MC68HLC908QT1 [FREESCALE]

M68HC08 Microcontrollers; M68HC08微控制器
MC68HLC908QT1
型号: MC68HLC908QT1
厂家: Freescale    Freescale
描述:

M68HC08 Microcontrollers
M68HC08微控制器

微控制器
文件: 总182页 (文件大小:1738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HLC908QY4  
MC68HLC908QT4  
MC68HLC908QY2  
MC68HLC908QT2  
MC68HLC908QY1  
MC68HLC908QT1  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HLC908QY4/D  
Rev. 3  
07/2005  
freescale.com  
MC68HLC908QY4  
MC68HLC908QT4  
MC68HLC908QY2  
MC68HLC908QT2  
MC68HLC908QY1  
MC68HLC908QT1  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
3
Revision History  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
August,  
2003  
N/A  
Initial release  
N/A  
26  
Figure 2-2. Control, Status, and Data Registers Deleted unimplemented areas  
from $FFB0–$FFBD and $FFC2–$FFCF as they are actually available. Also  
corrected $FFBF designation from unimplemented to reserved.  
Figure 6-1. COP Block Diagram — Reworked for clarity  
57  
58  
6.3.2 STOP Instruction — Added subsection for STOP instruction  
13.4.2 Active Resets from Internal Sources — Reworked notes for clarity.  
15.3 Monitor Module (MON) — Clarified seventh bullet.  
October,  
2003  
1.0  
115  
154  
169  
16.5 DC Electrical Characteristics — Corrected notes 4 and 5.  
16.6 Control Timing — Updated values for RST input pulse width low and IRQ  
interrupt pulse width low  
170  
30  
Figure 2-2. Control, Status, and Data Registers — Corrected reset state for the  
FLASH Block Protect Register at address location $FFBE and the Internal  
Oscillator Trim Value at $FFC0.  
January,  
2004  
2.0  
3.0  
Figure 2-5. FLASH Block Protect Register (FLBPR) — Restated reset state for  
clarity.  
37  
Reformatted to meet current documentation standards  
Throughout  
Chapter 7 Central Processor Unit (CPU) — In 7.7 Instruction Set Summary:  
Reworked definitions for STOP instruction  
70  
71  
Added WAIT instruction  
July,  
2005  
13.8.1 SIM Reset Status Register — Clarified SRSR flag setting.  
14.9.1 TIM Status and Control Register — Added information to TSTOP note.  
17.3 Package Dimensions — Updated package information.  
117  
127  
163  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Chapter 3 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Chapter 4 Auto Wakeup Module (AWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Chapter 5 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Chapter 6 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Chapter 7 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Chapter 8 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Chapter 9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Chapter 10 Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Chapter 11 Oscillator Module (OSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Chapter 12 Input/Output Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Chapter 13 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Chapter 14 Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Chapter 15 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Chapter 16 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
Chapter 17 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . .163  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
5
List of Chapters  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Function Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Input/Output (I/O) Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2.6  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
2.6.8  
Chapter 3  
Analog-to-Digital Converter (ADC)  
3.1  
3.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.5  
3.5.1  
3.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
7
Table of Contents  
3.6  
Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.7  
Input/Output Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.7.1  
3.7.2  
3.7.3  
Chapter 4  
Auto Wakeup Module (AWU)  
4.1  
4.2  
4.3  
4.4  
4.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.6  
Input/Output Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port A I/O Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4.6.1  
4.6.2  
4.6.3  
Chapter 5  
Configuration Register (CONFIG)  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Chapter 6  
Computer Operating Properly (COP)  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
BUSCLKX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.4  
6.5  
6.6  
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
8
Freescale Semiconductor  
Chapter 7  
Central Processor Unit (CPU)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Chapter 8  
External Interrupt (IRQ)  
8.1  
8.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
8.3  
8.3.1  
8.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
MODE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
MODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
8.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8.5  
8.5.1  
8.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8.6  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8.7  
8.7.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
IRQ Input Pins (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
8.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
9.3  
9.3.1  
9.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Keyboard Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
9.4  
9.5  
9.6  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
9
Table of Contents  
9.7  
Input/Output Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
9.7.1  
9.7.2  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Chapter 10  
Low-Voltage Inhibit (LVI)  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10.3.1  
10.3.2  
10.3.3  
10.3.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
10.4 LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
10.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10.6.1  
10.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Chapter 11  
Oscillator Module (OSC)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
11.3.1  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Internal to External Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
11.3.1.1  
11.3.1.2  
11.3.2  
11.3.3  
11.3.4  
11.4 Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.4.1  
11.4.2  
11.4.3  
11.4.4  
11.4.5  
11.4.6  
11.4.7  
11.4.8  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
XTAL Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
RC Oscillator Clock (RCCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Internal Oscillator Clock (INTCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.5.1  
11.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.6 Oscillator During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
11.7 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
11.8 Input/Output (I/O) Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
11.8.1  
11.8.2  
Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
Chapter 12  
Input/Output Ports (PORTS)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
12.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
12.2.1  
12.2.2  
12.2.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
12.3.1  
12.3.2  
12.3.3  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Chapter 13  
System Integration Module (SIM)  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13.2 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13.3 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
13.3.1  
13.3.2  
13.3.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
13.4 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
13.4.1  
13.4.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
13.4.2.1  
13.4.2.2  
13.4.2.3  
13.4.2.4  
13.4.2.5  
13.5 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
13.5.1  
13.5.2  
13.5.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.6 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.6.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
13.6.1.1  
13.6.1.2  
13.6.2  
13.6.2.1  
13.6.2.2  
13.6.2.3  
13.6.3  
13.6.4  
13.6.5  
13.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
13.7.1  
13.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Table of Contents  
13.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
13.8.1  
13.8.2  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Chapter 14  
Timer Interface Module (TIM)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
14.4.1  
14.4.2  
14.4.3  
14.4.3.1  
14.4.3.2  
14.4.4  
14.4.4.1  
14.4.4.2  
14.4.4.3  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
14.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
14.6 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.7 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.8 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.8.1  
14.8.2  
TIM Clock Pin (PTA2/TCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
TIM Channel I/O Pins (PTA0/TCH0 and PTA1/TCH1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.9 Input/Output Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
14.9.1  
14.9.2  
14.9.3  
14.9.4  
14.9.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Chapter 15  
Development Support  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
15.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
15.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
15.2.1.1  
15.2.1.2  
15.2.1.3  
15.2.2  
15.2.2.1  
15.2.2.2  
15.2.2.3  
15.2.2.4  
15.2.2.5  
15.2.3  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
15.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
15.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
15.3.1.1  
15.3.1.2  
15.3.1.3  
15.3.1.4  
15.3.1.5  
15.3.1.6  
15.3.1.7  
15.3.2  
Chapter 16  
Electrical Specifications  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
16.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
16.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
16.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
16.5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
16.6 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
16.7 Typical 3.0-V Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
16.8 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
16.9 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
16.10 Analog-to-Digital (ADC) Converter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
16.10.1  
16.10.2  
ADC Electrical Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
ADC Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
16.11 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
16.12 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Chapter 17  
Ordering Information and Mechanical Specifications  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
17.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
17.3 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
13  
Table of Contents  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HLC908QY4 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). The M68HC08 Family is a Complex Instruction Set Computer (CISC) with  
a Von Neumann architecture. All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
0.4  
Table 1-1. Summary of Device Variations  
FLASH  
Memory Size  
Analog-to-Digital  
Converter  
Pin  
Count  
Device  
MC68HLC908QT1  
MC68HLC908QT2  
MC68HLC908QT4  
MC68HLC908QY1  
MC68HLC908QY2  
MC68HLC908QY4  
1536 bytes  
1536 bytes  
4096 bytes  
1536 bytes  
1536 bytes  
4096 bytes  
8 pins  
8 pins  
4 ch, 8 bit  
4 ch, 8 bit  
8 pins  
16 pins  
16 pins  
16 pins  
4 ch, 8 bit  
4 ch, 8 bit  
1.2 Features  
Features include:  
High-performance M68HC08 CPU core  
Fully upward-compatible object code with M68HC05 Family  
Operating voltage range of 2.2 V to 3.6 V  
2-MHz internal bus operation  
Trimmable internal oscillator  
1.0 MHz internal bus operation  
8-bit trim capability allows 0.4% accuracy(1)  
25% untrimmed  
Auto wakeup from STOP capability  
Configuration (CONFIG) register for MCU configuration options, including:  
Low-voltage inhibit (LVI) trip point  
In-system FLASH programming  
FLASH security(2)  
1. The oscillator frequency is guaranteed to 5% over temperature and voltage range after trimming.  
2. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
15  
General Description  
On-chip in-application programmable FLASH memory (with internal program/erase voltage  
generation)  
MC68HLC908QY4 and MC68HLC908QT4 — 4096 bytes  
MC68HLC908QY2, MC68HLC908QY1, MC68HLC908QT2, and MC68HLC908QT1— 1536  
bytes  
128 bytes of on-chip random-access memory (RAM)  
2-channel, 16-bit timer interface module (TIM)  
4-channel, 8-bit analog-to-digital converter (ADC) on MC68HLC908QY2, MC68HLC908QY4,  
MC68HLC908QT2, and MC68HLC908QT4  
5 or 13 bidirectional input/output (I/O) lines and one input only:  
Six shared with keyboard interrupt function and ADC  
Two shared with timer channels  
One shared with external interrupt (IRQ)  
Eight extra I/O lines on 16-pin package only  
High current sink/source capability on all port pins  
Selectable pullups on all ports, selectable on an individual bit basis  
Three-state ability on all port pins  
6-bit keyboard interrupt with wakeup feature (KBI)  
Low-voltage inhibit (LVI) module features:  
Software selectable trip point in CONFIG register  
System protection features:  
Computer operating properly (COP) watchdog  
Low-voltage detection with optional reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
External asynchronous interrupt pin with internal pullup (IRQ) shared with general-purpose  
input pin  
Master asynchronous reset pin (RST) shared with general-purpose input/output (I/O) pin  
Power-on reset  
Internal pullups on IRQ and RST to reduce external components  
Memory mapped I/O registers  
Power saving stop and wait modes  
MC68HLC908QY4, MC68HLC908QY2, and MC68HLC908QY1 are available in these packages:  
16-pin plastic dual in-line package (PDIP)  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline package (TSSOP)  
MC68HLC908QT4, MC68HLC908QT2, and MC68HLC908QT1 are available in these packages:  
8-pin PDIP  
8-pin SOIC  
8-pin dual flat no lead (DFN) package  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
MCU Block Diagram  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HLC908QY4.  
1.4 Pin Assignments  
The MC68HLC908QT4, MC68HLC908QT2, and MC68HLC908QT1 are available in 8-pin packages and  
the MC68HLC908QY4, MC68HLC908QY2, and MC68HLC908QY1 in 16-pin packages. Figure 1-2  
shows the pin assignment for these packages.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
General Description  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 (see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 1-1. Block Diagram  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
Pin Assignments  
VSS  
VSS  
VDD  
VDD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
PTA5/OSC1/KBI5  
PTA4/OSC2/KBI4  
PTA3/RST/KBI3  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA3/RST/KBI3  
PTA0/AD0/TCH0/KBI0  
PTA0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
8-PIN ASSIGNMENT  
MC68HC908QT1 PDIP/SOIC  
8-PIN ASSIGNMENT  
MC68HC908QT2 AND MC68HC908QT4 PDIP/SOIC  
VDD  
VDD  
VSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTB7  
PTB6  
PTB7  
PTB6  
PTB0  
PTB0  
PTB1  
PTB1  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA5/OSC1/KBI5  
PTA4/OSC2/KBI4  
PTA0/TCH0/KBI0  
PTA1/TCH1/KBI1  
PTB5  
PTB4  
PTB5  
PTB4  
PTB2  
PTB2  
PTB3  
PTB3  
PTA2/IRQ/KBI2/TCLK  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA3/RST/KBI3  
16-PIN ASSIGNMENT  
MC68HC908QY1 PDIP/SOIC  
16-PIN ASSIGNMENT  
MC68HC908QY2 AND MC68HC908QY4 PDIP/SOIC  
PTA0/TCH0/KBI0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTA1/TCH1/KBI1  
PTB2  
PTB3  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB4  
PTA0/AD0/TCH0/KBI0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTA1/AD1/TCH1/KBI1  
PTB2  
PTB3  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB4  
PTB1  
PTB0  
VSS  
PTB1  
PTB0  
VSS  
VDD  
VDD  
PTB7  
PTB6  
PTA5/OSC1/KBI5  
PTB7  
PTB6  
PTA5/OSC1/AD3/KBI5  
PTB5  
PTA4/OSC2/KBI4  
PTB5  
PTA4/OSC2/AD2/KBI4  
16-PIN ASSIGNMENT  
MC68HC908QY1 TSSOP  
16-PIN ASSIGNMENT  
MC68HC908QY2 AND MC68HC908QY4 TSSOP  
PTA0/TCH0/KBI0  
1
8
PTA1/TCH1/KBI1  
PTA0/AD0/TCH0/KBI0  
1
8
PTA1/AD1/TCH1/KBI1  
VSS  
VDD  
2
3
7
6
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
VSS  
VDD  
2
3
7
6
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA5/OSC1/KB15  
4
5
PTA4/OSC2/KBI4  
PTA5//OSC1/AD3/KB15  
4
5
PTA4/OSC2/AD2/KBI4  
8-PIN ASSIGNMENT  
MC68HC908QT1 DFN  
8-PIN ASSIGNMENT  
MC68HC908QT2 AND MC68HC908QT4 DFN  
Figure 1-2. MCU Pin Assignments  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
19  
General Description  
1.5 Pin Functions  
Table 1-2 provides a description of the pin functions.  
