0  
PTC3 = 1  
28.98  
PTC3 = 0  
57.6  
PTC3 = 1  
28.8  
PTC3 = 0  
PTC3 = 1  
0.63  
32 kHz  
1 MHz  
57.97  
0.64  
0.64  
0.64  
0.64  
1.08  
0.49  
0.64  
0.64  
1811.59  
3623.19  
7246.37  
7597.83  
8904.35  
14492.72  
28985.51  
905.80  
1800  
900  
0.64  
2 MHz  
1811.59  
3623.19  
3798.91  
4452.17  
7246.37  
14492.75  
3600  
1800  
3600  
3840  
4430  
7200  
14400  
0.64  
4 MHz  
7200  
0.64  
4.194 MHz  
4.9152 MHz  
8 MHz  
7680  
1.08  
8861  
0.50  
14400  
28800  
0.64  
16 MHz  
0.64  
WARNING  
Care should be taken when setting the baud rate since incorrect baud  
rate setting can result in communications failure.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
285  
Development Support  
MC68HC08AZ32A Data Sheet, Rev. 2  
286  
Freescale Semiconductor  
Chapter 20  
Electrical Specifications  
20.1 Introduction  
This section contains electrical and timing specifications.  
20.2 Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate at the maximum ratings. Plese  
refer to 20.5 5.0 Volt DC Electrical Characteristics for guaranteed operating  
conditions.  
Rating(1)  
Symbol  
VDD  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to +6.0  
VIn  
VSS –0.3 to VDD +0.3  
V
Maximum current per pin  
Excluding VDD and VSS  
I
25  
mA  
TSTG  
IMVSS  
IMVDD  
VTST  
Storage temperature  
–55 to +150  
100  
°C  
mA  
mA  
V
Maximum current out of VSS  
Maximum current into VDD  
100  
VDD + 4.5  
RST and IRQ input voltage  
1. Voltages are referencecd to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIn and VOut be constrained to the range  
VSS (VIn or VOut) VDD. Reliability of operation is enhanced if unused  
inputs are connected to an appropriate logic voltage level (for example,  
either VSS or VDD).  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
287  
Electrical Specifications  
20.3 Functional Operating Range  
Rating  
Symbol  
Value  
Unit  
°C  
Operating temperature range(1)  
Operating voltage range  
TA  
–40 to TA(MAX)  
VDD  
5.0 0.5  
V
1. TA (MAX) =125°C for part suffix MFU  
105°C for part suffix VFU  
85°C for part suffix CFU  
NOTE  
For applications which use the LVI, Freescale guarantee the functionality of  
the device down to the LVI trip point (VLVI) within the constraints outlined in  
Chapter 9 Low-Voltage Inhibit (LVI) Module).  
20.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
70  
Unit  
°C/W  
W
Thermal resistance  
QFP (64 pins)  
θJA  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User Determined  
PD = (IDD x VDD) + PI/O  
=
W
K/(TJ + 273 °C  
PD x (TA + 273 °C)  
Constant(2)  
K
W/°C  
°C  
+ (PD2 x θJA  
)
TJ  
Average junction temperature  
TA = PD x θJA  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined from a known TA and measured PD. With this value of K, PD and  
TJ can be determined for any value of TA.  
20.5 5.0 Volt DC Electrical Characteristics  
Characteristic(1)  
Symbol  
VOH  
Min  
Max  
Unit  
V
Output high voltage  
ILoad = –2.0 mA (all ports)  
ILoad = –5.0 mA (all ports)  
VDD –0.8  
VDD –1.5  
IOH(TOT)  
Total source current  
Output low voltage  
10  
mA  
V
ILoad = 1.6 mA (all ports)  
VOL  
0.4  
1.5  
ILoad = 10.0 mA (all ports)  
IOL(TOT)  
Total sink current  
15  
mA  
— Contined on next page  
MC68HC08AZ32A Data Sheet, Rev. 2  
288  
Freescale Semiconductor  
5.0 Volt DC Electrical Characteristics  
Characteristic(1)  
Input high voltage (all ports, IRQ, RST, OSC1)  
Input low voltage (all ports, IRQ, RST, OSC1)  
Symbol  
VIH  
Min  
0.7 x VDD  
VSS  
Max  
VDD  
Unit  
V
VIL  
0.3 x VDD  
V
VDD + VDDA supply current  
Run(2) (3)  
Wait(4) (3)  
30  
14  
mA  
mA  
Stop(5)  
25°C  
IDD  
50  
µA  
µA  
µA  
µA  
100  
400  
500  
–40°C to +125°C  
25°C with LVI enabled  
–40°C to +125°C with LVI enabled  
IL  
IL  
I/O ports Hi-Z leakage current  
–1  
–10  
–1  
1
10  
1
µA  
µA  
µA  
µA  
I/O ports Hi-Z leakage current(6)  
Input current  
IIn  
IIn  
Input current  
–10  
10  
COut  
CIn  
Capacitance  
Ports (as input or output)  
12  
8
pF  
V
Low-voltage reset inhibit  
Trip  
Recover  
VLVI  
3.80  
4.49  
POR re-arm voltage(7)  
VPOR  
VPORRST  
RPOR  
0
200  
800  
mV  
mV  
V/ms  
V
POR reset voltage(8)  
0
POR rise time ramp rate(9)  
High COP disable voltage(10)  
Monitor mode entry voltage on IRQ(11)  
0.02  
VTST  
VDD + 3  
VDD + 3  
VDD + 4.5  
VDD + 4.5  
VTST  
V
1. VDD = 5.0 Vdc 0.5 V, VSS = 0 Vdc, TA = –40°C to TA (MAX), unless otherwise noted.  
2. Run (Operating) IDD measured using external square wave clock source (fBUS = 8.4 MHz). All inputs 0.2 V from rail. No  
dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance  
linearly affects run IDD. Measured with all modules enabled.  
3. Although IDD is proportional to bus frequency, a current of several mA is present even at very low frequencies.  
4. Wait IDD measured using external square wave clock source (fBus = 8.4 MHz). All inputs 0.2 Vdc from rail. No dc loads.  
Less than 100 pF on all outputs, CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD. Measured with all modules enabled.  
5. Stop IDD measured with OSC1 = VSS  
.
6. When subjected to a Human Body Model (HBM) ESD event as specified in AEC Q100-002 these pins may exhibit  
recoverable leakage values within the specification indicated.  
7. Maximum is highest voltage that POR is guaranteed.  
8. Maximum is highest voltage that POR is possible.  
9. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until  
