MC68HC908GR16AMFJ [FREESCALE]

M68HC08 Microcontrollers; M68HC08微控制器
MC68HC908GR16AMFJ
型号: MC68HC908GR16AMFJ
厂家: Freescale    Freescale
描述:

M68HC08 Microcontrollers
M68HC08微控制器

微控制器 外围集成电路 时钟
文件: 总270页 (文件大小:1889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908GR16A  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908GR16A  
Rev. 1.0  
03/2006  
freescale.com  
MC68HC908GR16A  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
October,  
2004  
N/A  
1.0  
Initial release  
N/A  
106  
March,  
2006  
10.5 Clock Generator Module (CGM) — Updated description to remove  
erroneous information.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
3
Revision History  
MC68HC908GR16A Data Sheet, Rev. 1.0  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Chapter 3 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Chapter 4 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Chapter 5 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Chapter 6 Computer Operating Properly (COP) Module . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Chapter 7 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Chapter 8 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Chapter 9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Chapter 10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Chapter 11 Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Chapter 12 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Chapter 13 Resets and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
Chapter 14 Enhanced Serial Communications Interface (ESCI) Module . . . . . . . . . . . . .143  
Chapter 15 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
Chapter 16 Serial Peripheral Interface (SPI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Chapter 17 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
Chapter 18 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
Chapter 19 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
Chapter 20 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
Chapter 21 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . .263  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
5
List of Chapters  
MC68HC908GR16A Data Sheet, Rev. 1.0  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.2  
1.2.1  
1.2.2  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Standard Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features of the CPU08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
1.3  
1.4  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
1.5  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
CGM Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External Filter Capacitor Pin (VCGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ADC Power Supply/Reference Pins (VDDAD/VREFH and VSSAD/VREFL). . . . . . . . . . . . . . 25  
Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port C I/O Pins (PTC6–PTC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Port E I/O Pins (PTE5–PTE2 and PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
1.5.8  
1.5.9  
1.5.10  
1.5.11  
1.5.12  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Input/Output (I/O) Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.6  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
2.6.8  
2.6.9  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
7
Table of Contents  
Chapter 3  
Analog-to-Digital Converter (ADC)  
3.1  
3.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.4  
3.5  
Monotonicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.6  
3.6.1  
3.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Analog Power Pin (VDDAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Analog Ground Pin (VSSAD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.8  
3.8.1  
3.8.2  
3.8.2.1  
3.8.2.2  
3.8.2.3  
3.8.2.4  
3.8.3  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC Data Register High and Data Register Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Left Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Right Justified Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Left Justified Signed Data Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Eight Bit Truncation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Chapter 4  
Clock Generator Module (CGM)  
4.1  
4.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Manual and Automatic PLL Bandwidth Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
MC68HC908GR16A Data Sheet, Rev. 1.0  
8
Freescale Semiconductor  
4.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Oscillator Enable in Stop Mode Bit (OSCENINSTOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
4.4.6  
4.4.7  
4.4.8  
4.4.9  
4.4.10  
4.5  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
PLL Multiplier Select Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
PLL VCO Range Select Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
4.5.5  
4.6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
4.7  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
4.7.1  
4.7.2  
4.7.3  
4.8  
Acquisition/Lock Time Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4.8.1  
4.8.2  
4.8.3  
Chapter 5  
Configuration Register (CONFIG)  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Chapter 6  
Computer Operating Properly (COP) Module  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.4  
6.5  
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
9
Table of Contents  
6.6  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Chapter 7  
Central Processor Unit (CPU)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Chapter 8  
External Interrupt (IRQ)  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1  
9.2  
9.3  
9.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.6  
Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.7  
9.7.1  
9.7.2  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
MC68HC908GR16A Data Sheet, Rev. 1.0  
10  
Freescale Semiconductor  
Chapter 10  
Low-Power Modes  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.1.1  
10.1.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.2 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.2.1  
10.2.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.3 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.3.1  
10.3.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.4 Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.4.1  
10.4.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.5 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.5.1  
10.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.6 Computer Operating Properly Module (COP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.6.1  
10.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.7 External Interrupt Module (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.7.1  
10.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.8 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.8.1  
10.8.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.9 Low-Voltage Inhibit Module (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.9.1  
10.9.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.10 Enhanced Serial Communications Interface Module (ESCI) . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.10.1  
10.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.11 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.11.1  
10.11.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.12 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.12.1  
10.12.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.13 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.13.1  
10.13.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.14 Exiting Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
11  
Table of Contents  
Chapter 11  
Low-Voltage Inhibit (LVI)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.4 LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.6.1  
11.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Chapter 12  
Input/Output (I/O) Ports  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
12.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
12.2.1  
12.2.2  
12.2.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
12.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
12.3.1  
12.3.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
12.4 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
12.4.1  
12.4.2  
12.4.3  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Port C Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
12.5 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
12.5.1  
12.5.2  
12.5.3  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Port D Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
12.6 Port E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
12.6.1  
12.6.2  
Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Chapter 13  
Resets and Interrupts  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.2 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.2.1  
13.2.2  
13.2.3  
13.2.3.1  
13.2.3.2  
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
MC68HC908GR16A Data Sheet, Rev. 1.0  
12  
Freescale Semiconductor  
13.2.3.3  
13.2.3.4  
13.2.3.5  
13.2.4  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
System Integration Module (SIM) Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 133  
13.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
13.3.1  
13.3.2  
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Software Interrupt (SWI) Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Clock Generator (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Timer Interface Module 1 (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Timer Interface Module 2 (TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Serial Peripheral Interface (SPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Serial Communications Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
KBD0–KBD7 Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
13.3.2.1  
13.3.2.2  
13.3.2.3  
13.3.2.4  
13.3.2.5  
13.3.2.6  
13.3.2.7  
13.3.2.8  
13.3.2.9  
13.3.2.10  
13.3.2.11  
13.3.3  
13.3.3.1  
13.3.3.2  
13.3.3.3  
Chapter 14  
Enhanced Serial Communications Interface (ESCI) Module  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
14.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
14.4.1  
14.4.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
14.4.2.1  
14.4.2.2  
14.4.2.3  
14.4.2.4  
14.4.2.5  
14.4.2.6  
14.4.3  
14.4.3.1  
14.4.3.2  
14.4.3.3  
14.4.3.4  
14.4.3.5  
14.4.3.6  
14.4.3.7  
14.4.3.8  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
13  
Table of Contents  
14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
14.5.1  
14.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
14.6 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
14.7.1  
14.7.2  
PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
14.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
14.8.1  
14.8.2  
14.8.3  
14.8.4  
14.8.5  
14.8.6  
14.8.7  
14.8.8  
ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
ESCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
ESCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
14.9 ESCI Arbiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
14.9.1  
14.9.2  
14.9.3  
14.9.4  
ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Bit Time Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Chapter 15  
System Integration Module (SIM)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
15.2 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
15.2.1  
15.2.2  
15.2.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
15.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
15.3.1  
15.3.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Monitor Mode Entry Module Reset (MODRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.3.2.1  
15.3.2.2  
15.3.2.3  
15.3.2.4  
15.3.2.5  
15.3.2.6  
15.4 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.4.1  
15.4.2  
15.4.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.5 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.5.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
15.5.1.1  
15.5.1.2  
15.5.1.3  
MC68HC908GR16A Data Sheet, Rev. 1.0  
14  
Freescale Semiconductor  
15.5.2  
15.5.3  
15.5.4  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.6.1  
15.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
15.7 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.7.1  
15.7.2  
15.7.3  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Chapter 16  
Serial Peripheral Interface (SPI) Module  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
16.3.1  
16.3.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
16.4 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.4.1  
16.4.2  
16.4.3  
16.4.4  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
16.5 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
16.6 Error Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
16.6.1  
16.6.2  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
16.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
16.8 Resetting the SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
16.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
16.9.1  
16.9.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
16.10 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
16.11 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
16.11.1  
16.11.2  
16.11.3  
16.11.4  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
16.12 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
16.12.1  
16.12.2  
16.12.3  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
15  
Table of Contents  
Chapter 17  
Timebase Module (TBM)  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.5 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
17.6.1  
17.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
17.7 Timebase Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Chapter 18  
Timer Interface Module (TIM1 and TIM2)  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
18.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
18.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
18.4.1  
18.4.2  
18.4.3  
18.4.3.1  
18.4.3.2  
18.4.4  
18.4.4.1  
18.4.4.2  
18.4.4.3  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
18.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
18.6.1  
18.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
18.7 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
18.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
18.9.1  
18.9.2  
18.9.3  
18.9.4  
18.9.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
TIM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
MC68HC908GR16A Data Sheet, Rev. 1.0  
16  
Freescale Semiconductor  
Chapter 19  
Development Support  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
19.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
19.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
19.2.1.1  
19.2.1.2  
19.2.1.3  
19.2.2  
19.2.2.1  
19.2.2.2  
19.2.2.3  
19.2.2.4  
19.2.3  
19.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
19.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
19.3.1.1  
19.3.1.2  
19.3.1.3  
19.3.1.4  
19.3.1.5  
19.3.1.6  
19.3.1.7  
19.3.2  
Chapter 20  
Electrical Specifications  
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
20.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
20.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
20.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
20.5 5-Vdc Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
20.6 3.3-Vdc Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
20.7 5.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
20.8 3.3-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
20.9 Clock Generation Module (CGM) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
20.9.1  
20.9.2  
CGM Component Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
20.10 5.0-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
20.11 3.3-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  
20.12 5.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
20.13 3.3-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
20.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
20.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
17  
Table of Contents  
Chapter 21  
Ordering Information and Mechanical Specifications  
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
21.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
MC68HC908GR16A Data Sheet, Rev. 1.0  
18  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908GR16A is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
1.2 Features  
For convenience, features have been organized to reflect:  
Standard features  
Features of the CPU08  
1.2.1 Standard Features  
Features include:  
High-performance M68HC08 architecture optimized for C-compilers  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
8-MHz internal bus frequency  
Clock generation module supporting 1-MHz to 8-MHz crystals  
FLASH program memory security(1)  
On-chip programming firmware for use with host personal computer which does not require high  
voltage for entry  
In-system programming (ISP)  
System protection features:  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset and selectable trip points for 3.3-V and 5.0-V  
operation  
Illegal opcode detection with reset  
Illegal address detection with reset  
Low-power design; fully static with stop and wait modes  
Standard low-power modes of operation:  
Wait mode  
Stop mode  
Master reset pin and power-on reset (POR)  
16 Kbytes of on-chip FLASH memory  
1 Kbyte of on-chip random-access memory (RAM)  
406 bytes of FLASH programming routines read-only memory (ROM)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
19  
General Description  
Serial peripheral interface (SPI) module  
Enhanced serial communications interface (ESCI) module  
Fine adjust baud rate prescalers for precise control of baud rate  
Arbiter module:  
Measurement of received bit timings for baud rate recovery without use of external timer  
Bitwise arbitration for arbitrated UART communications  
LIN specific enhanced features:  
Generation of LIN 1.2 break symbols without extra software steps on each message  
Break detection filtering to prevent false interrupts  
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture,  
output compare, and pulse-width modulation (PWM) capability on each channel  
Up to 8-channel, 10-bit successive approximation analog-to-digital converter (ADC) depending on  
package choice  
BREAK (BRK) module to allow single breakpoint setting during in-circuit debugging  
Internal pullups on IRQ and RST to reduce customer system cost  
Up to 37 general-purpose input/output (I/O) pins, including:  
28 shared-function I/O pins  
Up to nine dedicated I/O pins, depending on package choice  
Selectable pullups on inputs only on ports A, C, and D. Selection is on an individual port bit basis.  
During output mode, pullups are disengaged.  
High current 10-mA sink/source capability on all port pins  
Higher current 20-mA sink/source capability on PTC0–PTC4  
Timebase module (TBM) with clock prescaler circuitry for eight user selectable periodic real-time  
interrupts with optional active clock source during stop mode for periodic wakeup from stop using  
an external crystal  
User selection of having the oscillator enabled or disabled during stop mode  
Up to 8-bit keyboard wakeup port depending on package choice  
2 mA maximum current injection on all port pins to maintain input protection  
Available packages:  
32-pin quad flat pack (LQFP)  
48-pin quad flat pack (LQFP)  
Specific features of the MC68HC908GR16A in 32-pin LQFP are:  
Port A is only 4 bits: PTA0–PTA3; 4-pin keyboard interrupt (KBI) module  
Port B is only 6 bits: PTB0–PTB5; 6-channel ADC module  
Port C is only 2 bits: PTC0–PTC1  
Port D is only 7 bits: PTD0–PTD6; shared with SPI, TIM1, and TIM2 modules  
Port E is only 2 bits: PTE0–PTE1; shared with ESCI module  
Specific features of the MC68HC908GR16A in 48-pin LQFP are:  
Port A is 8 bits: PTA0–PTA7; 8-pin KBI module  
Port B is 8 bits: PTB0–PTB7; 8-channel ADC module  
Port C is only 7 bits: PTC0–PTC6  
Port D is 8 bits: PTD0–PTD7; shared with SPI, TIM1, and TIM2 modules  
Port E is only 6 bits: PTE0–PTE5; shared with ESCI module  
MC68HC908GR16A Data Sheet, Rev. 1.0  
20  
Freescale Semiconductor  
MCU Block Diagram  
1.2.2 Features of the CPU08  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908GR16A.  
1.4 Pin Assignments  
Figure 1-2 and Figure 1-3 illustrate the pin assignments for the 32-pin LQFP and 48-pin LQFP  
respectively.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
21  
General Description  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 1-1. MCU Block Diagram  
MC68HC908GR16A Data Sheet, Rev. 1.0  
22  
Freescale Semiconductor  
Pin Assignments  
RST  
PTE0/TxD  
PTE1/RxD  
IRQ  
1
PTA2/KBD2  
PTA1/KBD1  
PTA0/KBD0  
VSSAD/VREFL  
VDDAD/VREFH  
PTB5/AD5  
24  
23  
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTB4/AD4  
PTB3/AD3  
Figure 1-2. 32-Pin LQFP Pin Assignments  
PTA2/KBD2  
36  
RST  
PTE0/TxD  
PTE1/RxD  
PTE2  
1
PTA1/KBD1  
PTA0/KBD0  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
2
3
4
5
6
7
8
9
PTC6  
PTC5  
PTE3  
VSSAD/VREFL  
VDDAD/VREFH  
PTB7/AD7  
PTE4  
PTE5  
IRQ  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
10  
11  
25  
PTD3/SPSCK  
12  
Figure 1-3. 48-Pin LQFP Pin Assignments  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
23  
General Description  
1.5 Pin Functions  
Descriptions of the pin functions are provided here.  
1.5.1 Power Supply Pins (V and V )  
DD  
SS  
VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To  
prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-4  
shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response  
ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that  
require the port pins to source high current levels.  
MCU  
VDD  
VSS  
C1  
0.1 µF  
+
C2  
VDD  
Note: Component values shown represent typical applications.  
Figure 1-4. Power Supply Bypassing  
1.5.2 Oscillator Pins (OSC1 and OSC2)  
OSC1 and OSC2 are the connections for an external crystal, resonator, or clock circuit. See Chapter 4  
Clock Generator Module (CGM).  
1.5.3 External Reset Pin (RST)  
A 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the  
entire system. It is driven low when any internal reset source is asserted. This pin contains an internal  
pullup resistor. See Chapter 15 System Integration Module (SIM).  
1.5.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor. See  
Chapter 8 External Interrupt (IRQ).  
MC68HC908GR16A Data Sheet, Rev. 1.0  
24  
Freescale Semiconductor  
Pin Functions  
1.5.5 CGM Power Supply Pins (V  
and V  
)
DDA  
SSA  
VDDA and VSSA are the power supply pins for the analog portion of the clock generator module (CGM).  
Decoupling of these pins should be as per the digital supply. See Chapter 4 Clock Generator Module  
(CGM).  
1.5.6 External Filter Capacitor Pin (V  
)
CGMXFC  
CGMXFC is an external filter capacitor connection for the CGM. See Chapter 4 Clock Generator Module  
(CGM).  
1.5.7 ADC Power Supply/Reference Pins (V  
/V  
and V  
/V  
)
DDAD REFH  
SSAD REFL  
VDDAD and VSSAD are the power supply pins to the analog-to-digital converter (ADC). VREFH and VREFL  
are the reference voltage pins for the ADC. VREFH is the high reference supply for the ADC, and by default  
the VDDAD/VREFH pin should be externally filtered and connected to the same voltage potential as VDD  
.
VREFL is the low reference supply for the ADC, and by default the VSSAD/VREFL pin should be connected  
to the same voltage potential as VSS. See Chapter 3 Analog-to-Digital Converter (ADC).  
1.5.8 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0)  
PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port A pins can be  
programmed to serve as keyboard interrupt pins. PTA7–PTA4 are only available on the 48-pin LQFP  
package. See Chapter 12 Input/Output (I/O) Ports and Chapter 9 Keyboard Interrupt Module (KBI).  
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged  
when configured for output mode. The pullups are selectable on an individual port bit basis.  
1.5.9 Port B I/O Pins (PTB7/AD7–PTB0/AD0)  
PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can also be used for analog-to-digital  
converter (ADC) inputs. PTB7–PTB4 are only available on the 48-pin LQFP package. See Chapter 12  
Input/Output (I/O) Ports and Chapter 3 Analog-to-Digital Converter (ADC).  
1.5.10 Port C I/O Pins (PTC6–PTC0)  
PTC6 and PTC5 are general-purpose, bidirectional I/O port pins. PTC4–PTC0 are general-purpose,  
bidirectional I/O port pins that contain higher current sink/source capability. PTC6–PTC2 are only  
available on the 48-pin LQFP package. See Chapter 12 Input/Output (I/O) Ports.  
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged  
when configured for output mode. The pullups are selectable on an individual port bit basis.  
1.5.11 Port D I/O Pins (PTD7/T2CH1–PTD0/SS)  
PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD3–PTD0 can be programmed to be  
serial peripheral interface (SPI) pins, while PTD7–PTD4 can be individually programmed to be timer  
interface module (TIM1 and TIM2) pins. PTD7 is only available on the 48-pin LQFP package. See  
Chapter 18 Timer Interface Module (TIM1 and TIM2), Chapter 16 Serial Peripheral Interface (SPI)  
Module, and Chapter 12 Input/Output (I/O) Ports.  
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged  
when configured for output mode. The pullups are selectable on an individual port bit basis.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
25  
General Description  
1.5.12 Port E I/O Pins (PTE5–PTE2 and PTE0/TxD)  
PTE5–PTE0 are general-purpose, bidirectional I/O port pins. PTE1 and PTE0 can also be programmed  
to be enhanced serial communications interface (ESCI) pins. PTE5–PTE2 are only available on the  
48-pin LQFP package. See Chapter 14 Enhanced Serial Communications Interface (ESCI) Module and  
Chapter 12 Input/Output (I/O) Ports.  
NOTE  
Any unused inputs and I/O ports should be tied to an appropriate logic level  
(either VDD or VSS). Although the I/O ports of the MC68HC908GR16A do  
not require termination, termination is recommended to reduce the  
possibility of static damage.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
26  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes:  
15,872 bytes of user FLASH memory  
1024 bytes of random-access memory (RAM)  
406 bytes of FLASH programming routines read-only memory (ROM)  
36 bytes of user-defined vectors  
350 bytes of monitor ROM  
2.2 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address reset. In the memory map  
(Figure 2-1) and in register figures in this document, unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on microcontroller (MCU) operation. In the  
Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved  
or with the letter R.  
2.4 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area of $0000–$003F. Additional I/O  
registers have these addresses:  
$FE00; break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE02; reserved  
$FE03; break flag control register, SBFCR  
$FE04; interrupt status register 1, INT1  
$FE05; interrupt status register 2, INT2  
$FE06; interrupt status register 3, INT3  
$FE07; reserved  
$FE08; FLASH control register, FLCR  
$FE09; break address register high, BRKH  
$FE0A; break address register low, BRKL  
$FE0B; break status and control register, BRKSCR  
$FE0C; LVI status register, LVISR  
$FF7E; FLASH block protect register, FLBPR  
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
27  
Memory  
$0000  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
BREAK FLAG CONTROL REGISTER (SBFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
I/O REGISTERS  
64 BYTES  
$003F  
$0040  
RAM  
1024 BYTES  
$043F  
$0440  
FLASH CONTROL REGISTER (FLCR)  
BREAK ADDRESS REGISTER HIGH (BRKH)  
BREAK ADDRESS REGISTER LOW (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVI STATUS REGISTER (LVISR)  
UNIMPLEMENTED  
192 BYTES  
$04FF  
$0500  
RESERVED  
128 BYTES  
UNIMPLEMENTED  
3 BYTES  
$057F  
$0580  
$FE0F  
$FE10  
UNIMPLEMENTED  
5760 BYTES  
UNIMPLEMENTED  
16 BYTES  
$1BFF  
$1C00  
RESERVED FOR COMPATIBILITY WITH MONITOR CODE  
FOR A-FAMILY PART  
$FE1F  
$FE20  
FLASH PROGRAMMING ROUTINES ROM  
406 BYTES  
MONITOR ROM  
350 BYTES  
$1D95  
$1D96  
$FF7D  
$FF7E  
$FF7F  
UNIMPLEMENTED  
41,578 BYTES  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
$BFFF  
$C000  
UNIMPLEMENTED  
93 BYTES  
FLASH MEMORY  
15,872 BYTES  
$FFDB  
$FFDC  
$FDFF  
$FE00  
$FE01  
$FE02  
FLASH VECTORS  
36 BYTES  
BREAK STATUS REGISTER (SBSR)  
SIM RESET STATUS REGISTER (SRSR)  
RESERVED  
$FFFF(1)  
1. $FFF6–$FFFD used for eight security bytes  
Figure 2-1. Memory Map  
MC68HC908GR16A Data Sheet, Rev. 1.0  
28  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 118.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
1
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
(PTB) Write:  
See page 120.  
Reset:  
Read:  
Port C Data Register  
(PTC) Write:  
See page 122.  
Reset:  
Read:  
Port D Data Register  
PTD7  
(PTD) Write:  
See page 124.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
0
DDRA6  
0
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 118.  
Reset:  
Read:  
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
DDRB7  
DDRB6  
0
(DDRB) Write:  
See page 121.  
Reset:  
Read:  
0
0
Data Direction Register C  
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
(DDRC) Write:  
See page 122.  
Reset:  
Read:  
0
Data Direction Register D  
DDRD7  
DDRD6  
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
(DDRD) Write:  
See page 125.  
Reset:  
Read:  
0
0
0
0
Port E Data Register  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 127.  
Reset:  
Read:  
Unaffected by reset  
ESCI Prescaler Register  
PDS2  
0
PDS1  
PDS0  
0
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
(SCPSC) Write:  
See page 166.  
Reset:  
Read:  
0
0
ACLK  
0
0
0
0
0
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
ESCI Arbiter Control  
AM1  
0
AM0  
0
Register (SCIACTL) Write:  
See page 170.  
Reset:  
0
ARD6  
0
0
ARD3  
0
0
ARD2  
0
0
ARD1  
0
0
ARD0  
0
Read:  
ESCI Arbiter Data  
Register (SCIADAT) Write:  
ARD7  
0
ARD5  
0
ARD4  
0
See page 171.  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
29  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
0
0
Data Direction Register E  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
(DDRE) Write:  
See page 128.  
Reset:  
Read:  
0
0
Port A Input Pullup Enable  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register (PTAPUE) Write:  
See page 120.  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
Port C Input Pullup Enable  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Register (PTCPUE) Write:  
See page 124.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Register (PTDPUE) Write:  
See page 127.  
Reset:  
0
0
0
0
0
0
0
SPE  
0
0
Read:  
SPI Control Register  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPTIE  
0
(SPCR) Write:  
See page 207.  
Reset:  
0
1
0
1
Read:  
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
Register (SPSCR) Write:  
ERRIE  
MODFEN  
SPR1  
SPR0  
See page 208.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 210.  
Reset:  
Unaffected by reset  
Read:  
ESCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 157.  
Reset:  
0
TCIE  
0
0
Read:  
ESCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 159.  
Reset:  
0
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 160.  
Reset:  
U
0
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See page 161.  
Reset:  
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
Read:  
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See page 164.  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
30  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
ESCI Data Register  
$0018  
(SCDR) Write:  
T7  
T0  
See page 164.  
Reset:  
Read:  
Unaffected by reset  
ESCI Baud Rate Register  
LINT  
LINR  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
$0019  
$001A  
(SCBR) Write:  
See page 165.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Keyboard Status Read:  
and Control Register  
KEYF  
IMASKK  
MODEK  
Write:  
ACKK  
(INTKBSCR)  
See page 103.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Keyboard Interrupt Enable  
KBIE7  
KBIE6  
0
KBIE5  
0
KBIE4  
0
KBIE3  
KBIE2  
0
KBIE1  
KBIE0  
$001B  
$001C  
$001D  
Register (INTKBIER) Write:  
See page 104.  
Reset:  
0
0
0
0
TBON  
0
0
Read:  
TBIF  
Timebase Module Control  
TBR2  
TBR1  
TBR0  
TBIE  
R
Register (TBCR) Write:  
See page 214.  
Reset:  
TACK  
0
0
0
0
0
0
0
0
0
0
0
0
MODE  
0
Read:  
IRQF  
IRQ Status and Control  
Register (INTSCR) Write:  
IMASK  
0
ACK  
0
See page 98.  
Reset:  
0
0
0
0
0
0
0
0
0
Configuration Register 2 Read:  
(CONFIG2)(1)  
TBMCLK- OSCENIN- ESCIBD-  
SRC  
R
SEL  
STOP  
Write:  
See page 75.  
Reset:  
$001E  
$001F  
0
0
0
0
0
0
0
1
Read:  
LVI5OR3  
(Note 1)  
Configuration Register 1  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD  
SSREC  
0
STOP  
0
COPD  
0
(CONFIG1)(1) Write:  
See page 76.  
Reset:  
0
0
0
0
1. One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset).  
Read:  
TOF  
0
0
TRST  
0
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
Register (T1SC) Write:  
See page 225.  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High (T1CNTH) Write:  
See page 226.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low (T1CNTL) Write:  
See page 226.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
0
Bit 8  
1
Read:  
Timer 1 Counter Modulo  
Register High (T1MODH) Write:  
See page 227.  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
31  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
1
Read:  
Timer 1 Counter Modulo  
Register Low (T1MODL) Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
See page 227.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 1 Channel 0 Status and  
Control Register (T1SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
See page 230.  
Reset:  
0
Read:  
Timer 1 Channel 0  
Register High (T1CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
Register Low (T1CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 1 Channel 1 Status and  
Control Register (T1SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 230.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 1 Channel 1  
Register High (T1CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 1  
Register Low (T1CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
0
TRST  
0
0
Timer 2 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
Register (T2SC) Write:  
See page 227.  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High (T2CNTH) Write:  
See page 226.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low (T2CNTL) Write:  
See page 226.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
1
1
0
Bit 8  
1
Read:  
Timer 2 Counter Modulo  
Register High (T2MODH) Write:  
See page 227.  
Reset:  
Read:  
Timer 2 Counter Modulo  
Register Low (T2MODL) Write:  
Bit 7  
1
6
5
4
3
2
Bit 0  
1
See page 227.  
Reset:  
1
1
1
1
1
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
32  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Timer 2 Channel 0 Status and  
Control Register (T2SC0) Write:  
$0030  
See page 227.  
Reset:  
0
Read:  
Timer 2 Channel 0  
Register High (T2CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
$0031  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
See page 227.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 0  
Register Low (T2CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 2 Channel 1 Status and  
Control Register (T2SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 225.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 2 Channel 1  