Table 1-2. Pin Functions  
Pin  
Name  
Description  
Input/Output  
VDD  
VSS  
Power supply  
Power  
Power supply ground  
Power  
Input/Output  
Input  
PTA0 — General purpose I/O port  
AD0 — A/D channel 0 input  
TCH0 — Timer Channel 0 I/O  
KBI0 — Keyboard interrupt input 0  
PTA1 — General purpose I/O port  
AD1 — A/D channel 1 input  
TCH1 — Timer Channel 1 I/O  
KBI1 — Keyboard interrupt input 1  
PTA0  
PTA1  
Input/Output  
Input  
Input/Output  
Input  
Input/Output  
Input  
PTA2 — General purpose input-only port  
IRQ — External interrupt with programmable pullup and Schmitt trigger input  
KBI2 — Keyboard interrupt input 2  
Input  
Input  
PTA2  
PTA3  
Input  
TCLK — Timer clock input  
Input  
PTA3 — General purpose I/O port  
Input/Output  
Input  
RST — Reset input, active low with internal pullup and Schmitt trigger  
KBI3 — Keyboard interrupt input 3  
Input  
PTA4 — General purpose I/O port  
Input/Output  
OSC2 —XTAL oscillator output (XTAL option only)  
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)  
Output  
Output  
PTA4  
AD2 — A/D channel 2 input  
Input  
Input  
KBI4 — Keyboard interrupt input 4  
PTA5 — General purpose I/O port  
OSC1 —XTAL, RC, or external oscillator input  
AD3 — A/D channel 3 input  
Input/Output  
Input  
PTA5  
Input  
KBI5 — Keyboard interrupt input 5  
8 general-purpose I/O ports  
Input  
PTB[0:7](1)  
Input/Output  
1. The PTB pins are not available on the 8-pin packages (see note in 12.1 Introduction).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
20  
Freescale Semiconductor  
Pin Function Priority  
1.6 Pin Function Priority  
Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin.  
NOTE  
Upon reset all pins come up as input ports regardless of the priority table.  
Table 1-3. Function Priority in Shared Pins  
Pin Name  
PTA0  
Highest-to-Lowest Priority Sequence  
AD0 TCH0 KBI0 PTA0  
PTA1  
AD1 TCH1 KBI1 PTA1  
IRQ KBI2 TCLK PTA2  
RST KBI3 PTA3  
PTA2  
PTA3  
PTA4  
OSC2 AD2 KBI4 PTA4  
OSC1 AD3 KBI5 PTA5  
PTA5  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
21  
General Description  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
22  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map, shown  
in Figure 2-1, includes:  
4096 bytes of user FLASH for MC68HLC908QT4 and MC68HLC908QY4  
1536 bytes of user FLASH for MC68HLC908QT2, MC68HLC908QT1, MC68HLC908QY2, and  
MC68HLC908QY1  
128 bytes of random access memory (RAM)  
48 bytes of user-defined vectors, located in FLASH  
416 bytes of monitor read-only memory (ROM)  
1536 bytes of FLASH program and erase routines, located in ROM  
2.2 Unimplemented Memory Locations  
Accessing an unimplemented location can have unpredictable effects on MCU operation. In Figure 2-1  
and in register figures in this document, unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1 and in  
register figures in this document, reserved locations are marked with the word Reserved or with the  
letter R.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
23  
Memory  
$0000  
I/O REGISTERS  
64 BYTES  
$003F  
$0040  
RESERVED(1)  
64 BYTES  
Note 1.  
Attempts to execute code from addresses in this  
$007F  
$0080  
range will generate an illegal address reset.  
RAM  
128 BYTES  
$00FF  
$0100  
UNIMPLEMENTED(1)  
9984 BYTES  
$27FF  
$2800  
AUXILIARY ROM  
1536 BYTES  
$2DFF  
$2E00  
$EDFF  
$2E00  
UNIMPLEMENTED(1)  
49152 BYTES  
UNIMPLEMENTED  
51712 BYTES  
$F7FF  
$EE00  
$FDFF  
FLASH MEMORY  
MC68HLC908QT4 AND MC68HLC908QY4  
4096 BYTES  
$F800  
FLASH MEMORY  
1536 BYTES  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (SRSR)  
MC68HLC908QT1, MC68HLC908QT2,  
MC68HLC908QY1, and MC68HLC908QY2  
Memory Map  
BREAK AUXILIARY REGISTER (BRKAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR)  
FLASH CONTROL REGISTER (FLCR)  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVISR  
$FE0D  
$FE0F  
RESERVED FOR FLASH TEST  
3 BYTES  
$FE10  
$FFAF  
MONITOR ROM 416 BYTES  
$FFB0  
$FFBD  
FLASH  
14 BYTES  
$FFBE  
$FFBF  
$FFC0  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
RESERVED FLASH  
INTERNAL OSCILLATOR TRIM VALUE  
$FFC1  
RESERVED FLASH  
$FFC2  
$FFCF  
FLASH  
14 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
Figure 2-1. Memory Map  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
Input/Output (I/O) Section  
2.4 Input/Output (I/O) Section  
Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers.  
Additional I/O registers have these addresses:  
$FE00 — Break status register, BSR  
$FE01 — Reset status register, SRSR  
$FE02 — Break auxiliary register, BRKAR  
$FE03 — Break flag control register, BFCR  
$FE04 — Interrupt status register 1, INT1  
$FE05 — Interrupt status register 2, INT2  
$FE06 — Interrupt status register 3, INT3  
$FE07 — Reserved  
$FE08 — FLASH control register, FLCR  
$FE09 — Break address register high, BRKH  
$FE0A — Break address register low, BRKL  
$FE0B — Break status and control register, BRKSCR  
$FE0C — LVI status register, LVISR  
$FE0D — Reserved  
$FFBE — FLASH block protect register, FLBPR  
$FFC0 — Internal OSC trim value — Optional  
$FFFF — COP control register, COPCTL  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
AWUL  
PTA2  
Port A Data Register  
R
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 98.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB2  
PTB1  
PTB0  
$0001  
$0002  
$0003  
(PTB) Write:  
See page 100.  
Reset:  
Unimplemented  
Unimplemented  
Read:  
0
0
Data Direction Register A  
R
0
R
0
DDRA5  
0
DDRA4  
DDRA3  
DDRA1  
0
DDRA0  
0
$0004  
(DDRA) Write:  
See page 98.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
25  
Memory  
Addr.  
Register Name  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Data Direction Register B  
$0005  
(DDRB) Write:  
See page 101.  
Reset:  
$0006  
Unimplemented  
$000A  
Read:  
0
0
Port A Input Pullup Enable  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000B  
$000C  
Register (PTAPUE) Write:  
See page 99.  
Reset:  
0
0
0
0
0
0
Read:  
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 102.  
Reset:  
0
0
0
0
0
0
0
0
$000D  
$0019  
Unimplemented  
Read:  
Keyboard Status and  
Control Register (KBSCR) Write:  
0
0
0
0
KEYF  
0
ACKK  
0
IMASKK  
MODEK  
$001A  
See page 83.  
Reset:  
0
0
0
AWUIE  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
Enable Register (KBIER) Write:  
KBIE2  
0
$001B  
$001C  
See page 84.  
Reset:  
0
0
Unimplemented  
Read:  
IRQ Status and Control  
Register (INTSCR) Write:  
0
0
0
0
IRQF  
0
0
ACK  
0
IMASK  
MODE  
0
$001D  
$001E  
See page 77.  
Reset:  
0
IRQPUD  
0
0
IRQEN  
0
0
R
0
0
R
0
Read:  
Configuration Register 2  
OSCOPT1 OSCOPT0  
RSTEN  
0(2)  
R
0
(CONFIG2)(1) Write:  
See page 53.  
Reset:  
0
0
1. One-time writable register after each reset.  
2. RSTEN reset to 0 by a power-on reset (POR) only.  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
26  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
COPRS  
0
6
5
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Configuration Register 1  
LVISTOP LVIRSTD LVIPWRD LVDLVR  
0(2)  
$001F  
(CONFIG1)(1) Write:  
See page 54.  
Reset:  
0
0
0
1. One-time writable register after each reset. Exceptions are LVDLVR and LVIRSTD bits.  
2. LVDLVR reset to 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
Register (TSC) Write:  
See page 127.  
Reset:  
TRST  
0
0
0
1
0
0
0
0
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM Counter Register High  
(TCNTH) Write:  
See page 129.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM Counter Register Low  
(TCNTL) Write:  
See page 129.  
Reset:  
Read:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
Bit 8  
1
TIM Counter Modulo  
Register High (TMODH) Write:  
See page 129.  
Reset:  
Read:  
TIM Counter Modulo  
Register Low (TMODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
See page 129.  
Reset:  
1
CH0F  
0
Read:  
TIM Channel 0 Status and  
Control Register (TSC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
See page 130.  
Reset:  
0
Read:  
TIM Channel 0  
Register High (TCH0H) Write:  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 133.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Register Low (TCH0L) Write:  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 133.  
Reset:  
Read:  
TIM Channel 1 Status and  
Control Register (TSC1) Write:  
CH1F  
0
0
CH1IE  
0
MS1A  
ELS1B  
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
0
See page 130.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
27  
Memory  
Addr.  
Register Name  
TIM Channel 1  
Register High (TCH1H) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
$0029  
$002A  
See page 133.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 1  
Register Low (TCH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 133.  
Reset:  
$002B  
Unimplemented  
$0035  
Read:  
ECGST  
0
Oscillator Status Register  
R
0
R
0
R
0
R
0
R
0
R
0
ECGON  
0
$0036  
$0037  
(OSCSTAT) Write:  
See page 95.  
Reset:  
Unimplemented Read:  
Read:  
Write:  
Reset:  
Oscillator Trim Register  
(OSCTRIM)  
See page 96.  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
0
TRIM2  
0
TRIM1  
0
TRIM0  
0
$0038  
$0039  
Unimplemented  
$003B  
Read: COCO  
ADC Status and Control  
Register (ADSCR) Write:  
AIEN  
0
ADCO  
0
CH4  
1
CH3  
1
CH2  
1
CH1  
1
CH0  
1
$003C  
$003D  
R
0
See page 43.  
Reset:  
Unimplemented  
Read:  
ADC Data Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
$003E  
$003F  
(ADR) Write:  
See page 44.  
Reset:  
Indeterminate after reset  
Read:  
0
0
0
0
0
0
0
0
ADC Input Clock Register  
ADIV2  
0
ADIV1  
0
ADIV0  
0
(ADICLK) Write:  
See page 45.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
28  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
See note 1  
0
Bit 0  
Read:  
Break Status Register  
R
R
R
R
R
R
R
$FE00  
(BSR) Write:  
See page 139.  
Reset:  
1. Writing a 0 clears SBSW.  
Read:  
SIM Reset Status Register  
(SRSR) Write:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
See page 117.  
POR:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BDCOP  
Break Auxiliary  
Register (BRKAR) Write:  
See page 139.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Break Flag Control  
Register (BFCR) Write:  
BCFE  
R
R
R
R
R
R
R
See page 139.  
Reset:  
0
0
Read:  
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
R
0
0
R
0
0
R
Interrupt Status Register 1  
(INT1) Write:  
R
See page 77.  
Reset:  
Read:  
0
0
IF14  
R
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2) Write:  
R
0
R
0
R
0
R
0
R
0
R
0
R
See page 77.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
$FE06  
$FE07  
(INT3) Write:  
See page 77.  
Reset:  
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
0
MASS  
ERASE  
PGM  
0
$FE08  
$FE09  
$FE0A  
(FLCR) Write:  
See page 32.  
Reset:  
Read:  
0
Bit 15  
0
0
Bit 14  
0
0
Bit 13  
0
0
Bit 12  
0
0
Bit 10  
0
0
Bit 9  
0
Break Address High  
Bit 11  
0
Bit 8  
0
Register (BRKH) Write:  
See page 138.  
Reset:  
Read:  
Break Address low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
0
Bit 1  
0
Bit 0  
0
See page 138.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
29  
Memory  
Addr.  
Register Name  
Bit 7  
BRKE  
0
6
5
4
3
2
1
Bit 0  
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
0
0
0
0
0
0
BRKA  
$FE0B  
$FE0C  
See page 138.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
Write:  
R
LVI Status Register (LVISR)  
See page 87.  
Reset:  
0
0
0
0
0
0
0
0
$FE0D  
$FE0F  
Reserved for FLASH Test  
R
R
R
R
R
R
R
R
Read:  
FLASH Block Protect  
Register (FLBPR) Write:  
BPR7  
R
BPR6  
R
BPR5  
R
BPR4  
BPR3  
BPR2  
R
BPR1  
R
BPR0  
R
$FFBE  
$FFBF  
See page 37.  
Reset:  
Unaffected by reset  
Reserved  
R
R
Read:  
TRIM7  
R
TRIM6  
R
TRIM5  
R
TRIM4  
TRIM3  
TRIM2  
R
TRIM1  
R
TRIM0  
R
Internal Oscillator Trim Value  
(Optional)  
$FFC0  
$FFC1  
Write:  
Reset:  
Unaffected by reset  
Reserved  
R
R
Read:  
LOW BYTE OF RESET VECTOR  
WRITING CLEARS COP COUNTER (ANY VALUE)  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 59.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
Random-Access Memory (RAM)  
.
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
Vector  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
ADC conversion complete vector (high)  
ADC conversion complete vector (low)  
Keyboard vector (high)  
Lowest  
IF15  
IF14  
Keyboard vector (low)  
IF13  
IF6  
Not used  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM overflow vector (high)  
TIM overflow vector (low)  
TIM Channel 1 vector (high)  
TIM Channel 1 vector (low)  
TIM Channel 0 vector (high)  
TIM Channel 0 vector (low)  
Not used  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IRQ vector (high)  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Highest  
Reset vector (low)  
2.5 Random-Access Memory (RAM)  
The 128 bytes of random-access memory (RAM) are located at addresses $0080–$00FF. The location  
of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the  
64-Kbyte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Before processing an interrupt, the central processor unit (CPU) uses five bytes of the stack to save the  
contents of the CPU registers.  