minimum VDD is reached.  
10. See Chapter 5 Computer Operating Properly (COP) Module. VTST applied to RST.  
11. See monitor mode description within Chapter 5 Computer Operating Properly (COP) Module. VTST applied to IRQ or  
RST.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
289  
Electrical Specifications  
20.6 Control Timing  
Characteristic(1)  
Bus operating frequency (4.5–5.5 V — VDD only)  
Symbol  
fBus  
Min  
Max  
8.4  
Unit  
MHz  
ns  
Internal clock period (1/fBus  
RST pulse width low  
)
tCYC  
tRL  
119  
1.5  
tCYC  
tCYC  
tCYC  
tILHI  
IRQ interrupt pulse width low (edge triggered)  
IRQ Interrupt Pulse Period  
16-bit timer  
Input capture pulse width(2)  
Input capture period  
1.5  
tILIL  
Note 3  
t
TH, tTL  
tTLTL  
tTCH, TCL  
tWUP  
2
tCYC  
tCYC  
ns  
Note(3)  
(1/fOP) + 5  
t
Input clock pulse width  
MSCAN wakeup filter pulse width(4)  
2
5
µs  
1. VDD = 5.0 Vdc 0.5 V, VSS = 0 Vdc, TA = –40°C to TA (MAX), unless otherwise noted.  
2. Refer to Table 17-2. Mode, Edge, and Level Selection, Table 18-2. Mode, Edge, and Level Selection, and supporting notes.  
3. The minimum period tTLTL or tILIL should not be less than the number of cycles it takes to execute the capture interrupt  
service routine plus t CYC  
.
4. The minimum pulse width to wake up the MSCAN module is guaranteed by design but not tested.  
20.7 ADC Characteristics  
Characteristic(1)  
Min  
Max  
Unit  
Comments  
Resolution  
8
8
Bits  
Absolute accuracy  
(VREFL = 0 V, VDDA = VREFH = 5 V 0.5 V)  
–1  
+1  
LSB  
Includes quantization  
VREFL  
16  
VREFH  
17  
VREFL = VSSA  
Conversion range  
Powerup time  
V
µs  
µA  
Conversion time period  
Input leakage(2) (ports B and D)  
– 1  
1
Input leakage(3) (ports B and D)  
Conversion Time  
–10  
16  
10  
µA  
17  
ADC clock cycles  
Includes sampling time  
Monotonicity  
Inherent within total error  
V
IN = VREFL  
Zero input reading  
00  
01  
FF  
Hex  
VIN = VREFH  
Full-scale reading  
FE  
Hex  
ADC clock cycles  
pF  
Sample time(4)  
5
8
Input capacitance  
ADC internal clock  
Analog input voltage  
Not tested  
500 k  
VREFL  
1.048 M  
VREFH  
Hz  
V
Tested only at 1 MHz  
1. VDD = 5.0 Vdc 0.5 V, VSS = 0 Vdc, VDDA/VDDAREF = 5.0 Vdc 0.5 V, VSSA = 0 Vdc, VREFH = 5.0 Vdc 0.5 V  
2. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
3. When subjected to a Human Body Model (HBM) ESD event as specified in AEC Q100-002 these pins may exhibit recov-  
erable leakage values within the specification indicated.  
4. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
MC68HC08AZ32A Data Sheet, Rev. 2  
290  
Freescale Semiconductor  
5.0 Vdc 0.5 V Serial Peripheral Interface (SPI) Timing  
20.8 5.0 Vdc 0.5 V Serial Peripheral Interface (SPI) Timing  
Num(1)  
Characteristic(2)  
Symbol  
Min  
Max  
Unit  
Operating frequency(3)  
Master  
Slave  
fBUS(M)  
fBus(S)  
fBUS/2  
fBUS  
fBUS/128  
dc  
MHz  
Cycle time  
Master  
Slave  
tCYC(M)  
tCYC(S)  
tLead  
tLag  
tCYC  
1
2
1
128  
2
3
Enable lead time  
Enable lag time  
15  
15  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
tW(SCKH)M  
tW(SCKH)S  
4
5
6
7
100  
50  
ns  
ns  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
tW(SCKL)M  
tW(SCKL)S  
100  
50  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
45  
5
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
0
15  
Access time, slave(4)  
CPHA = 0  
CPHA = 1  
tA(CP0)  
tA(CP1)  
8
9
0
0
40  
20  
ns  
ns  
ns  
tDIS  
Slave disable time (hold time to high-impedance state)  
25  
Enable edge kead time to data valid(5)  
Master  
Slave  
tEV(M)  
tEV(S)  
10  
10  
40  
Data hold time (outputs, after enable edge)  
Master  
Slave  
tHO(M)  
tHO(S)  
11  
0
5
ns  
Data valid  
Master (before capture edge)  
tV(M)  
12  
13  
90  
ns  
ns  
Data hold time (outputs)  
Master (after capture edge)  
tHO(M)  
100  
1. Item numbers refer to dimensions in Figure 20-1 and Figure 20-2.  
2. All timing is shown with respect to 30% VDD and 70% VDD, unless otherwise noted; assumes 100 pF load on all SPI pins.  
3. fBus = the currently active bus frequency for the microcontroller.  
4. Time to data active from high-impedance state.  
5. With 100 pF on all SPI pins  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
291  
Electrical Specifications  
SS  
(INPUT)  
SS pin of master held high.  
1
5
4
SCK (CPOL = 0)  
(OUTPUT)  
NOTE  
4
5
SCK (CPOL = 1)  
(OUTPUT)  
NOTE  
6
7
MISO  
(INPUT)  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
10  
11  
MASTER MSB OUT  
13  
10  
11  
MOSI  
(OUTPUT)  
MASTER LSB OUT  
12  
NOTE: This first clock edge is generated internally, but is not seen at the SCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
(INPUT)  
SS pin of master held high.  
1
SCK (CPOL = 0)  
(OUTPUT)  
5
4
NOTE  
NOTE  
4
5
SCK (CPOL = 1)  
(OUTPUT)  
6
7
LSB IN  
11  
MISO  
(INPUT)  
MSB IN  
BITS 6–1  
BITS 6–1  
10  
MOSI  
(OUTPUT)  
11  
MASTER MSB OUT  
12  
13  
10  
MASTER LSB OUT  
NOTE: This last clock edge is generated internally, but is not seen at the SCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 20-1. SPI Master Timing Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
292  
Freescale Semiconductor  
5.0 Vdc 0.5 V Serial Peripheral Interface (SPI) Timing  
SS  
(INPUT)  
3
1
SCK (CPOL = 0)  
(INPUT)  
11  
4
4
5
2
SCK (CPOL = 1)  
(INPUT)  
9
8
MISO  
(INPUT)  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