Register High (T2CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
Register Low (T2CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
PLLF  
PLL Control Register  
PLLIE  
0
PLLON  
1
BCS  
R
R
VPR1  
VPR0  
(PCTL) Write:  
See page 67.  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read:  
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
Register (PBWC) Write:  
See page 68.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
PLL Multiplier Select High  
MUL11  
MUL10  
MUL9  
MUL8  
Register (PMSH) Write:  
See page 69.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
PLL Multiplier Select Low  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
MUL2  
MUL1  
MUL0  
Register (PMSL) Write:  
See page 70.  
Reset:  
0
0
0
0
Read:  
PLL VCO Select Range  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
VRS2  
VRS1  
VRS0  
Register (PMRS) Write:  
See page 70.  
Reset:  
0
0
1
0
0
0
0
0
0
R
0
0
R
0
0
R
0
0
R
1
Read:  
Reserved Write:  
Reset:  
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
33  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
ADC Status and Control  
Register (ADSCR) Write:  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
$003E  
$003F  
$FE00  
R
0
0
See page 51.  
Reset:  
0
0
0
0
1
0
1
0
1
0
1
1
Read:  
AD9  
AD8  
ADC Data High Register  
(ADRH) Write:  
See page 53.  
Reset:  
Unaffected by reset  
AD4 A3  
Read:  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
0
ADC Data Low Register  
(ADRL) Write:  
See page 53.  
Reset:  
Unaffected by reset  
Read:  
ADC Clock Register  
ADIV2  
ADIV1  
ADIV0  
ADICLK  
MODE1  
MODE0  
R
(ADCLK) Write:  
See page 55.  
Reset:  
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
1
R
0
0
0
R
0
Read:  
SBSW  
(Note 1)  
0
SIM Break Status Register  
(SBSR) Write:  
See page 236.  
Reset:  
1. Writing a 0 clears SBSW.  
Read:  
(SRSR) Write:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
See page 188.  
POR:  
Read:  
1
R
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
Reserved Write:  
Reset:  
0
Read:  
SIM Break Flag Control  
Register (SBFCR) Write:  
BCFE  
R
R
R
R
R
R
R
See page 236.  
Reset:  
0
IF6  
R
0
IF5  
R
0
IF4  
R
0
IF3  
R
0
IF2  
R
0
IF1  
R
0
0
0
0
Read:  
Interrupt Status Register 1  
(INT1) Write:  
R
R
See page 183.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2) Write:  
See page 184.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
IF20  
R
IF19  
R
IF18  
R
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3) Write:  
R
R
See page 184.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Reserved Write:  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
34  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
PGM  
0
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
MASS  
ERASE  
$FE08  
(FLCR) Write:  
See page 38.  
Reset:  
Read:  
0
Bit 15  
0
0
0
13  
0
0
12  
0
0
11  
0
0
10  
0
0
9
0
1
Break Address Register High  
14  
Bit 8  
0
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FF7E  
(BRKH) Write:  
See page 235.  
Reset:  
Read:  
0
Break Address Register Low  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
(BRKL) Write:  
See page 235.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
BRKA  
Register (BRKSCR) Write:  
See page 235.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
Write:  
LVI Status Register (LVISR)  
See page 113.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
FLASH Block Protect  
Register (FLBPR)(1) Write:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
See page 43.  
Reset:  
Unaffected by reset  
1. Non-volatile FLASH register  
Read:  
Low byte of reset vector  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 81.  
Reset:  
Writing clears COP counter (any value)  
Unaffected by reset  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
35  
Memory  
.
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
Timebase Vector (High)  
Lowest  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Timebase Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
ESCI Transmit Vector (High)  
ESCI Transmit Vector (Low)  
ESCI Receive Vector (High)  
ESCI Receive Vector (Low)  
ESCI Error Vector (High)  
ESCI Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
PLL Vector (Low)  
IRQ Vector (High)  
IF1  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
36  
Freescale Semiconductor  
Random-Access Memory (RAM)  
2.5 Random-Access Memory (RAM)  
Addresses $0040 through $043F are RAM locations. The location of the stack RAM is programmable.  
The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page  
zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently  
access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently  
accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU  
registers.  
NOTE  
For M6805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU may overwrite data in  
the RAM during a subroutine or during the interrupt stacking operation.  
2.6 FLASH Memory (FLASH)  
This subsection describes the operation of the embedded FLASH memory. This memory can be read,  
programmed, and erased from a single external supply. The program, erase, and read operations are  
enabled through the use of an internal charge pump.  
2.6.1 Functional Description  
The FLASH memory is an array of 15,872 bytes with an additional 36 bytes of user vectors and one byte  
of block protection. An erased bit reads as 1 and a programmed bit reads as a 0. Memory in the FLASH  
array is organized into two rows per page basis. For the 16-K word by 8-bit embedded FLASH memory,  
the page size is 64 bytes per page and the row size is 32 bytes per row. Hence the minimum erase page  
size is 64 bytes and the minimum program row size is 32 bytes. Program and erase operation operations  
are facilitated through control bits in FLASH control register (FLCR). Details for these operations appear  
later in this section.  
The address ranges for the user memory and vectors are:  
$C000–$FDFF; user memory  
$FE08; FLASH control register  
$FF7E; FLASH block protect register  
$FFDC–$FFFF; these locations are reserved for user-defined interrupt and reset vectors  
NOTE  
A security feature prevents viewing of the FLASH contents.(1)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
37  
Memory  
2.6.2 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for program and erase operations  
in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
Setting this read/write bit configures the 16-Kbyte FLASH array for mass erase operation.  
1 = MASS erase operation selected  
0 = PAGE erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
38  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.3 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory. A page consists of 64  
consecutive bytes starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 36-byte user interrupt  
vectors area also forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit, and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the page address range of the block to be erased.  
4. Wait for a time, tNVS (minimum 10 µs)  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 1 ms or 4 ms)  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH (minimum 5 µs)  
9. Clear the HVEN bit.  
10. After a time, tRCV (typical 1 µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from FLASH memory. While these operations must be  
performed in the order shown, other unrelated operations may occur  
between the steps.  
In applications that need more than 1000 program/erase cycles, use the 4-ms page erase specification  
to get improved long-term reliability. Any application can use this 4-ms page erase specification.  
However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times,  
and speed is important, use the 1-ms page erase specification to get a shorter cycle time.  
2.6.4 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase entire FLASH memory:  
1. Set both the ERASE bit, and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address range.  
4. Wait for a time, tNVS (minimum 10 µs)  
5. Set the HVEN bit.  
6. Wait for a time, tMErase (minimum 4 ms)  
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, tNVHL (minimum 100 µs)  
9. Clear the HVEN bit.  
10. After a time, tRCV (typical 1 µs), the memory can be accessed in read mode again.  
1. When in monitor mode, with security sequence failed (see 19.3.2 Security), write to the FLASH block protect register instead  
of any FLASH address.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
39  
Memory  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from FLASH memory. While these operations must be  
performed in the order shown, other unrelated operations may occur  
between the steps.  
2.6.5 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, and $XXE0.  
During the programming cycle, make sure that all addresses being written to fit within one of the ranges  
specified above. Attempts to program addresses in different row ranges in one programming cycle will  
fail. Use this step-by-step procedure to program a row of FLASH memory (Figure 2-4 is a flowchart  
representation).  
NOTE  
Only bytes which are currently $FF may be programmed.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the row address range desired.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tPGS (minimum 5 µs).  
7. Write data to the FLASH address to be programmed.  
8. Wait for a time, tPROG (minimum 30 µs).  
9. Repeat step 7 and 8 until all the bytes within the row are programmed.  
10. Clear the PGM bit.(1)  
11. Wait for a time, tNVH (minimum 5 µs).  
12. Clear the HVEN bit.  
13. After time, tRCV (typical 1 µs), the memory can be accessed in read mode again.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations can not be performed by  
code being executed from the same FLASH array.  
NOTE  
While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps. Care must be taken  
within the FLASH array memory space such as the COP control register  
(COPCTL) at $FFFF.  
NOTE  
It is highly recommended that interrupts be disabled during program/ erase  
operations.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
40  
Freescale Semiconductor  
FLASH Memory (FLASH)  
NOTE  
Do not exceed tPROG maximum or tHV maximum. tHV is defined as the  
cumulative high voltage programming time to the same row before next  
erase. tHV must satisfy this condition:  
tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum  
Refer to 20.15 Memory Characteristics.  
NOTE  
The time between programming the FLASH address change (step 7 to  
step 7), or the time between the last FLASH programmed to clearing the  
PGM bit (step 7 to step 10) must not exceed the maximum programming  
time, tPROG maximum.  
CAUTION  
Be cautious when programming the FLASH array to ensure that  
non-FLASH locations are not used as the address that is written to when  
selecting either the desired row address range in step 3 of the algorithm or  
the byte to be programmed in step 7 of the algorithm. This applies  
particularly to $FFD4–$FFDF.  
2.6.6 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made for protecting a block of memory from unintentional erase or program  
operations due to system malfunction. This protection is done by using of a FLASH block protect register  
(FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range  
of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH  
memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or  
PROGRAM operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit  
When the FLBPR is program with all 0’s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in  
2.6.7 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF or $FE,  
any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase  
is disabled whenever any block is protected (FLBPR does not equal $FF). The presence of a VTST on the  
IRQ pin will bypass the block protection so that all of the memory included in the block protect register is  
open for program and erase operations.  
NOTE  
The FLASH block protect register is not protected with special hardware or  
software. Therefore, if this page is not protected by FLBPR the register is  
erased by either a page or mass erase operation.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
41  
Memory  
Algorithm for programming  
a row (32 bytes) of FLASH memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
PROGRAMMING  
THIS ROW?  
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
Note:  
The time between each FLASH address change (step 7 to step 7),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG max.  
13  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908GR16A Data Sheet, Rev. 1.0  
42  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.7 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and  
therefore can only be written during a programming sequence of the FLASH memory. The value in this  
register determines the starting location of the protected range within the FLASH memory.  
Address:  
$FF7E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Bits  
These eight bits represent bits [13:6] of a 16-bit memory address.  
Bit 15 and Bit 14 are 1s and bits [5:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be $XX00, $XX40, $XX80, and $XXC0 (64 bytes  
page boundaries) within the FLASH memory.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF FLASH  
BLOCK PROTECT  
0
0
0
0
0
0
FLBPR VALUE  
1
1
Figure 2-6. FLASH Block Protect Start Address  
Table 2-2. Examples of Protect Address Ranges  
BPR[7:0]  
$00  
Addresses of Protect Range  
The entire FLASH memory is protected.  
$C040 (1100 0000 0100 0000) — $FFFF  
$C080 (1100 0000 1000 0000) — $FFFF  
$C0C0 (1100 0000 1100 0000) — $FFFF  
$C100 (1100 0001 0000 0000) — $FFFF  
and so on...  
$01 (0000 0001)  
$02 (0000 0010)  
$03 (0000 0011)  
$04 (0000 0100)  
$FC (1111 1100)  
$FD (1111 1101)  
$FF00 (1111 1111 0000 0000) — FFFF  
$FF40 (1111 1111 0100 0000) — $FFFF  
FLBPR and vectors are protected  
$FF80 (111 1111 1000 0000) — FFFF  
$FE (1111 1110)  
Vectors are protected  
$FF  
The entire FLASH memory is not protected.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
43  
Memory  
2.6.8 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a program or erase operation on the  
FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode.  
2.6.9 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a program or erase operation on the  
FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode  
NOTE  
Standby mode is the power saving mode of the FLASH module in which all  
internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
44  
Freescale Semiconductor  
Chapter 3  
Analog-to-Digital Converter (ADC)  
3.1 Introduction  
This section describes the 10-bit analog-to-digital converter (ADC).  
3.2 Features  
Features of the ADC module include:  
Eight channels with multiplexed input  
Linear successive approximation with monotonicity  
10-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Left or right justified result  
Left justified sign data mode  
3.3 Functional Description  
The ADC provides eight pins for sampling external sources at pins PTB7/KBD7–PTB0/KBD0. An analog  
multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in  
(VADIN). VADIN is converted by the successive approximation register-based analog-to-digital converter.  
When the conversion is completed, ADC places the result in the ADC data register and sets a flag or  
generates an interrupt. See Figure 3-2.  
3.3.1 ADC Port I/O Pins  
PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The  
channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides  
the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are  
controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data  
direction register (DDR) will not have any affect on the port pin that is selected by the ADC. A read of a  
port pin in use by the ADC will return a 0.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
45  
Analog-to-Digital Converter (ADC)  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 3-1. Block Diagram Highlighting ADC Block and Pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
46  
Freescale Semiconductor  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRBx  
WRITE DDRBx  
DISABLE  
DDRBx  
PTBx  
RESET  
WRITE PTBx  
READ PTBx  
PTBx  
ADC CHANNEL x  
DISABLE  
ADC DATA REGISTER  
ADC  
VOLTAGE IN  
(VADIN  
CONVERSION  
COMPLETE  
ADCH4–ADCH0  
)
CHANNEL  
SELECT  
INTERRUPT  
ADC  
LOGIC  
ADC CLOCK  
AIEN COCO  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV2–ADIV0 ADICLK  
Figure 3-2. ADC Block Diagram  
3.3.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH, the ADC converts the signal to $3FF (full scale). If the  
input voltage equals VREFL, the ADC converts it to $000. Input voltages between VREFH and VREFL are a  
straight-line linear conversion.  
NOTE  
The ADC input voltage must always be greater than VSSAD and less than  
VDDAD. Connect the VDDAD pin to the same voltage potential as the VDD  
pin, and connect the VSSAD pin to the same voltage potential as the VSS pin.  
The VDDAD pin should be routed carefully for maximum noise immunity.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
47  
Analog-to-Digital Converter (ADC)  
3.3.3 Conversion Time  
Conversion starts after a write to the ADC status and control register (ADSCR). One conversion will take  
between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits should be set to provide a 1-MHz ADC  
clock frequency.  
16 to 17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
3.3.4 Conversion  
In continuous conversion mode, the ADC data register will be filled with new data after each conversion.  
Data from the previous conversion will be overwritten whether that data has been read or not.  
Conversions will continue until the ADCO bit is cleared. The COCO bit is set after each conversion and  
will stay set until the next read of the ADC data register.  
In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs  
between writes to the ADSCR.  
When a conversion is in process and the ADSCR is written, the current conversion data should be  
discarded to prevent an incorrect reading.  
3.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
3.3.6 Result Justification  
The conversion result may be formatted in four different ways:  
1. Left justified  
2. Right justified  
3. Left Justified sign data mode  
4. 8-bit truncation mode  
All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock register  
(ADCLK).  
Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register  
high, ADRH. This may be useful if the result is to be treated as an 8-bit result where the two least  
significant bits (LSB), located in the ADC data register low, ADRL, can be ignored. However, ADRL must  
be read after ADRH or else the interlocking will prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC data register high, ADRH, and  
the eight LSBs in ADC data register low, ADRL. This mode of operation typically is used when a 10-bit  
unsigned result is desired.  
Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit  
result, AD9 located in ADRH, is complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed. Finally, 8-bit truncation mode will place  
the eight MSBs in the ADC data register low, ADRL. The two LSBs are dropped. This mode of operation  
MC68HC908GR16A Data Sheet, Rev. 1.0  
48  
Freescale Semiconductor  
Monotonicity  
is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL  
is present.  
NOTE  
Quantization error is affected when only the most significant eight bits are  
used as a result. See Figure 3-3.  
8-BIT 10-BIT  
RESULT RESULT  
IDEAL 8-BIT CHARACTERISTIC  
WITH QUANTIZATION = 1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = 1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8-BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
REPRESENTED AS 10-BIT  
9 1/2  
INPUT VOLTAGE  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
1/2  
1 1/2  
2 1/2  
REPRESENTED AS 8-BIT  
Figure 3-3. Bit Truncation Mode Error  
3.4 Monotonicity  
The conversion process is monotonic and has no missing codes.  
3.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC  
conversion. A CPU interrupt is generated if the COCO bit is at 0. The COCO bit is not used as a  
conversion complete flag when interrupts are enabled.  
3.6 Low-Power Modes  
The WAIT and STOP instruction can put the MCU in low power-consumption standby modes.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
49  
Analog-to-Digital Converter (ADC)  
3.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing the  
WAIT instruction.  
3.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one  
conversion cycle to stabilize the analog circuitry.  
3.7 I/O Signals  
The ADC module has eight pins shared with port B, PTB7/AD7–PTB0/AD0.  
3.7.1 ADC Analog Power Pin (V  
)
DDAD  
The ADC analog portion uses VDDAD as its power pin. Connect the VDDAD pin to the same voltage  
potential as VDD. External filtering may be necessary to ensure clean VDDAD for good results.  
NOTE  
For maximum noise immunity, route VDDAD carefully and place bypass  
capacitors as close as possible to the package.  
VDDAD and VREFH are double-bonded on the MC68HC908GR16A.  
3.7.2 ADC Analog Ground Pin (V  
)
SSAD  
The ADC analog portion uses VSSAD as its ground pin. Connect the VSSAD pin to the same voltage  
potential as VSS.  
NOTE  
Route VSSAD cleanly to avoid any offset errors.  
VSSAD and VREFL are double-bonded on the MC68HC908GR16A.  
3.7.3 ADC Voltage Reference High Pin (V  
)
REFH  
The ADC analog portion uses VREFH as its upper voltage reference pin. By default, connect the VREFH  
pin to the same voltage potential as VDD. External filtering is often necessary to ensure a clean VREFH for  
good results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion  
values.  
NOTE  
For maximum noise immunity, route VREFH carefully and place bypass  
capacitors as close as possible to the package. Routing VREFH close and  
parallel to VREFL may improve common mode noise rejection.  
VDDAD and VREFH are double-bonded on the MC68HC908GR16A.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
50  
Freescale Semiconductor  
I/O Registers  
3.7.4 ADC Voltage Reference Low Pin (V  
)
REFL  
The ADC analog portion uses VREFL as its lower voltage reference pin. By default, connect the VREFH pin  
to the same voltage potential as VSS. External filtering is often necessary to ensure a clean VREFL for good  
results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values.  
NOTE  
For maximum noise immunity, route VREFL carefully and, if not connected  
to VSS, place bypass capacitors as close as possible to the package.  
Routing VREFH close and parallel to VREFL may improve common mode  
noise rejection.  
VSSAD and VREFL are double-bonded on the MC68HC908GR16A.  
3.7.5 ADC Voltage In (V  
)
ADIN  
VADIN is the input voltage signal from one of the eight ADC channels to the ADC module.  
3.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADRH and ADRL)  
ADC clock register (ADCLK)  
3.8.1 ADC Status and Control Register  
Function of the ADC status and control register (ADSCR) is described here.  
Address:  
$003C  
Bit 7  
COCO  
R
6
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
AIEN  
0
0
R
= Reserved  
Figure 3-4. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion.  
COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It  
always reads as a 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)  
NOTE  
The write function of the COCO bit is reserved. When writing to the ADSCR  
register, always have a 0 in the COCO bit position.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
51  
Analog-to-Digital Converter (ADC)  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR register at the end of each  
conversion. Only one conversion is completed between writes to the ADSCR when this bit is cleared.  
Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH4–ADCH0 — ADC Channel Select Bits  
ADCH4–ADCH0 form a 5-bit field which is used to select one of 32 ADC channels. Only eight  
channels, AD7–AD0, are available on this MCU. The channels are detailed in Table 3-1. Care should  
be taken when using a port pin as both an analog and digital input simultaneously to prevent switching  
noise from corrupting the analog signal. See Table 3-1.  
The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for  
reduced power consumption for the MCU when the ADC is not being used.  
NOTE  
Recovery from the disabled state requires one conversion cycle to stabilize.  
The voltage levels supplied from internal reference nodes, as specified in  
Table 3-1, are used to verify the operation of the ADC converter both in production testing and for user  
applications.  
Table 3-1. Mux Channel Select(1)  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
0
1
Unused  
VREFH  
VREFL  
1
1
1
1
1
1
1
1
0
1
ADC power off  
1. If any unused channels are selected, the resulting ADC conversion will be unknown or  
reserved.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
52  
Freescale Semiconductor  
I/O Registers  
3.8.2 ADC Data Register High and Data Register Low  
3.8.2.1 Left Justified Mode  
In left justified mode, the ADRH register holds the eight MSBs of the 10-bit result. The only difference from  
left justified mode is that the AD9 is complemented. The ADRL register holds the two LSBs of the 10-bit  
result. All other bits read as 0. ADRH and ADRL are updated each time an ADC single channel conversion  
completes. Reading ADRH latches the contents of ADRL until ADRL is read. All subsequent results will  
be lost until the ADRH and ADRL reads are completed.  
Address:  
$003D  
Bit 7  
ADRH  
Bit 0  
6
5
4
3
2
1
Read:  
Write:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD1  
ADRL  
0
AD0  
0
0
0
0
0
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-5. ADC Data Register High (ADRH) and Low (ADRL)  
3.8.2.2 Right Justified Mode  
In right justified mode, the ADRH register holds the two MSBs of the 10-bit result. All other bits read as 0.  
The ADRL register holds the eight LSBs of the 10-bit result. ADRH and ADRL are updated each time an  
ADC single channel conversion completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. All subsequent results will be lost until the ADRH and ADRL reads are completed.  
Address:  
$003D  
Bit 7  
0
ADRH  
Bit 0  
6
0
5
0
4
0
3
0
2
0
1
Read:  
Write:  
AD9  
AD8  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD7  
ADRL  
AD0  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-6. ADC Data Register High (ADRH) and Low (ADRL)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
53  
Analog-to-Digital Converter (ADC)  
3.8.2.3 Left Justified Signed Data Mode  
In left justified signed data mode, the ADRH register holds the eight MSBs of the 10-bit result. The only  
difference from left justified mode is that the AD9 is complemented. The ADRL register holds the two  
LSBs of the 10-bit result. All other bits read as 0. ADRH and ADRL are updated each time an ADC single  
channel conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. All  
subsequent results will be lost until the ADRH and ADRL reads are completed.  
Address:  
$003D  
Bit 7  
ADRH  
Bit 0  
6
5
4
3
2
1
Read:  
Write:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD1  
ADRL  
0
AD0  
0
0
0
0
0
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-7. ADC Data Register High (ADRH) and Low (ADRL)  
3.8.2.4 Eight Bit Truncation Mode  
In 8-bit truncation mode, the ADRL register holds the eight MSBs of the 10-bit result. The ADRH register  
is unused and reads as 0. The ADRL register is updated each time an ADC single channel conversion  
completes. In 8-bit mode, the ADRL register contains no interlocking with ADRH.  
Address:  
$003D  
Bit 7  
0
ADRH  
Bit 0  
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Write:  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD9  
ADRL  
AD2  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-8. ADC Data Register High (ADRH) and Low (ADRL)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
54  
Freescale Semiconductor  
I/O Registers  
3.8.3 ADC Clock Register  
The ADC clock register (ADCLK) selects the clock frequency for the ADC.  
Address:  
$003F  
Bit 7  
6
5
ADIV0  
0
4
ADICLK  
0
3
MODE1  
0
2
MODE0  
1
1
R
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
ADIV1  
0
0
0
R
= Reserved  
= Unimplemented  
Figure 3-9. ADC Clock Register (ADCLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal  
ADC clock. Table 3-2 shows the available clock configurations. The ADC clock should be set to  
approximately 1 MHz.  
Table 3-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
0
1
0
1
X(1)  
X(1)  
1. X = Don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either the bus clock or the oscillator output clock (CGMXCLK) as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source.  
1 = Internal bus clock  
0 = Oscillator output clock (CGMXCLK)  
The ADC requires a clock rate of approximately 1 MHz for correct operation. If the selected clock  
source is not fast enough, the ADC will generate incorrect conversions. See 20.10 5.0-Volt ADC  
Characteristics.  
f
CGMXCLK or bus frequency  
fADIC  
=
1 MHz  
ADIV[2:0]  
MODE1 and MODE0 — Modes of Result Justification Bits  
MODE1 and MODE0 select among four modes of operation. The manner in which the ADC conversion  
results will be placed in the ADC data registers is controlled by these modes of operation. Reset returns  
right-justified mode.  
00 = 8-bit truncation mode  
01 = Right justified mode  
10 = Left justified mode  
11 = Left justified signed data mode  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
55  
Analog-to-Digital Converter (ADC)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
56  
Freescale Semiconductor  
Chapter 4  
Clock Generator Module (CGM)  
4.1 Introduction  
This section describes the clock generator module (CGM). The CGM generates the crystal clock signal,  
CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock  
signal, CGMOUT, which is based on either the crystal clock divided by two or the phase-locked loop (PLL)  
clock, CGMVCLK, divided by two. In user mode, CGMOUT is the clock from which the SIM derives the  
system clocks, including the bus clock, which is at a frequency of CGMOUT/2. The PLL is a fully functional  
frequency generator designed for use with crystals or ceramic resonators. The PLL can generate a  
maximum bus frequency of 8 MHz using a 1-8MHz crystal or external clock source.  
4.2 Features  
Features of the CGM include:  
Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal  
reference  
High-frequency crystal operation with low-power operation and high-output frequency resolution  
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
Configuration register bit to allow oscillator operation during stop mode  
4.3 Functional Description  
The CGM consists of three major submodules:  
Crystal oscillator circuit — The crystal oscillator circuit generates the constant crystal frequency  
clock, CGMXCLK.  
Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock,  
CGMVCLK.  
Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by  
two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives  
the system clocks from either CGMOUT or CGMXCLK.  
Figure 4-1 shows the structure of the CGM.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
57  
Clock Generator Module (CGM)  
OSCILLATOR (OSC)  
OSC2  
OSC1  
CGMXCLK  
(TO: SIM, TIMEBASE, ADC)  
SIMOSCEN  
(FROM SIM)  
OSCENINSTOP  
(FROM CONFIG)  
PHASE-LOCKED LOOP (PLL)  
CGMRCLK  
CGMOUT  
(TO SIM)  
A
B
CLOCK  
SELECT  
CIRCUIT  
÷
2
BCS  
S*  
*WHEN S = 1,  
CGMOUT = B  
VDDA  
CGMXFC  
VSSA  
VPR1–VPR0  
VRS7–VRS0  
PTB4  
MONITOR  
MODE  
USER  
MODE  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
CGMVCLK  
PLL ANALOG  
CGMINT  
(TO SIM)  
AUTOMATIC  
MODE  
CONTROL  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL11–MUL0  
CGMVDV  
FREQUENCY  
DIVIDER  
Figure 4-1. CGM Block Diagram  
MC68HC908GR16A Data Sheet, Rev. 1.0  
58  
Freescale Semiconductor  
Functional Description  
4.3.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the  
input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration  
module (SIM) or the OSCENINSTOP bit in the CONFIG register enable the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal  
frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of  
CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related  
external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator  
circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.  
4.3.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending  
on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes  
either automatically or manually.  
4.3.3 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
The operating range of the VCO is programmable for a wide range of frequencies and for maximum  
immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, fVRS. Modulating the voltage on the  
CGMXFC pin changes the frequency within this range. By design, fVRS is equal to the nominal  
center-of-range frequency, fNOM, (71.4 kHz) times a linear factor, L, and a power-of-two factor, E, or  
(L × 2E)fNOM  
.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency,  
fRCLK. The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is fed back through a  
programmable modulo divider. The modulo divider reduces the VCO clock by a factor, N. The dividers  
output is the VCO feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N). For more  
information, see 4.3.6 Programming the PLL.  
The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock,  
CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The  
loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on  
the width and direction of the correction pulse. The filter can make fast or slow corrections depending on  
its mode, described in 4.3.4 Acquisition and Tracking Modes. The value of the external capacitor and the  
reference frequency determines the speed of the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the reference  
clock, CGMRCLK. Therefore, the speed of the lock detector is directly proportional to the reference  
frequency, fRCLK. The circuit determines the mode of the PLL and the lock condition based on this  
comparison.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
59  
Clock Generator Module (CGM)  
4.3.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two operating modes:  
Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the  
VCO. This mode is used at PLL start up or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in  
the PLL bandwidth control register. (See 4.5.2 PLL Bandwidth Control Register.)  
Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the  
VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL  
enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected  
as the base clock source. (See 4.3.8 Base Clock Selector Circuit.) The PLL is automatically in  
tracking mode when not in acquisition mode or when the ACQ bit is set.  
4.3.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter manually or automatically.  
Automatic mode is recommended for most users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between  
acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 4.5.2 PLL  
Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt  
request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit  
continuously (for example, during PLL start up) or at periodic intervals. In either case, when the LOCK bit  
is set, the VCO clock is safe to use as the source for the base clock. (See 4.3.8 Base Clock Selector  
Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has  
suffered a severe noise hit and the software must take appropriate action, depending on the application.  
(See 4.6 Interrupts for information and precautions on using interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth control mode:  