NOTE  
For M6805, M146805, and M68HC05 compatibility, the H register is not  
stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU may overwrite data in  
the RAM during a subroutine or during the interrupt stacking operation.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
31  
Memory  
2.6 FLASH Memory (FLASH)  
This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be  
read, programmed, and erased from a single external supply. The program and erase operations are  
enabled through the use of an internal charge pump.  
The FLASH memory consists of an array of 4096 or 1536 bytes with an additional 48 bytes for user  
vectors. The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of  
FLASH memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase  
operations are facilitated through control bits in the FLASH control register (FLCR). Details for these  
operations appear later in this section. The address ranges for the user memory and vectors are:  
$EE00 – $FDFF; user memory, 4096 bytes: MC68HLC908QY4 and MC68HLC908QT4  
$F800 – $FDFF; user memory, 1536 bytes: MC68HLC908QY2, MC68HLC908QT2,  
MC68HLC908QY1 and MC68HLC908QT1  
$FFD0 – $FFFF; user interrupt vectors, 48 bytes.  
NOTE  
An erased bit reads as a 1 and a programmed bit reads as a 0. A security  
feature prevents viewing of the FLASH contents.(1)  
2.6.1 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the memory for either program or  
erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
FLASH Memory (FLASH)  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass Erase operation selected  
0 = Mass Erase operation unselected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
2.6.2 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the block to be erased.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 1 ms or 4 ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH (minimum 5 µs).  
9. Clear the HVEN bit.  
10. After time, tRCV (typical 1 µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
CAUTION  
A page erase of the vector page will erase the internal oscillator trim value  
at $FFC0.  
In applications that require more than 1000 program/erase cycles, use the 4 ms page erase specification  
to get improved long-term reliability. Any application can use this 4 ms page erase specification. However,  
in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and  
speed is important, use the 1 ms page erase specification to get a shorter cycle time.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
33  
Memory  
2.6.3 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read as a 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address range.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tMErase (minimum 4 ms).  
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, tNVH (minimum 100 µs).  
9. Clear the HVEN bit.  
10. After time, tRCV (typical 1 µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
CAUTION  
A mass erase will erase the internal oscillator trim value at $FFC0.  
2.6.4 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the  
following step-by-step procedure to program a row of FLASH memory  
Figure 2-4 shows a flowchart of the programming algorithm.  
NOTE  
Only bytes which are currently $FF may be programmed.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range desired.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tPGS (minimum 5 µs).  
7. Write data to the FLASH address being programmed(2).  
1. When in monitor mode, with security sequence failed (see 15.3.2 Security), write to the FLASH block protect register instead  
of any FLASH address.  
2. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing PGM  
bit, must not exceed the maximum programming time, tPROG maximum.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
34  
Freescale Semiconductor  
FLASH Memory (FLASH)  
8. Wait for time, tPROG (minimum 30 µs).  
9. Repeat step 7 and 8 until all desired bytes within the row are programmed.  
10. Clear the PGM bit(1).  
11. Wait for time, tNVH (minimum 5 µs).  
12. Clear the HVEN bit.  
13. After time, tRCV (typical 1 µs), the memory can be accessed in read mode again.  
NOTE  
The COP register at location $FFFF should not be written between steps  
5-12, when the HVEN bit is set. Since this register is located at a valid  
FLASH address, unpredictable behavior may occur if this location is written  
while HVEN is set.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum, see 16.12  
Memory Characteristics.  
2.6.5 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made to protect blocks of memory from unintentional erase or program operations  
due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be protected. The range of the  
protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory  
($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM  
operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
When the FLBPR is programmed with all 0s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are  
shown in 2.6.6 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than  
$FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass  
erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can be  
erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also  
allows entry from reset into the monitor mode.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
35  
Memory  
Algorithm for Programming  
1
2
3
SET PGM BIT  
a Row (32 Bytes) of FLASH Memory  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
PROGRAMMING  
THIS ROW?  
9
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
13  
NOTES:  
The time between each FLASH address change (step 7 to step 7),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG max.  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 2-4. FLASH Programming Flowchart  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.6 FLASH Block Protect Register  
The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can  
only be written during a programming sequence of the FLASH memory. The value in this register  
determines the starting address of the protected range within the FLASH memory.  
Address: $FFBE  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Protection Register Bits [7:0]  
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are 1s and  
bits [5:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH  
memory. See Figure 2-6 and Table 2-2.  
16-BIT MEMORY ADDRESS  
FLBPR VALUE  
START ADDRESS OF  
FLASH BLOCK PROTECT  
1
1
0
0
0
0
0
0
Figure 2-6. FLASH Block Protect Start Address  
Table 2-2. Examples of Protect Start Address  
BPR[7:0]  
Start of Address of Protect Range  
The entire FLASH memory is protected.  
$EE40 (1110 1110 0100 0000)  
$EE80 (1110 1110 1000 0000)  
$EEC0 (1110 1110 1100 0000)  
$EF00 (1110 1111 0000 0000)  
and so on...  
$00–$B8  
$B9 (1011 1001)  
$BA (1011 1010)  
$BB (1011 1011)  
$BC (1011 1100)  
$DE (1101 1110)  
$DF (1101 1111)  
$F780 (1111 0111 1000 0000)  
$F7C0 (1111 0111 1100 0000)  
$FF80 (1111 1111 1000 0000)  
$FE (1111 1110)  
FLBPR, OSCTRIM, and vectors are protected  
$FF  
The entire FLASH memory is not protected.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
37  
Memory  
2.6.7 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a program or erase operation on the  
FLASH, or the operation will discontinue and the FLASH will be on standby mode.  
2.6.8 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a program or erase operation on the  
FLASH, or the operation will discontinue and the FLASH will be on standby mode  
NOTE  
Standby mode is the power-saving mode of the FLASH module in which all  
internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
Chapter 3  
Analog-to-Digital Converter (ADC)  
3.1 Introduction  
This section describes the analog-to-digital converter (ADC). The ADC is an 8-bit, 4-channel analog-to-  
digital converter. The ADC module is only available on the MC68HLC908QY2, MC68HLC908QT2,  
MC68HLC908QY4, and MC68HLC908QT4.  
3.2 Features  
Features of the ADC module include:  
4 channels with multiplexed input  
Linear successive approximation with monotonicity  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock frequency  
3.3 Functional Description  
Four ADC channels are available for sampling external sources at pins PTA0, PTA1, PTA4, and PTA5.  
An analog multiplexer allows the single ADC converter to select one of the four ADC channels as an ADC  
voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters.  
The ADC resolution is eight bits. When the conversion is completed, ADC puts the result in the ADC data  
register and sets a flag or generates an interrupt.  
Figure 3-2 shows a block diagram of the ADC.  
3.3.1 ADC Port I/O Pins  
PTA0, PTA1, PTA4, and PTA5 are general-purpose I/O pins that are shared with the ADC channels. The  
channel select bits (ADC status and control register (ADSCR), $003C), define which ADC channel/port  
pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the  
ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as  
general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect  
on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a 0  
if the corresponding DDR bit is at 0. If the DDR bit is 1, the value in the port data latch is read.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
39  
Analog-to-Digital Converter (ADC)  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4( see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 3-1. Block Diagram Highlighting ADC Block and Pins  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRA  
WRITE DDRA  
DISABLE  
DDRAx  
PTAx  
RESET  
WRITE PTA  
READ PTA  
ADCx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
CH[4:0]  
ADC  
(1 OF 4 CHANNELS)  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
Figure 3-2. ADC Block Diagram  
3.3.2 Voltage Conversion  
When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input  
voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straight-line  
linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS.  
NOTE  
Input voltage should not exceed the analog supply voltages.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
41  
Analog-to-Digital Converter (ADC)  
3.3.3 Conversion Time  
Sixteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the  
first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal  
clock is selected to run at 1 MHz, then one conversion will take 16 µs to complete. With a 1-MHz ADC  
internal clock the maximum sample rate is 62.5 kHz.  
16 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
3.3.4 Continuous Conversion  
In the continuous conversion mode (ADCO = 1), the ADC continuously converts the selected channel  
filling the ADC data register (ADR) with new data after each conversion. Data from the previous  
conversion will be overwritten whether that data has been read or not. Conversions will continue until the  
ADCO bit is cleared. The COCO bit (ADSCR, $003C) is set after each conversion and will stay set until  
the next read of the ADC data register.  
When a conversion is in process and the ADSCR is written, the current conversion data should be  
discarded to prevent an incorrect reading.  
3.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
3.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a central processor unit (CPU)  
interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at 0. The COCO bit  
is not used as a conversion complete flag when interrupts are enabled.  
3.5 Low-Power Modes  
The following subsections describe the ADC in low-power modes.  
3.5.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the microcontroller unit (MCU) out of wait mode. If the ADC is not required to bring the MCU out  
of wait mode, power down the ADC by setting the CH[4:0] bits in ADSCR to 1s before executing the WAIT  
instruction.  
3.5.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the  
analog circuitry before using ADC data after exiting stop mode.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
Input/Output Signals  
3.6 Input/Output Signals  
The ADC module has four channels that are shared with I/O port A.  
ADC voltage in (ADCVIN) is the input voltage signal from one of the four ADC channels to the ADC  
module.  
3.7 Input/Output Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADICLK)  
3.7.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and control register (ADSCR). When a  
conversion is in process and the ADSCR is written, the current conversion data should be discarded to  
prevent an incorrect reading.  
Address: $003C  
Bit 7  
6
5
ADCO  
0
4
CH4  
1
3
CH3  
1
2
CH2  
1
1
CH1  
1
Bit 0  
CH0  
1
Read:  
Write:  
Reset:  
COCO  
AIEN  
R
0
0
R
= Reserved  
Figure 3-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion.  
COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It  
always reads as a 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)  
NOTE  
The write function of the COCO bit is reserved. When writing to the ADSCR  
register, always have a 0 in the COCO bit position.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when ADR is read or ADSCR is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update ADR at the end of each conversion.  
Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
43  
Analog-to-Digital Converter (ADC)  
CH[4:0] — ADC Channel Select Bits  
CH4, CH3, CH2, CH1, and CH0 form a 5-bit field which is used to select one of the four ADC channels.  
The five select bits are detailed in Table 3-1. Care should be taken when using a port pin as both an  
analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal.  
The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for  
reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a 1.  
NOTE  
Recovery from the disabled state requires one conversion cycle to stabilize.  
Table 3-1. MUX Channel Select  
ADC  
CH4  
CH3  
CH2  
CH1  
CH0  
Input Select  
Channel  
AD0  
AD1  
AD2  
AD3  
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
0
1
0
PTA0  
PTA1  
PTA4  
PTA5  
Unused(1)  
Reserved  
Unused  
(2)  
1
1
1
0
1
VDDA  
(2)  
1
1
1
1
1
1
1
1
0
1
VSSA  
ADC power off  
1. If any unused channels are selected, the resulting ADC conversion will be  
unknown.  
2. The voltage levels supplied from internal reference nodes, as specified in the  
table, are used to verify the operation of the ADC converter both in  
production test and for user applications.  
3.7.2 ADC Data Register  
One 8-bit result register is provided. This register is updated each time an ADC conversion completes.  
Address: $003E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 3-4. ADC Data Register (ADR)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
44  
Freescale Semiconductor  
Input/Output Registers  
3.7.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC.  
Address: $003F  
Bit 7  
ADIV2  
0
6
ADIV1  
0
5
ADIV0  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 3-5. ADC Input Clock Register (ADICLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate  
the internal ADC clock. Table 3-2 shows the available clock configurations. The ADC clock should be  
set according to the MCU operating voltage. Lower operating voltages will require lower ADC clock  
frequencies for best accuracy. The analog input level should remain stable for the entire conversion  
time (maximum = 17 ADC clock cycles).  
Table 3-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
Bus clock ÷ 1  
Bus clock ÷ 2  
Bus clock ÷ 4  
Bus clock ÷ 8  
Bus clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
45  
Analog-to-Digital Converter (ADC)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
Chapter 4  
Auto Wakeup Module (AWU)  
4.1 Introduction  
This section describes the auto wakeup module (AWU). The AWU generates a periodic interrupt during  
stop mode to wake the part up without requiring an external signal. Figure 4-1 is a block diagram of the  
AWU.  
4.2 Features  
Features of the auto wakeup module include:  
One internal interrupt with separate interrupt enable bit, sharing the same keyboard interrupt vector  
and keyboard interrupt mask bit  
Exit from low-power stop mode without external signals  
Selectable timeout periods  
Dedicated low power internal oscillator separate from the main system clock sources  
4.3 Functional Description  
The function of the auto wakeup logic is to generate periodic wakeup requests to bring the microcontroller  
unit (MCU) out of stop mode. The wakeup requests are treated as regular keyboard interrupt requests,  
with the difference that instead of a pin, the interrupt signal is generated by an internal logic.  
Writing the AWUIE bit in the keyboard interrupt enable register enables or disables the auto wakeup  
interrupt input (see Figure 4-1). A logic 1 applied to the AWUIREQ input with auto wakeup interrupt  
request enabled, latches an auto wakeup interrupt request.  
Auto wakeup latch, AWUL, can be read directly from the bit 6 position of port A data register (PTA). This  
is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as  
PTA6 data direction or PTA6 pullup exist for this bit.  
Entering stop mode will enable the auto wakeup generation logic. An internal RC oscillator (exclusive for  
the auto wakeup feature) drives the wakeup request generator. Once the overflow count is reached in the  
generator counter, a wakeup request, AWUIREQ, is latched and sent to the KBI logic. See Figure 4-1.  