(OUTPUT)  
MSB IN  
LSB IN  
NOTE: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
SCK (CPOL = 0)  
(INPUT)  
5
4
5
2
3
SCK (CPOL = 1)  
(INPUT)  
4
10  
9
8
MISO  
(OUTPUT)  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 20-2. SPI Slave Timing Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
293  
Electrical Specifications  
20.9 CGM Operating Conditions  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
V
VDDA  
VDD–0.3  
VDD+0.3  
Operating voltage  
VSSA  
VSS –0.3  
1
VSS+0.3  
V
fCGMRCLK  
fCGMXCLK  
fNOM  
Crystal reference frequency  
4.9152  
4.9152  
4.9152  
8
MHz  
MHz  
MHz  
MHz  
Module crystal reference frequency(1)  
Range nominal multiplier  
Note(2)  
32.0  
fCGMVRS  
fCGMVCLK  
VCO center-of-range frequency  
VCO operating frequency  
4.9152  
4.9152  
1. Same frequency as fCGMRCLK  
2. fCGMVRS is a nominal value described and calculated as an example in Chapter 4 Clock Generator Module (CGM) for the  
desired VCO operating frequency, fCGMVCLK  
.
.
20.10 CGM Component Information  
Description  
Crystal load capacitance(1)  
Crystal fixed capacitance(1)  
Symbol  
Min  
Typ  
Max  
Unit  
CL  
C1  
C2  
2 x CL  
2 x CL  
0.0154  
Crystal tuning capacitance(1)  
Filter capacitor multiply factor  
CFACT  
F/s V  
C
FACT x  
Filter capacitor(2)  
CF  
(VDDA/fCGMXCLK  
)
Bypass capacitor(3)  
CBYP  
0.1 µF  
µF  
1. Consult crystal manufacturer’s data  
2. See 4.4.3 External Filter Capacitor Pin (CGMXFC).  
3. CBYP must provide low AC impedance from f = fCGMXCLK/100 to 100 x fCGMVCLK. So, series resistance must be consid-  
ered.  
MC68HC08AZ32A Data Sheet, Rev. 2  
294  
Freescale Semiconductor  
CGM Acquisition/Lock Time Information  
20.11 CGM Acquisition/Lock Time Information  
Characteristic(1)  
Typ(2)  
Max(2)  
Symbol  
Min  
Unit  
(8 x VDDA) /  
(fCGMXCLK x KACQ)  
Manual mode time to stable(3)  
tACQ  
s
s
(4 x VDDA) /  
(fCGMXCLK x KTRK  
Manual stable to lock time(3)  
Manual acquisition time  
tAL  
)
tLock  
tACQ + tAL  
0
s
Tracking mode entry frequency  
tolerance  
DTRK  
3.6  
%
Acquisition mode entry frequency  
tolerance  
DUNT  
6.3  
7.2  
%
DLOCK  
DUNL  
LOCK entry freqency tolerance  
LOCK Exit freqency tolerance  
0
0.9  
1.8  
%
%
0.9  
Reference cycles per acquisition mode  
measurement  
nACQ  
nTRK  
32  
Reference cycles per tracking mode  
measurement  
128  
(8 x VDDA) /  
Automatic mode time to stable(3)  
tACQ  
nACQ/fCGMXCLK  
s
(fCGMXCLK x KACQ)  
(4 x VDDA) /  
(fCGMXCLK x KTRK  
0.65  
Automatic stable to lock time(3)  
Automatic lock time  
tAL  
nTRK/fCGMXCLK  
s
)
tLock  
0
25  
ms  
%
PLL jitter, deviation of average bus  
frequency over 2 ms (4) (5)  
(fCRYS) x (.025%)  
x (N/4)  
K value for automatic mode time to  
stable  
KACQ  
KTRK  
0.2  
K value  
0.004  
1. VDD = 5.0 Vdc 0.5 V, VSS = 0 Vdc, TA = –40°C to TA(MAX), unless otherwise noted.  
2. Conditions for typical and maximum values are for run mode with fCGMXCLK = 8 MHz, fBUSDES = 8 MHz, N = 4, L = 7, dis-  
charged CF = 15 nF, VDD = 5 Vdc.  
3. If CF is chosen correctly.  
4. Guaranteed but not tested. Refer to 4.3.2 Phase-Locked Loop Circuit (PLL) for guidance on the use of the PLL.  
5. N = VCO frequency multiplier.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
295  
Electrical Specifications  
20.12 RAM Memory Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
VRDR  
RAM data retention voltage  
0.7  
V
20.13 EEPROM Memory Characteristics  
Characteristic  
EEPROM programming time per byte  
EEPROM erasing time per byte  
Symbol  
Min  
10  
Typ  
Max  
Unit  
ms  
ms  
ms  
ms  
µs  
tEEPGM  
tEEBYTE  
tEEBLOCK  
tEEBULK  
tEEFPV  
10  
EEPROM erasing time per block  
10  
EEPROM erasing time per bulk  
10  
EEPROM programming voltage discharge period  
100  
Number of programming operations to the same  
EEPROM byte before erase(1)  
8
EEPROM programming maximum time to AUTO bit set  
EEPROM erasing maximum time to AUTO bit set  
500  
8
µs  
ms  
EEPROM endurance(2)  
10K  
>100K  
Cycles  
EEPROM data retention(3)  
15  
>100  
Years  
1. Programming a byte more times than the specified maximum may affect the data integrity of that byte. The byte must be  
erased before it can be programmed again.  
2. Typical endurance was evaluated for this product family. For additional information on how Freescale defines Typical En-  
durance, please refer to Engineering Bulletin EB619.  
3. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please  
refer to Engineering Bulletin EB618.  
MC68HC08AZ32A Data Sheet, Rev. 2  
296  
Freescale Semiconductor  
Chapter 21  
Ordering Information and Mechanical Specifications  
21.1 Introduction  
This section provides ordering information for the MC68HC08AZ32A along with the dimensions for the  
64-pin quad flat pack (QFP)  
The following figure shows the latest package drawing at the time of this publication. To make sure that  
you have the latest package specifications, contact your local Freescale sales office  
21.2 MC Order Numbers  
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the  
ROM Processing Center (RPC). Refer to the Customer Interface Tool (CIT) link at:  
http://freescale.com  
Table 21-1. MC Order Numbers  
Operating  
MC Order Number  
Temperature Range  
MC68HC08AZ32ACFU  
MC68HC08AZ32AVFU  
MC68HC08AZ32AMFU  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +125°C  
M C 6 8 H C 0 8 A Z 3 2 A X X X E  
Pb-FREE  