The ACQ bit (See 4.5.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of  
the filter. (See 4.3.4 Acquisition and Tracking Modes.)  
The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the  
VCO frequency is out of a certain tolerance. (See 4.8 Acquisition/Lock Time Specifications for  
more information.)  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the  
VCO frequency is out of a certain tolerance. (See 4.8 Acquisition/Lock Time Specifications for  
more information.)  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling  
the LOCK bit. (See 4.5.1 PLL Control Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not  
require an indicator of the lock condition for proper operation. Such systems typically operate well below  
fBUSMAX  
.
MC68HC908GR16A Data Sheet, Rev. 1.0  
60  
Freescale Semiconductor  
Functional Description  
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual  
mode, the ACQ bit must be clear.  
Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (See 4.8  
Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL  
control register (PCTL).  
Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the  
clock source to CGMOUT (BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
4.3.6 Programming the PLL  
Use the following procedure to program the PLL. For reference, the variables used and their meaning are  
shown in Table 4-1.  
Table 4-1. Variable Definitions  
Variable  
Definition  
Desired bus clock frequency  
fBUSDES  
fVCLKDES  
fRCLK  
fVCLK  
fBUS  
Desired VCO clock frequency  
Chosen reference crystal frequency  
Calculated VCO clock frequency  
Calculated bus clock frequency  
Nominal VCO center frequency  
Programmed VCO center frequency  
fNOM  
fVRS  
NOTE  
The round function in the following equations means that the real number  
should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, fBUSDES  
.
2. Calculate the desired VCO frequency (four times the desired bus frequency).  
f
VCLKDES = 4 x fBUSDES  
3. Choose a practical PLL (crystal) reference frequency, fRCLK. Typically, the reference crystal is 1–8  
MHz.  
Frequency errors to the PLL are corrected at a rate of fRCLK. For stability and lock time reduction,  
this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate.  
The relationship between the VCO frequency, fVCLK, and the reference frequency, fRCLK, is:  
fVCLK = (N) (fRCLK  
)
N, the range multiplier, must be an integer.  
In cases where desired bus frequency has some tolerance, choose fRCLK to a value determined  
either by other module requirements (such as modules which are clocked by CGMXCLK), cost  
requirements, or ideally, as high as the specified range allows. See Chapter 20 Electrical  
Specifications. After choosing N, the actual bus frequency can be determined using equation in 2  
above.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
61  
Clock Generator Module (CGM)  
4. Select a VCO frequency multiplier, N.  
f
VCLKDES  
-------------------------  
N = round  
f
RCLK  
5. Calculate and verify the adequacy of the VCO and bus frequencies fVCLK and fBUS  
.
f
= (N) × f  
= (f  
VCLK  
RCLK  
f
) ⁄ 4  
VCLK  
BUS  
6. Select the VCO’s power-of-two range multiplier E, according to Table 4-2.  
Table 4-2. Power-of-Two Range Selectors  
Frequency Range  
E
0
1
0 < fVCLK 8 MHz  
8 MHz< fVCLK 16 MHz  
16 MHz< fVCLK 32 MHz  
2(1)  
1. Do not program E to a value of 3.  
7. Select a VCO linear range multiplier, L, where fNOM = 71.4 kHz  
fVCLK  
L = Round  
2E x fNOM  
8. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, fVRS. The  
center-of-range frequency is the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
f
VRS = (L x 2E) fNOM  
9. For proper operation,  
E
f
× 2  
NOM  
--------------------------  
VCLK  
f
f  
VRS  
2
10. Verify the choice of N, E, and L by comparing fVCLK to fVRS and fVCLKDES. For proper operation,  
fVCLK must be within the application’s tolerance of fVCLKDES, and fVRS must be as close as possible  
to fVCLK  
.
NOTE  
Exceeding the recommended maximum bus frequency or VCO frequency  
can crash the MCU.  
11. Program the PLL registers accordingly:  
a. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E.  
b. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high  
(PMSH), program the binary equivalent of N. If using a 1–8 MHz reference, the PMSL register  
must be reprogrammed from the reset value before enabling the PLL.  
c. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
62  
Freescale Semiconductor  
Functional Description  
Table 4-3 provides numeric examples (register values are in hexadecimal notation):  
Table 4-3. Numeric Example  
PCTL  
E
PMSH,L  
N
PMRS  
L
fBUS (MHz)  
fRCLK (MHz)  
1.0  
2.0  
4.0  
8.0  
2.0  
4.0  
5.0  
2.0  
2.0  
2.0  
2.0  
4.0  
4.0  
4.0  
0
0
1
2
0
1
2
002  
004  
008  
010  
002  
004  
005  
38  
70  
70  
70  
70  
70  
46  
8.0  
4.0  
2
1
008  
002  
70  
45  
2.4576  
4.9152  
4.9152  
7.3728  
2.0  
4.9152  
4.9152  
8.0  
2
2
0
1
2
2
004  
006  
001  
002  
003  
004  
45  
67  
70  
70  
54  
70  
4.0  
8.0  
6.0  
8.0  
8.0  
8.0  
4.3.7 Special Programming Exceptions  
The programming method described in 4.3.6 Programming the PLL does not account for two possible  
exceptions. A value of 0 for N or L is meaningless when used in the equations given. To account for these  
exceptions:  
A 0 value for N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the source for the base clock.  
See 4.3.8 Base Clock Selector Circuit.  
4.3.8 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the  
source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits  
up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other.  
During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by  
two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock  
frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock  
cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if  
the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or  
deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the  
factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the  
PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base  
clock.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
63  
Clock Generator Module (CGM)  
4.3.9 CGM External Connections  
In its typical configuration, the CGM requires external components. Five of these are for the crystal  
oscillator and two or four are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 4-2.  
Figure 4-2 shows only the logical representation of the internal components and may not represent actual  
circuitry. The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines. Refer to the  
crystal manufacturer’s data for more information regarding values for C1 and C2.  
Figure 4-2 also shows the external components for the PLL:  
Bypass capacitor, CBYP  
Filter network  
Routing should be done with great care to minimize signal cross talk and noise.  
SIMOSCEN  
OSCENINSTOP  
(FROM CONFIG)  
CGMXCLK  
CGMXFC  
VSSA  
OSC1  
OSC2  
VDDA  
VDD  
RB  
RF1  
CBYP  
0.1 µF  
CF2  
RS  
CF1  
3 Component Filter  
X1  
C1  
C2  
Note: Filter network in box can be replaced with a single capacitor, but will degrade stability.  
Figure 4-2. CGM External Connections  
MC68HC908GR16A Data Sheet, Rev. 1.0  
64  
Freescale Semiconductor  
I/O Signals  
4.4 I/O Signals  
The following paragraphs describe the CGM I/O signals.  
4.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
4.4.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
4.4.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is  
connected to this pin. (See Figure 4-2.)  
NOTE  
To prevent noise problems, the filter network should be placed as close to  
the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
4.4.4 PLL Analog Power Pin (V  
)
DDA  
VDDA is a power pin used by the analog portions of the PLL. Connect the VDDA pin to the same voltage  
potential as the VDD pin.  
NOTE  
Route VDDA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
4.4.5 PLL Analog Ground Pin (V  
)
SSA  
VSSA is a ground pin used by the analog portions of the PLL. Connect the VSSA pin to the same voltage  
potential as the VSS pin.  
NOTE  
Route VSSA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
4.4.6 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and  
PLL.  
4.4.7 Oscillator Enable in Stop Mode Bit (OSCENINSTOP)  
OSCENINSTOP is a bit in the CONFIG2 register that enables the oscillator to continue operating during  
stop mode. If this bit is set, the oscillator continues running during stop mode. If this bit is not set (default),  
the oscillator is controlled by the SIMOSCEN signal which will disable the oscillator during stop mode.  
4.4.8 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes  
directly from the crystal oscillator circuit. Figure 4-2 shows only the logical relation of CGMXCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
65  
Clock Generator Module (CGM)  
depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be  
unstable at start up.  
4.4.9 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks.  
CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK,  
divided by two.  
4.4.10 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
4.5 CGM Registers  
These registers control and monitor operation of the CGM:  
PLL control register (PCTL) — See 4.5.1 PLL Control Register  
PLL bandwidth control register (PBWC) — see 4.5.2 PLL Bandwidth Control Register  
PLL multiplier select register high (PMSH) — see 4.5.3 PLL Multiplier Select Register High  
PLL multiplier select register low (PMSL) — see 4.5.4 PLL Multiplier Select Register Low  
PLL VCO range select register (PMRS) — see 4.5.5 PLL VCO Range Select Register  
Figure 4-3 is a summary of the CGM registers.  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
Read:  
PLLF  
PLL Control Register  
BCS  
R
R
VPR1  
VPR0  
$0036  
(PCTL) Write:  
See page 67.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control  
Register (PBWC) Write:  
See page 68.  
AUTO  
ACQ  
R
$0037  
$0038  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
PLL Multiplier Select High  
MUL11  
MUL10  
MUL9  
MUL8  
Register (PMSH) Write:  
See page 69.  
Reset:  
Read:  
0
0
0
0
0
MUL3  
0
0
0
0
PLL Multiplier Select Low  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL2  
MUL1  
MUL0  
$0039  
Register (PMSL) Write:  
See page 70.  
Reset:  
Read:  
0
0
0
PLL VCO Select Range  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
VRS1  
VRS0  
$003A  
$003B  
NOTES:  
Register (PMRS) Write:  
See page 70.  
Reset:  
Read:  
0
0
1
0
0
0
0
0
0
R
0
0
R
0
0
R
1
R
Reserved Register Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 4-3. CGM I/O Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
66  
Freescale Semiconductor  
CGM Registers  
4.5.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base  
clock selector bit, and the VCO power-of-two range selector bits.  
Address:  
$0036  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
2
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
0
R
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 4-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting  
the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE  
cannot be written and reads as 0. Reset clears the PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the  
PLLIE bit also is set. PLLF always reads as 0 when the AUTO bit in the PLL bandwidth control register  
(PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE  
Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be  
cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 4.3.8 Base Clock Selector  
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock,  
CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the  
frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS,  
it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one  
source clock to the other. During the transition, CGMOUT is held in stasis. (See 4.3.8 Base Clock  
Selector Circuit.) Reset clears the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE  
PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base clock  
if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
67  
Clock Generator Module (CGM)  
BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0),  
selecting CGMVCLK requires two writes to the PLL control register. (See  
4.3.8 Base Clock Selector Circuit.).  
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range multiplier E that, in conjunction  
with L controls the hardware center-of-range frequency, fVRS. VPR1:VPR0 cannot be written when the  
PLLON bit is set. Reset clears these bits. (See 4.3.3 PLL Circuits, 4.3.6 Programming the PLL, and  
4.5.5 PLL VCO Range Select Register.)  
Table 4-4. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
01  
10  
0
1
1
2
4
2(1)  
1. Do not program E to a value of 3.  
NOTE  
Verify that the value of the VPR1 and VPR0 bits in the PCTL register are  
appropriate for the given reference and VCO clock frequencies before  
enabling the PLL. See 4.3.6 Programming the PLL for detailed instructions  
on selecting the proper value for these control bits.  
4.5.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
Selects automatic or manual (software-controlled) bandwidth control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking mode  
Address:  
$0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
Write:  
Reset:  
LOCK  
AUTO  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 4-5. PLL Bandwidth Control Register (PBWC)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual  
operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
MC68HC908GR16A Data Sheet, Rev. 1.0  
68  
Freescale Semiconductor  
CGM Registers  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK,  
is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as 0 and  
has no meaning. The write one function of this bit is reserved for test, so this bit must always be written  
as a 0. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode  
or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is  
in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is  
stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
4.5.3 PLL Multiplier Select Register High  
The PLL multiplier select register high (PMSH) contains the programming information for the high byte of  
the modulo feedback divider.  
Address:  
$0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 4-6. PLL Multiplier Select Register High (PMSH)  
MUL11–MUL8 — Multiplier Select Bits  
These read/write bits control the high byte of the modulo feedback divider that selects the VCO  
frequency multiplier N. (See 4.3.3 PLL Circuits and 4.3.6 Programming the PLL.) A value of $0000 in  
the multiplier select registers configures the modulo feedback divider the same as a value of $0001.  
Reset initializes the registers to $0040 for a default multiply value of 64.  
NOTE  
The multiplier select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1).  
PMSH[7:4] — Unimplemented Bits  
These bits have no function and always read as 0s.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
69  
Clock Generator Module (CGM)  
4.5.4 PLL Multiplier Select Register Low  
The PLL multiplier select register low (PMSL) contains the programming information for the low byte of  
the modulo feedback divider.  
Address:  
$0038  
Bit 7  
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
Write:  
Reset:  
MUL7  
0
Figure 4-7. PLL Multiplier Select Register Low (PMSL)  
NOTE  
For applications using 1–8 MHz reference frequencies this register must be  
reprogrammed before enabling the PLL. The reset value of this register will  
cause applications using 1–8 MHz reference frequencies to become  
unstable if the PLL is enabled without programming an appropriate value.  
The programmed value must not allow the VCO clock to exceed 32 MHz.  
See 4.3.6 Programming the PLL for detailed instructions on choosing the  
proper value for PMSL.  
MUL7–MUL0 — Multiplier Select Bits  
These read/write bits control the low byte of the modulo feedback divider that selects the VCO  
frequency multiplier, N. (See 4.3.3 PLL Circuits and 4.3.6 Programming the PLL.) MUL7–MUL0 cannot  
be written when the PLLON bit in the PCTL is set. A value of $0000 in the multiplier select registers  
configures the modulo feedback divider the same as a value of $0001. Reset initializes the register to  
$40 for a default multiply value of 64.  
NOTE  
The multiplier select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1).  
4.5.5 PLL VCO Range Select Register  
The PLL VCO range select register (PMRS) contains the programming information required for the  
hardware configuration of the VCO.  
Address:  
$003A  
Bit 7  
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
VRS7  
0
Figure 4-8. PLL VCO Range Select Register (PMRS)  
NOTE  
Verify that the value of the PMRS register is appropriate for the given  
reference and VCO clock frequencies before enabling the PLL. See 4.3.6  
Programming the PLL for detailed instructions on selecting the proper value  
for these control bits.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
70  
Freescale Semiconductor  
Interrupts  
VRS7–VRS0 — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with  
E (See 4.3.3 PLL Circuits, 4.3.6 Programming the PLL, and 4.5.1 PLL Control Register.), controls the  
hardware center-of-range frequency, fVRS. VRS7–VRS0 cannot be written when the PLLON bit in the  
PCTL is set. (See 4.3.7 Special Programming Exceptions.) A value of $00 in the VCO range select  
register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 4.3.8 Base  
Clock Selector Circuit and 4.3.7 Special Programming Exceptions.). Reset initializes the register to $40  
for a default range multiply value of 64.  
NOTE  
The VCO range select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
4.6 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU  
interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL)  
enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether  
interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and  
PLLF reads as 0.  
Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry  
into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can  
be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock  
frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency  
sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software  
performance or from exceeding stack limitations.  
NOTE  
Software can select the CGMVCLK divided by two as the CGMOUT source  
even if the PLL is not locked (LOCK = 0). Therefore, software should make  
sure the PLL is locked before setting the BCS bit.  
4.7 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby modes.  
4.7.1 Wait Mode  
The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and  
turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power.  
Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is  
immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from  
wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
71  
Clock Generator Module (CGM)  
4.7.2 Stop Mode  
If the OSCENINSTOP bit in the CONFIG2 register is cleared (default), then the STOP instruction disables  
the CGM (oscillator and phase locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the OSCENINSTOP bit in the CONFIG2 register is set, then the phase locked loop is shut off but the  
oscillator will continue to operate in stop mode.  
4.7.3 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 19.2.2.4 SIM Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write the PLL control register during the break state without affecting the PLLF bit.  
4.8 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design  
parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock  
times.  
4.8.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified  
tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or  
when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the  
output settles to the desired value plus or minus a percent of the frequency change. Therefore, the  
reaction time is constant in this definition, regardless of the size of the step input. For example, consider  
a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from  
0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz 50 kHz.  
Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise  
hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz 5 kHz. Five kHz = 5% of the  
100-kHz step input.  
Other systems refer to acquisition and lock times as the time the system takes to reduce the error between  
the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may not even be registered. Typical  
PLL applications prefer to use this definition because the system requires the output frequency to be  
within a certain tolerance of the desired frequency regardless of the size of the initial error.  
4.8.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while still providing the highest possible  
stability. These reaction times are not constant, however. Many factors directly and indirectly affect the  
acquisition time.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
72  
Freescale Semiconductor  
Acquisition/Lock Time Specifications  
The most critical parameter which affects the reaction times of the PLL is the reference frequency, fRCLK  
.
This frequency is the input to the phase detector and controls how often the PLL makes corrections. For  
stability, the corrections must be small compared to the desired frequency, so several corrections are  
required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make  
these corrections. This parameter is under user control via the choice of crystal frequency fXCLK. (See  
4.3.3 PLL Circuits and 4.3.6 Programming the PLL.)  
Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by  
adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size  
of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make  
small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL  
may not be able to adjust the voltage in a reasonable time. (See 4.8.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to VDDA. The power supply potential alters the  
characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if  
they vary within a known range at very slow speeds. Noise on the power supply is not acceptable,  
because it causes small frequency errors which continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because the electrical characteristics of the  
PLL change. The part operates as specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of the PLL. These factors include  
noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the  
circuit board, and even humidity or circuit board contamination.  
4.8.3 Choosing a Filter  
As described in 4.8.2 Parametric Influences on Reaction Time, the external filter network is critical to the  
stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply  
voltage.  
Figure 4-9 shows two types of filter circuits. In low-cost applications, where stability and reaction time of  
the PLL are not critical, the three component filter network shown in Figure 4-9 (B) can be replaced by a  
single capacitor, CF, as shown in shown in Figure 4-9 (A). Refer to Table 4-5 for recommended filter  
components at various reference frequencies. For reference frequencies between the values listed in the  
table, extrapolate to the nearest common capacitor value. In general, a slightly larger capacitor provides  
more stability at the expense of increased lock time.  
CGMXFC  
CGMXFC  
RF1  
CF2  
CF  
CF1  
VSSA  
VSSA  
(A)  
(B)  
Figure 4-9. PLL Filter  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
73  
Clock Generator Module (CGM)  
Table 4-5. Example Filter Component Values  
fRCLK  
CF1  
CF2  
RF1  
CF  
1 MHz  
2 MHz  
3 MHz  
4 MHz  
5 MHz  
6 MHz  
7 MHz  
8 MHz  
8.2 nF  
4.7 nF  
3.3 nF  
2.2 nF  
1.8 nF  
1.5 nF  
1.2 nF  
1 nF  
820 pF  
470 pF  
330 pF  
220 pF  
180 pF  
150 pF  
120 pF  
100 pF  
2k  
2k  
2k  
2k  
2k  
2k  
2k  
2k  
18 nF  
6.8 nF  
5.6 nF  
4.7 nF  
3.9 nF  
3.3 nF  
2.7 nF  
2.2 nF  
MC68HC908GR16A Data Sheet, Rev. 1.0  
74  
Freescale Semiconductor  
Chapter 5  
Configuration Register (CONFIG)  
5.1 Introduction  
This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers  
enable or disable these options:  
Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles)  
COP timeout period (262,128 or 8176 COPCLK cycles)  
STOP instruction  
Computer operating properly module (COP)  
Low-voltage inhibit (LVI) module control and voltage trip point selection  
Enable/disable the oscillator (OSC) during stop mode  
Enable/disable an extra divide by 128 prescaler in timebase module  
5.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the microcontroller unit (MCU), it is recommended that these  
registers be written immediately after reset. The configuration registers are located at $001E and $001F  
and may be read at anytime.  
NOTE  
On a FLASH device, the options except LVI5OR3 are one-time writable by  
the user after each reset. The LVI5OR3 bit is one-time writable by the user  
only after each POR (power-on reset). The CONFIG registers are not in the  
FLASH memory but are special registers containing one-time writable  
latches after each reset. Upon a reset, the CONFIG registers default to  
predetermined settings as shown in Figure 5-1 and Figure 5-2.  
Address:  
$001E  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
R
TBMCLKSEL OSCENINSTOP ESCIBDSRC  
0
0
0
0
0
0
0
1
= Unimplemented  
R
= Reserved  
Figure 5-1. Configuration Register 2 (CONFIG2)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
75  
Configuration Register (CONFIG)  
Address:  
$001F  
Bit 7  
6
LVISTOP  
0
5
LVIRSTD  
0
4
LVIPWRD  
0
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
0
LVI5OR3  
See note  
Note: LVI5OR3 bit is only reset via POR (power-on reset).  
Figure 5-2. Configuration Register 1 (CONFIG1)  
TBMCLKSEL— Timebase Clock Select Bit  
TBMCLKSEL enables an extra divide-by-128 prescaler in the timebase module. Setting this bit enables  
the extra prescaler and clearing this bit disables it. See Chapter 4 Clock Generator Module (CGM) for  
a more detailed description of the external clock operation.  
1 = Enables extra divide-by-128 prescaler in timebase module  
0 = Disables extra divide-by-128 prescaler in timebase module  
OSCENINSTOP — Oscillator Enable In Stop Mode Bit  
OSCENINSTOP, when set, will enable the oscillator to continue to generate clocks in stop mode. See  
Chapter 4 Clock Generator Module (CGM). This function is used to keep the timebase running while  
the reset of the MCU stops. See Chapter 17 Timebase Module (TBM). When clear, oscillator will cease  
to generate clocks while in stop mode. The default state for this option is clear, disabling the oscillator  
in stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
ESCIBDSRC — SCI Baud Rate Clock Source Bit  
ESCIBDSRC controls the clock source used for the serial communications interface (SCI). The setting  
of this bit affects the frequency at which the SCI operates.See Chapter 14 Enhanced Serial  
Communications Interface (ESCI) Module.  
1 = Internal bus clock used as clock source for SCI (default)  
0 = External oscillator used as clock source for SCI  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS. See Chapter 6 Computer Operating  
Properly (COP) Module  
1 = COP timeout period = 8176 COPCLK cycles  
0 = COP timeout period = 262,128 COPCLK cycles  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. See Chapter 11 Low-Voltage Inhibit (LVI).  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
MC68HC908GR16A Data Sheet, Rev. 1.0  
76  
Freescale Semiconductor  
Functional Description  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. See Chapter 11 Low-Voltage Inhibit (LVI).  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module (see Chapter 11 Low-Voltage Inhibit  
(LVI)). The voltage mode selected for the LVI should match the operating VDD (see Chapter 20  
Electrical Specifications) for the LVI’s voltage trip points for each of the modes.  
1 = LVI operates in 5-V mode  
0 = LVI operates in 3-V mode  
NOTE  
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a  
4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLCK cycles  
NOTE  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
If the system clock source selected is the internal oscillator or the external crystal and the  
OSCENINSTOP configuration bit is not set, the oscillator will be disabled during stop mode. The short  
stop recovery does not provide enough time for oscillator stabilization and for this reason the SSREC  
bit should not be set.  
The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles)  
gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the  
MCU is not protected from a low-power condition. However, when using the short stop recovery  
configuration option, the 32-CGMXCLK delay must be greater than the LVI’s turn on time to avoid a  
period in startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. See Chapter 6 Computer Operating Properly (COP) Module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
77  
Configuration Register (CONFIG)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
78  
Freescale Semiconductor  
Chapter 6  
Computer Operating Properly (COP) Module  
6.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
CONFIG register.  
6.2 Functional Description  
Figure 6-1 shows the structure of the COP module.  
SIM MODULE  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
BUSCLKX4  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
CLEAR  
COP COUNTER  
RESET  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Chapter 15 System Integration Module (SIM) for more details.  
Figure 6-1. COP Block Diagram  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
79  
Computer Operating Properly (COP) Module  
The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by  
software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176  
CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration  
register. With a 262,128 CGMXCLK cycle overflow option, a 4.9152-MHz crystal gives a COP timeout  
period of 53.3 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset  
by clearing the COP counter and stages 12–5 of the prescaler.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the reset status  
register (RSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ is held at VTST. During the break state,  
VTST on the RST pin disables the COP.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
6.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 6-1.  
6.3.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency.  
6.3.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
6.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) clears the COP counter and clears bits 12–5 of  
the prescaler. Reading the COP control register returns the low byte of the reset vector. See 6.4 COP  
Control Register.  
6.3.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up.  
6.3.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
80  
Freescale Semiconductor  
COP Control Register  
6.3.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the COP prescaler.  
6.3.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See  
Chapter 5 Configuration Register (CONFIG).  
6.3.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See  
Chapter 5 Configuration Register (CONFIG).  
6.4 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing  
any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
6.5 Interrupts  
The COP does not generate central processor unit (CPU) interrupt requests.  
6.6 Monitor Mode  
When monitor mode is entered with VTST on the IRQ pin, the COP is disabled as long as VTST remains  
on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not  
having VTST on the IRQ pin, the COP is automatically disabled until a POR occurs.  
6.7 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby  
modes.  
6.7.1 Wait Mode  
The COP remains active during wait mode. If COP is enabled, a reset will occur at COP timeout.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
81  
Computer Operating Properly (COP) Module  
6.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available  
that disables the STOP instruction. When the STOP bit in the configuration register has the STOP  
instruction disabled, execution of a STOP instruction results in an illegal opcode reset.  
6.8 COP Module During Break Mode  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
82  
Freescale Semiconductor  
Chapter 7  
Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
83  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
84  
Freescale Semiconductor  
CPU Registers  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 7-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
85  
Central Processor Unit (CPU)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC908GR16A Data Sheet, Rev. 1.0  
86  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
87  
Central Processor Unit (CPU)  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC908GR16A Data Sheet, Rev. 1.0  
88  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
89  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
DIV  
INH  
52  
7
H Remainder  
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC908GR16A Data Sheet, Rev. 1.0  
90  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
91  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC908GR16A Data Sheet, Rev. 1.0  
92  
Freescale Semiconductor  
Opcode Map  
Table 7-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
A (CCR)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
(SP) (H:X) – 1  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
93  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
3
4
4
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
1
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2  
IX1  
SP1  
3
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
3
4
BRSET1 BSET1  
BHI  
MUL  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
REL  
INH  
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
3
4
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
BIT  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
SP2  
IX1  
SP1  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
SP2  
IX1  
SP1  
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
LSL  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
SP1  
5
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
2
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
CLI  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
INH  
SP2  
IX1  
SP1  
5
3
3
5
2
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
SEI  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1  
5
INH  
SP2  
IX1  
SP1  
3
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
SP1  
4
INH  
2
DIR  
4
IX1  
3
BMS  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
SP1  
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
BIH  
CLR  
CLR  
SP1  
STX  
STX  
STX  
3
DIR  
2
DIR  
REL 2 DIR  
IX1  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 8  
External Interrupt (IRQ)  
8.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
8.2 Features  
Features of the IRQ module include:  
A dedicated external interrupt pin (IRQ)  
IRQ interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup resistor  
8.3 Functional Description  
A falling edge applied to the external interrupt pin can latch a central processor unit (CPU) interrupt  
request. Figure 8-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of  
the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears  
the latch that caused the vector fetch.  
Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge  
bit in the interrupt status and control register (INTSCR). Writing a 1 to the ACK bit clears the IRQ  
latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge triggered out of reset and is software-configurable to be either  
falling-edge or falling-edge and low-level triggered. The MODE bit in the INTSCR controls the triggering  
sensitivity of the IRQ pin.  
When an interrupt pin is edge-triggered only (MODE = 0), the interrupt remains set until a vector fetch,  
software clear, or reset occurs.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
95  
External Interrupt (IRQ)  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
IRQ  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 8-1. IRQ Module Block Diagram  
When an interrupt pin is both falling-edge and low-level triggered (MODE = 1), the interrupt remains set  
until both of these events occur:  
Vector fetch or software clear  
Return of the interrupt pin to a high level  
The vector fetch or software clear may occur before or after the interrupt pin returns to a high level. As  
long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR masks all external interrupt requests. A latched interrupt request  
is not presented to the interrupt priority logic unless the IMASK bit is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
IRQ Status and Control  
Register (INTSCR) Write:  
0
0
0
0
IRQF  
$001D  
ACK  
0
See page 98.  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 8-2. IRQ I/O Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
96  
Freescale Semiconductor  
IRQ Pin  
8.4 IRQ Pin  
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software  
clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-level sensitive. With MODE set,  
both of the following actions must occur to clear IRQ:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in  
the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the  
IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an  
interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not  
affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit  
latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program  
counter with the vector address at locations $FFFA and $FFFB.  
Return of the IRQ pin to a high level — As long as the IRQ pin is low, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the latch and the  
MODE control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or  
software clear immediately clears the IRQ latch.  
The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not  
affected by the IMASK bit, which makes it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
8.5 IRQ Module During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during  
the break state. See Chapter 19 Development Support.  
To allow software to clear the IRQ latch during a break interrupt, write a 1 to the BCFE bit. If a latch is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect CPU interrupt flags during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default  
state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on  
the IRQ interrupt flags.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
97  
External Interrupt (IRQ)  
8.6 IRQ Status and Control Register  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address:  
$001D  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
MC68HC908GR16A Data Sheet, Rev. 1.0  
98  
Freescale Semiconductor  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1 Introduction  
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are  
accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pullup  
device is also enabled on the pin.  
9.2 Features  
Features include:  
Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard  
interrupt mask  
Hysteresis buffers  
Programmable edge-only or edge- and level- interrupt sensitivity  
Exit from low-power modes  
I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port  
bit(s)  
9.3 Functional Description  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or  
disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its  
internal pullup device. A low level applied to an enabled keyboard interrupt pin latches a keyboard  
interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK  
bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an  
interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on  
one pin because another pin is still low, software can disable the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt request is present as  
long as any keyboard interrupt pin is low and the pin is keyboard interrupt enabled.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
99  
Keyboard Interrupt Module (KBI)  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 9-1. Block Diagram Highlighting KBI Block and Pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
100  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
KBD0  
VDD  
KEYF  
CLR  
.
TO PULLUP ENABLE  
D
Q
SYNCHRONIZER  
.
CK  
KB0IE  
.
KEYBOARD  
INTERRUPT  
REQUEST  
IMASKK  
KBD7  
MODEK  
TO PULLUP ENABLE  
KB7IE  
Figure 9-2. Keyboard Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Keyboard Status Read:  
and Control Register  
0
0
0
0
KEYF  
IMASKK  
MODEK  
Write:  
ACKK  
$001A  
(INTKBSCR)  
See page 103.  
Reset:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE2  
0
0
KBIE1  
0
0
KBIE0  
0
Keyboard Interrupt Enable Read:  
Register  
Write:  
$001B  
(INTKBIER)  
See page 104.  
Reset:  
= Unimplemented  
Figure 9-3. I/O Register Summary  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low-level sensitive, and both  
of the following actions must occur to clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the interrupt request. Software may generate the interrupt acknowledge signal by writing a 1 to the  
ACKK bit in the keyboard status and control register (INTKBSCR). The ACKK bit is useful in  
applications that poll the keyboard interrupt pins and require software to clear the keyboard  
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also  
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on  
the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the vector address at locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt pins to a high level — As long as any enabled keyboard  
interrupt pin is low, the keyboard interrupt remains set.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
101  
Keyboard Interrupt Module (KBI)  
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to a high level may  
occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a  
vector fetch or software clear immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt pin stays low.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending  
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes  
it useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the  
pin as an input and read the data register.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
9.4 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a 1. Therefore, a  
false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction  
register A.  
2. Write 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
9.5 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby  
modes.  
9.5.1 Wait Mode  
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
102  
Freescale Semiconductor  
Keyboard Module During Break Interrupts  
9.5.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
9.6 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during  
the break state. The BCFE bit in the break flag control register (SBFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit.  
If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the  
break state has no effect. See 9.7.1 Keyboard Status and Control Register.  
9.7 I/O Registers  
These registers control and monitor operation of the keyboard module:  
Keyboard status and control register (INTKBSCR)  
Keyboard interrupt enable register (INTKBIER)  
9.7.1 Keyboard Status and Control Register  
The keyboard status and control register:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-4. Keyboard Status and Control Register (INTKBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as 0. Reset  
clears ACKK.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
103  
Keyboard Interrupt Module (KBI)  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating  
interrupt requests. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears  
MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
9.7.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register enables or disables each port A pin to operate as a keyboard  
interrupt pin.  
Address: $001B  
Bit 7  
KBIE7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 9-5. Keyboard Interrupt Enable Register (INTKBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt  
requests. Reset clears the keyboard interrupt enable register.  
1 = PTAx pin enabled as keyboard interrupt pin  
0 = PTAx pin not enabled as keyboard interrupt pin  
MC68HC908GR16A Data Sheet, Rev. 1.0  
104  
Freescale Semiconductor  
Chapter 10  
Low-Power Modes  
10.1 Introduction  
The microcontroller (MCU) may enter two low-power modes: wait mode and stop mode. They are  
common to all HC08 MCUs and are entered through instruction execution. This section describes how  
each module acts in the low-power modes.  
10.1.1 Wait Mode  
The WAIT instruction puts the MCU in a low-power standby mode in which the central processor unit  
(CPU) clock is disabled but the bus clock continues to run. Power consumption can be further reduced by  
disabling the low-voltage inhibit (LVI) module through bits in the CONFIG1 register. See Chapter 5  
Configuration Register (CONFIG).  
10.1.2 Stop Mode  
Stop mode is entered when a STOP instruction is executed. The CPU clock is disabled and the bus clock  
is disabled if the OSCENINSTOP bit in the CONFIG2 register is a 0. See Chapter 5 Configuration Register  
(CONFIG).  
10.2 Analog-to-Digital Converter (ADC)  
10.2.1 Wait Mode  
The analog-to-digital converter (ADC) continues normal operation during wait mode. Any enabled CPU  
interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring  
the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADC status and  
control register before executing the WAIT instruction.  
10.2.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one  
conversion cycle to stabilize the analog circuitry.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
105  
Low-Power Modes  
10.3 Break Module (BRK)  
10.3.1 Wait Mode  
The break (BRK) module is active in wait mode. In the break routine, the user can subtract one from the  
return address on the stack if the SBSW bit in the break status register is set.  
10.3.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does not affect break module register  
states.  
10.4 Central Processor Unit (CPU)  
10.4.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
10.4.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
10.5 Clock Generator Module (CGM)  
10.5.1 Wait Mode  
The clock generator module (CGM) remains active in wait mode. Before entering wait mode, software can  
disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL).  
Less power-sensitive applications can disengage the PLL without turning it off. Applications that require  
the PLL to wake the MCU from wait mode also can deselect the PLL output without turning off the PLL.  
10.5.2 Stop Mode  
If the OSCENINSTOP bit in the CONFIG2 register is cleared (default), then the STOP instruction disables  
the CGM (oscillator and phase-locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the OSCENINSTOP bit in the CONFIG2 register is set, then the phase locked loop is shut off, but the  
oscillator will continue to operate in stop mode.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
106  
Freescale Semiconductor  
Computer Operating Properly Module (COP)  
10.6 Computer Operating Properly Module (COP)  
10.6.1 Wait Mode  
The COP remains active during wait mode. If COP is enabled, a reset will occur at COP timeout.  
10.6.2 Stop Mode  
Stop mode turns off the COPCLK input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
The STOP bit in the CONFIG1 register enables the STOP instruction. To prevent inadvertently turning off  
the COP with a STOP instruction, disable the STOP instruction by clearing the STOP bit.  
10.7 External Interrupt Module (IRQ)  
10.7.1 Wait Mode  
The external interrupt (IRQ) module remains active in wait mode. Clearing the IMASK bit in the IRQ status  
and control register enables IRQ CPU interrupt requests to bring the MCU out of wait mode.  
10.7.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing the IMASK bit in the IRQ status and control  
register enables IRQ CPU interrupt requests to bring the MCU out of stop mode.  
10.8 Keyboard Interrupt Module (KBI)  
10.8.1 Wait Mode  
The keyboard interrupt (KBI) module remains active in wait mode. Clearing the IMASKK bit in the  
keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait  
mode.  
10.8.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
107  
Low-Power Modes  
10.9 Low-Voltage Inhibit Module (LVI)  
10.9.1 Wait Mode  
If enabled, the low-voltage inhibit (LVI) module remains active in wait mode. If enabled to generate resets,  
the LVI module can generate a reset and bring the MCU out of wait mode.  
10.9.2 Stop Mode  
If enabled, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module  
can generate a reset and bring the MCU out of stop mode.  
10.10 Enhanced Serial Communications Interface Module (ESCI)  
10.10.1 Wait Mode  
The enhanced serial communications interface (ESCI), or SCI module for short, module remains active  
in wait mode. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait  
mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
10.10.2 Stop Mode  
The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI  
module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
10.11 Serial Peripheral Interface Module (SPI)  
10.11.1 Wait Mode  
The serial peripheral interface (SPI) module remains active in wait mode. Any enabled CPU interrupt  
request from the SPI module can bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
10.11.2 Stop Mode  
The SPI module is inactive in stop mode. The STOP instruction does not affect SPI register states. SPI  
operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is  
aborted, and the SPI is reset.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
108  
Freescale Semiconductor  
Timer Interface Module (TIM1 and TIM2)  
10.12 Timer Interface Module (TIM1 and TIM2)  
10.12.1 Wait Mode  
The timer interface modules (TIM) remain active in wait mode. Any enabled CPU interrupt request from  
the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
10.12.2 Stop Mode  
The TIM is inactive in stop mode. The STOP instruction does not affect register states or the state of the  
TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.  
10.13 Timebase Module (TBM)  
10.13.1 Wait Mode  
The timebase module (TBM) remains active after execution of the WAIT instruction. In wait mode, the  
timebase register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power consumption by stopping  
the timebase before enabling the WAIT instruction.  
10.13.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if the oscillator has been  
enabled to operate during stop mode through the OSCENINSTOP bit in the CONFIG2 register. The  
timebase module can be used in this mode to generate a periodic wakeup from stop mode.  
If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active  
during stop mode. In stop mode, the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the power consumption by stopping  
the timebase before enabling the STOP instruction.  
10.14 Exiting Stop Mode  
These events restart the system clocks and load the program counter with the reset vector or with an  
interrupt vector:  
External reset — A 0 on the RST pin resets the MCU and loads the program counter with the  
contents of locations $FFFE and $FFFF.  
External interrupt — A high-to-low transition on an external interrupt pin loads the program counter  
with the contents of locations:  
$FFFA and $FFFB; IRQ pin  
$FFE0 and $FFE1; keyboard interrupt pins  
Low-voltage inhibit (LVI) reset — A power supply voltage below the VTRIPF voltage resets the MCU  
and loads the program counter with the contents of locations $FFFE and $FFFF.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
109  
Low-Power Modes  
Timebase module (TBM) interrupt — A TBM interrupt loads the program counter with the contents  
of locations $FFDC and $FFDD when the timebase counter has rolled over. This allows the TBM  
to generate a periodic wakeup from stop mode.  
Upon exit from stop mode, the system clocks begin running after an oscillator stabilization delay. A 12-bit  
stop recovery counter inhibits the system clocks for 4096 CGMXCLK cycles after the reset or external  
interrupt.  
The short stop recovery bit, SSREC, in the CONFIG1 register controls the oscillator stabilization delay  
during stop recovery. Setting SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32  
CGMXCLK cycles.  
NOTE  
Use the full stop recovery time (SSREC = 0) in applications that use an  
external crystal.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
110  
Freescale Semiconductor  
Chapter 11  
Low-Voltage Inhibit (LVI)  
11.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin  
and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF  
.
11.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
11.3 Functional Description  
Figure 11-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module  
contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD,  
enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI  
module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode  
bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3,  
enables the trip point voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit  
enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The actual trip points are shown  
in Chapter 20 Electrical Specifications.  
NOTE  
After a power-on reset (POR) the LVI’s default mode of operation is 3 V. If  
a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip  
point to 5-V operation. Note that this must be done after every power-on  
reset since the default will revert back to 3-V mode after each power-on  
reset. If the VDD supply is below the 5-V mode trip voltage but above the  
3-V mode trip voltage when POR is released, the part will operate because  
VTRIPF defaults to 3-V mode after a POR. So, in a 5-V system care must be  
taken to ensure that VDD is above the 5-V mode trip voltage after POR is  
released.  
If the user requires 5-V mode and sets the LVI5OR3 bit after a power-on  
reset while the VDD supply is not above the VTRIPR for 5-V mode, the  
microcontroller unit (MCU) will immediately go into reset. The LVI in this  
case will hold the part in reset until either VDD goes above the rising 5-V trip  
point, VTRIPR, which will release reset or VDD decreases to approximately 0  
V which will re-trigger the power-on reset and reset the trip point to 3-V  
operation.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
111  
Low-Voltage Inhibit (LVI)  
LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register (CONFIG1). See  
Figure 5-2. Configuration Register 1 (CONFIG1) for details of the LVI’s configuration bits. Once an LVI  
reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU  
to exit reset. See 15.3.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM  
and the LVI. The output of the comparator controls the state of the LVIOUT flag in the LVI status register  
(LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
FROM CONFIG1  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
VDD > LVITrip = 0  
LVI RESET  
LOW VDD  
DETECTOR  
VDD LVITrip = 1  
LVIOUT  
LVI5OR3  
FROM CONFIG1  
Figure 11-1. LVI Module Block Diagram  
Addr.  
Register Name  
Bit 7  
Read: LVIOUT  
6
5
4
3
2
1
Bit 0  
0
0
0
0
0
0
0
LVI Status Register  
$FE0C  
(LVISR) Write:  
See page 113.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-2. LVI I/O Register Summary  
11.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling  
the LVIOUT bit. In the configuration register, the LVIPWRD bit must be 0 to enable the LVI module, and  
the LVIRSTD bit must be at 1 to disable LVI resets.  
11.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI  
module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the  
LVIPWRD and LVIRSTD bits must be cleared to enable the LVI module and to enable LVI resets.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
112  
Freescale Semiconductor  
LVI Status Register  
11.3.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until  
VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is  
continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than  
VTRIPF by the hysteresis voltage, VHYS.  
11.3.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V  
protection.  
NOTE  
The microcontroller is guaranteed to operate at a minimum supply voltage.  
The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. See  
Chapter 20 Electrical Specifications for the actual trip point voltages.  
11.4 LVI Status Register  
The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level.  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-3. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage (see  
Table 11-1). Reset clears the LVIOUT bit.  
Table 11-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
11.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
11.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
113  
Low-Voltage Inhibit (LVI)  
11.6.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
11.6.2 Stop Mode  
If enabled in stop mode (LVISTOP bit in the configuration register is set), the LVI module remains active  
in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out  
of stop mode.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
114  
Freescale Semiconductor  
Chapter 12  
Input/Output (I/O) Ports  
12.1 Introduction  
Bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or  
outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices  
if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port  
bit is switched to output mode.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
Not all port pins are bonded out in all packages. Care sure be taken to make  
any unbonded port pins an output to prevent them from being floating  
inputs.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 118.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
1
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
(PTB) Write:  
See page 120.  
Reset:  
Read:  
Port C Data Register  
(PTC) Write:  
See page 122.  
Reset:  
Read:  
Port D Data Register  
PTD7  
(PTD) Write:  
See page 124.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
0
DDRA1  
0
DDRA0  
0
(DDRA) Write:  
See page 118.  
Reset:  
= Unimplemented  
Figure 12-1. I/O Port Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
115  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Data Direction Register B  
DDRB7  
DDRB6  
0
$0005  
(DDRB) Write:  
See page 121.  
Reset:  
Read:  
0
0
Data Direction Register C  
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
$0006  
$0007  
$0008  
$000C  
$000D  
$000E  
$000F  
(DDRC) Write:  
See page 122.  
Reset:  
Read:  
0
Data Direction Register D  
DDRD7  
DDRD6  
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
(DDRD) Write:  
See page 125.  
Reset:  
Read:  
0
0
0
0
Port E Data Register  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 127.  
Reset:  
Read:  
Unaffected by reset  
0
0
0
0
Data Direction Register E  
DDRE5  
0
DDRE4  
0
DDRE3  
0
DDRE2  
0
DDRE1  
0
DDRE0  
0
(DDRE) Write:  
See page 128.  
Reset:  
Read:  
Port A Input Pullup Enable  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register (PTAPUE) Write:  
See page 120.  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
Port C Input Pullup Enable  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Register (PTCPUE) Write:  
See page 124.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Register (PTDPUE) Write:  
See page 127.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-1. I/O Port Register Summary (Continued)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
116  
Freescale Semiconductor  
Introduction  
Table 12-1. Port Control Register Bits Summary  
Port  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
DDR  
Module Control  
Pin  
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
DDRE0  
DDRE1  
DDRE2  
DDRE3  
DDRE4  
DDRE5  
KBIE0  
PTA0/KBD0  
PTA1/KBD1  
PTA2/KBD2  
PTA3/KBD3  
PTA4/KBD4  
PTA5/KBD5  
PTA6/KBD6  
PTA7/KBD7  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
PTC0  
KBIE1  
KBIE2  
KBIE3  
KBIE4  
KBIE5  
KBIE6  
KBIE7  
A
KBD  
B
ADC  
ADCH4–ADCH0  
PTC1  
PTC2  
C
PTC3  
PTC4  
PTC5  
PTC6  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTD4/T1CH0  
PTD5/T1CH1  
PTD6/T2CH0  
PTD7/T2CH1  
PTE0/TxD  
PTE1/RxD  
PTE2  
SPI  
SPE  
D
ELS0B:ELS0A  
ELS1B:ELS1A  
ELS0B:ELS0A  
ELS1B:ELS1A  
TIM1  
TIM2  
SCI  
ENSCI  
E
PTE3  
PTE4  
PTE5  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
117  
Input/Output (I/O) Ports  
12.2 Port A  
Port A is an 8-bit special-function port that shares all eight of its pins with the keyboard interrupt (KBI)  
module. Port A also has software configurable pullup devices if configured as an input port.  
12.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the eight port A pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
KBD4 KBD3  
Alternative  
Function:  
KBD7  
KBD6  
KBD5  
KBD2  
KBD1  
KBD0  
Figure 12-2. Port A Data Register (PTA)  
PTA7–PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
KBD7–KBD0 — Keyboard Inputs  
The keyboard interrupt enable bits, KBIE7–KBIE0, in the keyboard interrupt control register (KBICR)  
enable the port A pins as external interrupt pins. See Chapter 9 Keyboard Interrupt Module (KBI).  
12.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1  
to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 12-3. Data Direction Register A (DDRA)  
DDRA7–DDRA0 — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA7–DDRA0, configuring all port  
A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
118  
Freescale Semiconductor  
Port A  
Figure 12-4 shows the port A I/O logic.  
VDD  
PTAPUEx  
READ DDRA ($0004)  
INTERNAL  
PULLUP  
DEVICE  
WRITE DDRA ($0004)  
RESET  
DDRAx  
PTAx  
WRITE PTA ($0000)  
PTAx  
READ PTA ($0000)  
Figure 12-4. Port A I/O Circuit  
When bit DDRAx is a 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a 0,  
reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-2 summarizes the operation of the port A pins.  
Table 12-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTA7–PTA0(3)  
1
0
DDRA7–DDRA0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTA7–PTA0(3)  
PTA7–PTA0  
0
0
1
DDRA7–DDRA0  
DDRA7–DDRA0  
Pin  
X
X
PTA7–PTA0  
1. X = Don’t care  
2. I/O pin pulled up to VDD by internal pullup device  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
119  
Input/Output (I/O) Ports  
12.2.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each  
of the eight port A pins. Each bit is individually configurable and requires that the data direction register,  
DDRA, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port  
bit’s DDRA is configured for output mode.  
Address:  
$000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 12-5. Port A Input Pullup Enable Register (PTAPUE)  
PTAPUE7–PTAPUE0 — Port A Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an input port bit.  
1 = Corresponding port A pin configured to have internal pullup  
0 = Corresponding port A pin has internal pullup disconnected  
12.3 Port B  
Port B is an 8-bit special-function port that shares all eight of its pins with the analog-to-digital converter  
(ADC) module.  
12.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight port pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
AD4 AD3  
Alternative  
Function:  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
Figure 12-6. Port B Data Register (PTB)  
PTB7–PTB0 — Port B Data Bits  
These read/write bits are software-programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
AD7–AD0 — Analog-to-Digital Input Bits  
AD7–AD0 are pins used for the input channels to the analog-to-digital converter module. The channel  
select bits in the ADC status and control register define which port B pin will be used as an ADC input  
and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry.  
NOTE  
Care must be taken when reading port B while applying analog voltages to  
AD7–AD0 pins. If the appropriate ADC channel is not enabled, excessive  
current drain may occur if analog voltages are applied to the PTBx/ADx pin,  
while PTB is read as a digital input. Those ports not selected as analog  
input channels are considered digital I/O ports.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
120  
Freescale Semiconductor  
Port B  
12.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1  
to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-7. Data Direction Register B (DDRB)  
DDRB7–DDRB0 — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB7–DDRB0, configuring all port  
B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 12-8 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 12-8. Port B I/O Circuit  
When bit DDRBx is a 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a 0,  
reading address $0001 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-3 summarizes the operation of the port B pins.  
Table 12-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
Write  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Pin  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
PTB7–PTB0  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
121  
Input/Output (I/O) Ports  
12.4 Port C  
Port C is a 7-bit, general-purpose bidirectional I/O port. Port C also has software configurable pullup  
devices if configured as an input port.  
12.4.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the seven port C pins.  
Address:  
$0002  
Bit 7  
1
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
= Unimplemented  
Figure 12-9. Port C Data Register (PTC)  
PTC6–PTC0 — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C pin is under the control  
of the corresponding bit in data direction register C. Reset has no effect on port C data.  
12.4.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a 1  
to a DDRC bit enables the output buffer for the corresponding port C pin; a 0 disables the output buffer.  
Address:  
$0006  
Bit 7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 12-10. Data Direction Register C (DDRC)  
DDRC6–DDRC0 — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC6–DDRC0, configuring all port  
C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE  
Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
122  
Freescale Semiconductor  
Port C  
Figure 12-11 shows the port C I/O logic.  
VDD  
PTCPUEx  
READ DDRC ($0006)  
INTERNAL  
PULLUP  
DEVICE  
WRITE DDRC ($0006)  
RESET  
DDRCx  
PTCx  
WRITE PTC ($0002)  
PTCx  
READ PTC ($0002)  
Figure 12-11. Port C I/O Circuit  
When bit DDRCx is a 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a 0,  
reading address $0002 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-4 summarizes the operation of the port C pins.  
Table 12-4. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
PTCPUE  
Bit  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTC6–PTC0(3)  
1
0
DDRC6–DDRC0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTC6–PTC0(3)  
PTC6–PTC0  
0
0
1
DDRC6–DDRC0  
DDRC6–DDRC0  
Pin  
X
X
PTC6–PTC0  
1. X = Don’t care  
2. I/O pin pulled up to VDD by internal pullup device.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
123  
Input/Output (I/O) Ports  
12.4.3 Port C Input Pullup Enable Register  
The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each  
of the seven port C pins. Each bit is individually configurable and requires that the data direction register,  
DDRC, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port  
bit’s DDRC is configured for output mode.  
Address:  
$000E  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-12. Port C Input Pullup Enable Register (PTCPUE)  
PTCPUE6–PTCPUE0 — Port C Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an input port bit.  
1 = Corresponding port C pin configured to have internal pullup  
0 = Corresponding port C pin internal pullup disconnected  
12.5 Port D  
Port D is an 8-bit special-function port that shares four of its pins with the serial peripheral interface (SPI)  
module and four of its pins with two timer interface (TIM1 and TIM2) modules. Port D also has software  
configurable pullup devices if configured as an input port.  
12.5.1 Port D Data Register  
The port D data register (PTD) contains a data latch for each of the eight port D pins.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
T1CH0 SPSCK  
Alternative  
Function:  
T2CH1  
T2CH0  
T1CH1  
MOSI  
MISO  
SS  
Figure 12-13. Port D Data Register (PTD)  
PTD7–PTD0 — Port D Data Bits  
These read/write bits are software-programmable. Data direction of each port D pin is under the control  
of the corresponding bit in data direction register D. Reset has no effect on port D data.  
T2CH1 and T2CH0 — Timer 2 Channel I/O Bits  
The PTD7/T2CH1–PTD6/T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level  
select bits, ELSxB:ELSxA, determine whether the PTD7/T2CH1–PTD6/T2CH0 pins are timer channel  
I/O pins or general-purpose I/O pins. See Chapter 18 Timer Interface Module (TIM1 and TIM2).  
MC68HC908GR16A Data Sheet, Rev. 1.0  
124  
Freescale Semiconductor  
Port D  
T1CH1 and T1CH0 — Timer 1 Channel I/O Bits  
The PTD7/T1CH1–PTD6/T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level  
select bits, ELSxB and ELSxA, determine whether the PTD7/T1CH1–PTD6/T1CH0 pins are timer  
channel I/O pins or general-purpose I/O pins. See Chapter 18 Timer Interface Module (TIM1 and  
TIM2).  
SPSCK — SPI Serial Clock  
The PTD3/SPSCK pin is the serial clock input of the SPI module. When the SPE bit is clear, the  
PTD3/SPSCK pin is available for general-purpose I/O.  
MOSI — Master Out/Slave In  
The PTD2/MOSI pin is the master out/slave in terminal of the SPI module. When the SPE bit is clear,  
the PTD2/MOSI pin is available for general-purpose I/O.  
MISO — Master In/Slave Out  
The PTD1/MISO pin is the master in/slave out terminal of the SPI module. When the SPI enable bit,  
SPE, is clear, the SPI module is disabled, and the PTD0/SS pin is available for general-purpose I/O.  
Data direction register D (DDRD) does not affect the data direction of port D pins that are being used  
by the SPI module. However, the DDRD bits always determine whether reading port D returns the  
states of the latches or the states of the pins. See Table 12-5.  
SS — Slave Select  
The PTD0/SS pin is the slave select input of the SPI module. When the SPE bit is clear, or when the  
SPI master bit, SPMSTR, is set, the PTD0/SS pin is available for general-purpose I/O. When the SPI  
is enabled, the DDRB0 bit in data direction register B (DDRB) has no effect on the PTD0/SS pin.  
12.5.2 Data Direction Register D  
Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a 1  
to a DDRD bit enables the output buffer for the corresponding port D pin; a 0 disables the output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 12-14. Data Direction Register D (DDRD)  
DDRD7–DDRD0 — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD7–DDRD0, configuring all port  
D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
125  
Input/Output (I/O) Ports  
Figure 12-15 shows the port D I/O logic.  
VDD  
PTDPUEx  
READ DDRD ($0007)  
INTERNAL  
PULLUP  
DEVICE  
WRITE DDRD ($0007)  
RESET  
DDRDx  
PTDx  
WRITE PTD ($0003)  
PTDx  
READ PTD ($0003)  
Figure 12-15. Port D I/O Circuit  