Wakeup interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER  
is set. The AWU shares the keyboard interrupt vector.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
47  
Auto Wakeup Module (AWU)  
COPRS (FROM CONFIG1)  
VDD  
AUTOWUGEN  
TO PTA READ, BIT 6  
AWUL  
1 = DIV 29  
D
E
Q
SHORT  
0 = DIV 214  
INT RC OSC  
EN 32 kHz  
OVERFLOW  
AWUIREQ  
R
CLK  
RST  
TO KBI INTERRUPT LOGIC (SEE  
Figure 9-2. Keyboard Interrupt  
Block Diagram)  
CLRLOGIC  
CLEAR  
RESET  
ACKK  
(CGMXCLK)  
BUSCLKX4  
CLK  
RST  
RESET  
ISTOP  
RESET  
AWUIE  
Figure 4-1. Auto Wakeup Interrupt Request Generation Logic  
The overflow count can be selected from two options defined by the COPRS bit in CONFIG1. This bit was  
“borrowed” from the computer operating properly (COP) using the fact that the COP feature is idle (no  
MCU clock available) in stop mode. The typical values of the periodic wakeup request are (at room  
temperature):  
COPRS = 0: 875 ms @ 3.0 V, 1.1 s @ 2.3 V  
COPRS = 1: 22 ms @ 3.0 V, 27 ms @ 2.3 V  
The auto wakeup RC oscillator is highly dependent on operating voltage and temperature. This feature is  
not recommended for use as a time-keeping function.  
The wakeup request is latched to allow the interrupt source identification. The latched value, AWUL, can  
be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an  
empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6  
pullup exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register. Reset  
also clears the latch. AWUIE bit in KBI interrupt enable register (see Figure 4-1) has no effect on AWUL  
reading.  
The AWU oscillator and counters are inactive in normal operating mode and become active only upon  
entering stop mode.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
48  
Freescale Semiconductor  
Wait Mode  
4.4 Wait Mode  
The AWU module remains inactive in wait mode.  
4.5 Stop Mode  
When the AWU module is enabled (AWUIE = 1 in the keyboard interrupt enable register) it is activated  
automatically upon entering stop mode. Clearing the IMASKK bit in the keyboard status and control  
register enables keyboard interrupt requests to bring the MCU out of stop mode. The AWU counters start  
from ‘0’ each time stop mode is entered.  
4.6 Input/Output Registers  
The AWU shares registers with the keyboard interrupt (KBI) module and the port A I/O module. The  
following I/O registers control and monitor operation of the AWU:  
Port A data register (PTA)  
Keyboard interrupt status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
4.6.1 Port A I/O Register  
The port A data register (PTA) contains a data latch for the state of the AWU interrupt request, in addition  
to the data latches for port A.  
Address: $0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
0
0
Unaffected by reset  
= Unimplemented  
Figure 4-2. Port A Data Register (PTA)  
AWUL — Auto Wakeup Latch  
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup  
request signal is generated internally. There is no PTA6 port or any of the associated bits such as  
PTA6 data direction or pullup bits.  
1 = Auto wakeup interrupt request is pending  
0 = Auto wakeup interrupt request is not pending  
NOTE  
PTA5–PTA0 bits are not used in conjuction with the auto wakeup feature.  
To see a description of these bits, see 12.2.1 Port A Data Register.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
49  
Auto Wakeup Module (AWU)  
4.6.2 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard/auto wakeup interrupt requests  
Acknowledges keyboard/auto wakeup interrupt requests  
Masks keyboard/auto wakeup interrupt requests  
Address: $001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 4-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A or auto wakeup. Reset clears  
the KEYF bit.  
1 = Keyboard/auto wakeup interrupt pending  
0 = No keyboard/auto wakeup interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard/auto wakeup interrupt request on port A and auto  
wakeup logic. ACKK always reads as 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating  
interrupt requests on port A or auto wakeup. Reset clears the IMASKK bit.  
1 = Keyboard/auto wakeup interrupt requests masked  
0 = Keyboard/auto wakeup interrupt requests not masked  
NOTE  
MODEK is not used in conjuction with the auto wakeup feature. To see a  
description of this bit, see 9.7.1 Keyboard Status and Control Register.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
Input/Output Registers  
4.6.3 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register (KBIER) enables or disables the auto wakeup to operate as a  
keyboard/auto wakeup interrupt input.  
Address: $001B  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 4-4. Keyboard Interrupt Enable Register (KBIER)  
AWUIE — Auto Wakeup Interrupt Enable Bit  
This read/write bit enables the auto wakeup interrupt input to latch interrupt requests. Reset clears  
AWUIE.  
1 = Auto wakeup enabled as interrupt input  
0 = Auto wakeup not enabled as interrupt input  
NOTE  
KBIE5–KBIE0 bits are not used in conjuction with the auto wakeup feature.  
To see a description of these bits, see 9.7.2 Keyboard Interrupt Enable  
Register.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
51  
Auto Wakeup Module (AWU)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
52  
Freescale Semiconductor  
Chapter 5  
Configuration Register (CONFIG)  
5.1 Introduction  
This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers  
enable or disable the following options:  
Stop mode recovery time (32 × BUSCLKX4 cycles or 4096 × BUSCLKX4 cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS): 8176 × BUSCLKX4 or 262,128 × BUSCLKX4  
Low-voltage inhibit (LVI) enable and trip voltage selection  
OSC option selection  
IRQ pin  
RST pin  
Auto wakeup timeout period  
5.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. Exceptions are bits LVDLVR and LVIRSTD which may be written at any  
time. Most of the configuration register bits are cleared during reset. Since the various options affect the  
operation of the microcontroller unit (MCU) it is recommended that this register be written immediately  
after reset. The configuration registers are located at $001E and $001F, and may be read at anytime.  
$001E  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
IRQEN  
R
OSCOPT1 OSCOPT0  
R
R
RSTEN  
0
0
0
0
0
0
0
0
0
0
0
0
U
0
0
0
= Reserved  
U = Unaffected  
R
Figure 5-1. Configuration Register 2 (CONFIG2)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
53  
Configuration Register (CONFIG)  
IRQPUD — IRQ Pin Pullup Control Bit  
1 = Internal pullup is disconnected  
0 = Internal pullup is connected between IRQ pin and VDD  
IRQEN — IRQ Pin Function Selection Bit  
1 = Interrupt request function active in pin  
0 = Interrupt request function inactive in pin  
OSCOPT1 and OSCOPT0 — Selection Bits for Oscillator Option  
(0, 0) Internal oscillator  
(0, 1) External oscillator  
(1, 0) External RC oscillator  
(1, 1) External XTAL oscillator  
RSTEN — RST Pin Function Selection  
1 = Reset function active in pin  
0 = Reset function inactive in pin  
NOTE  
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will  
leave this bit unaffected.  
$001F  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
LVIRSTD  
COPRS LVISTOP  
LVIPWRD LVDLVR SSREC  
STOP  
COPD  
Reset:  
POR:  
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
0
U = Unaffected  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS (Out of STOP Mode) — COP Reset Period Selection Bit  
1 = COP reset short cycle = 8176 × BUSCLKX4  
0 = COP reset long cycle = 262,128 × BUSCLKX4  
COPRS (In STOP Mode) — Auto Wakeup Period Selection Bit  
1 = Auto wakeup short cycle = 512 × INTRCOSC  
0 = Auto wakeup long cycle = 16,384 × INTRCOSC  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. Unlike other configuration bits, the LVIRSTD  
can be written at any time.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
Functional Description  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVDLVR — Low Voltage Detect or Low Voltage Reset Mode Bit  
LVDLVR selects the trip voltage of the LVI module. LVD trip voltage can be used as a low voltage  
warning, while LVR will commonly be used as a reset condition. Unlike other CONFIG bits, LVDLVR  
can be written multiple times after reset.  
1 = LVI trip voltage level set to LVD trip voltage  
0 = LVI trip voltage level set to LVR trip voltage  
NOTE  
The LVDLVR bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096  
BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
NOTE  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
The system stabilization time for power-on reset and long stop recovery (both 4096 BUSCLKX4  
cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period  
where the MCU is not protected from a low-power condition. However, when using the short stop  
recovery configuration option, the 32 BUSCLKX4 delay must be greater than the LVI’s turn on time to  
avoid a period in startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
55  
Configuration Register (CONFIG)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
56  
Freescale Semiconductor  
Chapter 6  
Computer Operating Properly (COP)  
6.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
configuration 1 (CONFIG1) register.  
6.2 Functional Description  
BUSCLKX4  
RESET CIRCUIT  
12-BIT SIM COUNTER  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
COPCTL WRITE  
COP CLOCK  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE (COPD FROM CONFIG1)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
Figure 6-1. COP Block Diagram  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
57  
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after  
262,128 or 8176 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. With a 262,128 BUSCLKX4 cycle overflow option, the internal 4.0-MHz oscillator  
gives a COP timeout period of 65.53 ms. Writing any value to location $FFFF before an overflow occurs  
prevents a COP reset by clearing the COP counter and stages 12–5 of the SIM counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low (if the RSTEN bit is set in the CONFIG1 register) for 32 × BUSCLKX4  
cycles and sets the COP bit in the reset status register (RSR). See 13.8.1 SIM Reset Status Register.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
6.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 6-1.  
6.3.1 BUSCLKX4  
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the internal oscillator  
frequency, crystal frequency, or the RC-oscillator frequency.  
6.3.2 STOP Instruction  
The STOP instruction clears the SIM counter.  
6.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 6.4 COP Control Register) clears the COP  
counter and clears stages 12–5 of the SIM counter. Reading the COP control register returns the low byte  
of the reset vector.  
6.3.4 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × BUSCLKX4 cycles after power  
up.  
6.3.5 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
6.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register 1  
(CONFIG1). See Chapter 5 Configuration Register (CONFIG).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
58  
Freescale Semiconductor  
COP Control Register  
6.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1  
(CONFIG1). See Chapter 5 Configuration Register (CONFIG).  
6.4 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing  
any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LOW BYTE OF RESET VECTOR  
CLEAR COP COUNTER  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
6.5 Interrupts  
The COP does not generate CPU interrupt requests.  
6.6 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ pin.  
6.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
6.7.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically  
clear the COP counter.  
6.7.2 Stop Mode  
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
6.8 COP Module During Break Mode  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
59  
Computer Operating Properly (COP)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
60  
Freescale Semiconductor  
Chapter 7  
Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
61  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
62  
Freescale Semiconductor  
CPU Registers  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 7-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
63  
Central Processor Unit (CPU)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
64  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
65  
Central Processor Unit (CPU)  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
66  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
67  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
DIV  
INH  
52  
7
H Remainder  
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
68  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
69  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
70  
Freescale Semiconductor  
Opcode Map  
Table 7-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
A (CCR)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
(SP) (H:X) – 1  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
71  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
3
4
4
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2  
IX1  
SP1  
3
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
3
4
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
3
4
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
BIT  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
SP2  
IX1  
SP1  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
SP2  
IX1  
SP1  
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
LSL  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
SP1  
5
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
2
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
CLI  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
INH  
SP2  
IX1  
SP1  
5
3
3
5
2
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
SEI  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1  
5
INH  
SP2  
IX1  
SP1  
3
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
SP1  
4
INH  
2
DIR  
4
IX1  
3
BMS  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
SP1  
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
BIH  
CLR  
IX1  
CLR  
SP1  
STX  
STX  
STX  
3
DIR  
2
DIR  
REL 2 DIR  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 8  
External Interrupt (IRQ)  
8.1 Introduction  
The IRQ pin (external interrupt), shared with PTA2 (general purpose input) and keyboard interrupt (KBI),  
provides a maskable interrupt input.  
8.2 Features  
Features of the IRQ module include the following:  
External interrupt pin, IRQ  
IRQ interrupt control bits  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Selectable internal pullup resistor  
8.3 Functional Description  
IRQ pin functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A  
zero disables the IRQ function and PTA2 will assume the other shared functionalities. A one enables the  
IRQ function.  
A low level applied to the external interrupt request (IRQ) pin can latch a CPU interrupt request.  
Figure 8-2 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. The IRQ latch remains set until one of the  
following actions occurs:  
IRQ vector fetch — An IRQ vector fetch automatically generates an interrupt acknowledge signal  
that clears the IRQ latch.  
Software clear — Software can clear the IRQ latch by writing a 1 to the ACK bit in the interrupt  
status and control register (INTSCR).  
Reset — A reset automatically clears the IRQ latch.  
The external interrupt pin is falling-edge-triggered out of reset and is software-configurable to be either  
falling-edge or falling-edge and low-level triggered. The MODE bit in INTSCR controls the triggering  
sensitivity of the IRQ pin.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
73  
External Interrupt (IRQ)  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 (see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 8-1. Block Diagram Highlighting IRQ Block and Pins  
When set, the IMASK bit in INTSCR masks the IRQ interrupt request. A latched interrupt request is not  
presented to the interrupt priority logic unless IMASK is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including the IRQ interrupt request.  
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. An IRQ vector fetch,  
software clear, or reset clears the IRQ latch.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
74  
Freescale Semiconductor  
Functional Description  
ACK  
RESET  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQPUD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
LATCH  
IMASK  
MODE  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 8-2. IRQ Module Block Diagram  
8.3.1 MODE = 1  
If the MODE bit is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set,  
both of the following actions must occur to clear the IRQ interrupt request:  
Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.  
IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal  
to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK  
in INTSCR. The ACK bit is useful in applications that poll the IRQ pin and require software to clear  
the IRQ latch. Writing to ACK prior to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling  
edge that occurs after writing to ACK latches another interrupt request. If the IRQ mask bit, IMASK,  
is clear, the CPU loads the program counter with the IRQ vector address.  
The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and  
the MODE control bit, thereby clearing the interrupt even if the pin stays low.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
8.3.2 MODE = 0  
If the MODE bit is clear, the IRQ pin is falling edge sensitive only. With MODE clear, an IRQ vector fetch  
or software clear immediately clears the IRQ latch.  