FAMILY  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 21-1. Device Numbering System  
21.3 Package Dimensions  
Refer to the following pages for detailed package dimensions.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
297  
Glossary  
A — See “accumulator (A).”  
accumulator (A) — An 8-bit general-purpose register in the CPU08. The CPU08 uses the accumulator  
to hold operands and results of arithmetic and logic operations.  
acquisition mode — A mode of PLL operation during startup before the PLL locks on a frequency. Also  
see "tracking mode."  
address bus — The set of wires that the CPU or DMA uses to read and write memory locations.  
addressing mode — The way that the CPU determines the operand address for an instruction. The  
M68HC08 CPU has 16 addressing modes.  
ALU — See “arithmetic logic unit (ALU).”  
arithmetic logic unit (ALU) — The portion of the CPU that contains the logic circuitry to perform  
arithmetic, logic, and manipulation operations on operands.  
asynchronous — Refers to logic circuits and operations that are not synchronized by a common  
reference signal.  
baud rate — The total number of bits transmitted per unit of time.  
BCD — See “binary-coded decimal (BCD).”  
binary — Relating to the base 2 number system.  
binary number system — The base 2 number system, having two digits, 0 and 1. Binary arithmetic is  
convenient in digital circuit design because digital circuits have two permissible voltage levels, low and  
high. The binary digits 0 and 1 can be interpreted to correspond to the two digital voltage levels.  
binary-coded decimal (BCD) — A notation that uses 4-bit binary numbers to represent the 10 decimal  
digits and that retains the same positional structure of a decimal number. For example,  
234 (decimal) = 0010 0011 0100 (BCD)  
bit — A binary digit. A bit has a value of either logic 0 or logic 1.  
branch instruction — An instruction that causes the CPU to continue processing at a memory location  
other than the next sequential address.  
break module — A module in the M68HC08 Family. The break module allows software to halt program  
execution at a programmable point in order to enter a background routine.  
breakpoint — A number written into the break address registers of the break module. When a number  
appears on the internal address bus that is the same as the number in the break address registers,  
the CPU executes the software interrupt instruction (SWI).  
break interrupt — A software interrupt caused by the appearance on the internal address bus of the  
same value that is written in the break address registers.  
bus — A set of wires that transfers logic signals.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
301  
Glossary  
bus clock — The bus clock is derived from the CGMOUT output from the CGM. The bus clock frequency,  
fop, is equal to the frequency of the oscillator output, CGMXCLK, divided by four.  
byte — A set of eight bits.  
C — The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit when an  
addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation  
requires a borrow. Some logical operations and data manipulation instructions also clear or set the  
carry/borrow bit (as in bit test and branch instructions and shifts and rotates).  
CCR — See “condition code register.”  
central processor unit (CPU) — The primary functioning unit of any computer system. The CPU controls  
the execution of instructions.  
CGM — See “clock generator module (CGM).”  
clear — To change a bit from logic 1 to logic 0; the opposite of set.  
clock — A square wave signal used to synchronize events in a computer.  
clock generator module (CGM) — A module in the M68HC08 Family. The CGM generates a base clock  
signal from which the system clocks are derived. The CGM may include a crystal oscillator circuit and  
or phase-locked loop (PLL) circuit.  
comparator — A device that compares the magnitude of two inputs. A digital comparator defines the  
equality or relative differences between two binary numbers.  
computer operating properly module (COP) — A counter module in the M68HC08 Family that resets  
the MCU if allowed to overflow.  
condition code register (CCR) — An 8-bit register in the CPU08 that contains the interrupt mask bit and  
five bits that indicate the results of the instruction just executed.  
control bit — One bit of a register manipulated by software to control the operation of the module.  
control unit — One of two major units of the CPU. The control unit contains logic functions that  
synchronize the machine and direct various operations. The control unit decodes instructions and  
generates the internal control signals that perform the requested operations. The outputs of the  
control unit drive the execution unit, which contains the arithmetic logic unit (ALU), CPU registers, and  
bus interface.  
COP — See "computer operating properly module (COP)."  
counter clock — The input clock to the TIM counter. This clock is the output of the TIM prescaler.  
CPU — See “central processor unit (CPU).”  
CPU08 — The central processor unit of the M68HC08 Family.  
CPU clock — The CPU clock is derived from the CGMOUT output from the CGM. The CPU clock  
frequency is equal to the frequency of the oscillator output, CGMXCLK, divided by four.  
CPU cycles — A CPU cycle is one period of the internal bus clock, normally derived by dividing a crystal  
oscillator source by two or more so the high and low times will be equal. The length of time required  