When bit DDRDx is a 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a 0,  
reading address $0003 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-5 summarizes the operation of the port D pins.  
Table 12-5. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
PTDPUE  
Bit  
DDRD  
Bit  
PTD  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTD7–PTD0(3)  
1
0
DDRD7–DDRD0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTD7–PTD0(3)  
PTD7–PTD0  
0
0
1
DDRD7–DDRD0  
DDRD7–DDRD0  
Pin  
X
X
PTD7–PTD0  
1. X = Don’t care  
2. I/O pin pulled up to VDD by internal pullup device.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance  
MC68HC908GR16A Data Sheet, Rev. 1.0  
126  
Freescale Semiconductor  
Port E  
12.5.3 Port D Input Pullup Enable Register  
The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each  
of the eight port D pins. Each bit is individually configurable and requires that the data direction register,  
DDRD, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port  
bit’s DDRD is configured for output mode.  
Address:  
$000F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
0
0
0
0
0
0
0
0
Figure 12-16. Port D Input Pullup Enable Register (PTDPUE)  
PTDPUE7–PTDPUE0 — Port D Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an input port bit.  
1 = Corresponding port D pin configured to have internal pullup  
0 = Corresponding port D pin has internal pullup disconnected  
12.6 Port E  
Port E is a 6-bit special-function port that shares two of its pins with the enhanced serial communications  
interface (ESCI) module.  
12.6.1 Port E Data Register  
The port E data register contains a data latch for each of the six port E pins.  
Address:  
$0008  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Unaffected by reset  
Alternative  
Function:  
RxD  
TxD  
= Unimplemented  
Figure 12-17. Port E Data Register (PTE)  
PTE5-PTE0 — Port E Data Bits  
These read/write bits are software-programmable. Data direction of each port E pin is under the control  
of the corresponding bit in data direction register E. Reset has no effect on port E data.  
NOTE  
Data direction register E (DDRE) does not affect the data direction of port  
E pins that are being used by the ESCI module. However, the DDRE bits  
always determine whether reading port E returns the states of the latches  
or the states of the pins. See Table 12-6.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
127  
Input/Output (I/O) Ports  
RxD — SCI Receive Data Input  
The PTE1/RxD pin is the receive data input for the ESCI module. When the enable SCI bit, ENSCI, is  
clear, the ESCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See  
Chapter 14 Enhanced Serial Communications Interface (ESCI) Module.  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the ESCI module. When the enable SCI bit, ENSCI,  
is clear, the ESCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See  
Chapter 14 Enhanced Serial Communications Interface (ESCI) Module.  
12.6.2 Data Direction Register E  
Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a 1  
to a DDRE bit enables the output buffer for the corresponding port E pin; a 0 disables the output buffer.  
Address:  
$000C  
Bit 7  
0
6
0
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 12-18. Data Direction Register E (DDRE)  
DDRE5–DDRE0 — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears DDRE5–DDRE0, configuring all port  
E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE  
Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 12-19 shows the port E I/O logic.  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 12-19. Port E I/O Circuit  
MC68HC908GR16A Data Sheet, Rev. 1.0  
128  
Freescale Semiconductor  
Port E  
When bit DDREx is a 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a 0,  
reading address $0008 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-6 summarizes the operation of the port E pins.  
Table 12-6. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
Write  
DDRE  
Bit  
PTE  
Bit  
I/O Pin  
Mode  
Read  
Pin  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTE5–PTE0(3)  
PTE5–PTE0  
0
1
DDRE5–DDRE0  
DDRE5–DDRE0  
PTE5–PTE0  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
129  
Input/Output (I/O) Ports  
MC68HC908GR16A Data Sheet, Rev. 1.0  
130  
Freescale Semiconductor  
Chapter 13  
Resets and Interrupts  
13.1 Introduction  
Resets and interrupts are responses to exceptional events during program execution. A reset re-initializes  
the microcontroller (MCU) to its startup condition. An interrupt vectors the program counter to a service  
routine.  
13.2 Resets  
A reset immediately returns the MCU to a known startup condition and begins program execution from a  
user-defined memory location.  
13.2.1 Effects  
A reset:  
Immediately stops the operation of the instruction being executed  
Initializes certain control and status bits  
Loads the program counter with a user-defined reset vector address from locations $FFFE and  
$FFFF, $FEFE and $FEFF in monitor mode  
Selects CGMXCLK divided by four as the bus clock  
13.2.2 External Reset  
A 0 applied to the RST pin for a time, tRL, generates an external reset. An external reset sets the PIN bit  
in the system integration module (SIM) reset status register.  
13.2.3 Internal Reset  
Sources:  
Power-on reset (POR)  
Computer operating properly (COP)  
Low-power reset circuits  
Illegal opcode  
Illegal address  
All internal reset sources pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external  
devices. The MCU is held in reset for an additional 32 CGMXCLK cycles after releasing the RST pin.  
13.2.3.1 Power-On Reset (POR)  
A power-on reset (POR) is an internal reset caused by a positive transition on the VDD pin. VDD at the  
POR must go below VPOR to reset the MCU. This distinguishes between a reset and a POR. The POR is  
not a brown-out detector, low-voltage detector, or glitch detector.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
131  
Resets and Interrupts  
A power-on reset:  
Holds the clocks to the central processor unit (CPU) and modules inactive for an oscillator  
stabilization delay of 4096 CGMXCLK cycles  
Drives the RST pin low during the oscillator stabilization delay  
Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay  
Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator  
stabilization delay  
Sets the POR and LVI bits in the SIM reset status register and clears all other bits in the register  
OSC1  
PORRST(1)  
4096  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST PIN  
1. PORRST is an internally generated power-on reset pulse.  
Figure 13-1. Power-On Reset Recovery  
13.2.3.2 Computer Operating Properly (COP) Reset  
A computer operating properly (COP) reset is an internal reset caused by an overflow of the COP counter.  
A COP reset sets the COP bit in the SIM reset status register.  
To clear the COP counter and prevent a COP reset, write any value to the COP control register at location  
$FFFF.  
13.2.3.3 Low-Voltage Inhibit (LVI) Reset  
A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in the power supply voltage to the  
VTRIPF voltage.  
An LVI reset:  
Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096  
CGMXCLK cycles after the power supply voltage rises to the LVITRIPR voltage  
Drives the RST pin low for as long as VDD is below the VTRIPR voltage and during the oscillator  
stabilization delay  
Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay  
Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator  
stabilization delay  
Sets the LVI bit in the SIM reset status register  
13.2.3.4 Illegal Opcode Reset  
An illegal opcode reset is an internal reset caused by an opcode that is not in the instruction set. An illegal  
opcode reset sets the ILOP bit in the SIM reset status register.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
132  
Freescale Semiconductor  
Resets  
If the stop enable bit, STOP, in the CONFIG1 register is a 0, the STOP instruction causes an illegal  
opcode reset.  
13.2.3.5 Illegal Address Reset  
An illegal address reset is an internal reset caused by opcode fetch from an unmapped address. An illegal  
address reset sets the ILAD bit in the SIM reset status register.  
A data fetch from an unmapped address does not generate a reset.  
13.2.4 System Integration Module (SIM) Reset Status Register  
This read-only register contains flags to show reset sources. All flag bits are automatically cleared  
following a read of the register. Reset service can read the SIM reset status register to clear the register  
after power-on reset and to determine the source of any subsequent reset.  
The register is initialized on power-up as shown with the POR bit set and all other bits cleared. During a  
POR or any other internal reset, the RST pin is pulled low. After the pin is released, it will be sampled 32  
CGMXCLK cycles later. If the pin is not above a VIH at that time, then the PIN bit in the SRSR may be set  
in addition to whatever other bits are set.  
NOTE  
Only a read of the SIM reset status register clears all reset flags. After  
multiple resets from different sources without reading the register, multiple  
flags remain set.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-2. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Flag  
1 = Power-on reset since last read of SRSR  
0 = Read of SRSR since last power-on reset  
PIN — External Reset Flag  
1 = External reset via RST pin since last read of SRSR  
0 = POR or read of SRSR since any reset  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by timeout of COP counter  
0 = POR or read of SRSR since any reset  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR since any reset  
ILAD — Illegal Address Reset Bit  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR since any reset  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
133  
Resets and Interrupts  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by forced monitor mode entry.  
0 = POR or read of SRSR since any reset  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by low-power supply voltage  
0 = POR or read of SRSR since any reset  
13.3 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event. An  
interrupt does not stop the operation of the instruction being executed, but begins when the current  
instruction completes its operation.  
13.3.1 Effects  
An interrupt:  
Saves the CPU registers on the stack. At the end of the interrupt, the RTI instruction recovers the  
CPU registers from the stack so that normal processing can resume.  
Sets the interrupt mask (I bit) to prevent additional interrupts. Once an interrupt is latched, no other  
interrupt can take precedence, regardless of its priority.  
Loads the program counter with a user-defined vector address  
CONDITION CODE REGISTER  
ACCUMULATOR  
5
4
3
2
1
1
2
3
4
5
INDEX REGISTER (LOW BYTE)(1)  
PROGRAM COUNTER (HIGH BYTE)  
PROGRAM COUNTER (LOW BYTE)  
STACKING  
ORDER  
UNSTACKING  
ORDER  
$00FF DEFAULT ADDRESS ON RESET  
1. High byte of index register is not stacked.  
Figure 13-3. Interrupt Stacking Order  
After every instruction, the CPU checks all pending interrupts if the I bit is not set. If more than one  
interrupt is pending when an instruction is done, the highest priority interrupt is serviced first. In the  
MC68HC908GR16A Data Sheet, Rev. 1.0  
134  
Freescale Semiconductor  
Interrupts  
example shown in Figure 13-4, if an interrupt is pending upon exit from the interrupt service routine, the  
pending interrupt is serviced before the LDA instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 13-4. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, save the H  
register and then restore it prior to exiting the routine.  
See Figure 13-5 for a flowchart depicting interrupt processing.  
13.3.2 Sources  
The sources in Table 13-1 can generate CPU interrupt requests.  
13.3.2.1 Software Interrupt (SWI) Instruction  
The software interrupt (SWI) instruction causes a non-maskable interrupt.  
NOTE  
A software interrupt pushes PC onto the stack. An SWI does not push PC  
– 1, as a hardware interrupt does.  
13.3.2.2 Break Interrupt  
The break module causes the CPU to execute an SWI instruction at a software-programmable break  
point.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
135  
Resets and Interrupts  
FROM RESET  
YES  
BREAK  
INTERRUPT  
?
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT  
?
NO  
CGM  
INTERRUPT  
?
NO  
OTHER  
INTERRUPTS  
?
YES  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION  
?
YES  
YES  
NO  
RTI  
INSTRUCTION  
?
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 13-5. Interrupt Processing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
136  
Freescale Semiconductor  
Interrupts  
Table 13-1. Interrupt Sources  
INT Register  
Vector  
Address  
Mask(1)  
Priority(2)  
Source  
Flag  
Flag  
Reset  
None  
None  
IRQF  
None  
None  
None  
0
0
1
$FFFE$FFFF  
$FFFC$FFFD  
SWI instruction  
IRQ pin  
None  
IF1  
IMASK1  
$FFFA$FFFB  
$FFF8–$FFF9  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
$FFEC–$FFED  
CGM change in lock  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
PLLF  
CH0F  
CH1F  
TOF  
PLLIE  
CH0IE  
CH1IE  
TOIE  
IF2  
IF3  
IF4  
IF5  
IF6  
IF7  
IF8  
2
3
4
5
6
7
8
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
CH0F  
CH1F  
TOF  
CH0IE  
CH1IE  
TOIE  
SPI receiver full  
SPI overflow  
SPRF  
OVRF  
MODF  
SPTE  
OR  
SPRIE  
ERRIE  
ERRIE  
SPTIE  
ORIE  
IF9  
9
$FFEA–$FFEB  
$FFE8–$FFE9  
SPI mode fault  
SPI transmitter empty  
SCI receiver overrun  
SCI noise flag  
IF10  
10  
NF  
NEIE  
IF11  
11  
$FFE6–$FFE7  
SCI framing error  
SCI parity error  
SCI receiver full  
SCI input idle  
FE  
FEIE  
PE  
PEIE  
SCRF  
IDLE  
SCTE  
TC  
SCRIE  
ILIE  
IF12  
IF13  
12  
13  
$FFE4–$FFE5  
$FFE2–$FFE3  
SCI transmitter empty  
SCI transmission complete  
Keyboard pin  
SCTIE  
TCIE  
KEYF  
COCO  
TBIF  
IMASKK  
AIEN  
IF14  
IF15  
IF16  
14  
15  
16  
$FFE0–$FFE1  
$FFDE–$FFDF  
$FFDC–$FFDD  
ADC conversion complete  
Timebase  
TBIE  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.  
2. 0 = highest priority  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
137  
Resets and Interrupts  
13.3.2.3 IRQ Pin  
A 0 on the IRQ pin latches an external interrupt request.  
13.3.2.4 Clock Generator (CGM)  
The CGM can generate a CPU interrupt request every time the phase-locked loop circuit (PLL) enters or  
leaves the locked state. When the LOCK bit changes state, the PLL flag (PLLF) is set. The PLL interrupt  
enable bit (PLLIE) enables PLLF CPU interrupt requests. LOCK is in the PLL bandwidth control register.  
PLLF is in the PLL control register.  
13.3.2.5 Timer Interface Module 1 (TIM1)  
TIM1 CPU interrupt sources:  
TIM1 overflow flag (TOF) — The TOF bit is set when the TIM1 counter value rolls over to $0000  
after matching the value in the TIM1 counter modulo registers. The TIM1 overflow interrupt enable  
bit, TOIE, enables TIM1 overflow CPU interrupt requests. TOF and TOIE are in the TIM1 status  
and control register.  
TIM1 channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM1 CPU  
interrupt requests. CHxF and CHxIE are in the TIM1 channel x status and control register.  
13.3.2.6 Timer Interface Module 2 (TIM2)  
TIM2 CPU interrupt sources:  
TIM2 overflow flag (TOF) — The TOF bit is set when the TIM2 counter value rolls over to $0000  
after matching the value in the TIM2 counter modulo registers. The TIM2 overflow interrupt enable  
bit, TOIE, enables TIM2 overflow CPU interrupt requests. TOF and TOIE are in the TIM2 status  
and control register.  
TIM2 channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM2 CPU  
interrupt requests. CHxF and CHxIE are in the TIM2 channel x status and control register.  
13.3.2.7 Serial Peripheral Interface (SPI)  
SPI CPU interrupt sources:  
SPI receiver full bit (SPRF) — The SPRF bit is set every time a byte transfers from the shift register  
to the receive data register. The SPI receiver interrupt enable bit, SPRIE, enables SPRF CPU  
interrupt requests. SPRF is in the SPI status and control register and SPRIE is in the SPI control  
register.  
SPI transmitter empty (SPTE) — The SPTE bit is set every time a byte transfers from the transmit  
data register to the shift register. The SPI transmit interrupt enable bit, SPTIE, enables SPTE CPU  
interrupt requests. SPTE is in the SPI status and control register and SPTIE is in the SPI control  
register.  
Mode fault bit (MODF) — The MODF bit is set in a slave SPI if the SS pin goes high during a  
transmission with the mode fault enable bit (MODFEN) set. In a master SPI, the MODF bit is set if  
the SS pin goes low at any time with the MODFEN bit set. The error interrupt enable bit, ERRIE,  
enables MODF CPU interrupt requests. MODF, MODFEN, and ERRIE are in the SPI status and  
control register.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
138  
Freescale Semiconductor  
Interrupts  
Overflow bit (OVRF) — The OVRF bit is set if software does not read the byte in the receive data  
register before the next full byte enters the shift register. The error interrupt enable bit, ERRIE,  
enables OVRF CPU interrupt requests. OVRF and ERRIE are in the SPI status and control  
register.  
13.3.2.8 Serial Communications Interface (SCI)  
SCI CPU interrupt sources:  
SCI transmitter empty bit (SCTE) — SCTE is set when the SCI data register transfers a character  
to the transmit shift register. The SCI transmit interrupt enable bit, SCTIE, enables transmitter CPU  
interrupt requests. SCTE is in SCI status register 1. SCTIE is in SCI control register 2.  
Transmission complete bit (TC) — TC is set when the transmit shift register and the SCI data  
register are empty and no break or idle character has been generated. The transmission complete  
interrupt enable bit, TCIE, enables transmitter CPU interrupt requests. TC is in SCI status register  
1. TCIE is in SCI control register 2.  
SCI receiver full bit (SCRF) — SCRF is set when the receive shift register transfers a character to  
the SCI data register. The SCI receive interrupt enable bit, SCRIE, enables receiver CPU  
interrupts. SCRF is in SCI status register 1. SCRIE is in SCI control register 2.  
Idle input bit (IDLE) — IDLE is set when 10 or 11 consecutive 1s shift in from the RxD pin. The idle  
line interrupt enable bit, ILIE, enables IDLE CPU interrupt requests. IDLE is in SCI status register  
1. ILIE is in SCI control register 2.  
Receiver overrun bit (OR) — OR is set when the receive shift register shifts in a new character  
before the previous character was read from the SCI data register. The overrun interrupt enable  
bit, ORIE, enables OR to generate SCI error CPU interrupt requests. OR is in SCI status register  
1. ORIE is in SCI control register 3.  
Noise flag (NF) — NF is set when the SCI detects noise on incoming data or break characters,  
including start, data, and stop bits. The noise error interrupt enable bit, NEIE, enables NF to  
generate SCI error CPU interrupt requests. NF is in SCI status register 1. NEIE is in SCI control  
register 3.  
Framing error bit (FE) — FE is set when a 0 occurs where the receiver expects a stop bit. The  
framing error interrupt enable bit, FEIE, enables FE to generate SCI error CPU interrupt requests.  
FE is in SCI status register 1. FEIE is in SCI control register 3.  
Parity error bit (PE) — PE is set when the SCI detects a parity error in incoming data. The parity  
error interrupt enable bit, PEIE, enables PE to generate SCI error CPU interrupt requests. PE is in  
SCI status register 1. PEIE is in SCI control register 3.  
13.3.2.9 KBD0–KBD7 Pins  
A 0 on a keyboard interrupt pin latches an external interrupt request.  
13.3.2.10 Analog-to-Digital Converter (ADC)  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC  
conversion. The COCO bit is not used as a conversion complete flag when interrupts are enabled.  
13.3.2.11 Timebase Module (TBM)  
The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2–TBR0. When  
the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt request.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
139  
Resets and Interrupts  
Interrupts must be acknowledged by writing a 1 to the TACK bit.  
13.3.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources.  
Table 13-2 summarizes the interrupt sources and the interrupt status register flags that they set. The  
interrupt status registers can be useful for debugging.  
Table 13-2. Interrupt Source Flags  
Interrupt Source  
Interrupt Status Register Flag  
Reset  
SWI instruction  
IRQ pin  
IF1  
CGM change of lock  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SPI receive  
IF2  
IF3  
IF4  
IF5  
IF6  
IF7  
IF8  
IF9  
SPI transmit  
IF10  
IF11  
IF12  
IF13  
IF14  
IF15  
IF16  
SCI error  
SCI receive  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase  
13.3.3.1 Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 13-6. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the sources shown in Table 13-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 and Bit 0 — Always read 0  
MC68HC908GR16A Data Sheet, Rev. 1.0  
140  
Freescale Semiconductor  
Interrupts  
13.3.3.2 Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 13-7. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown in Table 13-2.  
1 = Interrupt request present  
0 = No interrupt request present  
13.3.3.3 Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 13-8. Interrupt Status Register 3 (INT3)  
IF16 and IF15 — Interrupt Flags 16 and 15  
This flag indicates the presence of an interrupt request from the source shown in Table 13-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bits 7–2 — Always read 0  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
141  
Resets and Interrupts  
MC68HC908GR16A Data Sheet, Rev. 1.0  
142  
Freescale Semiconductor  
Chapter 14  
Enhanced Serial Communications Interface (ESCI) Module  
14.1 Introduction  
The enhanced serial communications interface (ESCI) module allows asynchronous communications  
with peripheral devices and other microcontroller units (MCU).  
14.2 Features  
Features include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter central processor unit (CPU) interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
14.3 Pin Name Conventions  
The generic names of the ESCI input/output (I/O) pins are:  
RxD (receive data)  
TxD (transmit data)  
ESCI I/O lines are implemented by sharing parallel I/O port pins. The full name of an ESCI input or output  
reflects the name of the shared port pin. Table 14-1 shows the full names and the generic names of the  
ESCI I/O pins. The generic pin names appear in the text of this section.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
143  
Enhanced Serial Communications Interface (ESCI) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 14-1. Block Diagram Highlighting ESCI Block and Pins  
Table 14-1. Pin Name Conventions  
Generic Pin Names  
Full Pin Names  
RxD  
TxD  
PTE1/RxD  
PTE0/TxD  
MC68HC908GR16A Data Sheet, Rev. 1.0  
144  
Freescale Semiconductor  
Functional Description  
14.4 Functional Description  
Figure 14-2 shows the structure of the ESCI module. The ESCI allows full-duplex, asynchronous, NRZ  
serial communication between the MCU and remote devices, including other MCUs. The transmitter and  
receiver of the ESCI operate independently, although they use the same baud rate generator. During  
normal operation, the CPU monitors the status of the ESCI, writes the data to be transmitted, and  
processes received data.  
INTERNAL BUS  
ESCI DATA  
REGISTER  
ESCI DATA  
REGISTER  
RxD  
SCI_TxD  
TxD  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
BUS_CLK  
TXINV  
LINR  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
SL  
ACLK BIT  
IN SCIACTL  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
BUS  
CLOCK  
LINT  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
ENHANCED  
PRESCALER  
CGMXCLK  
PRE- BAUD RATE  
SCALER GENERATOR  
÷ 4  
SL  
DATA SELECTION  
CONTROL  
÷ 16  
SL = 1 -> SCI_CLK = BUSCLK  
SL = 0 -> SCI_CLK = CGMSCLK (4x BUSCLK)  
Figure 14-2. ESCI Module Block Diagram  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
145  
Enhanced Serial Communications Interface (ESCI) Module  
The baud rate clock source for the ESCI can be selected via the configuration bit, ESCIBDSRC, of the  
CONFIG2 register ($001E).  
For reference, a summary of the ESCI module input/output registers is provided in Figure 14-3.  
Addr.  
Register Name  
Bit 7  
PDS2  
0
6
5
PDS0  
0
4
PSSB4  
0
3
2
1
Bit 0  
Read:  
ESCI Prescaler Register  
PDS1  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
$0009  
(SCPSC) Write:  
See page 166.  
Reset:  
Read:  
0
0
0
0
0
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
ESCI Arbiter Control  
AM1  
AM0  
ACLK  
$000A  
$000B  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
Register (SCIACTL) Write:  
See page 170.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
ESCI Arbiter Data  
Register (SCIADAT) Write:  
See page 171.  
Reset:  
0
0
ENSCI  
0
0
0
M
0
WAKE  
0
0
ILTY  
0
0
PEN  
0
0
PTY  
0
Read:  
ESCI Control Register 1  
LOOPS  
0
TXINV  
(SCC1) Write:  
See page 157.  
Reset:  
0
0
Read:  
ESCI Control Register 2  
SCTIE  
TCIE  
0
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 159.  
Reset:  
0
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 160.  
Reset:  
U
0
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See page 161.  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
Read:  
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See page 164.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
ESCI Data Register  
(SCDR) Write:  
See page 164.  
Reset:  
Unaffected by reset  
Read:  
ESCI Baud Rate Register  
LINT  
0
LINR  
0
SCP1  
0
SCP0  
R
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 165.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 14-3. ESCI I/O Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
146  
Freescale Semiconductor  
Functional Description  
14.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 14-4.  
PARITY  
OR DATA  
BIT  
8-BIT DATA FORMAT  
(BIT M IN SCC1 CLEAR)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 3  
BIT 4 BIT 5  
BIT 6  
BIT 7  
STOP  
BIT  
PARITY  
OR DATA  
BIT  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
NEXT  
START  
BIT  
START  
BIT  
BIT 2  
BIT 3  
BIT 4 BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 14-4. SCI Data Formats  
14.4.2 Transmitter  
Figure 14-5 shows the structure of the SCI transmitter and the registers are summarized in Figure 14-3.  
The baud rate clock source for the ESCI can be selected via the configuration bit, ESCIBDSRC.  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
ESCI DATA REGISTER  
SCP1  
SCP0  
SCR2  
SCR1  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
SCI_TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
PDS2  
PDS1  
PDS0  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
LINT  
Figure 14-5. ESCI Transmitter  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
147  
Enhanced Serial Communications Interface (ESCI) Module  
14.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control  
register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in ESCI control  
register 3 (SCC3) is the ninth bit (bit 8).  
14.4.2.2 Character Transmission  
During an ESCI transmission, the transmit shift register shifts a character out to the TxD pin. The ESCI  
data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.  
To initiate an ESCI transmission:  
1. Enable the ESCI by writing a 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1).  
2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in ESCI control register 2  
(SCC2).  
3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and  
then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit  
shift register. A 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift  
register. A 1 stop bit goes into the most significant bit (MSB) position.  
The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, high.  
If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port E pins.  
14.4.2.3 Break Characters  
Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character.  
For TXINV = 0 (output not inverted), a transmitted break character contains all 0s and has no start, stop,  
or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long as  
SBK is at 1, transmitter logic continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the last break character and then  
transmits at least one 1. The automatic 1 at the end of a break character guarantees the recognition of  
the start bit of the next character.  
When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by  
eight or nine 0 data bits and a 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive 0  
data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed  
by 9 or 10 0 data bits and a 0 where the stop bit should be, resulting in a total of 11 or 12 consecutive 0  
data bits.  
Receiving a break character has these effects on ESCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the ESCI receiver full bit (SCRF) in SCS1  
Clears the ESCI data register (SCDR)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
148  
Freescale Semiconductor  
Functional Description  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
14.4.2.4 Idle Characters  
For TXINV = 0 (output not inverted), a transmitted idle character contains all 1s and has no start, stop, or  
parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle  
character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
NOTE  
When a break sequence is followed immediately by an idle character, this  
SCI design exhibits a condition in which the break character length is  
reduced by one half bit time. In this instance, the break sequence will  
consist of a valid start bit, eight or nine data bits (as defined by the M bit in  
SCC1) of 0 and one half data bit length of 0 in the stop bit position followed  
immediately by the idle character. To ensure a break character of the  
proper length is transmitted, always queue up a byte of data to be  
transmitted while the final break sequence is in progress.  
When queueing an idle character, return the TE bit to 1 before the stop bit  
of the current character shifts out to the TxD pin. Setting TE after the stop  
bit appears on TxD causes data previously written to the SCDR to be lost.  
A good time to toggle the TE bit for a queued idle character is when the  
SCTE bit becomes set and just before writing the next byte to the SCDR.  
14.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values including idle, break, start, and stop bits, are inverted when TXINV is a 1. See  
14.8.1 ESCI Control Register 1.  
14.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the ESCI transmitter:  
ESCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.  
Setting the ESCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the  
SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
14.4.3 Receiver  
Figure 14-6 shows the structure of the ESCI receiver. The receiver I/O registers are summarized in  
Figure 14-3.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
149  
Enhanced Serial Communications Interface (ESCI) Module  
INTERNAL BUS  
LINR  
SCP1  
SCP0  
SCR2  
SCR1  
SCR0  
ESCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
PDS2  
PDS1  
CGMXCLK  
OR  
BUS CLOCK  
PDS0  
M
RWU  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
CPU INTERRUPT  
REQUEST  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
ERROR CPU  
INTERRUPT REQUEST  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 14-6. ESCI Receiver Block Diagram  
14.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
MC68HC908GR16A Data Sheet, Rev. 1.0  
150  
Freescale Semiconductor  
Functional Description  
14.4.3.2 Character Reception  
During an ESCI reception, the receive shift register shifts characters in from the RxD pin. The ESCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The ESCI receiver full bit, SCRF, in ESCI status register 1 (SCS1) becomes set, indicating  
that the received byte can be read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set,  
the SCRF bit generates a receiver CPU interrupt request.  
14.4.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times  
(see Figure 14-7):  
After every start bit  
After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at  
RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples  
returns a valid 0)  
To locate the start bit, data recovery logic does an asynchronous search for a 0 preceded by three 1s.  
When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT DATA  
VERIFICATION SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 14-7. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 14-2 summarizes the results of the start bit verification samples.  
Table 14-2. Start Bit Verification  
RT3, RT5, and RT7 Samples  
Start Bit Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
151  
Enhanced Serial Communications Interface (ESCI) Module  
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 14-3 summarizes the results of the data bit samples.  
Table 14-3. Data Bit Recovery  
RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 14-4  
summarizes the results of the stop bit samples.  
Table 14-4. Stop Bit Recovery  
RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
14.4.3.4 Framing Errors  
If the data recovery logic does not detect a 1 where the stop bit should be in an incoming character, it sets  
the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has  
no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
14.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
152  
Freescale Semiconductor  
Functional Description  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 14-8 shows how much a slow received character can be misaligned without causing a noise error  
or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data  
samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 14-8. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles  
+ 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 14-8, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles  
= 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow  
8-bit character with no errors is:  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles  
+ 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 14-8, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles  
= 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow  
9-bit character with no errors is:  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 14-9 shows how much a fast received character can be misaligned without causing a noise error  
or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
153  
Enhanced Serial Communications Interface (ESCI) Module  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 14-9. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles  
+ 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 14-9, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
× 100 = 3.90%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles  
+ 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 14-9, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is:  
170 176  
× 100 = 3.53%  
-------------------------  
170  
14.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
1. Address mark — An address mark is a 1 in the MSB position of a received character. When the  
WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU  
bit. The address mark also sets the ESCI receiver full bit, SCRF. Software can then compare the  
character containing the address mark to the user-defined address of the receiver. If they are the  
same, the receiver remains awake and processes the characters that follow. If they are not the  
same, software can set the RWU bit and put the receiver back into the standby state.  
2. Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the ESCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting 1s as idle character bits after the start bit  
or after the stop bit.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
154  
Freescale Semiconductor  
Low-Power Modes  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle will cause the receiver to wake up.  
14.4.3.7 Receiver Interrupts  
These sources can generate CPU interrupt requests from the ESCI receiver:  
ESCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting  
the ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the  
RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU  
interrupt requests.  
14.4.3.8 Error Interrupts  
These receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate ESCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the ESCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate ESCI error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop  
bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI error CPU  
interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the ESCI detects a parity error in incoming  
data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate ESCI error CPU  
interrupt requests.  
14.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
14.5.1 Wait Mode  
The ESCI module remains active in wait mode. Any enabled CPU interrupt request from the ESCI module  
can bring the MCU out of wait mode.  
If ESCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
14.5.2 Stop Mode  
The ESCI module is inactive in stop mode. The STOP instruction does not affect ESCI register states.  
ESCI module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an ESCI transmission  
or reception results in invalid data.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
155  
Enhanced Serial Communications Interface (ESCI) Module  
14.6 ESCI During Break Module Interrupts  
The BCFE bit in the break flag control register (SBFCR) enables software to clear status bits during the  
break state. See Chapter 19 Development Support.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
14.7 I/O Signals  
Port E shares two of its pins with the ESCI module. The two ESCI I/O pins are:  
PTE0/TxD — transmit data  
PTE1/RxD — receive data  
14.7.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the ESCI transmitter. The ESCI shares the PTE0/TxD  
pin with port E. When the ESCI is enabled, the PTE0/TxD pin is an output regardless of the state of the  
DDRE0 bit in data direction register E (DDRE).  
14.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the ESCI receiver. The ESCI shares the PTE1/RxD pin with  
port E. When the ESCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit  
in data direction register E (DDRE).  
14.8 I/O Registers  
These I/O registers control and monitor ESCI operation:  
ESCI control register 1, SCC1  
ESCI control register 2, SCC2  
ESCI control register 3, SCC3  
ESCI status register 1, SCS1  
ESCI status register 2, SCS2  
ESCI data register, SCDR  
ESCI baud rate register, SCBR  
ESCI prescaler register, SCPSC  
ESCI arbiter control register, SCIACTL  
ESCI arbiter data register, SCIADAT  
MC68HC908GR16A Data Sheet, Rev. 1.0  
156  
Freescale Semiconductor  
I/O Registers  
14.8.1 ESCI Control Register 1  
ESCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the ESCI  
Controls output polarity  
Controls character length  
Controls ESCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address: $0013  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Figure 14-10. ESCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable ESCI Bit  
This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in ESCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = ESCI enabled  
0 = ESCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether ESCI characters are eight or nine bits long (See  
Table 14-5).The ninth bit can serve as a receiver wakeup signal or as a parity bit. Reset clears the  
M bit.  
1 = 9-bit ESCI characters  
0 = 8-bit ESCI characters  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
157  
Enhanced Serial Communications Interface (ESCI) Module  
Table 14-5. Character Format Selection  
Control Bits  
Character Format  
M
0
1
0
0
1
1
PEN:PTY Start Bits Data Bits Parity Stop Bits Character Length  
0 X  
0 X  
1 0  
1 1  
1 0  
1 1  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
Even  
Odd  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the ESCI: a 1 (address mark) in the MSB  
position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the ESCI starts counting 1s as idle character bits. The counting  
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string  
of 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.  
Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the ESCI parity function (see Table 14-5). When enabled, the parity  
function inserts a parity bit in the MSB position (see Table 14-3). Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the ESCI generates and checks for odd parity or even parity  
(see Table 14-5). Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
14.8.2 ESCI Control Register 2  
ESCI control register 2 (SCC2):  
Enables these CPU interrupt requests:  
SCTE bit to generate transmitter CPU interrupt requests  
TC bit to generate transmitter CPU interrupt requests  
SCRF bit to generate receiver CPU interrupt requests  
IDLE bit to generate receiver CPU interrupt requests  
MC68HC908GR16A Data Sheet, Rev. 1.0  
158  
Freescale Semiconductor  
I/O Registers  
Enables the transmitter  
Enables the receiver  
Enables ESCI wakeup  
Transmits ESCI break characters  
Address: $0014  
Bit 7  
SCTIE  
0
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Figure 14-11. ESCI Control Register 2 (SCC2)  
SCTIE — ESCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate ESCI transmitter CPU interrupt requests. Setting  
the SCTIE bit in SCC2 enables the SCTE bit to generate CPU interrupt requests. Reset clears the  
SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate ESCI transmitter CPU interrupt requests. Reset  
clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — ESCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate ESCI receiver CPU interrupt requests. Setting the  
SCRIE bit in SCC2 enables the SCRF bit to generate CPU interrupt requests. Reset clears the  
SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
:
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (1). Clearing and then setting TE  
during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
159  
Enhanced Serial Communications Interface (ESCI) Module  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the  
break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter  
continuously transmits break characters with no 1s between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the ESCI to send a break  
character instead of a preamble.  
14.8.3 ESCI Control Register 3  
ESCI control register 3 (SCC3):  
Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.  
Enables these interrupts:  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Address:  
$0015  
Bit 7  
R8  
6
T8  
0
5
R
0
4
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R
ORIE  
U
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 14-12. ESCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the SCDR receives the other 8 bits.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
160  
Freescale Semiconductor  
I/O Registers  
When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect  
on the R8 bit.  
T8 — Transmitted Bit 8  
When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset clears the T8 bit.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the receiver overrun bit,  
OR. Reset clears ORIE.  
1 = ESCI error CPU interrupt requests from OR bit enabled  
0 = ESCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = ESCI error CPU interrupt requests from NE bit enabled  
0 = ESCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = ESCI error CPU interrupt requests from FE bit enabled  
0 = ESCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables ESCI receiver CPU interrupt requests generated by the parity error bit, PE.  
Reset clears PEIE.  
1 = ESCI error CPU interrupt requests from PE bit enabled  
0 = ESCI error CPU interrupt requests from PE bit disabled  
14.8.4 ESCI Status Register 1  
ESCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 14-13. ESCI Status Register 1 (SCS1)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
161  
Enhanced Serial Communications Interface (ESCI) Module  
SCTE — ESCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an ESCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an ESCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit  
by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an ESCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There  
may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — ESCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data  
register. SCRF can generate an ESCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE  
generates an ESCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE  
bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must  
receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after  
the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an ESCI error CPU interrupt request if the  
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is  
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears  
the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 14-14 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
162  
Freescale Semiconductor  
I/O Registers  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 14-14. Flag Clearing Sequence  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the ESCI detects noise on the RxD pin. NF generates an NF  
CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a 0 is accepted as the stop bit. FE generates an ESCI error  
CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the ESCI detects a parity error in incoming data. PE generates  
a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
163  
Enhanced Serial Communications Interface (ESCI) Module  
14.8.5 ESCI Status Register 2  
ESCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Incoming data  
Address:  
$0017  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-15. ESCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the ESCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading  
the SCDR. Once cleared, BKF can become set again only after 1s again appear on the RxD pin  
followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search.  
RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling  
RPF before disabling the ESCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
14.8.6 ESCI Data Register  
The ESCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the ESCI data register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 14-16. ESCI Data Register (SCDR)  
R7/T7:R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits, R7:R0. Writing to address $0018  
writes the data to be transmitted, T7:T0. Reset has no effect on the ESCI data register.  
NOTE  
Do not use read-modify-write instructions on the ESCI data register.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
164  
Freescale Semiconductor  
I/O Registers  
14.8.7 ESCI Baud Rate Register  
The ESCI baud rate register (SCBR) together with the ESCI prescaler register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate. One in the ESCI  
baud rate register and one in the ESCI prescaler register.  
Address:  
$0019  
Bit 7  
6
5
SCP1  
0
4
SCP0  
0
3
R
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
LINT  
LINR  
0
0
R
= Reserved  
Figure 14-17. ESCI Baud Rate Register (SCBR)  
LINT — LIN Break Symbol Transmit Enable  
This read/write bit selects the enhanced ESCI features for master nodes in the local interconnect  
network (LIN) protocol (version 1.2) as shown in Table 14-6. Reset clears LINT.  
Table 14-6. ESCI LIN Master Node Control Bits  
LINT  
M
X
0
Functionality  
Normal ESCI functionality  
0
1
1
13-bit break generation enabled for LIN transmitter  
14-bit break generation enabled for LIN transmitter  
1
NOTE  
LIN master nodes require significantly tighter timing tolerances than slave  
nodes. Be sure to consult the current LIN specification to ensure that timing  
requirements are met properly. Generally, these timing tolerances require  
crystals or oscillators to be used, rather than internal clocking circuits.  
LINR — LIN Break Symbol Receiver Bits  
This read/write bit selects the enhanced ESCI features for slave nodes in the local interconnect  
network (LIN) protocol as shown in Table 14-7. Reset clears LINR.  
Table 14-7. ESCI LIN Slave Node Control Bits  
LINR  
M
X
0
Functionality  
Normal ESCI functionality  
0
1
1
11-bit break detect enabled for LIN receiver  
12-bit break detect enabled for LIN receiver  
1
In LIN (version 1.2) systems, the master node transmits a break character which will appear as  
11.05–14.95 dominant bits to the slave node. A data character of 0x00 sent from the master might  
appear as 7.65–10.35 dominant bit times. This is due to the oscillator tolerance requirement that the  
slave node must be within 15% of the master node's oscillator. Since a slave node cannot know if it  
is running faster or slower than the master node (prior to synchronization), the LINR bit allows the slave  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
165  
Enhanced Serial Communications Interface (ESCI) Module  
node to differentiate between a 0x00 character of 10.35 bits and a break character of 11.05 bits. The  
break symbol length must be verified in software in any case, but the LINR bit serves as a filter,  
preventing false detections of break characters that are really 0x00 data characters.  
SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits  
These read/write bits select the baud rate register prescaler divisor as shown in Table 14-8. Reset  
clears SCP1 and SCP0.  
Table 14-8. ESCI Baud Rate Prescaling  
Baud Rate Register  
SCP[1:0]  
Prescaler Divisor (BPD)  
0 0  
0 1  
1 0  
1 1  
1
3
4
13  
SCR2–SCR0 — ESCI Baud Rate Select Bits  
These read/write bits select the ESCI baud rate divisor as shown in Table 14-9. Reset clears  
SCR2–SCR0.  
Table 14-9. ESCI Baud Rate Selection  
SCR[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Baud Rate Divisor (BD)  
1
2
4
8
16  
32  
64  
128  
14.8.8 ESCI Prescaler Register  
The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate. One in the ESCI  
baud rate register and one in the ESCI prescaler register.  
Address:  
$0009  
Bit 7  
6
PDS1  
0
5
PDS0  
0
4
PSSB4  
0
3
PSSB3  
0
2
PSSB2  
0
1
PSSB1  
0
Bit 0  
PSSB0  
0
Read:  
Write:  
Reset:  
PDS2  
0
Figure 14-18. ESCI Prescaler Register (SCPSC)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
166  
Freescale Semiconductor  
I/O Registers  
PDS2–PDS0 — Prescaler Divisor Select Bits  
These read/write bits select the prescaler divisor as shown in Table 14-10. Reset clears PDS2–PDS0.  
NOTE  
The setting of ‘000’ will bypass not only this prescaler but also the prescaler  
divisor fine adjust (PDFA). It is not recommended to bypass the prescaler  
while ENSCI is set, because the switching is not glitch free.  
Table 14-10. ESCI Prescaler Division Ratio  
PS[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Prescaler Divisor (PD)  
Bypass this prescaler  
2
3
4
5
6
7
8
PSSB4–PSSB0 — Clock Insertion Select Bits  
These read/write bits select the number of clocks inserted in each 32 output cycle frame to achieve  
more timing resolution on the average prescaler frequency as shown in Table 14-11. Reset clears  
PSSB4–PSSB0.  
Table 14-11. ESCI Prescaler Divisor Fine Adjust  
PSSB[4:3:2:1:0]  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
Prescaler Divisor Fine Adjust (PDFA)  
0/32 = 0  
1/32 = 0.03125  
2/32 = 0.0625  
3/32 = 0.09375  
4/32 = 0.125  
5/32 = 0.15625  
6/32 = 0.1875  
7/32 = 0.21875  
8/32 = 0.25  
9/32 = 0.28125  
10/32 = 0.3125  
11/32 = 0.34375  
12/32 = 0.375  
13/32 = 0.40625  
14/32 = 0.4375  
15/32 = 0.46875  
Continued on next page  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
167  
Enhanced Serial Communications Interface (ESCI) Module  
Table 14-11. ESCI Prescaler Divisor Fine Adjust (Continued)  
PSSB[4:3:2:1:0]  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
Prescaler Divisor Fine Adjust (PDFA)  
16/32 = 0.5  
17/32 = 0.53125  
18/32 = 0.5625  
19/32 = 0.59375  
20/32 = 0.625  
21/32 = 0.65625  
22/32 = 0.6875  
23/32 = 0.71875  
24/32 = 0.75  
25/32 = 0.78125  
26/32 = 0.8125  
27/32 = 0.84375  
28/32 = 0.875  
29/32 = 0.90625  
30/32 = 0.9375  
31/32 = 0.96875  
Use the following formula to calculate the ESCI baud rate:  
Frequency of the SCI clock source  
64 x BPD x BD x (PD + PDFA)  
Baud rate =  
where:  
Frequency of the SCI clock source = fBus or CGMXCLK (selected by  
ESCIBDSRC in the CONFIG2 register)  
BPD = Baud rate register prescaler divisor  
BD = Baud rate divisor  
PD = Prescaler divisor  
PDFA = Prescaler divisor fine adjust  
Table 14-12 shows the ESCI baud rates that can be generated with a 4.9152-MHz bus frequency.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
168  
Freescale Semiconductor  
I/O Registers  
Table 14-12. ESCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(BPD)  
Baud Rate  
Divisor  
(BD)  
Baud Rate  
(fBus= 4.9152 MHz)  
PS[2:1:0]  
PSSB[4:3:2:1:0]  
SCP[1:0]  
SCR[2:1:0]  
0 0 0  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
X X X X X  
0 0 0 0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1
1
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1
1
76,800  
9600  
9562.65  
9525.58  
8563.07  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
0 0 0 0 1  
1
1
0 0 0 1 0  
1
1
1 1 1 1 1  
1
1
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
1
2
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
169  
Enhanced Serial Communications Interface (ESCI) Module  
14.9 ESCI Arbiter  
The ESCI module comprises an arbiter module designed to support software for communication tasks as  
bus arbitration, baud rate recovery and break time detection. The arbiter module consists of an 9-bit  
counter with 1-bit overflow and control logic. The CPU can control operation mode via the ESCI arbiter  
control register (SCIACTL).  
14.9.1 ESCI Arbiter Control Register  
Address:  
$000A  
Bit 7  
6
5
AM0  
0
4
ACLK  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
AM1  
0
0
0
0
0
0
= Unimplemented  
Figure 14-19. ESCI Arbiter Control Register (SCIACTL)  
AM1 and AM0 — Arbiter Mode Select Bits  
These read/write bits select the mode of the arbiter module as shown in  
Table 14-13. Reset clears AM1 and AM0.  
Table 14-13. ESCI Arbiter Selectable Modes  
AM[1:0]  
0 0  
ESCI Arbiter Mode  
Idle / counter reset  
0 1  
Bit time measurement  
Bus arbitration  
1 0  
1 1  
Reserved / do not use  
ALOST — Arbitration Lost Flag  
This read-only bit indicates loss of arbitration. Clear ALOST by writing a 0 to AM1. Reset clears  
ALOST.  
ACLK — Arbiter Counter Clock Select Bit  
This read/write bit selects the arbiter counter clock source. Reset clears ACLK.  
1 = Arbiter counter is clocked with one half of the ESCI input clock generated by the ESCI prescaler  
0 = Arbiter counter is clocked with the bus clock divided by four  
NOTE  
For ACLK = 1, the arbiter input clock is driven from the ESCI prescaler. The  
prescaler can be clocked by either the bus clock or CGMXCLK depending  
on the state of the ESCIBDSRC bit in CONFIG2.  
AFIN— Arbiter Bit Time Measurement Finish Flag  
This read-only bit indicates bit time measurement has finished. Clear AFIN by writing any value to  
SCIACTL. Reset clears AFIN.  
1 = Bit time measurement has finished  
0 = Bit time measurement not yet finished  
ARUN— Arbiter Counter Running Flag  
This read-only bit indicates the arbiter counter is running. Reset clears ARUN.  
1 = Arbiter counter running  
0 = Arbiter counter stopped  
MC68HC908GR16A Data Sheet, Rev. 1.0  
170  
Freescale Semiconductor  
ESCI Arbiter  
AROVFL— Arbiter Counter Overflow Bit  
This read-only bit indicates an arbiter counter overflow. Clear AROVFL by writing any value to  
SCIACTL. Writing 0s to AM1 and AM0 resets the counter keeps it in this idle state. Reset clears  
AROVFL.  
1 = Arbiter counter overflow has occurred  
0 = No arbiter counter overflow has occurred  
ARD8— Arbiter Counter MSB  
This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8 by writing any value to SCIACTL.  
Reset clears ARD8.  
14.9.2 ESCI Arbiter Data Register  
Address: $000B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-20. ESCI Arbiter Data Register (SCIADAT)  
ARD7–ARD0 — Arbiter Least Significant Counter Bits  
These read-only bits are the eight LSBs of the 9-bit arbiter counter. Clear ARD7–ARD0 by writing any  
value to SCIACTL. Writing 0s to AM1 and AM0 permanently resets the counter and keeps it in this idle  
state. Reset clears ARD7–ARD0.  
14.9.3 Bit Time Measurement  
Two bit time measurement modes, described here, are available according to the state of ACLK.  
1. ACLK = 0 — The counter is clocked with one half of the bus clock. The counter is started when a  
falling edge on the RxD pin is detected. The counter will be stopped on the next falling edge. ARUN  
is set while the counter is running, AFIN is set on the second falling edge on RxD (for instance, the  
counter is stopped). This mode is used to recover the received baud rate. See Figure 14-21.  
2. ACLK = 1 — The counter is clocked with one half of the ESCI input clock generated by the ESCI  
prescaler. The counter is started when a 0 is detected on RxD (see Figure 14-22). A 0 on RxD on  
enabling the bit time measurement with ACLK = 1 leads to immediate start of the counter (see  
Figure 14-23). The counter will be stopped on the next rising edge of RxD. This mode is used to  
measure the length of a received break.  
14.9.4 Arbitration Mode  
If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every rising edge of SCI_TxD  
(output of the ESCI module, internal chip signal), the counter is started. When the counter reaches $38  
(ACLK = 0) or $08 (ACLK = 1), RxD is statically sensed. If in this case, RxD is sensed low (for example,  
another bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD pin is forced  
to 1, resulting in a seized transmission.  
If SCI_TxD senses a 0 without having sensed a 0 before on RxD, the counter will be reset, arbitration  
operation will be restarted after the next rising edge of SCI_TxD.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
171  
Enhanced Serial Communications Interface (ESCI) Module  
MEASURED TIME  
RXD  
Figure 14-21. Bit Time Measurement with ACLK = 0  
MEASURED TIME  
RXD  
Figure 14-22. Bit Time Measurement with ACLK = 1, Scenario A  
MEASURED TIME  
RXD  
Figure 14-23. Bit Time Measurement with ACLK = 1, Scenario B  
MC68HC908GR16A Data Sheet, Rev. 1.0  
172  
Freescale Semiconductor  
Chapter 15  
System Integration Module (SIM)  
15.1 Introduction  
This section describes the system integration module (SIM). Together with the central processor unit  
(CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram of the SIM is shown in  
Figure 15-1. Table 15-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state  
controller that coordinates CPU and exception timing.  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
VDD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
FORCED MONITOR MODE ENTRY  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 15-1. SIM Block Diagram  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
173  
System Integration Module (SIM)  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt arbitration  
Table 15-1 shows the internal signal names used in this section.  
Table 15-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMVCLK  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
Addr.  
Register Name  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
SBSW  
Note(1)  
0
SIM Break Status Register  
$FE00  
(SBSR) Write:  
See page 187.  
Reset:  
0
0
1. Writing a 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
$FE01  
$FE03  
$FE04  
$FE05  
$FE06  
(SRSR) Write:  
See page 188.  
POR:  
Read:  
1
0
0
0
0
0
0
0
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register (SBFCR) Write:  
See page 189.  
Reset:  
Read:  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
IF1  
R
0
R
0
R
Interrupt Status  
Register 1 (INT1) Write:  
See page 183.  
R
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
IF9  
R
IF8  
R
IF7  
R
Interrupt Status  
Register 2 (INT2) Write:  
See page 184.  
R
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
IF20  
R
IF19  
R
IF18  
IF17  
R
IF16  
R
IF15  
R
Interrupt Status  
Register 3 (INT3) Write:  
See page 184.  
R
R
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 15-2. SIM I/O Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
174  
Freescale Semiconductor  
SIM Bus Clock Control and Generation  
15.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 15-3. This clock  
originates from either an external oscillator or from the on-chip PLL.  
15.2.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four  
or the PLL output (CGMVCLK) divided by four.  
15.2.2 Clock Startup from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this entire period. The bus clocks  
start upon completion of the timeout.  
OSC2  
OSC1  
OSCILLATOR (OSC)  
CGMXCLK  
TO TBM,TIM1,TIM2, ADC  
SIM  
SIMOSCEN  
IT12  
OSCENINSTOP  
FROM  
CONFIG2  
SIM COUNTER  
CGMRCLK  
TO REST  
OF CHIP  
CGMOUT  
BUS CLOCK  
÷ 2  
IT23  
TO REST  
OF CHIP  
GENERATORS  
PHASE-LOCKED LOOP (PLL)  
Figure 15-3. System Clock Signals  
15.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 CGMXCLK cycles. See 15.6.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
175  
System Integration Module (SIM)  
15.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
Forced monitor mode entry reset (MODRST)  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 15.4 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 15.7 SIM Registers.  
15.3.1 External Pin Reset  
The RST pin circuit includes an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset.  
See Table 15-2 for details. Figure 15-4 shows the relative timing.  
CGMOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 15-4. External Reset Timing  
15.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of  
external peripherals. The internal reset continues to be asserted for an additional 32 cycles at which point  
the reset vector will be fetched. See Figure 15-5. An internal reset can be caused by an illegal address,  
illegal opcode, COP timeout, LVI, or POR. See Figure 15-6.  
NOTE  
For LVI or POR resets, the SIM cycles through 4096 + 32 CGMXCLK cycles  
during which the SIM forces the RST pin low. The internal reset signal then  
follows the sequence from the falling edge of RST shown in Figure 15-5.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
176  
Freescale Semiconductor  
Reset and System Initialization  
IRST  
RST  
RST PULLED LOW BY MCU  
32 CYCLES  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 15-5. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
INTERNAL RESET  
LVI  
POR  
MODRST  
Figure 15-6. Sources of Internal Reset  
Table 15-2. Reset Recovery Type  
Reset Recovery Type  
POR/LVI  
All others  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
15.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out  
4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU and memories are released  
from reset to allow the reset vector sequence to occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow  
stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are  
cleared.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
177  
System Integration Module (SIM)  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IRST  
IAB  
$FFFE  
$FFFF  
Figure 15-7. POR Recovery  
15.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
The COP module is disabled if the RST pin or the IRQ pin is held at VTST while the MCU is in monitor  
mode. The COP module can be disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of  
external noise. During a break state, VTST on the RST pin disables the COP module.  
15.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
If the stop enable bit, STOP, in the CONFIG1 register is 0, the SIM treats the STOP instruction as an  
illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
15.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources.  
15.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the VTRIPF  
voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held  
MC68HC908GR16A Data Sheet, Rev. 1.0  
178  
Freescale Semiconductor  
SIM Counter  
low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later,  
the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down  
the RST pin for all internal reset sources.  
15.3.2.6 Monitor Mode Entry Module Reset (MODRST)  
The monitor mode entry module reset (MODRST) asserts its output to the SIM when monitor mode is  
entered in the condition where the reset vectors are erased ($FF) (see 19.3.1.1 Normal Monitor Mode).  
When MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all  
internal reset sources.  
15.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter is 12 bits long.  
15.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to  
drive the bus clock state machine.  
15.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the  
CONFIG1 register. If the SSREC bit is a 1, then the stop recovery is reduced from the normal delay of  
4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using crystals with  
the OSCENINSTOP bit set. External crystal applications should use the full stop recovery time, SSREC  
cleared, if the OSCENINSTOP bit is cleared.  
15.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. See 15.6.2 Stop Mode for details. The SIM counter is  
free-running after all reset states. See 15.3.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.  
15.5 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts:  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
179  
System Integration Module (SIM)  
15.5.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 15-8 shows  
interrupt entry timing. Figure 15-9 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 15-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
R/W  
CCR  
A
X
PC – 1 [7:0] PC – 1 [15:8] OPCODE OPERAND  
Figure 15-9. Interrupt Recovery Timing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
180  
Freescale Semiconductor  
Exception Control  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared). See Figure 15-10.  
FROM RESET  
BREAK  
INTERRUPT?  
YES  
NO  
YES  
I BIT SET?  
NO  
IRQ  
INTERRUPT?  
YES  
NO  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 15-10. Interrupt Processing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
181  
System Integration Module (SIM)  
15.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 15-11 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 15-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
15.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
182  
Freescale Semiconductor  
Exception Control  
15.5.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources.  
Table 15-3 summarizes the interrupt sources and the interrupt status register flags that they set. The  
interrupt status registers can be useful for debugging.  
Table 15-3. Interrupt Sources  
Interrupt Status  
Register Flag  
Priority  
Interrupt Source  
Highest  
Reset  
SWI instruction  
IRQ pin  
I1  
CGM clock monitor  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
I2  
I3  
I4  
I5  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
I6  
I7  
I8  
SPI receiver full  
SPI transmitter empty  
SCI receive error  
SCI receive  
I9  
I10  
I11  
I12  
I13  
I14  
I15  
I16  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase module  
Lowest  
Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
I6  
6
5
I4  
R
0
4
I3  
R
0
3
I2  
R
0
2
I1  
R
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
I5  
R
R
R
0
R
0
0
0
R
= Reserved  
Figure 15-12. Interrupt Status Register 1 (INT1)  
I6–I1 — Interrupt Flags 1–6  
These flags indicate the presence of interrupt requests from the sources shown in Table 15-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
183  
System Integration Module (SIM)  
Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
I14  
R
6
5
I12  
R
4
I11  
R
3
I10  
R
2
I9  
R
0
1
I8  
R
0
Bit 0  
I7  
Read:  
Write:  
Reset:  
I13  
R
R
0
0
0
0
0
0
R
= Reserved  
Figure 15-13. Interrupt Status Register 2 (INT2)  
I14–I7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown in Table 15-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
I20  
R
4
I19  
R
3
I18  
R
2
I17  
R
1
I16  
R
Bit 0  
I15  
R
Read:  
Write:  
Reset:  
0
R
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 15-14. Interrupt Status Register 3 (INT3)  
Bits 7–6 — Always read 0  
I20–I15 — Interrupt Flags 20–15  
These flags indicate the presence of an interrupt request from the source shown in Table 15-3.  
1 = Interrupt request present  
0 = No interrupt request present  
15.5.2 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
15.5.3 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting its  
break interrupt output (see Chapter 18 Timer Interface Module (TIM1 and TIM2)). The SIM puts the CPU  
into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each  
module to see how each module is affected by the break state.  
15.5.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
MC68HC908GR16A Data Sheet, Rev. 1.0  
184  
Freescale Semiconductor  
Low-Power Modes  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
15.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition  
code register, allowing interrupts to occur.  
15.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 15-15 shows  
the timing for wait mode entry.  
A module that is active during wait mode can wakeup the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode also can be exited by a reset (or break in emulation mode). A break interrupt during wait mode  
sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit,  
COPD, in the CONFIG1 register is 0, then the computer operating properly module (COP) is enabled and  
remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 15-15. Wait Mode Entry Timing  
Figure 15-16 and Figure 15-17 show the timing for WAIT recovery.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
185  
System Integration Module (SIM)  
IAB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin or CPU interrupt  
Figure 15-16. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 15-17. Wait Recovery from Internal Reset  
15.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping  
the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the CONFIG1 register.  
If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32.  
This is ideal for applications using canned oscillators that do not require long startup times from stop  
mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit unless the OSCENINSTOP bit is set in CONFIG2.  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 15-18 shows stop mode entry timing.  
Figure 15-19 shows stop mode recovery time from interrupt.  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a 1 or 0.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
186  
Freescale Semiconductor  
SIM Registers  
CPUSTOP  
IAB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
IDB  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the STOP opcode, depending  
on the last instruction.  
Figure 15-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 15-19. Stop Mode Recovery from Interrupt  
15.7 SIM Registers  
The SIM has three memory-mapped registers. Table 15-4 shows the mapping of these registers.  