The IRQF bit in INTSCR can be read to check for pending interrupts. The IRQF bit is not affected by  
IMASK, which makes it useful in applications where polling is preferred.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false IRQ interrupts  
by masking interrupt requests in the interrupt routine.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
75  
External Interrupt (IRQ)  
8.4 Interrupts  
The following IRQ source can generate interrupt requests:  
Interrupt flag (IRQF) — The IRQF bit is set when the IRQ pin is asserted based on the IRQ mode.  
The IRQ interrupt mask bit, IMASK, is used to enable or disable IRQ interrupt requests.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
8.5.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of wait mode.  
8.5.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of stop mode.  
8.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See Chapter 13 System Integration Module (SIM).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
8.7 I/O Signals  
The IRQ module shares its pin with the keyboard interrupt, input/output ports, and timer interface  
modules.  
NOTE  
When the IRQ function is enabled in the CONFIG2 register, the BIH and BIL  
instructions can be used to read the logic level on the IRQ pin. If the IRQ  
function is disabled, these instructions will behave as if the IRQ pin is a  
logic 1, regardless of the actual level on the pin. Conversely, when the IRQ  
function is enabled, bit 2 of the port A data register will always read a 0.  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine. An internal pullup  
resistor to VDD is connected to the IRQ pin; this can be disabled by setting  
the IRQPUD bit in the CONFIG2 register ($001E).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
76  
Freescale Semiconductor  
Registers  
8.7.1 IRQ Input Pins (IRQ)  
The IRQ pin provides a maskable external interrupt source. The IRQ pin contains an internal pullup  
device.  
8.8 Registers  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. See  
Chapter 5 Configuration Register (CONFIG).  
The INTSCR has the following functions:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks the IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address: $001D  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag  
This read-only status bit is set when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables the IRQ interrupt request.  
1 = IRQ interrupt request disabled  
0 = IRQ interrupt request enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
1 = IRQ interrupt request on falling edges and low levels  
0 = IRQ interrupt request on falling edges only  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
77  
External Interrupt (IRQ)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
78  
Freescale Semiconductor  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1 Introduction  
The keyboard interrupt module (KBI) provides six independently maskable external interrupts, which are  
accessible via the PTA0–PTA5 pins.  
9.2 Features  
Features of the keyboard interrupt module include:  
Six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt  
mask  
Software configurable pullup device if input pin is configured as input port bit  
Programmable edge-only or edge and level interrupt sensitivity  
Exit from low-power modes  
9.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt functions on the six port A pins.  
These six pins can be enabled/disabled independently of each other.  
9.3.1 Keyboard Operation  
Writing to the KBIE0–KBIE5 bits in the keyboard interrupt enable register (KBIER) independently enables  
or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also  
enables its internal pullup device irrespective of PTAPUEx bits in the port A input pullup enable register  
(see 12.2.3 Port A Input Pullup Enable Register). A logic 0 applied to an enabled keyboard interrupt pin  
latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard interrupt inputs goes low after all were high.  
The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard  
interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard interrupt input does  
not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt  
request on one input because another input is still low, software can disable the latter input while  
it is low.  
If the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as  
long as any keyboard interrupt input is low.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
79  
Keyboard Interrupt Module (KBI)  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 (see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 9-1. Block Diagram Highlighting KBI Block and Pins  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
80  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
KBI0  
VDD  
RESET  
KEYF  
CLR  
.
.
.
D
Q
SYNCHRONIZER  
KBIE0  
CK  
TO PULLUP ENABLE  
KEYBOARD  
INTERRUPT  
REQUEST  
IMASKK  
KBI5  
KEYBOARD  
INTERRUPT FF  
MODEK  
KBIE5  
TO PULLUP ENABLE  
1. For AWUGEN logic refer to Figure 4-1. Auto Wakeup Interrupt  
Request Generation Logic.  
AWUIREQ(1)  
Figure 9-2. Keyboard Interrupt Block Diagram  
If the MODEK bit is set, the keyboard interrupt inputs are both falling edge and low-level sensitive, and  
both of the following actions must occur to clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the interrupt request. Software may generate the interrupt acknowledge signal by writing a 1 to the  
ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in  
applications that poll the keyboard interrupt inputs and require software to clear the keyboard  
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also  
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on  
the keyboard interrupt inputs. A falling edge that occurs after writing to the ACKK bit latches  
another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the central  
processor unit (CPU) loads the program counter with the vector address at locations $FFE0 and  
$FFE1.  
Return of all enabled keyboard interrupt inputs to logic 1 — As long as any enabled keyboard  
interrupt pin is at logic 0, the keyboard interrupt remains set. The auto wakeup interrupt input,  
AWUIREQ, will be cleared only by writing to ACKK bit in KBSCR or reset.  
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur  
in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only. With MODEK clear, a  
vector fetch or software clear immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt input stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending  
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes  
it useful in applications where polling is preferred.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
81  
Keyboard Interrupt Module (KBI)  
To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the  
pin as an input and then read the data register.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
9.3.2 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore  
a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction  
register A.  
2. Write 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
9.4 Wait Mode  
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
9.5 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
9.6 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit.  
If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the  
break state has no effect.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
82  
Freescale Semiconductor  
Input/Output Registers  
9.7 Input/Output Registers  
The following I/O registers control and monitor operation of the keyboard interrupt module:  
Keyboard interrupt status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
9.7.1 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A or auto wakeup. Reset clears  
the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard interrupt request on port A and auto wakeup logic.  
ACKK always reads as 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating  
interrupt requests on port A or auto wakeup. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A and auto  
wakeup. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
83  
Keyboard Interrupt Module (KBI)  
9.7.2 Keyboard Interrupt Enable Register  
The port A keyboard interrupt enable register (KBIER) enables or disables each port A pin or auto wakeup  
to operate as a keyboard interrupt input.  
Address: $001B  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 9-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE5–KBIE0 — Port A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin on port A to latch  
interrupt requests. Reset clears the keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
NOTE  
AWUIE bit is not used in conjunction with the keyboard interrupt feature. To  
see a description of this bit, see Chapter 4 Auto Wakeup Module (AWU).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
84  
Freescale Semiconductor  
Chapter 10  
Low-Voltage Inhibit (LVI)  
10.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin  
and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF  
.
10.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
Selectable LVI trip voltage  
Programmable stop mode operation  
10.3 Functional Description  
Figure 10-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVDLVR, and LVIRSTD are  
user selectable options found in the configuration register (CONFIG1). See Chapter 5 Configuration  
Register (CONFIG).  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG  
FROM CONFIG  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
V
DD > LVITRIP = 0  
LVI RESET  
LOW VDD  
DETECTOR  
VDD LVITRIP = 1  
LVIOUT  
LVDLVR  
FROM CONFIG  
Figure 10-1. LVI Module Block Diagram  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
85  
Low-Voltage Inhibit (LVI)  
The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator.  
Clearing the LVI power disable bit (LVIPWRD) enables the LVI to monitor VDD voltage. Clearing the LVI  
reset disable bit (LVIRSTD) enables the LVI module to generate a reset when VDD falls below a voltage,  
VTRIPF or VDTRIPF. Setting the LVI enable in stop mode bit (LVISTOP) enables the LVI to operate in stop  
mode. Setting the LVD or LVR trip point bit (LVDLVR) selects the LVD trip point voltage. The actual trip  
thresholds are specified in 16.5 DC Electrical Characteristics. Either trip level can be used as a detect or  
reset.  
NOTE  
After a power-on reset, the LVI’s default mode of operation is LVR trip  
voltage. If a higher trip voltage is desired, the user must set the LVDLVR bit  
to raise the trip point to the LVD voltage.  
If the user requires the higher trip voltage and sets the LVDLVR bit after  
power-on reset while the VDD supply is not above the VTRIPR for LVD  
mode, the microcontroller unit (MCU) will immediately go into reset. The  
next time the LVI releases the reset, the supply will be above the VTRIPR for  
LVD mode.  
Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which  
causes the MCU to exit reset. See Chapter 13 System Integration Module (SIM) for the reset recovery  
sequence.  
The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and  
can be used for polling LVI operation when the LVI reset is disabled.  
10.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling  
the LVIOUT bit. In the configuration register, the LVIPWRD bit must be cleared to enable the LVI module,  
and the LVIRSTD bit must be set to disable LVI resets.  
10.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI  
module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the  
LVIPWRD and LVIRSTD bits must be cleared to enable the LVI module and to enable LVI resets.  
10.3.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until  
VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is  
continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than  
VTRIPF by the hysteresis voltage, VHYS  
.
10.3.4 LVI Trip Selection  
The LVDLVR bit in the configuration register selects whether the LVI is configured for LVD (low voltage  
detect) or LVR (low voltage reset) protection. The LVD trip voltage can be used as a low voltage warning.  
The LVR trip voltage will commonly be configured as a reset condition since it is very close to the minimum  
operating voltage of the device. The LVDLVR bit can be written to anytime so that battery applications  
can make use of the LVI as both a warning indicator and to generate a system reset.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
86  
Freescale Semiconductor  
LVI Status Register  
Polling and forced reset operation modes can be combined to take full advantage of LVD and LVR trip  
voltages selection. LVD (LVDLVR = 1) in polling mode (LVIRSTD = 1) can be used as a low voltage  
warning in a slowly and continuously falling VDD application (for example, battery applications). Once LVD  
has been identified, the part can be set to LVR (LVDLVR = 0) and reset enabled (LVIRSTD = 0). So, as  
VDD continues to fall the part will reset when LVR trip voltage is reached. Unlike other bits in CONFIG  
registers, LVIRSTD and LVDLVR bits are allowed to be written multiple times after reset.  
NOTE  
The microcontroller is guaranteed to operate at a minimum supply voltage.  
The trip point (VTRIPF [LVD] or VTRIPF [LVR]) may be lower than this. See  
16.5 DC Electrical Characteristics for the actual trip point voltages.  
10.4 LVI Status Register  
The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level while  
LVI resets have been disabled.  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 10-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage and is cleared  
when VDD voltage rises above VTRIPR. The difference in these threshold levels results in a hysteresis  
that prevents oscillation into and out of reset (see Table 10-1). Reset clears the LVIOUT bit.  
Table 10-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
10.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
87  
Low-Voltage Inhibit (LVI)  
10.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
10.6.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
10.6.2 Stop Mode  
When the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration  
register is set, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module  
can generate a reset and bring the MCU out of stop mode.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
88  
Freescale Semiconductor  
Chapter 11  
Oscillator Module (OSC)  
11.1 Introduction  
The oscillator module is used to provide a stable clock source for the microcontroller system and bus. The  
oscillator module generates two output clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is  
used by the system integration module (SIM) and the computer operating properly module (COP). The  
BUSCLKX2 clock is divided by two in the SIM to be used as the bus clock for the microcontroller.  
Therefore the bus frequency will be one forth of the BUSCLKX4 frequency.  
11.2 Features  
The oscillator has these four clock source options available:  
1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to 5%. This is the  
default option out of reset.  
2. External oscillator: An external clock that can be driven directly into OSC1.  
3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only.  
The capacitor is internal to the chip.  
4. External crystal: A built-in oscillator module (XTAL oscillator) that requires an external crystal or  
ceramic-resonator.  
11.3 Functional Description  
The oscillator contains these major subsystems:  
Internal oscillator circuit  
Internal or external clock switch control  
External clock circuit  
External crystal circuit  
External RC clock circuit  
11.3.1 Internal Oscillator  
The internal oscillator circuit is designed for use with no external components to provide a clock source  
with tolerance less than 25% untrimmed. An 8-bit trimming register allows adjustment to a tolerance of  
less than 5%.  
The internal oscillator will generate a clock of 4.0 MHz typical (INTCLK) resulting in a bus speed (internal  
clock ÷ 4) of 1.0 MHz.  
Figure 11-3 shows how BUSCLKX4 is derived from INTCLK and, like the RC oscillator, OSC2 can output  
BUSCLKX4 by setting OSC2EN in PTAPUE register. See Chapter 12 Input/Output Ports (PORTS).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
89  
Oscillator Module (OSC)  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 (see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 11-1. Block Diagram Highlighting OSC Block and Pins  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
90  
Freescale Semiconductor  
Functional Description  
11.3.1.1 Internal Oscillator Trimming  
The 8-bit trimming register, OSCTRIM, allows a clock period adjust of +127 and –128 steps. Increasing  
OSCTRIM value increases the clock period. Trimming allows the internal clock frequency to be set to  
4.0 MHz 5%.  
All devices are programmed with a trim value in a reserved FLASH location, $FFC0. This value can be  
copied from the FLASH to the OSCTRIM register ($0038) during reset initialization.  
Reset loads OSCTRIM with a default value of $80.  
WARNING  
Bulk FLASH erasure will set location $FFC0 to $FF and the factory  
programmed value will be lost.  
11.3.1.2 Internal to External Clock Switching  
When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following  
steps:  
1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help precharge an external crystal  
oscillator, set PTA4 (OSC2) as an output and drive high for several cycles. This may help the  
crystal circuit start more robustly.  
2. Set CONFIG2 bits OSCOPT[1:0] according to . The oscillator module control logic will then set  
OSC1 as an external clock input and, if the external crystal option is selected, OSC2 will also be  
set as the clock output.  
3. Create a software delay to wait the stabilization time needed for the selected clock source (crystal,  
resonator, RC) as recommended by the component manufacturer. A good rule of thumb for crystal  
oscillators is to wait 4096 cycles of the crystal frequency, i.e., for a 4-MHz crystal, wait  
approximately 1 msec.  
4. After the manufacturer’s recommended delay has elapsed, the ECGON bit in the OSC status  
register (OSCSTAT) needs to be set by the user software.  