to execute an instruction is measured in CPU clock cycles.  
MC68HC08AZ32A Data Sheet, Rev. 2  
302  
Freescale Semiconductor  
CPU registers — Memory locations that are wired directly into the CPU logic instead of being part of the  
addressable memory map. The CPU always has direct access to the information in these registers.  
The CPU registers in an M68HC08 are:  
• A (8-bit accumulator)  
• H:X (16-bit index register)  
• SP (16-bit stack pointer)  
• PC (16-bit program counter)  
• CCR (condition code register containing the V, H, I, N, Z, and C bits)  
cycle time — The period of the operating frequency: tCYC = 1/fOP.  
decimal number system — Base 10 numbering system that uses the digits zero through nine.  
direct memory access module (DMA) — A M68HC08 Family module that can perform data transfers  
between any two CPU-addressable locations without CPU intervention. For transmitting or receiving  
blocks of data to or from peripherals, DMA transfers are faster and more code-efficient than CPU  
interrupts.  
DMA — See "direct memory access module (DMA)."  
DMA service request — A signal from a peripheral to the DMA module that enables the DMA module to  
transfer data.  
duty cycle — A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is usually  
represented by a percentage.  
EEPROM — Electrically erasable, programmable, read-only memory. A nonvolatile type of memory that  
can be electrically reprogrammed.  
EPROM — Erasable, programmable, read-only memory. A nonvolatile type of memory that can be erased  
by exposure to an ultraviolet light source and then reprogrammed.  
exception — An event such as an interrupt or a reset that stops the sequential execution of the  
instructions in the main program.  
external interrupt module (IRQ) — A module in the M68HC08 Family with both dedicated external  
interrupt pins and port pins that can be enabled as interrupt pins.  
fetch — To copy data from a memory location into the accumulator.  
firmware — Instructions and data programmed into nonvolatile memory.  
free-running counter — A device that counts from zero to a predetermined number, then rolls over to  
zero and begins counting again.  
full-duplex transmission — Communication on a channel in which data can be sent and received  
simultaneously.  
H — The upper byte of the 16-bit index register (H:X) in the CPU08.  
H — The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from the  
low-order four bits of the accumulator value to the high-order four bits. The half-carry bit is required  
for binary-coded decimal arithmetic operations. The decimal adjust accumulator (DAA) instruction  
uses the state of the H and C bits to determine the appropriate correction factor.  
hexadecimal — Base 16 numbering system that uses the digits 0 through 9 and the letters A through F.  
high byte — The most significant eight bits of a word.  
illegal address — An address not within the memory map  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
303  
Glossary  
illegal opcode — A nonexistent opcode.  
I — The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts are  
disabled.  
index register (H:X) — A 16-bit register in the CPU08. The upper byte of H:X is called H. The lower byte  
is called X. In the indexed addressing modes, the CPU uses the contents of H:X to determine the  
effective address of the operand. H:X can also serve as a temporary data storage location.  
input/output (I/O) — Input/output interfaces between a computer system and the external world. A CPU  
reads an input to sense the level of an external signal and writes to an output to change the level on  
an external signal.  
instructions — Operations that a CPU can perform. Instructions are expressed by programmers as  
assembly language mnemonics. A CPU interprets an opcode and its associated operand(s) and  
instruction.  
interrupt — A temporary break in the sequential execution of a program to respond to signals from  
peripheral devices by executing a subroutine.  
interrupt request — A signal from a peripheral to the CPU intended to cause the CPU to execute a  
subroutine.  
I/O — See “input/output (I/0).”  
IRQ — See "external interrupt module (IRQ)."  
jitter — Short-term signal instability.  
latch — A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power is applied  
to the circuit.  
latency — The time lag between instruction completion and data movement.  
least significant bit (LSB) — The rightmost digit of a binary number.  
logic 1 — A voltage level approximately equal to the input power voltage (VDD).  
logic 0 — A voltage level approximately equal to the ground voltage (VSS).  
low byte — The least significant eight bits of a word.  
low voltage inhibit module (LVI) — A module in the M68HC08 Family that monitors power supply  
voltage.  
LVI — See "low voltage inhibit module (LVI)."  
M68HC08 — A Freescale family of 8-bit MCUs.  
mark/space — The logic 1/logic 0 convention used in formatting data in serial communication.  
mask — 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used in  
integrated circuit fabrication to transfer an image onto silicon.  
mask option — A optional microcontroller feature that the customer chooses to enable or disable.  
mask option register (MOR) — An EPROM location containing bits that enable or disable certain MCU  
features.  
MCU — Microcontroller unit. See “microcontroller.”  