Table 15-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
15.7.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait  
mode. This register is only used in emulation mode.  
Address:  
$FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 15-20. Break Status Register (SBSR)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
187  
System Integration Module (SIM)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt.  
0 = Wait mode was not exited by break interrupt.  
15.7.2 SIM Reset Status Register  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ VTST  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
MC68HC908GR16A Data Sheet, Rev. 1.0  
188  
Freescale Semiconductor  
SIM Registers  
15.7.3 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while  
the MCU is in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 15-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
189  
System Integration Module (SIM)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
190  
Freescale Semiconductor  
Chapter 16  
Serial Peripheral Interface (SPI) Module  
16.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous,  
serial communications with peripheral devices.  
The text that follows describes the SPI. The SPI I/O pin names are SS (slave select), SPSCK (SPI serial  
clock), MOSI (master out slave in), and MISO (master in/slave out). The SPI shares four I/O pins with four  
parallel I/O ports.  
16.2 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port  
bit(s)  
16.3 Functional Description  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interrupt  
driven.  
If a port bit is configured for input, then an internal pullup device may be enabled for that port bit.  
The following paragraphs describe the operation of the SPI module. Refer to Figure 16-3 for a summary  
of the SPI I/O registers.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
191  
Serial Peripheral Interface (SPI) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 16-1. Block Diagram Highlighting SPI Block and Pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
192  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUSCLK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
÷ 32  
÷ 128  
PIN  
CONTROL  
LOGIC  
CLOCK  
SELECT  
SPSCK  
SS  
SPMSTR  
SPE  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
SPE  
SPWOM  
SPI  
CONTROL  
SPRF  
SPTE  
OVRF  
MODF  
Figure 16-2. SPI Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
SPI Control Register  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
$0010  
(SPCR) Write:  
See page 207.  
Reset:  
Read:  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
Register (SPSCR) Write:  
See page 208.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 210.  
Reset:  
Unaffected by reset  
= Unimplemented  
= Reserved  
R
Figure 16-3. SPI I/O Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
193  
Serial Peripheral Interface (SPI) Module  
16.3.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE  
In a multi-SPI system, configure the SPI modules as master or slave before  
enabling them. Enable the master SPI before enabling the slave SPI.  
Disable the slave SPI before disabling the master SPI. See 16.12.1 SPI  
Control Register.  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI  
pin under the control of the serial clock. See Figure 16-4.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 16-4. Full-Duplex Master-Slave Connections  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
(See 16.12.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s  
MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that  
SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation,  
SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control  
register with SPRF set and then reading the SPI data register. Writing to the SPI data register (SPDR)  
clears SPTE.  
16.3.2 Slave Mode  
The SPI operates in slave mode when SPMSTR is clear. In slave mode, the SPSCK pin is the input for  
the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must  
be low. SS must remain low until the transmission is complete. See 16.6.2 Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,  
and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data  
register before another full byte enters the shift register.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
194  
Freescale Semiconductor  
Transmission Formats  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is  
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only  
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of  
the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. See 16.4 Transmission Formats.  
NOTE  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
16.4 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select  
line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere  
with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate  
multiple-master bus contention.  
16.4.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits  
in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects  
an active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The  
clock phase and polarity should be identical for the master SPI device and the communicating slave  
device. In some cases, the phase and polarity are changed between transmissions to allow a master  
device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing  
the SPI enable bit (SPE).  
16.4.2 Transmission Format When CPHA = 0  
Figure 16-5 shows an SPI transmission in which CPHA = 0. The figure should not be used as a  
replacement for data sheet parametric information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may  
be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave.  
The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS  
line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
195  
Serial Peripheral Interface (SPI) Module  
input (SS) is low, so that only the selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as  
general-purpose I/O not affecting the SPI. (See 16.6.2 Mode Fault Error.) When CPHA = 0, the first  
SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first  
SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s  
SS pin must be toggled back to high and then low again between each byte transmitted as shown in  
Figure 16-6.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
FROM MASTER  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 16-5. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 16-6. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift  
register after the current transmission.  
16.4.3 Transmission Format When CPHA = 1  
Figure 16-7 shows an SPI transmission in which CPHA = 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing  
diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins  
are directly connected between the master and the slave. The MISO signal is the output from the slave,  
and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The  
slave SPI drives its MISO output only when its slave select input (SS) is low, so that only the selected  
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS  
MC68HC908GR16A Data Sheet, Rev. 1.0  
196  
Freescale Semiconductor  
Transmission Formats  
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See  
16.6.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK  
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can  
remain low between transmissions. This format may be preferable in systems having only one master and  
only one slave driving the MISO data line.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the  
shift register after the current transmission.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
FROM MASTER  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
MISO  
FROM SLAVE  
LSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 16-7. Transmission Format (CPHA = 1)  
16.4.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA  
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.  
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. (See Figure 16-8.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and  
SPMSTR bits are set. Since the SPI clock is free-running, it is uncertain where the write to the SPDR  
occurs relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown  
in Figure 16-8. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU  
bus cycles for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus  
cycles for DIV128.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
197  
Serial Peripheral Interface (SPI) Module  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = BUS CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SPSCK = BUS CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SPSCK = BUS CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
BUS  
CLOCK  
EARLIEST  
SPSCK = BUS CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 16-8. Transmission Start Delay (Master)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
198  
Freescale Semiconductor  
Queuing Transmission Data  
16.5 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready  
to accept new data. Write to the transmit data register only when SPTE is high. Figure 16-9 shows the  
timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
BYTE 1  
5
4
3
2
1
6
BYTE 2  
5
4
2
1
6
BYTE 3  
5
4
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 16-9. SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes  
between transmissions as in a system with a single data buffer. Also, if no new data is written to the data  
buffer, the last value contained in the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no  
more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur  
until the transmission is completed. This implies that a back-to-back write to the transmit data register is  
not possible. SPTE indicates when the next write can occur.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
199  
Serial Peripheral Interface (SPI) Module  
16.6 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift  
register sets the OVRF bit. The new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control register.  
Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS)  
is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
16.6.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous  
transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe  
occurs in the middle of SPSCK cycle 7 (see Figure 16-5 and Figure 16-7.) If an overflow occurs, all data  
received after the overflow and before the OVRF bit is cleared does not transfer to the receive data  
register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive  
data register before the overflow occurred can still be read. Therefore, an overflow error always indicates  
the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading  
the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector (see Figure 16-12.) It  
is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 16-10 shows how it is possible to miss an overflow. The first part of Figure 16-10 shows how it is  
possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by  
the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR  
are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
SPSCR  
2
5
5
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 16-10. Missed Read of Overflow Condition  
MC68HC908GR16A Data Sheet, Rev. 1.0  
200  
Freescale Semiconductor  
Error Conditions  
In this case, an overflow can be missed easily. Since no more SPRF interrupts can be generated until this  
OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the  
SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions can set the SPRF bit. Figure 16-11 illustrates this process. Generally, to avoid this second  
SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit.  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 16-11. Clearing SPRF When OVRF Interrupt Is Not Enabled  
16.6.2 Mode Fault Error  
Setting SPMSTR selects master mode and configures the SPSCK and MOSI pins as outputs and the  
MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins  
as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state of  
the slave select pin, SS, is inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the  
MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is  
cleared.  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 16-12.)  
It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
201  
Serial Peripheral Interface (SPI) Module  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes low. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all SPI bits of the data direction register of the shared I/O port before  
enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes  
back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins  
when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK  
returns to its idle level following the shift of the last data bit. See 16.4 Transmission Formats.  
NOTE  
Setting the MODF flag does not clear the SPMSTR bit. SPMSTR has no  
function when SPE = 0. Reading SPMSTR when MODF = 1 shows the  
difference between a MODF occurring when the SPI is a master and when  
it is a slave.  
NOTE  
When CPHA = 0, a MODF occurs if a slave is selected (SS is low) and later  
unselected (SS is high) even if no SPSCK is sent to that slave. This  
happens because SS low indicates the start of the transmission (MISO  
driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave  
can be selected and then later unselected with no transmission occurring.  
Therefore, MODF does not occur since a transmission was never begun.  
In a slave SPI (MSTR = 0), MODF generates an SPI receiver/error CPU interrupt request if the ERRIE bit  
is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI  
transmission by clearing the SPE bit of the slave.  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high impedance  
state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was  
already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This  
entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared.  
16.7 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests. See Table 16-1.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
202  
Freescale Semiconductor  
Interrupts  
Table 16-1. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request  
(ERRIE = 1)  
MODF  
Mode fault  
SPI receiver/error interrupt request  
(ERRIE = 1)  
Reading the SPI status and control register with SPRF set and then reading the receive data register  
clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU  
interrupt requests, provided that the SPI is enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables SPRF to generate receiver CPU interrupt requests,  
regardless of the state of SPE. See Figure 16-12.  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error  
CPU interrupt request.  
SPTE  
SPTIE  
SPRF  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 16-12. SPI Interrupt Request Generation  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests.  
The following sources in the SPI status and control register can generate CPU interrupt requests:  
SPI receiver full bit (SPRF) — SPRF becomes set every time a byte transfers from the shift register  
to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF  
generates an SPI receiver/error CPU interrupt request.  
SPI transmitter empty (SPTE) — SPTE becomes set every time a byte transfers from the transmit  
data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set, SPTE  
generates an SPTE CPU interrupt request.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
203  
Serial Peripheral Interface (SPI) Module  
16.8 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is 0.  
Whenever SPE is 0, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete transmission.  
All the SPI port logic is defaulted back to being general-purpose I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to set all control bits again when SPE is set back high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
16.9 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
16.9.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can  
bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt  
requests by setting the error interrupt enable bit (ERRIE). See 16.7 Interrupts.  
16.9.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by  
reset, any transfer in progress is aborted, and the SPI is reset.  
16.10 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the SIM break flag control register (SBFCR) enables software to clear status bits  
during the break state. See Chapter 15 System Integration Module (SIM).  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
204  
Freescale Semiconductor  
I/O Signals  
To protect status bits during the break state, write a 0 to BCFE. With BCFE at 0 (its default state), software  
can read and write I/O registers during the break state without affecting status bits. Some status bits have  
a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the  
bit cannot change during the break state as long as BCFE is 0. After the break, doing the second step  
clears the status bit.  
Since the SPTE bit cannot be cleared during a break with BCFE cleared, a write to the transmit data  
register in break mode does not initiate a transmission nor is this data transferred into the shift register.  
Therefore, a write to the SPDR in break mode with BCFE cleared has no effect.  
16.11 I/O Signals  
The SPI module has four I/O pins:  
MISO — Master input/slave output  
MOSI — Master output/slave input  
SPSCK — Serial clock  
SS — Slave select  
The SPI has limited inter-integrated circuit (I2C) capability (requiring software support) as a master in a  
single-master environment. To communicate with I2C peripherals, MOSI becomes an open-drain output  
when the SPWOM bit in the SPI control register is set. In I2C communication, the MOSI and MISO pins  
are connected to a bidirectional pin from the I2C peripheral and through a pullup resistor to VDD  
.
16.11.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is 0 and its SS pin is low. To support a multiple-slave system,  
a high on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
16.11.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
16.11.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
205  
Serial Peripheral Interface (SPI) Module  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
16.11.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, SS is used to select a slave. For CPHA = 0, SS is used to define the start of a transmission. (See  
16.4 Transmission Formats.) Since it is used to indicate the start of a transmission, SS must be toggled  
high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 16-13.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 16-13. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of SS from creating a MODF error. See 16.12.2 SPI Status and Control Register.  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high-impedance  
state. The slave SPI ignores all incoming SPSCK clocks, even if it was  
already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. (See 16.6.2 Mode Fault Error.) For the state of  
the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If MODFEN is 0 for  
an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data direction  
register of the shared I/O port. When MODFEN is 1, SS is an input-only pin to the SPI regardless of the  
state of the data direction register of the shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and  
reading the port data register. See Table 16-2.  
Table 16-2. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Function of SS Pin  
General-purpose I/O;  
SS ignored by SPI  
X(1))  
0
1
1
1
X
X
0
Not enabled  
0
1
1
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
Master without MODF  
Master with MODF  
1
Input-only to SPI  
1. X = Don’t care  
MC68HC908GR16A Data Sheet, Rev. 1.0  
206  
Freescale Semiconductor  
I/O Registers  
16.12 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
16.12.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address: $0010  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
0
0
R
= Reserved  
Figure 16-14. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set  
when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR  
bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between transmissions. (See  
Figure 16-5 and Figure 16-7.) To transmit data between SPI modules, the SPI modules must have  
identical CPOL values. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and SPI data. (See  
Figure 16-5 and Figure 16-7.) To transmit data between SPI modules, the SPI modules must have  
identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be high between  
bytes. (See Figure 16-13.) Reset sets the CPHA bit.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins  
become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
207  
Serial Peripheral Interface (SPI) Module  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 16.8  
Resetting the SPI.) Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
16.12.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address: $0011  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 16-15. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register  
with SPRF set and then reading the SPI data register.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears  
the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
MC68HC908GR16A Data Sheet, Rev. 1.0  
208  
Freescale Semiconductor  
I/O Registers  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next full byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the receive data register. Reset clears the  
OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with  
MODFEN set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear MODF by reading the SPI status and control register (SPSCR) with MODF set  
and then writing to the SPI control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE CPU interrupt request if SPTIE in the SPI control register is set  
also.  
NOTE  
Do not write to the SPI data register unless SPTE is high.  
During an SPTE CPU interrupt, the CPU clears SPTE bit writing to the transmit data register. Reset  
sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set, allows the MODF flag to be set. If the MODF flag is set, clearing MODFEN  
does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is 0, then the SS  
pin is available as a general-purpose I/O.  
If the MODFEN bit is 1, then the SS is not available as a general-purpose I/O. When the SPI is enabled  
as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN.  
See 16.11.4 SS (Slave Select).  
If the MODFEN bit is 0, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. See 16.6.2 Mode Fault  
Error.  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in Table 16-3. SPR1 and  
SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.  
Table 16-3. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
209  
Serial Peripheral Interface (SPI) Module  
Use this formula to calculate the SPI baud rate:  
BUSCLK  
Baud rate =  
BD  
16.12.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and the write-only transmit data  
register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data  
register reads data from the receive data register. The transmit data and receive data registers are  
separate registers that can contain different values. See Figure 16-2.  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 16-16. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register since the  
register read is not the same as the register written.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
210  
Freescale Semiconductor  
Chapter 17  
Timebase Module (TBM)  
17.1 Introduction  
This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user  
selectable rates using a counter clocked by the external clock source. This TBM version uses 15 divider  
stages, eight of which are user selectable. A configuration option bit to select an additional 128 divide of  
the external clock source can be selected. See Chapter 5 Configuration Register (CONFIG)  
17.2 Features  
Features of the TBM module include:  
External clock or an additional divide-by-128 selected by configuration option bit as clock source  
Software configurable periodic interrupts with divide-by: 8, 16, 32, 64, 128, 2048, 8192, and 32768  
taps of the selected clock source  
Configurable for operation during stop mode to allow periodic wakeup from stop  
17.3 Functional Description  
This module can generate a periodic interrupt by dividing the clock source supplied from the clock  
generator module, CGMXCLK.  
The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 17-1, starts  
counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2–TBR0, the  
TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared  
by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the  
interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact  
period.  
The timebase module may remain active after execution of the STOP instruction if the crystal oscillator  
has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration  
register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode.  
17.4 Interrupts  
The timebase module can periodically interrupt the CPU with a rate defined by the selected TBMCLK and  
the select bits TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE  
bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt  
request.  
NOTE  
Interrupts must be acknowledged by writing a 1 to the TACK bit.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
211  
Timebase Module (TBM)  
TBMCLKSEL  
FROM CONFIG2  
TBMCLK  
0
1
CGMXCLK  
DIVIDE BY 128  
PRESCALER  
FROM CGM MODULE  
TBON  
÷ 2  
÷ 2  
÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2 ÷ 2  
÷ 2 ÷ 2  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
Figure 17-1. Timebase Block Diagram  
17.5 TBM Interrupt Rate  
The interrupt rate is determined by the equation:  
Divider  
t
= ---------------------------  
TBMRATE  
f
CGMXCLK  
where:  
fCGMXCLK = Frequency supplied from the clock generator (CGM) module  
Divider = Divider value as determined by TBR2–TBR0 settings and TBMCLKSEL, see Table 17-1  
MC68HC908GR16A Data Sheet, Rev. 1.0  
212  
Freescale Semiconductor  
Low-Power Modes  
Table 17-1. Timebase Divider Selection  
Divider  
TBR2  
TBR1  
TBR0  
TBMCLKSEL  
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32,768  
8192  
2048  
128  
64  
4,194,304  
1,048,576  
262144  
16,384  
8192  
32  
4096  
16  
2048  
8
1024  
As an example, the divider is 16,384 with a 4.9152 MHz crystal, the TBMCLKSEL set for divide-by-128,  
and TBR2–TBR0 set to {011}. The interrupt period is:  
16,384/4.9152 x 106 = 3.33 ms  
NOTE  
Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1).  
17.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
17.6.1 Wait Mode  
The timebase module remains active after execution of the WAIT instruction. In wait mode the timebase  
register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power consumption by stopping  
the timebase before executing the WAIT instruction.  
17.6.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if the internal clock  
generator has been enabled to operate during stop mode through the OSCENINSTOP bit in the  
configuration register. The timebase module can be used in this mode to generate a periodic wakeup from  
stop mode.  
If the internal clock generator has not been enabled to operate in stop mode, the timebase module will  
not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce power consumption by disabling the  
timebase module before executing the STOP instruction.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
213  
Timebase Module (TBM)  
17.7 Timebase Control Register  
The timebase has one register, the timebase control register (TBCR), which is used to enable the  
timebase interrupts and set the rate.  
Address: $001C  
Bit 7  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
Read:  
Write:  
Reset:  
TBIF  
0
TACK  
0
TBIE  
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 17-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2–TBR0 — Timebase Divider Selection Bits  
These read/write bits select the tap in the counter to be used for timebase interrupts as shown in  
Table 17-1.  
NOTE  
Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1).  
TACK— Timebase Acknowledge Bit  
The TACK bit is a write-only bit and always reads as 0. Writing a 1 to this bit clears TBIF, the timebase  
interrupt flag bit. Writing a 0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled Bit  
This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the  
TBIE bit.  
1 = Timebase interrupt is enabled.  
0 = Timebase interrupt is disabled.  
TBON — Timebase Enabled Bit  
This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption  
when its function is not necessary. The counter can be initialized by clearing and then setting this bit.  
Reset clears the TBON bit.  
1 = Timebase is enabled.  
0 = Timebase is disabled and the counter initialized to 0s.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
214  
Freescale Semiconductor  
Chapter 18  
Timer Interface Module (TIM1 and TIM2)  
18.1 Introduction  
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a  
timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 18-1  
is a block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
PS2  
PS1  
PS0  
TRST  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
T[1,2]CH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 18-1. TIM Block Diagram  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
215  
Timer Interface Module (TIM1 and TIM2)  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 18-2. Block Diagram Highlighting TIM Block and Pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
216  
Freescale Semiconductor  
Features  
18.2 Features  
Features of the TIM include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width-modulation (PWM) signal generation  
Programmable TIM clock input with 7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
18.3 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are  
T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2” is  
used to indicate TIM2. The two TIMs share four I/O pins with four port D I/O port pins. The full names of  
the TIM I/O pins are listed in Table 18-1. The generic pin names appear in the text that follows.  
Table 18-1. Pin Name Conventions  
TIM Generic Pin Names:  
TIM1  
TIM2  
T[1,2]CH0  
PTD4/T1CH0  
PTD6/T2CH0  
T[1,2]CH1  
PTD5/T1CH1  
PTD7/T2CH1  
Full TIM Pin Names:  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TCH0 may refer generically to  
T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
18.4 Functional Description  
Figure 18-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter  
that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value  
at any time without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as input capture or output compare  
channels. If a channel is configured as input capture, then an internal pullup device may be enabled for  
that channel. See 12.5.3 Port D Input Pullup Enable Register.  
Figure 18-3 summarizes the timer registers.  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC and T2SC.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
217  
Timer Interface Module (TIM1 and TIM2)  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Register (T1SC) Write:  
See page 225.  
Reset:  
TRST  
0
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High (T1CNTH) Write:  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
See page 226.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low (T1CNTL) Write:  
See page 226.  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Bit 8  
1
Read:  
Timer 1 Counter Modulo  
Register High (T1MODH) Write:  
14  
13  
12  
11  
10  
9
See page 227.  
Reset:  
1
1
1
1
1
1
Read:  
Timer 1 Counter Modulo  
Register Low (T1MODL) Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
Bit 0  
1
See page 227.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 1 Channel 0 Status and  
Control Register (T1SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
See page 227.  
Reset:  
0
Read:  
Timer 1 Channel 0  
Register High (T1CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
Register Low (T1CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 1 Channel 1 Status and  
Control Register (T1SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 227.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 1 Channel 1  
Register High (T1CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 1  
Register Low (T1CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
TRST  
0
0
Timer 2 Status and Control  
TOIE  
0
TSTOP  
1
PS2  
0
PS1  
0
PS0  
0
Register (T2SC) Write:  
See page 225.  
Reset:  
0
0
0
= Unimplemented  
Figure 18-3. TIM I/O Register Summary (Sheet 1 of 2)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
218  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
Timer 2 Counter  
Register High (T2CNTH) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$002C  
See page 226.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low (T2CNTL) Write:  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
See page 226.  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Bit 8  
1
Read:  
Timer 2 Counter Modulo  
Register High (T2MODH) Write:  
14  
13  
12  
11  
10  
9
See page 227.  
Reset:  
1
1
1
1
1
1
Read:  
Timer 2 Counter Modulo  
Register Low (T2MODL) Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
Bit 0  
1
See page 227.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 2 Channel 0 Status and  
Control Register (T2SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
See page 227.  
Reset:  
0
Read:  
Timer 2 Channel 0  
Register High (T2CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 0  
Register Low (T2CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 2 Channel 1 Status and  
Control Register (T2SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 227.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 2 Channel 1  
Register High (T2CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 230.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
Register Low (T2CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
See page 230.  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 18-3. TIM I/O Register Summary (Sheet 2 of 2)  
18.4.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register  
select the TIM clock source.  
18.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
219  
Timer Interface Module (TIM1 and TIM2)  
into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can generate TIM CPU interrupt requests.  
18.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU  
interrupt requests.  
18.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 18.4.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
18.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
220  
Freescale Semiconductor  
Functional Description  
18.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 18-4 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program the  
TIM to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000. See 18.9.1 TIM Status and Control Register.  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of  
an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
POLARITY = 1  
(ELSxA = 0)  
TCHx  
TCHx  
PULSE  
WIDTH  
POLARITY = 0  
(ELSxA = 1)  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 18-4. PWM Period and Pulse Width  
18.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 18.4.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
221  
Timer Interface Module (TIM1 and TIM2)  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
18.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