5. After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external  
clock rising edges.  
6. The OSC module then switches to the external clock. Logic provides a glitch free transition.  
7. The OSC module first sets the ECGST bit in the OSCSTAT register and then stops the internal  
oscillator.  
NOTE  
Once transition to the external clock is done, the internal oscillator will only  
be reactivated with reset. No post-switch clock monitor feature is  
implemented (clock does not switch back to internal if external clock dies).  
11.3.2 External Oscillator  
The external clock option is designed for use when a clock signal is available in the application to provide  
a clock source to the microcontroller. The OSC1 pin is enabled as an input by the oscillator module. The  
clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.  
In this configuration, the OSC2 pin cannot output BUSCLKX4. So the OSC2EN bit in the port A pullup  
enable register will be clear to enable PTA4 I/O functions on the pin.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
91  
Oscillator Module (OSC)  
11.3.3 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external low-frequency crystal or ceramic resonator  
to provide an accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal  
circuit. The OSC2EN bit in the port A pullup enable register has no effect when this clock mode is  
selected.  
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 11-2. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS  
FROM SIM  
TO SIM  
BUSCLKX4  
XTALCLK  
TO SIM  
BUSCLKX2  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
RS  
RB  
X1  
C1  
C2  
Figure 11-2. XTAL Oscillator External Connections  
11.3.4 RC Oscillator  
The RC oscillator circuit is designed for use with an external resistor (REXT) to provide a clock source with  
a tolerance within 25% of the expected frequency. See Figure 11-3.  
The capacitor (C) for the RC oscillator is internal to the MCU. The REXT value must have a tolerance of  
1% or less to minimize its effect on the frequency.  
In this configuration, the OSC2 pin can be left in the reset state as PTA4. Or, the OSC2EN bit in the port  
A pullup enable register can be set to enable the OSC2 output function on the pin. Enabling the OSC2  
output slightly increases the external RC oscillator frequency, fRCCLK  
.
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
92  
Freescale Semiconductor  
Oscillator Module Signals  
OSCRCOPT  
TO SIM  
FROM SIM  
TO SIM  
INTCLK  
RCCLK  
0
1
BUSCLKX4  
BUSCLKX2  
SIMOSCEN  
EXTERNAL RC  
OSCILLATOR  
EN  
÷ 2  
1
0
PTA4  
I/O  
PTA4  
OSC2EN  
MCU  
OSC1  
PTA4/BUSCLKX4 (OSC2)  
VDD  
See Chapter 16 Electrical Specifications  
for component value requirements.  
REXT  
Figure 11-3. RC Oscillator External Connections  
11.4 Oscillator Module Signals  
The following paragraphs describe the signals that are inputs to and outputs from the oscillator module.  
11.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is either an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or  
an external clock source.  
For the internal oscillator configuration, the OSC1 pin can assume other functions according to Table 1-3.  
Function Priority in Shared Pins.  
11.4.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4)  
For the XTAL oscillator device, the OSC2 pin is the crystal oscillator inverting amplifier output.  
For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O function. The OSC2EN bit has  
no effect.  
For the internal oscillator or RC oscillator options, the OSC2 pin can assume other functions according to  
Table 1-3. Function Priority in Shared Pins, or the output of the oscillator clock (BUSCLKX4).  
Table 11-1. OSC2 Pin Function  
Option  
OSC2 Pin Function  
Inverting OSC1  
PTA4 I/O  
XTAL oscillator  
External clock  
Internal oscillator  
or  
Controlled by OSC2EN bit in PTAPUE register  
OSC2EN = 0: PTA4 I/O  
RC oscillator  
OSC2EN = 1: BUSCLKX4 output  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
93  
Oscillator Module (OSC)  
11.4.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables either the  
XTAL oscillator circuit, the RC oscillator, or the internal oscillator.  
11.4.4 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes  
directly from the crystal oscillator circuit. Figure 11-2 shows only the logical relation of XTALCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may  
depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be  
unstable at start up.  
11.4.5 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of  
external R and internal C. Figure 11-3 shows only the logical relation of RCCLK to OSC1 and may not  
represent the actual circuitry.  
11.4.6 Internal Oscillator Clock (INTCLK)  
INTCLK is the internal oscillator output signal. Its nominal frequency is fixed to 4.0 MHz, but it can be also  
trimmed using the oscillator trimming feature of the OSCTRIM register (see 11.3.1.1 Internal Oscillator  
Trimming).  
11.4.7 Oscillator Out 2 (BUSCLKX4)  
BUSCLKX4 is the same as the input clock (XTALCLK, RCCLK, or INTCLK). This signal is driven to the  
SIM module and is used to determine the COP cycles.  
11.4.8 Oscillator Out (BUSCLKX2)  
The frequency of this signal is equal to half of the BUSCLKX4, this signal is driven to the SIM for  
generation of the bus clocks used by the CPU and other modules on the MCU. BUSCLKX2 will be divided  
again in the SIM and results in the internal bus frequency being one fourth of either the XTALCLK,  
RCCLK, or INTCLK frequency.  
11.5 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
11.5.1 Wait Mode  
The WAIT instruction has no effect on the oscillator logic. BUSCLKX2 and BUSCLKX4 continue to drive  
to the SIM module.  
11.5.2 Stop Mode  
The STOP instruction disables either the XTALCLK, the RCCLK, or INTCLK output, hence BUSCLKX2  
and BUSCLKX4.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
94  
Freescale Semiconductor  
Oscillator During Break Mode  
11.6 Oscillator During Break Mode  
The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the device enters the break state.  
11.7 CONFIG2 Options  
Two CONFIG2 register options affect the operation of the oscillator module: OSCOPT1 and OSCOPT0.  
All CONFIG2 register bits will have a default configuration. Refer to Chapter 5 Configuration Register  
(CONFIG) for more information on how the CONFIG2 register is used.  
Table 11-2 shows how the OSCOPT bits are used to select the oscillator clock source.  
Table 11-2. Oscillator Modes  
OSCOPT1  
OSCOPT0  
Oscillator Modes  
Internal Oscillator  
0
0
1
1
0
1
0
1
External Oscillator  
External RC  
External Crystal  
11.8 Input/Output (I/O) Registers  
The oscillator module contains these two registers:  
1. Oscillator status register (OSCSTAT)  
2. Oscillator trim register (OSCTRIM)  
11.8.1 Oscillator Status Register  
The oscillator status register (OSCSTAT) contains the bits for switching from internal to external clock  
sources.  
$0036  
Address:  
Bit 7  
6
5
R
0
4
R
0
3
2
R
0
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ECGST  
R
R
R
0
0
0
0
= Reserved  
= Unimplemented  
R
Figure 11-4. Oscillator Status Register (OSCSTAT)  
ECGON — External Clock Generator On Bit  
This read/write bit enables external clock generator, so that the switching process can be initiated. This  
bit is forced low during reset. This bit is ignored in monitor mode with the internal oscillator bypassed.  
1 = External clock generator enabled  
0 = External clock generator disabled  
ECGST — External Clock Status Bit  
This read-only bit indicates whether or not an external clock source is engaged to drive the system  
clock.  
1 = An external clock source engaged  
0 = An external clock source disengaged  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
95  
Oscillator Module (OSC)  
11.8.2 Oscillator Trim Register (OSCTRIM)  
$0038  
Address:  
Bit 7  
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
TRIM7  
1
Figure 11-5. Oscillator Trim Register (OSCTRIM)  
TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits  
These read/write bits change the size of the internal capacitor used by the internal oscillator. By  
measuring the period of the internal clock and adjusting this factor accordingly, the frequency of the  
internal clock can be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the  
period by approximately 0.2% of the untrimmed period (the period for TRIM = $80). The trimmed  
frequency is guaranteed not to vary by more than 5% over the full specified range of temperature and  
voltage. The reset value is $80, which sets the frequency to 4.0 MHz (1.0 MHz bus speed) 25%.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
96  
Freescale Semiconductor  
Chapter 12  
Input/Output Ports (PORTS)  
12.1 Introduction  
The MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 have five bidirectional input-output  
(I/O) pins and one input only pin. The MC68HLC908QY1, MC68HLC908QY2, and MC68HLC908QY4  
have thirteen bidirectional pins and one input only pin. All I/O pins are programmable as inputs or outputs.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
8-pin devices have non-bonded pins. These pins should be configured  
either as outputs driving low or high, or as inputs with internal pullups  
enabled. Configuring these non-bonded pins in this manner will prevent any  
excess current consumption caused by floating inputs.  
12.2 Port A  
Port A is a 6-bit special function port that shares all six of its pins with the keyboard interrupt (KBI) module  
(see Chapter 9 Keyboard Interrupt Module (KBI)). Each port A pin also has a software configurable pullup  
device if the corresponding port pin is configured as an input port.  
NOTE  
PTA2 is input only.  
When the IRQ function is enabled in the configuration register 2  
(CONFIG2), bit 2 of the port A data register (PTA) will always read a 0. In  
this case, the BIH and BIL instructions can be used to read the logic level  
on the PTA2 pin. When the IRQ function is disabled, these instructions will  
behave as if the PTA2 pin is a logic 1. However, reading bit 2 of PTA will  
read the actual logic level on the pin.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
97  
Input/Output Ports (PORTS)  
12.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the six port A pins.  
$0000  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
AWUL  
PTA2  
R
R
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
KBI4 KBI3  
Additional Functions:  
KBI5  
KBI2  
KBI1  
KBI0  
= Reserved  
= Unimplemented  
Figure 12-1. Port A Data Register (PTA)  
PTA[5:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
AWUL — Auto Wakeup Latch Data Bit  
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup  
request signal is generated internally (see Chapter 4 Auto Wakeup Module (AWU)). There is no PTA6  
port nor any of the associated bits such as PTA6 data register, pullup enable or direction.  
KBI[5:0] — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE5–KBIE0, in the keyboard interrupt control enable register  
(KBIER) enable the port A pins as external interrupt pins (see Chapter 9 Keyboard Interrupt Module  
(KBI)).  
12.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1  
to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
$0004  
Address:  
Bit 7  
6
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
R
R
0
0
0
= Reserved  
= Unimplemented  
R
Figure 12-2. Data Direction Register A (DDRA)  
DDRA[5:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
98  
Freescale Semiconductor  
Port A  
Figure 12-3 shows the port A I/O logic.  
READ DDRA ($0004)  
PTAPUEx  
WRITE DDRA ($0004)  
RESET  
DDRAx  
PTAx  
30 k  
WRITE PTA ($0000)  
PTAx  
READ PTA ($0000)  
TO KEYBOARD INTERRUPT CIRCUIT  
Figure 12-3. Port A I/O Circuit  
NOTE  
Figure 12-3 does not apply to PTA2  
When DDRAx is a 1, reading address $0000 reads the PTAx data latch. When DDRAx is a 0, reading  
address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit.  
12.2.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each  
if the six port A pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRAx bit is configured as output.  
$000B  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-4. Port A Input Pullup Enable Register (PTAPUE)  
OSC2EN — Enable PTA4 on OSC2 Pin  
This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is  
selected. This bit has no effect for the XTAL or external oscillator options.  
1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)  
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
99  
Input/Output Ports (PORTS)  
PTAPUE[5:0] — Port A Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port A pins.  
1 = Corresponding port A pin configured to have internal pull if its DDRA bit is set to 0  
0 = Pullup device is disconnected on the corresponding port A pin regardless of the state of its  
DDRA bit  
Table 12-1 summarizes the operation of the port A pins.  
Table 12-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTA5–PTA0(3)  
PTA5–PTA0(3)  
PTA5–PTA0(5)  
1
0
X
0
0
1
DDRA5–DDRA0  
DDRA5–DDRA0  
DDRA5–DDRA0  
Pin  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
X
PTA5–PTA0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
5. Output does not apply to PTA2  
12.3 Port B  
Port B is an 8-bit general purpose I/O port. Port B is only available on the MC68HLC908QY1,  
MC68HLC908QY2, and MC68HLC908QY4.  
12.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight port B pins.  
$0001  
Address:  
Bit 7  
PTB7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 12-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
100  
Freescale Semiconductor  
Port B  
12.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1  
to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
$0005  
Address:  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-6. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 12-7 shows the  
port B I/O logic.  
READ DDRB ($0005)  
PTBPUEx  
WRITE DDRB ($0005)  
DDRBx  
RESET  
30 k  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 12-7. Port B I/O Circuit  
When DDRBx is a 1, reading address $0001 reads the PTBx data latch. When DDRBx is a 0, reading  
address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit. Table 12-2 summarizes the operation of the port B pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
Write  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Pin  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
101  
Input/Output Ports (PORTS)  
12.3.3 Port B Input Pullup Enable Register  
The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each  
of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRBx bit is configured as output.  
$000C  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0  
0
0
0
0
0
0
0
0
Figure 12-8. Port B Input Pullup Enable Register (PTBPUE)  
PTBPUE[7:0] — Port B Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port B pins  
1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0  
0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its  
DDRB bit.  
Table 12-3 summarizes the operation of the port B pins.  
Table 12-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
PTBPUE  
Bit  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTB7–PTB0(3)  
1
0
DDRB7–DDRB0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
X
X
PTB7–PTB0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
102  
Freescale Semiconductor  
Chapter 13  
System Integration Module (SIM)  
13.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit  
(MCU) activities. A block diagram of the SIM is shown in Figure 13-1. The SIM is a system state controller  
that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
13.2 RST and IRQ Pins Initialization  
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ functions can be  
activated by programing CONFIG2 accordingly. Refer to Chapter 5 Configuration Register (CONFIG).  
Table 13-1. Signal Name Conventions  
Signal Name  
Description  
BUSCLKX4  
Buffered clock from the internal, RC or XTAL oscillator circuit.  
The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM to  
generate the internal bus clocks (bus clock = BUSCLKX4 ÷ 4).  