MC68HC08AZ32A Data Sheet, Rev. 2  
304  
Freescale Semiconductor  
memory location — Each M68HC08 memory location holds one byte of data and has a unique address.  
To store information in a memory location, the CPU places the address of the location on the address  
bus, the data information on the data bus, and asserts the write signal. To read information from a  
memory location, the CPU places the address of the location on the address bus and asserts the read  
signal. In response to the read signal, the selected memory location places its data onto the data bus.  
memory map — A pictorial representation of all memory locations in a computer system.  
microcontroller — Microcontroller unit (MCU). A complete computer system, including a CPU, memory,  
a clock oscillator, and input/output (I/O) on a single integrated circuit.  
modulo counter — A counter that can be programmed to count to any number from zero to its maximum  
possible modulus.  
monitor ROM — A section of ROM that can execute commands from a host computer for testing  
purposes.  
MOR — See "mask option register (MOR)."  
most significant bit (MSB) — The leftmost digit of a binary number.  
multiplexer — A device that can select one of a number of inputs and pass the logic level of that input  
on to the output.  
N — The negative bit in the condition code register of the CPU08. The CPU sets the negative bit when  
an arithmetic operation, logical operation, or data manipulation produces a negative result.  
nibble — A set of four bits (half of a byte).  
object code — The output from an assembler or compiler that is itself executable machine code, or is  
suitable for processing to produce executable machine code.  
opcode — A binary code that instructs the CPU to perform an operation.  
open-drain — An output that has no pullup transistor. An external pullup device can be connected to the  
power supply to provide the logic 1 output voltage.  
operand — Data on which an operation is performed. Usually a statement consists of an operator and  
an operand. For example, the operator may be an add instruction, and the operand may be the  
quantity to be added.  
oscillator — A circuit that produces a constant frequency square wave that is used by the computer as  
a timing and sequencing reference.  
OTPROM — One-time programmable read-only memory. A nonvolatile type of memory that cannot be  
reprogrammed.  
overflow — A quantity that is too large to be contained in one byte or one word.  
page zero — The first 256 bytes of memory (addresses $0000–$00FF).  
parity — An error-checking scheme that counts the number of logic 1s in each byte transmitted. In a  
system that uses odd parity, every byte is expected to have an odd number of logic 1s. In an even  
parity system, every byte should have an even number of logic 1s. In the transmitter, a parity  
generator appends an extra bit to each byte to make the number of logic 1s odd for odd parity or even  
for even parity. A parity checker in the receiver counts the number of logic 1s in each byte. The parity  
checker generates an error signal if it finds a byte with an incorrect number of logic 1s.  
PC — See “program counter (PC).”  
peripheral — A circuit not under direct CPU control.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
305  
Glossary  
phase-locked loop (PLL) — A oscillator circuit in which the frequency of the oscillator is synchronized  
to a reference signal.  
PLL — See "phase-locked loop (PLL)."  
pointer — Pointer register. An index register is sometimes called a pointer register because its contents  
are used in the calculation of the address of an operand, and therefore points to the operand.  
polarity — The two opposite logic levels, logic 1 and logic 0, which correspond to two different voltage  
levels, VDD and VSS.  
polling — Periodically reading a status bit to monitor the condition of a peripheral device.  
port — A set of wires for communicating with off-chip devices.  
prescaler — A circuit that generates an output signal related to the input signal by a fractional scale factor  
such as 1/2, 1/8, 1/10 etc.  
program — A set of computer instructions that cause a computer to perform a desired operation or  
operations.  
program counter (PC) — A 16-bit register in the CPU08. The PC register holds the address of the next  
instruction or operand that the CPU will use.  
pull — An instruction that copies into the accumulator the contents of a stack RAM location. The stack  
RAM address is in the stack pointer.  
pullup — A transistor in the output of a logic gate that connects the output to the logic 1 voltage of the  
power supply.  
pulse-width — The amount of time a signal is on as opposed to being in its off state.  
pulse-width modulation (PWM) — Controlled variation (modulation) of the pulse width of a signal with  
a constant frequency.  
push — An instruction that copies the contents of the accumulator to the stack RAM. The stack RAM  
address is in the stack pointer.  
PWM period — The time required for one complete cycle of a PWM waveform.  
RAM — Random access memory. All RAM locations can be read or written by the CPU. The contents of  
a RAM memory location remain valid until the CPU writes a different value or until power is turned off.  
RC circuit — A circuit consisting of capacitors and resistors having a defined time constant.  
read — To copy the contents of a memory location to the accumulator.  