18.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. See Table 18-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
222  
Freescale Semiconductor  
Interrupts  
c. Write 1:0 (polarity 1 — to clear output on compare) or 1:1 (polarity 0 — to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must  
force the output to the complement of the pulse width level. See Table 18-3.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM  
channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control  
register 0 (TSCR0) controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 18.9.4 TIM Channel Status and Control Registers.  
18.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control  
register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
18.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
18.6.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait  
mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
223  
Timer Interface Module (TIM1 and TIM2)  
18.6.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode  
after an external interrupt.  
18.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 15.7.3 SIM Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
18.8 I/O Signals  
Port D shares four of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0,  
and T2CH1 as described in 18.3 Pin Name Conventions.  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.  
18.9 I/O Registers  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
18.9.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
MC68HC908GR16A Data Sheet, Rev. 1.0  
224  
Freescale Semiconductor  
I/O Registers  
Address: T1SC, $002 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 18-5. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM  
counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set  
and then writing a 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete,  
then writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until the  
TSTOP bit is cleared.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on  
any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at  
a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as  
Table 18-2 shows. Reset clears the PS[2:0] bits.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
225  
Timer Interface Module (TIM1 and TIM2)  
Table 18-2. Prescaler Selection  
PS2  
0
PS1  
PS0  
0
TIM Clock Source  
0
0
1
1
0
0
1
1
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
18.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 18-6. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 18-7. TIM Counter Registers Low (TCNTL)  
18.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow  
interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
226  
Freescale Semiconductor  
I/O Registers  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Figure 18-8. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 18-9. TIM Counter Modulo Register Low (TMODL)  
NOTE  
Reset the TIM counter before writing to the TIM counter modulo registers.  
18.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 18-10. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
Figure 18-11. TIM Channel 1 Status and Control Register (TSC1)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
227  
Timer Interface Module (TIM1 and TIM2)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIM counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x  
status and control register with CHxF set and then writing a 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1  
channel 0 and TIM2 channel 0 status and control registers.  
Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose  
I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 18-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. See Table 18-3.  
Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is  
available as a general-purpose I/O pin. Table 18-3 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
228  
Freescale Semiconductor  
I/O Registers  
Table 18-3. Mode, Edge, and Level Selection  
MSxB MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
NOTE  
Before enabling a TIM channel register for input capture operation, make  
sure that the PTD/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE  
When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered  
PWM signals to 100%. As Figure 18-12 shows, the CHxMAX bit takes effect in the cycle after it is set  
or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
NOTE  
The 100% PWM duty cycle is defined as a continuous high level if the PWM  
polarity is 1 and a continuous low level if the PWM polarity is 0. Conversely,  
a 0% PWM duty cycle is defined as a continuous low level if the PWM  
polarity is 1 and a continuous high level if the PWM polarity is 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 18-12. CHxMAX Latency  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
229  
Timer Interface Module (TIM1 and TIM2)  
18.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIM channel registers after reset  
is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
See Figure 18-13 through Figure 18-16.  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 18-13. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 18-14. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 18-15. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 18-16. TIM Channel 1 Register Low (TCH1L)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
230  
Freescale Semiconductor  
Chapter 19  
Development Support  
19.1 Introduction  
This section describes the break module, the monitor module (MON), and the monitor mode entry  
methods.  
19.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features of the break module include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
19.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 19-2 shows the structure of the break module.  
Figure 19-3 provides a summary of the I/O registers.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
231  
Development Support  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
PTC1(1), (2)  
PTC0(1), (2)  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
OSC1  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
MONITOR MODULE  
VDDAD/VREFH  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VSSAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
VDDA  
POWER  
MONITOR MODE ENTRY  
MODULE  
VSSA  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 19-1. Block Diagram Highlighting BRK and MON Blocks  
MC68HC908GR16A Data Sheet, Rev. 1.0  
232  
Freescale Semiconductor  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 19-2. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
SBSW  
Note(1)  
0
SIM Break Status Register  
(SBSR) Write:  
R
R
R
R
R
R
R
$FE00  
See page 236.  
Reset:  
Read:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
Reserved Write:  
Reset:  
Read:  
SIM Break Flag Control  
Register (SBFCR) Write:  
BCFE  
0
R
R
R
R
R
R
R
See page 236.  
Reset:  
Read:  
Break Address High  
Register (BRKH) Write:  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
See page 235.  
Reset:  
Read:  
Break Address Low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 235.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
See page 235.  
Reset:  
0
0
0
0
0
0
0
1. Writing a 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 19-3. Break I/O Register Summary  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
233  
Development Support  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is executed  
before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode. When software does not  
change the break address and clears the BRKA bit in the first break interrupt routine, the next break  
interrupt will not be generated after exiting the interrupt routine even when the internal address bus  
matches the value written in the break address registers.  
19.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (SBFCR) enables software to clear status  
bits during the break state. See 15.7.3 SIM Break Flag Control Register and the Break Interrupts  
subsection for each module.  
19.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
19.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
19.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (SBSR)  
Break flag control register (SBFCR)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
234  
Freescale Semiconductor  
Break Module (BRK)  
19.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
$FE0B  
Bit 7  
Address:  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-4. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to bit  
7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
19.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
$FE09  
Address:  
Bit 7  
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 19-5. Break Address Register High (BRKH)  
$FE0A  
Address:  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 19-6. Break Address Register Low (BRKL)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
235  
Development Support  
19.2.2.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait  
mode. This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 19-7. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
19.2.2.4 SIM Break Flag Control Register  
The SIM break control register (SBFCR) contains a bit that enables software to clear status bits while the  
MCU is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 19-8. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
19.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes. If enabled,  
the break module will remain enabled in wait and stop modes. However, since the internal address bus  
does not increment in these modes, a break interrupt will never be triggered.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
236  
Freescale Semiconductor  
Monitor Module (MON)  
19.3 Monitor Module (MON)  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
requirements for in-circuit programming.  
Features of the monitor module include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Standard communication baud rate (7200 @ 2-MHz bus frequency)  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain  
$FF)  
Normal monitor mode entry if VTST is applied to IRQ  
19.3.1 Functional Description  
Figure 19-9 shows a simplified diagram of the monitor mode.  
The monitor module receives and executes commands from a host computer.  
Figure 19-10 and Figure 19-11 show example circuits used to enter monitor mode and communicate with  
a host computer via a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
Table 19-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
must be entered after a power-on reset (POR) and will allow communication at 7200 baud provided one  
of the following sets of conditions is met:  
If $FFFE and $FFFF does not contain $FF (programmed state):  
The external clock is 4.0 MHz (7200 baud)  
PTB4 = low  
IRQ = VTST  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 8.0 MHz (7200 baud)  
PTB4 = high  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 8.0 MHz (7200 baud)  
IRQ = VDD (this can be implemented through the internal IRQ pullup) or VSS  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
237  
Development Support  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
FROM Table 19-1  
PTA0 = 1,  
PTA1 = 0, RESET  
VECTOR BLANK?  
PTA0 = 1, PTA1 = 0,  
PTB0 = 1, AND  
PTB1 = 0?  
NO  
NO  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 19-9. Simplified Monitor Mode Entry Flowchart  
MC68HC908GR16A Data Sheet, Rev. 1.0  
238  
Freescale Semiconductor  
Monitor Module (MON)  
MC68HC908GR16A  
VDD  
N.C.  
RST  
VDD  
47 pF  
27 pF  
VDDA  
OSC2  
MAX232  
VDD  
0.1 µF  
10 MΩ  
1
16  
15  
VCC  
C1+  
VDD  
+
+
+
OSC1  
IRQ  
1 µF  
1 µF  
8 MHz  
10 k  
3
4
1 µF  
GND  
C1–  
C2+  
PTB4  
PTB0  
+
10 k  
1 kΩ  
2
6
V+  
V–  
10 k  
10 k  
VDD  
1 µF  
PTB1  
PTA1  
9.1 V  
5
C2–  
1 µF  
+
10 kΩ  
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSSA  
VSS  
74HC125  
3
2
4
3
5
1
Figure 19-10. Normal Monitor Mode Circuit  
MC68HC908GR16A  
VDD  
N.C.  
RST  
VDD  
47 pF  
27 pF  
VDDA  
OSC2  
MAX232  
VDD  
0.1 µF  
10 MΩ  
1
16  
15  
VCC  
C1+  
+
+
+
OSC1  
IRQ  
1 µF  
1 µF  
8 MHz  
3
4
1 µF  
GND  
C1–  
C2+  
+
PTB4  
PTB0  
PTB1  
N.C.  
2
6
N.C.  
N.C.  
V+  
V–  
N.C.  
VDD  
1 µF  
5
C2–  
10 k  
1 µF  
+
PTA1  
10 kΩ  
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSSA  
VSS  
74HC125  
3
2
4
3
5
1
Figure 19-11. Forced Monitor Mode  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
239  
Development Support  
Table 19-1. Monitor Mode Signal Requirements and Options  
Serial  
Communication  
Mode  
Selection  
Communication  
Speed  
Divider  
Reset  
Vector  
Mode  
IRQ RST  
PLL  
COP  
External  
Bus  
Baud  
PTA0  
PTA1 PTB0 PTB1 PTB4  
Clock Frequency Rate  
VDD  
VTST  
or  
VTST  
X
X
1
0
0
0
X
1
1
0
0
0
1
OFF Disabled 4 MHz  
OFF Disabled 8 MHz  
OFF Disabled 8 MHz  
2 MHz  
7200  
Normal  
Monitor  
VDD  
or  
VTST  
VTST  
1
1
X
2 MHz  
2 MHz  
X
7200  
7200  
X
VDD  
or  
GND  
Forced  
Monitor  
$FF  
(blank)  
VDD  
X
X
X
X
X
X
VDD  
or  
VTST  
VDD  
or  
GND  
Not  
$FF  
User  
X
Enabled  
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
SSEL MOD0 MOD1 DIV4  
[10] [12] [14] [16]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 7200. Baud rate using external oscillator is bus  
frequency / 278.  
3. External clock is an 4.0 MHz or 8.0 MHz crystal on OSC1 and OSC2 or a canned oscillator on OSC1.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
1
3
2
4
GND  
RST  
NC  
5
6
IRQ  
NC  
7
8
PTA0  
PTA1  
PTB0  
PTB1  
PTB4  
NC  
9
10  
12  
14  
16  
NC  
11  
13  
15  
OSC1  
VDD  
MC68HC908GR16A Data Sheet, Rev. 1.0  
240  
Freescale Semiconductor  
Monitor Module (MON)  
Enter monitor mode with pin configuration shown in Table 19-1 with a power-on reset. The rising edge of  
RST latches monitor mode. Once monitor mode is latched, the levels on the port pins except PTA0 can  
change.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 19.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive 0s) to the host, indicating that it is ready to  
receive a command.  
19.3.1.1 Normal Monitor Mode  
If VTST is applied to IRQ and PTB4 is low upon monitor mode entry, the bus frequency is a divide-by-two  
of the input clock. If PTB4 is high with VTST applied to IRQ upon monitor mode entry, the bus frequency  
will be a divide-by-four of the input clock. Holding the PTB4 pin low when entering monitor mode causes  
a bypass of a divide-by-two stage at the oscillator only if VTST is applied to IRQ. In this event, the  
CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal  
bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency.  
When monitor mode was entered with VTST on IRQ, the computer operating properly (COP) is disabled  
as long as VTST is applied to either IRQ or RST.  
This condition states that as long as VTST is maintained on the IRQ pin after entering monitor mode, or if  
VTST is applied to RST after the initial reset to get into monitor mode (when VTST was applied to IRQ),  
then the COP will be disabled. In the latter situation, after VTST is applied to the RST pin, VTST can be  
removed from the IRQ pin in the interest of freeing the IRQ for normal functionality in monitor mode.  
19.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, all port B pin requirements and conditions, including  
the PTB4 frequency divisor selection, are not in effect. This is to reduce circuit requirements when  
performing in-circuit programming.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset  
vector has been programmed, the traditional method of applying a voltage,  
VTST, to IRQ must be used to enter monitor mode.  
An external oscillator of 8 MHz is required for a baud rate of 7200, as the internal bus frequency is  
automatically set to the external frequency divided by four.  
When the forced monitor mode is entered the COP is always disabled regardless of the state of IRQ or  
RST.  
19.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
Table 19-2 summarizes the differences between user mode and monitor mode.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
241  
Development Support  
Modes  
Table 19-2. Mode Differences  
Functions  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
19.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 19-12. Monitor Data Format  
19.3.1.5 Break Signal  
A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives a break signal, it drives  
the PTA0 pin high for the duration of approximately two bits and then echoes back the break signal.  
MISSING STOP BIT  
APPROXIMATELY 2 BITS DELAY  
BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 19-13. Break Transaction  
19.3.1.6 Baud Rate  
The communication baud rate is controlled by the crystal frequency or external clock and the state of the  
PTB4 pin (when IRQ is set to VTST) upon entry into monitor mode. If monitor mode was entered with VDD  
on IRQ and the reset vector blank, then the baud rate is independent of PTB4.  
Table 19-1 also lists external frequencies required to achieve a standard baud rate of 7200 bps. The  
effective baud rate is the bus frequency divided by 278. If using a crystal as the clock source, be aware  
of the upper frequency limit that the internal clock module can handle. See 20.5 5-Vdc Electrical  
Characteristics or 20.6 3.3-Vdc Electrical Characteristics for this limit.  
19.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
MC68HC908GR16A Data Sheet, Rev. 1.0  
242  
Freescale Semiconductor  
Monitor Module (MON)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 19-14. Read Transaction  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 19-15. Write Transaction  
A brief description of each monitor mode command is given in Table 19-3 through Table 19-8.  
Table 19-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
243  
Development Support  
Table 19-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
HIGH  
HIGH  
LOW  
ECHO  
Table 19-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 19-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
244  
Freescale Semiconductor  
Monitor Module (MON)  
Table 19-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Data Returned Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order  
Opcode $0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 19-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
RUN  
ECHO  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 19-16. Stack Pointer at Monitor Mode Entry  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
245  
Development Support  
19.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 19-17.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
VDD  
4096 + 32 CGMXCLK CYCLES  
RST  
FROM HOST  
PA0  
5
1
1
4
1
4
2
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
4 = Wait 1 bit time before sending next byte  
5 = Wait until the monitor ROM runs  
Figure 19-17. Monitor Mode Entry Timing  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
MC68HC908GR16A Data Sheet, Rev. 1.0  
246  
Freescale Semiconductor  
Chapter 20  
Electrical Specifications  
20.1 Introduction  
This section contains electrical and timing specifications.  
20.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently  
damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings. Refer to 20.5 5-Vdc Electrical  
Characteristics and 20.6 3.3-Vdc Electrical Characteristics for guaranteed operating conditions.  
Characteristic(1)  
Symbol  
VDD  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to + 6.0  
VIn  
VSS – 0.3 to VDD + 0.3  
V
Maximum current per pin excluding those specified below  
Maximum current for pins PTC0–PTC4  
Maximum current into VDD  
I
15  
25  
mA  
mA  
mA  
mA  
°C  
IPTC0–PTC4  
IMVDD  
IMVSS  
Tstg  
150  
Maximum current out of VSS  
150  
Storage temperature  
–55 to +150  
1. Voltages referenced to VSS  
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIn and VOut be constrained to the range  
VSS (VIn or VOut) VDD. Reliability of operation is enhanced if unused  
inputs are connected to an appropriate logic voltage level (for example,  
either VSS or VDD).  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
247  
Electrical Specifications  
20.3 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
Operating temperature range  
TA  
–40 to +125  
°C  
5.0 10%  
3.3 10%  
Operating voltage range  
VDD  
V
20.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
32-pin LQFP  
48-pin LQFP  
θJA  
95  
95  
°C/W  
I/O pin power dissipation  
Power dissipation(1)  
PI/O  
PD  
User determined  
W
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
PD × (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
°C  
Average junction temperature  
TJ  
TA + (PD × θJA)  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and  
TJ can be determined for any value of TA.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
248  
Freescale Semiconductor  
5-Vdc Electrical Characteristics  
20.5 5-Vdc Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(ILoad = –2.0 mA) all I/O pins  
(ILoad = –10.0 mA) all I/O pins  
(ILoad = –20.0 mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
port PTC0–PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
port B, port PTC2-PTC6, port PTD4–PTD7  
Maximum total IOH for all port pins  
V
V
V
VOH  
VOH  
VOH  
IOH1  
VDD – 0.8  
VDD – 1.5  
VDD – 1.5  
50  
50  
mA  
mA  
mA  
IOH2  
IOHT  
100  
Output low voltage  
(ILoad = 1.6 mA) all I/O pins  
(ILoad = 10 mA) all I/O pins  
(ILoad = 20mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
port PTC0-PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
port B, port PTC2–PTC6, port PTD4–PTD7  
Maximum total IOL for all port pins  
0.4  
1.5  
1.5  
V
V
V
VOL  
VOL  
VOL  
IOL1  
50  
50  
mA  
mA  
mA  
V
IOL2  
IOLT  
100  
VDD  
Input high voltage  
All ports, IRQ, RST, OSC1  
VIH  
VIL  
0.7 × VDD  
Input low voltage  
All ports, IRQ, RST, OSC1  
VSS  
0.2 × VDD  
V
V
DD supply current  
20  
6
30  
12  
mA  
mA  
Run(3)  
Wait(4)  
Stop(5)  
25°C  
IDD  
3
20  
300  
50  
500  
µA  
µA  
µA  
µA  
µA  
25°C with TBM enabled(6)  
25°C with LVI and TBM enabled(6)  
–40°C to 125°C with TBM enabled(6)  
–40°C to 125°C with LVI and TBM enabled(6)  
DC injection current, all ports  
Total dc current injection (sum of all I/O)  
I/O ports Hi-Z leakage current(7)  
Input current  
IINJ  
IINJTOT  
IIL  
–2  
–25  
–10  
–1  
+2  
+25  
+10  
+1  
mA  
mA  
µA  
IIn  
µA  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
RPU  
20  
45  
65  
kΩ  
Continued on next page  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
249  
Electrical Specifications  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Capacitance  
Ports (as input or output)  
COut  
CIn  
12  
8
pF  
Monitor mode entry voltage  
VTST  
VTRIPF  
VTRIPR  
VDD + 2.5  
3.90  
VDD + 4.0  
4.50  
V
V
V
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
4.25  
4.35  
4.20  
4.60  
VHYS  
100  
mV  
(VTRIPF + VHYS = VTRIPR  
POR rearm voltage(8)  
POR reset voltage(9)  
)
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(10)  
0.035  
V/ms  
1. VDD = 5.0 Vdc 10%, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
I
DD. Measured with CGM and LVI enabled.  
5. Stop IDD is measured with OSC1 = VSS. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports  
configured as inputs. Typical values at midpoint of voltage range, 25°C only.  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled. Port B leakage is specified in 20.10 5.0-Volt ADC Characteristics.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
250  
Freescale Semiconductor  
3.3-Vdc Electrical Characteristics  
20.6 3.3-Vdc Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(ILoad = –0.6 mA) all I/O pins  
(ILoad = –4.0 mA) all I/O pins  
(ILoad = –10.0 mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
port PTC0–PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
port B, port PTC2–PTC6, port PTD4–PTD7  
Maximum total IOH for all port pins  
V
V
V
VOH  
VOH  
VOH  
IOH1  
VDD – 0.3  
VDD – 1.0  
VDD – 1.0  
30  
30  
60  
mA  
mA  
mA  
IOH2  
IOHT  
Output low voltage  
(ILoad = 1.6 mA) all I/O pins  
(ILoad = 10 mA) all I/O pins  
(ILoad = 20 mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
port PTC0–PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
port B, port PTC2–PTC6, port PTD4–PTD7  
Maximum total IOL for all port pins  
0.3  
1.0  
0.8  
V
V
V
VOL  
VOL  
VOL  
IOL1  
30  
30  
mA  
mA  
mA  
V
IOL2  
IOLT  
60  
Input high voltage  
All ports, IRQ, RST, OSC1  
VIH  
VIL  
0.7 × VDD  
VDD  
Input low voltage  
All ports, IRQ, RST, OSC1  
VSS  
0.3 × VDD  
V
V
DD supply current  
8
3
12  
6
mA  
mA  
Run(3)  
Wait(4)  
Stop(5)  
25°C  
IDD  
2
12  
200  
30  
300  
µA  
µA  
µA  
µA  
µA  
25°C with TBM enabled(6)  
25°C with LVI and TBM enabled(6)  
–40°C to 125°C with TBM enabled(6)  
–40°C to 125°C with LVI and TBM enabled(6)  
DC injection current, all ports  
Total dc current injection (sum of all I/O)  
I/O ports Hi-Z leakage current(7)  
Input current  
IINJ  
IINJTOT  
IIL  
–2  
–25  
–10  
–1  
+2  
+25  
+10  
+1  
mA  
mA  
µA  
IIn  
µA  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
RPU  
20  
45  
65  
kΩ  
Continued on next page  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
251  
Electrical Specifications  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Capacitance  
Ports (as input or output)  
COut  
CIn  
12  
8
pF  
Monitor mode entry voltage  
VTST  
VTRIPF  
VTRIPR  
VDD + 2.5  
2.35  
2.6  
VDD + 4.0  
2.7  
V
V
V
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
2.4  
2.66  
2.8  
VHYS  
100  
mV  
(VTRIPF + VHYS = VTRIPR  
POR rearm voltage(8)  
POR reset voltage(9)  
)
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(10)  
0.035  
V/ms  
1. VDD = 3.3 Vdc 10%, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
I
DD. Measured with CGM and LVI enabled.  
5. Stop IDD is measured with OSC1 = VSS. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports  
configured as inputs. Typical values at midpoint of voltage range, 25°C only.  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
252  
Freescale Semiconductor  
5.0-Volt Control Timing  
20.7 5.0-Volt Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation  
Crystal option  
fOSC  
1
dc  
8
32  
MHz  
External clock option(2)  
Internal operating frequency  
f
OP (fBus  
tCYC  
tRL  
)
125  
50  
8
MHz  
ns  
Internal clock period (1/fOP  
)
RST input pulse width low  
ns  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
tILIH  
50  
ns  
tILIL  
Note(3)  
tCYC  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. No more than 10% duty cycle deviation from 50%.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
20.8 3.3-Volt Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation  
Crystal option  
fOSC  
1
dc  
8
16  
MHz  
External clock option(2)  
Internal operating frequency  
fOP (fBus  
tCYC  
tRL  
)
250  
4
MHz  
ns  
Internal clock period (1/fOP  
)
RST input pulse width low  
125  
ns  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
tILIH  
125  
Note(3)  
ns  
tILIL  
tCYC  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. No more than 10% duty cycle deviation from 50%.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 20-1. RST and IRQ Timing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
253  
Electrical Specifications  
20.9 Clock Generation Module (CGM) Characteristics  
20.9.1 CGM Component Specifications  
Characteristic  
Symbol  
fXCLK  
CL  
Min  
1
Typ  
Max  
8
Unit  
MHz  
pF  
Crystal frequency  
4
Crystal load capacitance(1)  
Crystal fixed capacitance  
Crystal tuning capacitance  
Feedback bias resistor  
0.5  
20  
10  
C1  
(2 x CL) –5  
pF  
C2  
(2 x CL) –5  
pF  
RB  
1
0
MΩ  
Series resistor  
RS  
1. Consult crystal manufacturer’s data.  
20.9.2 CGM Electrical Specifications  
Characteristic  
Reference frequency (for PLL operation)  
Range nominal multiplier  
Symbol  
fRCLK  
fNOM  
Min  
1
Typ  
4
Max  
8
Unit  
MHz  
KHz  
MHz  
71.42  
Programmed VCO center-of-range frequency(1)  
fVRS  
(Lx2E)fNOM  
1. See 4.3.6 Programming the PLL for detailed instruction on selecting appropriate values for L and E.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
254  
Freescale Semiconductor  
5.0-Volt ADC Characteristics  
Comments  
20.10 5.0-Volt ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
VDDAD should be tied to  
Supply voltage  
VDDAD  
4.5  
5.5  
V
the same potential as VDD  
via separate traces.  
Input voltages  
VADIN  
BAD  
0
10  
VDDAD  
10  
V
Bits  
VADIN <= VDDAD  
Resolution  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
Conversion time  
Sample time  
AAD  
–4  
+4  
LSB  
Includes quantization  
tAIC = 1/fADIC  
fADIC  
RAD  
500 k  
VSSAD  
16  
1.048 M  
VDDAD  
Hz  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
tAIC cycles  
tAIC cycles  
tAIC cycles  
Guaranteed  
Hex  
16  
17  
5
Monotonicity  
Zero input reading  
Full-scale reading  
Input capacitance  
000  
3FC  
003  
3FF  
30  
VADIN = VSSA  
VADIN = VDDA  
Not tested  
Hex  
pF  
VDDAD/VREFH current  
1.6  
mA  
Absolute accuracy  
(8-bit truncation mode)  
AAD  
–1  
+1  
Counts  
LSB  
Includes quantization  
Quantization error  
(8-bit truncation mode)  
–1/8  
+7/8  
1. VDD = 5.0 Vdc 10%, VSS = 0 Vdc, VDDAD/VREFH = 5.0 Vdc 10%, VSSAD/VREFL = 0 Vdc  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
255  
Electrical Specifications  
20.11 3.3-Volt ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Comments  
VDDAD should be tied to  
the same potential as VDD  
via separate traces.  
Supply voltage  
VDDAD  
3.0  
3.6  
V
Input voltages  
VADIN  
BAD  
0
10  
VDDAD  
10  
V
Bits  
VADIN <= VDDAD  
Resolution  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
AAD  
–6  
+6  
LSB  
Includes quantization  
tAIC = 1/fADIC  
fADIC  
RAD  
500 k  
VSSAD  
16  
1.048 M  
VDDAD  
Hz  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
tAIC cycles  
tAIC cycles  
tAIC cycles  
Guaranteed  
Hex  
Conversion time  
Sample time  
16  
17  
5
Monotonicity  
Zero input reading  
Full-scale reading  
Input capacitance  
VDDAD/VREFH current  
000  
3FA  
005  
3FF  
30  
VADIN = VSSA  
VADIN = VDDA  
Not tested  
Hex  
pF  
1.2  
mA  
Absolute accuracy  
(8-bit truncation mode)  
AAD  
–1  
+1  
Counts  
LSB  
Includes quantization  
Quantization error  
(8-bit truncation mode)  
–1/8  
+7/8  
1. VDD = 3.3 Vdc 10%, VSS = 0 Vdc, VDDAD/VREFH = 3.3 Vdc 10%, VSSAD/VREFL = 0 Vdc  
MC68HC908GR16A Data Sheet, Rev. 1.0  
256  
Freescale Semiconductor  
5.0-Volt SPI Characteristics  
20.12 5.0-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
dc  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tCYC(M)  
tCYC(S)  
2
1
128  
tCYC  
tCYC  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tCYC  
tCYC  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
10  
Master  
tV(M)  
tV(S)  
50  
50  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 20-2 and Figure 20-3.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
257  
Electrical Specifications  
20.13 3.3-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
DC  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tCYC(M)  
tCYC(S)  
2
1
128  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tcyc  
tcyc  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
40  
40  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
40  
40  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
50  
50  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
50  
ns  
Data valid time, after enable edge  
10  
Master  
tV(M)  
tV(S)  
60  
60  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 20-2 and Figure 20-3.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GR16A Data Sheet, Rev. 1.0  
258  
Freescale Semiconductor  
3.3-Volt SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
NOTE  
4
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 20-2. SPI Master Timing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
259  
Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
INPUT  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
OUTPUT  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 20-3. SPI Slave Timing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
260  
Freescale Semiconductor  
Timer Interface Module Characteristics  
20.14 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width  
Timer Input capture period  
Symbol  
tTH, TL  
tTLTL  
Min  
2
Note(1)  
Max  
Unit  
tCYC  
tCYC  
t
1. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
Figure 20-4. Timer Input Timing  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
261  
Electrical Specifications  
20.15 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
VRDR  
Min  
1.3  
1
Typ  
Max  
Unit  
V
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
fRead  
0
8 M  
FLASH page erase time  
Limited endurance (<1 K cycles)  
Maximum endurance (>1 K cycles)  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
FLASH mass erase time  
tMErase  
tNVS  
4
10  
5
40  
4
ms  
µs  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tNVH  
µs  
tNVHL  
tPGS  
100  
5
µs  
µs  
FLASH program time  
tPROG  
30  
1
µs  
(2)  
FLASH return to read time  
tRCV  
µs  
(3)  
FLASH cumulative program hv period  
FLASH endurance(4)  
tHV  
10 k  
15  
ms  
100 k  
100  
Cycles  
Years  
FLASH data retention time(5)  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by  
clearing HVEN to 0.  
3. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum.  
4. Typical endurance was evaluated for this product family. For additional information on how Freescale defines Typical  
Endurance, please refer to Engineering Bulletin EB619.  
5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please  
refer to Engineering Bulletin EB618.  
MC68HC908GR16A Data Sheet, Rev. 1.0  
262  
Freescale Semiconductor  
Chapter 21  
Ordering Information and Mechanical Specifications  
21.1 Introduction  
This section provides ordering information for the MC68HC908GR16A along with the dimensions for:  
32-pin low-profile quad flat pack package (case 873A)  
48-pin low-profile quad flat pack (case 932-03)  
The following figures show the latest package drawings at the time of this publication. To make sure that  
you have the latest package specifications, contact your local Freescale Semiconductor Sales Office.  
21.2 MC Order Numbers  
Table 21-1. MC Order Numbers  
Operating  
MC Order Number  
Package  
Temperature Range  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +125°C  
MC908GR16ACFJ  
32-pin low-profile  
quad flat package  
(LQFP)  
MC908GR16AVFJ  
MC908GR16AMFJ  
MC908GR16ACFA  
MC908GR16AVFA  
MC908GR16AMFA  
48-pin low-profile  
quad flat package  
(LQFP)  
Temperature designators:  
C = –40°C to +85°C  
V = –40°C to +105°C  
M = –40°C to +125°C  
M C 6 8 H C 9 0 8 G R 1 6 A X XX E  
Pb FREE  
FAMILY  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 21-1. Device Numbering System  
MC68HC908GR16A Data Sheet, Rev. 1.0  
Freescale Semiconductor  
263  
How to Reach Us:  
Home Page:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004, 2006. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908GR16A  
Rev. 1.0, 03/2006  

相关型号:

MC68HC908GR16AVFA

M68HC08 Microcontrollers
FREESCALE

MC68HC908GR16AVFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-48
NXP

MC68HC908GR16AVFJ

M68HC08 Microcontrollers
FREESCALE

MC68HC908GR16AVFJ

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LQFP-32
NXP

MC68HC908GR16AVFJE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, LQFP-32
NXP

MC68HC908GR16CFA

Microcontrollers
MOTOROLA

MC68HC908GR16CFJ

Microcontrollers
MOTOROLA

MC68HC908GR16MFA

Microcontrollers
MOTOROLA

MC68HC908GR16MFJ

Microcontrollers
MOTOROLA

MC68HC908GR16VFA

Microcontrollers
MOTOROLA

MC68HC908GR16VFJ

Microcontrollers
MOTOROLA

MC68HC908GR32A

Microcontrollers
FREESCALE