BUSCLKX2  
Address bus  
Data bus  
PORRST  
IRST  
Internal address bus  
Internal data bus  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
103  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
BUSCLKX4 (FROM OSCILLATOR)  
BUSCLKX2 (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
LVI RESET (FROM LVI MODULE)  
SIM RESET STATUS REGISTER  
FORCED MON MODE ENTRY (FROM MENRST MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 13-1. SIM Block Diagram  
13.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 13-2.  
BUSCLKX4  
BUSCLKX2  
FROM  
OSCILLATOR  
SIM COUNTER  
FROM  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 13-2. SIM Clock Signals  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
104  
Freescale Semiconductor  
Reset and System Initialization  
13.3.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four.  
13.3.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The  
IBUS clocks start upon completion of the time out.  
13.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows BUSCLKX4 to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is  
selectable as 4096 or 32 BUSCLKX4 cycles. See 13.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
13.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 13.5 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 13.8 SIM Registers.  
13.4.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at  
least the minimum tRL time. Figure 13-3 shows the relative timing. The RST pin function is only available  
if the RSTEN bit is set in the CONFIG2 register.  
BUSCLKX2  
RST  
VECT H VECT L  
ADDRESS BUS  
PC  
Figure 13-3. External Reset Timing  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
105  
System Integration Module (SIM)  
13.4.2 Active Resets from Internal Sources  
The RST pin is initially setup as a general-purpose input after a POR. Setting the RSTEN bit in the  
CONFIG2 register enables the pin for the reset function. This section assumes the RSTEN bit is set when  
describing activity on the RST pin.  
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles  
(see Figure 13-4). An internal reset can be caused by an illegal address, illegal opcode, COP time out,  
LVI, or POR (see Figure 13-5).  
NOTE  
For POR and LVI resets, the SIM cycles through 4096 BUSCLKX4 cycles  
during which the SIM forces the RST pin low. The internal reset signal then  
follows the sequence from the falling edge of RST shown in Figure 13-4.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
IRST  
RSTPULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
BUSCLKX4  
ADDRESS  
BUS  
VECTOR HIGH  
Figure 13-4. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 13-5. Sources of Internal Reset  
Table 13-2. Reset Recovery Timing  
Reset Recovery Type  
POR/LVI  
All others  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
106  
Freescale Semiconductor  
Reset and System Initialization  
13.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power on has occurred. The SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
At power on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive BUSCLKX4.  
Internal clocks to the CPU and modules are held inactive for 4096 BUSCLKX4 cycles to allow  
stabilization of the oscillator.  
The POR bit of the SIM reset status register (SRSR) is set.  
See Figure 13-6.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
BUSCLKX4  
BUSCLKX2  
RST  
(RST PIN IS A GENERAL-PURPOSE INPUT AFTER A POR)  
ADDRESS BUS  
$FFFE  
$FFFF  
Figure 13-6. POR Recovery  
13.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module time out, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least  
every 4080 BUSCLKX4 cycles, drives the COP counter. The COP should be serviced as soon as possible  
out of reset to guarantee the maximum amount of time before the first time out.  
The COP module is disabled during a break interrupt with monitor mode when BDCOP bit is set in break  
auxiliary register (BRKAR).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
107  
System Integration Module (SIM)  
13.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is 0, the SIM treats the STOP instruction as an  
illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
13.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources. See Figure 2-1. Memory Map for memory ranges.  
13.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The LVI asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTRIPF. The LVI  
bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the  
SIM counter counts out 4096 BUSCLKX4 cycles after VDD rises above VTRIPR. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
The SIM actively pulls down the (RST) pin for all internal reset sources.  
13.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for  
counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of BUSCLKX4.  
13.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock  
state machine.  
13.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a 1, then the stop recovery is reduced from the  
normal delay of 4096 BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications  
using canned oscillators that do not require long start-up times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC cleared in the configuration  
register 1 (CONFIG1).  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
108  
Freescale Semiconductor  
Exception Control  
13.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter (see 13.7.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. See 13.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.  
13.6 Exception Control  
Normal sequential program execution can be changed in three different ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
13.6.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event.  
Figure 13-7 flow charts the handling of system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 13-8 shows  
interrupt entry timing. Figure 13-9 shows interrupt recovery timing.  
13.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 13-10 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
109  
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
(AS MANY INTERRUPTS AS EXIST ON CHIP)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 13-7. Interrupt Processing  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
110  
Freescale Semiconductor  
Exception Control  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 13-8. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND  
Figure 13-9. Interrupt Recovery  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 13-10. Interrupt Recognition Example  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
111  
System Integration Module (SIM)  
The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
13.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
13.6.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 13-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 13-3. Interrupt Sources  
INT  
Register  
Flag  
Vector  
Address  
Mask(1)  
Priority  
Source  
Flag  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFE0–$FFE1  
$FFDE–$FFDF  
Highest  
SWI instruction  
IRQ pin  
IRQF  
CH0F  
CH1F  
TOF  
IMASK  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF14  
IF15  
Timer channel 0 interrupt  
Timer channel 1 interrupt  
Timer overflow interrupt  
Keyboard interrupt  
KEYF IMASKK  
COCO AIEN  
Lowest  
ADC conversion complete interrupt  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI  
instruction.  
13.6.2.1 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
IF5  
R
0
R
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 13-11. Interrupt Status Register 1 (INT1)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
112  
Freescale Semiconductor  
Exception Control  
IF1 and IF3–IF5 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3, and 7 — Always read 0  
13.6.2.2 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
IF14  
R
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 13-12. Interrupt Status Register 2 (INT2)  
IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources shown in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0–6 — Always read 0  
13.6.2.3 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 13-13. Interrupt Status Register 3 (INT3)  
IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1–7 — Always read 0  
13.6.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
13.6.4 Break Interrupts  
The break module can stop normal program flow at a software programmable break point by asserting its  
break interrupt output. (See Chapter 15 Development Support.) The SIM puts the CPU into the break  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
113  
System Integration Module (SIM)  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
13.6.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
13.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
13.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 13-14 shows  
the timing for wait mode entry.  
ADDRESS BUS  
DATA BUS  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 13-14. Wait Mode Entry Timing  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset (or break in emulation mode). A break interrupt during wait mode  
sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD,  
in the configuration register is 0, then the computer operating properly module (COP) is enabled and  
remains active in wait mode.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
114  
Freescale Semiconductor  
Low-Power Modes  
Figure 13-15 and Figure 13-16 show the timing for wait recovery.  
ADDRESS BUS  
DATA BUS  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt  
Figure 13-15. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
ADDRESS BUS  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
DATA BUS $A6  
$A6  
RST(1)  
BUSCLKX4  
1. RST is only available if the RSTEN bit in the CONFIG1 register is set.  
Figure 13-16. Wait Recovery from Internal Reset  
13.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU  
and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles  
down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do  
not require long start-up times from stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
115  
System Integration Module (SIM)  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 13-17 shows stop mode entry timing and  
Figure 13-18 shows the stop mode recovery time from interrupt or break  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
ADDRESS BUS  
DATA BUS  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 13-17. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
BUSCLKX4  
INTERRUPT  
ADDRESS BUS  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 13-18. Stop Mode Recovery from Interrupt  
13.8 SIM Registers  
The SIM has three memory mapped registers. Table 13-4 shows the mapping of these registers.  
Table 13-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
SRSR  
BFCR  
User  
User  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
116  
Freescale Semiconductor  
SIM Registers  
13.8.1 SIM Reset Status Register  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.  
$FE01  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-19. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (illegal attempt to fetch an opcode from an unimplemented  
address)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ VTST  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
117  
System Integration Module (SIM)  
13.8.2 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 13-20. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
118  
Freescale Semiconductor  
Chapter 14  
Timer Interface Module (TIM)  
14.1 Introduction  
This section describes the timer interface module (TIM). The TIM is a two-channel timer that provides a  
timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 14-2  
is a block diagram of the TIM.  
14.2 Features  
Features of the TIM include the following:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal generation  
Programmable TIM clock input  
7-frequency internal bus clock prescaler selection  
External TIM clock input  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
14.3 Pin Name Conventions  
The TIM shares two input/output (I/O) pins with two port A I/O pins. The full names of the TIM I/O pins are  
listed in Table 14-1. The generic pin name appear in the text that follows.  
Table 14-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
TCLK  
PTA0/TCH0  
PTA1/TCH1  
PTA2/TCLK  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
119  
Timer Interface Module (TIM)  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 (see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 14-1. Block Diagram Highlighting TIM Block and Pins  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
120  
Freescale Semiconductor  
Functional Description  
14.4 Functional Description  
Figure 14-2 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter  
that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value  
at any time without affecting the counting sequence.  
The two TIM channels are programmable independently as input capture or output compare channels.  
PTA2/IRQ/KBI2/TCLK  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
PS2  
PS1  
PS0  
TRST  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 14-2. TIM Block Diagram  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
121  
Timer Interface Module (TIM)  
14.4.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs or the TIM clock pin, TCLK. The prescaler  
generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM  
status and control register (TSC) select the TIM clock source.  
14.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter  
into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can generate TIM central processor unit (CPU) interrupt requests.  
14.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU  
interrupt requests.  
14.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 14.4.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
14.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
122  
Freescale Semiconductor  
Functional Description  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
14.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 14-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the state of the PWM pulse is logic 1 (ELSxA = 0). Program  
the TIM to set the pin if the state of the PWM pulse is logic 0 (ELSxA = 1).  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is 000. See 14.9.1 TIM Status and Control Register.  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of  
an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
POLARITY = 1  
(ELSxA = 0)  
TCHx  
TCHx  
PULSE  
WIDTH  
POLARITY = 0  
(ELSxA = 1)  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 14-3. PWM Period and Pulse Width  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
123  
Timer Interface Module (TIM)  
14.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 14.4.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
14.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
124  
Freescale Semiconductor  
Interrupts  
14.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. See Table 14-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (polarity 1 — to clear output on compare) or 1:1 (polarity 0 — to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must  
force the output to the complement of the pulse width level. See Table 14-3.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel  
0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0  
(TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 14.9.4 TIM Channel Status and Control Registers.  
14.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control  
register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE =1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
125  
Timer Interface Module (TIM)  
14.6 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby mode.  
The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait  
mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
14.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See 13.8.2 Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
14.8 Input/Output Signals  
Port A shares three of its pins with the TIM. Two TIM channel I/O pins are PTA0/TCH0 and PTA1/TCH1  
and an alternate clock source is PTA2/TCLK.  
14.8.1 TIM Clock Pin (PTA2/TCLK)  
PTA2/TCLK is an external clock input that can be the clock source for the TIM counter instead of the  
prescaled internal bus clock. Select the PTA2/TCLK input by writing 1s to the three prescaler select bits,  
PS[2–0]. (See 14.9.1 TIM Status and Control Register.) When the PTA2/TCLK pin is the TIM clock input,  
it is an input regardless of port pin initialization.  
14.8.2 TIM Channel I/O Pins (PTA0/TCH0 and PTA1/TCH1)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
PTA0/TCH0 can be configured as a buffered output compare or buffered PWM pin.  
14.9 Input/Output Registers  
The following I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
126  
Freescale Semiconductor  
Input/Output Registers  
14.9.1 TIM Status and Control Register  
The TIM status and control register (TSC) does the following:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: $0020  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 14-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM  
counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set  
and then writing a 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete,  
then writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode. When the TSTOP bit is set and the timer is configured for  
input capture operation, input captures are inhibited until the TSTOP bit is  
cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
127  
Timer Interface Module (TIM)  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on  
any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as a 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at  
a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select either the PTA2/TCLK pin or one of the seven prescaler outputs as the  
input to the TIM counter as Table 14-2 shows. Reset clears the PS[2:0] bits.  
Table 14-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTA2/TCLK  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
14.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
128  
Freescale Semiconductor  
Input/Output Registers  
Address: $0021  
Bit 7  
TCNTH  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
$0022  
TCNTL  
6
Address:  
Bit 7  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-5. TIM Counter Registers (TCNTH:TCNTL)  
14.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow  
interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Address: $0023  
Bit 7  
TMODH  
6
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Bit 15  
1
Bit 14  
1
Address: $0024  
Bit 7  
TMODL  
6
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Bit 7  
1
Bit 6  
1
Figure 14-6. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE  
Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
129  
Timer Interface Module (TIM)  
14.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: $0025  
Bit 7  
TSC0  
6
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
CH0IE  
0
0
0
$0028  
TSC1  
Address:  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 14-7. TIM Channel Status and Control  
Registers (TSC0:TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIM counter registers matches the value in the TIM channel x registers.  
Clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a  
0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing  
a 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing  
of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE  
bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM  
channel 0 status and control register.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
130  
Freescale Semiconductor  
Input/Output Registers  
Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose  
I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation.  
See Table 14-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin (see Table 14-3).  
Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
Table 14-3. Mode, Edge, and Level Selection  
MSxB  
MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
131  
Timer Interface Module (TIM)  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is  
available as a general-purpose I/O pin. Table 14-3 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
NOTE  
After initially enabling a TIM channel register for input capture operation  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
edge detection flags.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE  
When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is a 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered  
PWM signals to 100%. As Figure 14-8 shows, the CHxMAX bit takes effect in the cycle after it is set  
or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 14-8. CHxMAX Latency  
14.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIM channel registers after reset  
is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
132  
Freescale Semiconductor  
Input/Output Registers  
Address: $0026  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
$0027  
TCH0L  
6
Address:  
Bit 7  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
$0029  
TCH1H  
6
Address:  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
$02A  
TCH1L  
6
Address:  
Bit 7  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 14-9. TIM Channel Registers (TCH0H/L:TCH1H/L)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
133  
Timer Interface Module (TIM)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
134  
Freescale Semiconductor  
Chapter 15  
Development Support  
15.1 Introduction  
This section describes the break module, the monitor read-only memory (MON), and the monitor mode  
entry methods.  