register — A circuit that stores a group of bits.  
reserved memory location — A memory location that is used only in special factory test modes. Writing  
to a reserved location has no effect. Reading a reserved location returns an unpredictable value.  
reset — To force a device to a known condition.  
ROM — Read-only memory. A type of memory that can be read but cannot be changed (written). The  
contents of ROM must be specified before manufacturing the MCU.  
SCI — See "serial communication interface module (SCI)."  
serial — Pertaining to sequential transmission over a single line.  
serial communications interface module (SCI) — A module in the M68HC08 Family that supports  
asynchronous communication.  
MC68HC08AZ32A Data Sheet, Rev. 2  
306  
Freescale Semiconductor  
serial peripheral interface module (SPI) — A module in the M68HC08 Family that supports  
synchronous communication.  
set — To change a bit from logic 0 to logic 1; opposite of clear.  
shift register — A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to them and  
that can shift the logic levels to the right or left through adjacent circuits in the chain.  
signed — A binary number notation that accommodates both positive and negative numbers. The most  
significant bit is used to indicate whether the number is positive or negative, normally logic 0 for  
positive and logic 1 for negative. The other seven bits indicate the magnitude of the number.  
software — Instructions and data that control the operation of a microcontroller.  
software interrupt (SWI) — An instruction that causes an interrupt and its associated vector fetch.  
SPI — See "serial peripheral interface module (SPI)."  
stack — A portion of RAM reserved for storage of CPU register contents and subroutine return  
addresses.  
stack pointer (SP) — A 16-bit register in the CPU08 containing the address of the next available storage  
location on the stack.  
start bit — A bit that signals the beginning of an asynchronous serial transmission.  
status bit — A register bit that indicates the condition of a device.  
stop bit — A bit that signals the end of an asynchronous serial transmission.  
subroutine — A sequence of instructions to be used more than once in the course of a program. The last  
instruction in a subroutine is a return from subroutine (RTS) instruction. At each place in the main  
program where the subroutine instructions are needed, a jump or branch to subroutine (JSR or BSR)  
instruction is used to call the subroutine. The CPU leaves the flow of the main program to execute the  
instructions in the subroutine. When the RTS instruction is executed, the CPU returns to the main  
program where it left off.  
synchronous — Refers to logic circuits and operations that are synchronized by a common reference  
signal.  
TIM — See "timer interface module (TIM)."  
timer interface module (TIM) — A module used to relate events in a system to a point in time.  
timer — A module used to relate events in a system to a point in time.  
toggle — To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.  
tracking mode — Mode of low-jitter PLL operation during which the PLL is locked on a frequency. Also  
see "acquisition mode."  
two’s complement — A means of performing binary subtraction using addition techniques. The most  
significant bit of a two’s complement number indicates the sign of the number (1 indicates negative).  
The two’s complement negative of a number is obtained by inverting each bit in the number and then  
adding 1 to the result.  
unbuffered — Utilizes only one register for data; new data overwrites current data.  
unimplemented memory location — A memory location that is not used. Writing to an unimplemented  
location has no effect. Reading an unimplemented location returns an unpredictable value. Executing  
an opcode at an unimplemented location causes an illegal address reset.  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
307  
Glossary  
V —The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when a two's  
complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the  
overflow bit.  
variable — A value that changes during the course of program execution.  
VCO — See "voltage-controlled oscillator."  
vector — A memory location that contains the address of the beginning of a subroutine written to service  
an interrupt or reset.  
voltage-controlled oscillator (VCO) — A circuit that produces an oscillating output signal of a frequency  
that is controlled by a dc voltage applied to a control input.  
waveform — A graphical representation in which the amplitude of a wave is plotted against time.  
wired-OR — Connection of circuit outputs so that if any output is high, the connection point is high.  
word — A set of two bytes (16 bits).  
write — The transfer of a byte of data from the CPU to a memory location.  
X — The lower byte of the index register (H:X) in the CPU08.  
Z — The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when an  
arithmetic operation, logical operation, or data manipulation produces a result of $00.  
MC68HC08AZ32A Data Sheet, Rev. 2  
308  
Freescale Semiconductor  
Revision History  
Major Changes Between Revision 2.0 and Revision 1.0  
The following table lists the major changes between the current revision of the MC68HC08AZ32A  
Technical Data Book and revision 1.0.  
Section Affected  
Description of Change  
Throughout  
Reformatted document to current publications standards  
Major Changes Between Revision 1.0 and Revision 0.0  
The following table lists the major changes between the revision 1.0 of the MC68HC08AZ32A Technical  
Data Book and the initial release at revision 0.0.  
Section Affected  
Description of Change  
Corrected text in numerous pin desriptions.  
General Description  
Corrected Table 1-1 - External Pins Summary with which pins have hysteresis.  
Added missing modules to Table 1-3 - Clock Source Summary  
Corrected type errors.  
Corrected various addresses and register names in Figure 2-1 - Memory Map.  
Corrected numerous register bit descriptions in Figure 2-2 - I/O Data, Status and  
Control Registers to match module sections.  
Added Additional Status and Control Registers section and moved register  
descriptions accordingly. Corrected bit descriptions to match module sections.  
Memory Map  
EEPROM  
Section altered significantly to better align module descriptions across groups within  
Freescale using 0.5µ TSMC/SST FLASH. Numerous additions submitted by  
applications engineering for further clarification of functional operation.  
Corrected clock signal names and associated timing parameters for consistency and to  
match signal naming conventions.  
Additional textual description added to Reaction Time Calculation subsection.  
Clock Generator Module  
(CGM)  
Mask Options  
Break Module  
Corrected descriptions of LVIRST and LVIPWR bits  
Corrected description of BRKSCR register  
System Integration Module (SIM) Corrected various type errors in SBSR and SBFCR register bit descriptions  
Modified Figure 11-1 - Monitor Mode Circuit based upon recommendations from  
applications engineering.  
Corrected type errors.  
Monitor ROM (MON)  
Corrected Figure 11-6 - Monitor Mode Entry Timing.  
Computer Operating Properly  
(COP)  
Corrected references to COPL (now COPRS).  
Corrected type errors.  
Low Voltage Inhibit (LVI)  
Corrected functional description and revised Figure 13-1 - LVI Module Block Diagram  
MC68HC08AZ32A Data Sheet, Rev. 2  
Freescale Semiconductor  
309  
Revision History  
Section Affected  
Description of Change  
Corrected ISCR register bit descriptions.  
External Interrupt Module (IRQ)  
Corrected numerous type and grammatical errors.  
Corrected numerous pin and register name errors within text.  
Corrected references to TIMB overflow interrupts (removed "channel x" references as  
they are incorrect).  
Timer Interface Module B (TIMB)  
Corrected functional description on TOF flag.  
Programmable Interrupt Timer  
(PIT)  
Corrected type and grammatical errors.  
Corrected PIT Overflow Interrupt Enable Bit acronym from PIE to POIE.  
Included Extended ID errata information as new subsection 20.6.1  
Added address definitions to Figure 20-9 - MSCAN08 Memory Map.  
MSCAN08  
Keyboard Module (KBD)  
Added Low Power Modes subsection.  
Corrected numerous type and grammatical errors.  
Corrected numerous pin and register name errors within text.  
Corrected references to TIMA overflow interrupts (removed "channel x" references as  
they are incorrect).  
Timer Interface Module A (TIMA)  
Corrected functional description of TOF flag.  
Corrected type errors.  
Increased VHI specification in Maximum Ratings to VDD + 4.5V.  
Decreased LVI trip voltage specification to 3.80V and increased LVI recovery voltage to  
4.49V in 5.0 Volt DC Electrical Characteristics.  
Increased VHI specification to minimum of VDD + 3.0V and maximum of VDD + 4.5V in  
5.0 Volt DC Electrical Characteristics.  
Added Unit columns to all CGM specification tables and adjusted text accordingly.  
Corrected Operating Voltage specification in CGM Operating Conditions.  
Added typical specifications for Kacq and Ktrk parameters in CGM Acquisition/Lock  
Electrical Specifications  
Time Information.  
Split Memory Characteristics table into separate RAM Memory Characteristics and  
EEPROM Memory Characteristics.  
Added maximum specification for EEPROM AUTO bit set for each of program and  
erase operation in EEPROM Memory Characteristics.  
Added subsection highlighting operation of IAR function.  
Added subsection highlighting change of Monitor Mode entry and COP disable voltage  
change.  
MC68HC08AZ32A Changes  
Added subsection highlighting change in LVI trip and recovery voltage specifications.  
Added subsection highlighting revised K values.  
MC68HC08AZ32A Data Sheet, Rev. 2  
310  
Freescale Semiconductor  
How to Reach Us:  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Home Page:  
www.freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC08AZ32A  
Rev. 2, 07/2005  

相关型号:

MC68HC08AZ32ACFU

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32ACFU

Microcontrollers
FREESCALE

MC68HC08AZ32ACFUE

8-BIT, EEPROM, 8.4MHz, MICROCONTROLLER, PQFP64, 14 X 14 MM, ROHS COMPLIANT, QFP-64
NXP

MC68HC08AZ32AMFU

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32AMFU

Microcontrollers
FREESCALE

MC68HC08AZ32AMFU

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,QFP,64PIN,PLASTIC
NXP

MC68HC08AZ32AVFU

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08AZ32AVFU

Microcontrollers
FREESCALE

MC68HC08AZ32AVFU

8-BIT, MROM, 8.4MHz, MICROCONTROLLER, PQFP64, QFP-64
NXP

MC68HC08AZ32AVFUE

8-BIT, EEPROM, 8.4MHz, MICROCONTROLLER, PQFP64, 14 X 14 MM, ROHS COMPLIANT, QFP-64
NXP

MC68HC08AZ32CFU

Advance Information
FREESCALE

MC68HC08AZ32MFU

Advance Information
FREESCALE