15.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
15.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 15-2 shows the structure of the break module.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
135  
Development Support  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
BREAK  
MODULE  
POWER-ON RESET  
MODULE  
MC68HLC908QY4 AND MC68HLC908QT4  
4096 BYTES  
KEYBOARD INTERRUPT  
MODULE  
8-BIT ADC  
MC68HLC908QY2, MC68HLC908QY1,  
MC68HLC908QT2, AND MC68HLC908QT1:  
1536 BYTES  
16-BIT TIMER  
MODULE  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
VDD  
VSS  
POWER SUPPLY  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4 (see note in  
12.1 Introduction)  
ADC: Not available on the MC68HLC908QY1 and MC68HC9L08QT1  
Figure 15-1. Block Diagram Highlighting BRK and MON Blocks  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT (TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 15-2. Break Module Block Diagram  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
136  
Freescale Semiconductor  
Break Module (BRK)  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is executed  
before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode. When software does not  
change the break address and clears the BRKA bit in the first break interrupt routine, the next break  
interrupt will not be generated after exiting the interrupt routine even when the internal address bus  
matches the value written in the break address registers.  
15.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See 13.8.2 Break Flag Control Register and the Break Interrupts subsection  
for each module.  
15.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
15.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
15.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
137  
Development Support  
15.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
$FE0B  
Bit 7  
Address:  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to  
bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
15.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
$FE09  
Address:  
Bit 7  
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 15-4. Break Address Register High (BRKH)  
$FE0A  
Address:  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 15-5. Break Address Register Low (BRKL)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
138  
Freescale Semiconductor  
Break Module (BRK)  
15.2.2.3 Break Auxiliary Register  
The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the  
MCU is in a state of break interrupt with monitor mode.  
$FE02  
Address:  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
BDCOP  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-6. Break Auxiliary Register (BRKAR)  
BDCOP — Break Disable COP Bit  
This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit.  
1 = COP disabled during break interrupt  
0 = COP enabled during break interrupt.  
15.2.2.4 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode.  
This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 15-7. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
15.2.2.5 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 15-8. Break Flag Control Register (BFCR)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
139  
Development Support  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
15.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes. If enabled,  
the break module will remain enabled in wait and stop modes. However, since the internal address bus  
does not increment in these modes, a break interrupt will never be triggered.  
15.3 Monitor Module (MON)  
This subsection describes the monitor module (MON) and the monitor mode entry methods. The monitor  
allows debugging and programming of the microcontroller unit (MCU) through a single-wire interface with  
a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as  
long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for  
in-circuit programming.  
Features include:  
Normal user-mode pin functionality on most pins  
One pin dedicated to serial communication between MCU and host computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Use of external 9.8304 MHz oscillator to generate internal frequency of 2.4576 MHz  
Simple internal oscillator mode of operation (no external clock or high voltage)  
Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain  
$FF)  
Standard monitor mode entry if high voltage is applied to IRQ  
15.3.1 Functional Description  
Figure 15-9 shows a simplified diagram of monitor mode entry.  
The monitor module receives and executes commands from a host computer. Figure 15-10, Figure 15-11,  
and Figure 15-12 show example circuits used to enter monitor mode and communicate with a host  
computer via a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
140  
Freescale Semiconductor  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
FROM Table 15-1  
PTA0 = 1,  
PTA1 = 1, AND  
PTA4 = 0?  
PTA0 = 1,  
RESET VECTOR  
BLANK?  
NO  
NO  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 15-9. Simplified Monitor Mode Entry Flowchart  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
141  
Development Support  
VDD  
VDD  
10 k*  
VDD  
RST (PTA3)  
0.1 µF  
9.8304 MHz CLOCK  
VTST  
MAX232  
VDD  
OSC1 (PTA5)  
1
16  
15  
2
C1+  
+
+
+
VDD  
1 µF  
1 µF  
3
4
C1–  
C2+  
1 µF  
+
1 kΩ  
10 k*  
10 k*  
PTA1  
V+  
V–  
IRQ (PTA2)  
VDD  
1 µF  
6
5
9.1 V  
C2–  
1 µF  
10 kΩ  
+
PTA4  
74HC125  
6
DB9  
5
10  
9
2
7
8
PTA0  
74HC125  
3
2
4
3
5
VSS  
1
* Value not critical  
Figure 15-10. Monitor Mode Circuit (External Clock, with High Voltage)  
VDD  
N.C.  
RST (PTA3)  
VDD  
0.1 µF  
MAX232  
VDD  
1
16  
15  
2
9.8304 MHz CLOCK  
C1+  
OSC1 (PTA5)  
+
+
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
+
PTA1  
N.C.  
N.C.  
10 k*  
V+  
V–  
VDD  
+
IRQ (PTA2)  
1 µF  
6
PTA4  
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
74HC125  
3
4
3
5
2
VSS  
1
* Value not critical  
Figure 15-11. Monitor Mode Circuit (External Clock, No High Voltage)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
142  
Freescale Semiconductor  
Monitor Module (MON)  
VDD  
N.C.  
N.C.  
RST (PTA3)  
VDD  
0.1 µF  
MAX232  
VDD  
OSC1 (PTA5)  
IRQ (PTA2)  
1
16  
15  
2
C1+  
+
+
+
1 µF  
1 µF  
PTA1  
PTA4  
N.C.  
N.C.  
3
4
1 µF  
C1–  
C2+  
+
10 k*  
VDD  
V+  
V–  
1 µF  
6
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSS  
74HC125  
3
2
4
3
5
1
* Value not critical  
Figure 15-12. Monitor Mode Circuit (Internal Clock, No High Voltage)  
The monitor code has been updated from previous versions of the monitor code to allow enabling the  
internal oscillator to generate the internal clock. This addition, which is enabled when IRQ is held low out  
of reset, is intended to support serial communication/programming at 4800 baud in monitor mode by using  
the internal oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if  
programmed) to generate the desired internal frequency (1.0 MHz). Since this feature is enabled only  
when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value  
is not $FFFF) because entry into monitor mode in this case requires VTST on IRQ. The IRQ pin must  
remain low during this monitor session in order to maintain communication.  
Table 15-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one  
of the following sets of conditions is met:  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 9.8304 MHz  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = VDD (this can be implemented through the internal IRQ pullup)  
If $FFFE and $FFFF contain $FF (erased state):  
IRQ = VSS (internal oscillator is selected, no external clock required)  
The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the  
values on PTA1 and PTA4 pins can be changed.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
143  
Development Support  
Table 15-1. Monitor Mode Signal Requirements and Options  
Serial  
Communi-  
cation  
Mode  
Selection  
Communication  
Speed  
IRQ  
RST  
Reset  
Mode  
COP  
Comments  
(PTA2) (PTA3) Vector  
External  
Clock  
Bus  
Baud  
PTA0  
PTA1 PTA4  
Frequency Rate  
Normal  
Monitor  
9.8304  
MHz  
2.4576  
9600  
MHz  
Provide external  
clock at OSC1.  
VTST  
VDD  
VSS  
X
VDD  
X
1
1
1
X
1
X
X
X
0
X
X
X
Disabled  
Disabled  
Disabled  
Enabled  
$FFFF  
(blank)  
9.8304  
MHz  
2.4576  
9600  
MHz  
Provide external  
clock at OSC1.  
X
X
X
Forced  
Monitor  
$FFFF  
(blank)  
1.0 MHz  
4800  
Internal clock is  
active.  
X
X
(Trimmed)  
Not  
$FFFF  
User  
X
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
MOD0 MOD1  
[12] [10]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus  
frequency / 256 and baud rate using internal oscillator is bus frequency / 206.  
3. External clock is a 9.8304 MHz oscillator on OSC1.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
NC  
NC  
NC  
1
3
5
7
9
2
4
6
8
GND  
RST  
IRQ  
PTA0  
10 PTA4  
12 PTA1  
14 NC  
NC 11  
OSC1 13  
VDD  
15  
16 NC  
Once out of reset, the MCU waits for the host to send eight security bytes (see 15.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is  
ready to receive a command.  
15.3.1.1 Normal Monitor Mode  
RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as VTST is  
applied to the IRQ pin. If the IRQ pin is lowered (no longer VTST) then the chip will still be operating in  
monitor mode, but the pin functions will be determined by the settings in the configuration registers (see  
Chapter 5 Configuration Register (CONFIG)) when VTST was lowered. With VTST lowered, the BIH and  
BIL instructions will read the IRQ pin state only if IRQEN is set in the CONFIG2 register.  
If monitor mode was entered with VTST on IRQ, then the COP is disabled as long as VTST is applied to  
IRQ.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
144  
Freescale Semiconductor  
Monitor Module (MON)  
15.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then startup port pin requirements and conditions,  
(PTA1/PTA4) are not in effect. This is to reduce circuit requirements when performing in-circuit  
programming.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset  
vector has been programmed, the traditional method of applying a voltage,  
VTST, to IRQ must be used to enter monitor mode.  
If monitor mode was entered as a result of the reset vector being blank, the COP is always disabled  
regardless of the state of IRQ.  
If the voltage applied to the IRQ is less than VTST, the MCU will come out of reset in user mode. Internal  
circuitry monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors  
are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high  
voltage on the IRQ pin. Once out of reset, the monitor code is initially executing with the internal clock at  
its default frequency.  
If IRQ is held high, all pins will default to regular input port functions except for PTA0 and PTA5 which will  
operate as a serial communication port and OSC1 input respectively (refer to Figure 15-11). That will  
allow the clock to be driven from an external source through OSC1 pin.  
If IRQ is held low, all pins will default to regular input port function except for PTA0 which will operate as  
serial communication port. Refer to Figure 15-12.  
Regardless of the state of the IRQ pin, it will not function as a port input pin in monitor mode. Bit 2 of the  
Port A data register will always read 0. The BIH and BIL instructions will behave as if the IRQ pin is  
enabled, regardless of the settings in the configuration register. See Chapter 5 Configuration Register  
(CONFIG).  
The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will  
automatically force the MCU to come back to the forced monitor mode.  
15.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE  
Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST (when RST pin  
available) low will not exit monitor mode in this situation.  
Table 15-2 summarizes the differences between user mode and monitor mode regarding vectors.  
Table 15-2. Mode Difference  
Functions  
Modes  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
145  
Development Support  
15.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 15-13. Monitor Data Format  
15.3.1.5 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal,  
it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 15-14. Break Transaction  
15.3.1.6 Baud Rate  
The monitor communication baud rate is controlled by the frequency of the external or internal oscillator  
and the state of the appropriate pins as shown in Table 15-1.  
Table 15-1 also lists the bus frequencies to achieve standard baud rates. The effective baud rate is the  
bus frequency divided by 256 when using an external oscillator. When using the internal oscillator in  
forced monitor mode, the effective baud rate is the bus frequency divided by 206.  
15.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
146  
Freescale Semiconductor  
Monitor Module (MON)  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 15-15. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 15-16. Write Transaction  
A brief description of each monitor mode command is given in Table 15-3 through Table 15-8.  
Table 15-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
147  
Development Support  
Table 15-4. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by data  
byte  
Operand  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
Table 15-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 15-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
148  
Freescale Semiconductor  
Monitor Module (MON)  
Table 15-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Returns incremented stack pointer value (SP + 1) in  
high-byte:low-byte order  
Opcode $0C  
Data Returned  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
ECHO  
READSP  
RETURN  
Table 15-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
ECHO  
RUN  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 15-17. Stack Pointer at Monitor Mode Entry  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
149  
Development Support  
15.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 15-18.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $80 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
VDD  
4096 + 32 CGMXCLK CYCLES  
RST  
FROM HOST  
PA0  
1
4
3
1
2
3
1
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Wait 1 bit time before sending next byte  
4 = Wait until clock is stable and monitor runs  
Figure 15-18. Monitor Mode Entry Timing  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
150  
Freescale Semiconductor  
Chapter 16  
Electrical Specifications  
16.1 Introduction  
This section contains electrical and timing specifications.  
16.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 16.5 DC Electrical Characteristics for guaranteed operating  
conditions.  
Characteristic(1)  
Symbol  
VDD  
VIN  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to +6.0  
VSS –0.3 to VDD +0.3  
VSS –0.3 to +9.1  
V
VTST  
I
IPTA0— PTA5  
Mode entry voltage, IRQ pin  
V
Maximum current per pin excluding PTA0–PTA5, VDD, and VSS  
15  
25  
mA  
mA  
°C  
mA  
mA  
I
Maximum current for pins PTA0–PTA5  
Storage temperature  
TSTG  
IMVSS  
IMVDD  
–55 to +150  
100  
Maximum current out of VSS  
Maximum current into VDD  
100  
1. Voltages references to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
151  
Electrical Specifications  
16.3 Functional Operating Range  
Temp  
Code  
Characteristic  
Symbol  
Value  
Unit  
Operating temperature range (TL to TH)  
TA  
–40 to 85  
0 to 70  
°C  
C
Operating voltage range(1) (VDDMIN to VDDMAX  
–40 to 85°C  
0 to 70°C  
)
VDD  
2.4 to 3.6  
2.2 to 3.6  
V
C
1. VDD must be above VTRIPR upon power on.  
16.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
8-pin PDIP  
8-pin SOIC  
105  
142  
173  
76  
90  
133  
θJA  
8-pin DFN  
°C/W  
16-pin PDIP  
16-pin SOIC  
16-pin TSSOP  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
W
W
PD = (IDD x VDD  
)
+ PI/O = K/(TJ + 273°C)  
PD x (TA + 273°C)  
Constant(2)  
K
W/°C  
+ PD2 x θJA  
TJ  
TA + (PD x θJA)  
Average junction temperature  
°C  
°C  
TJM  
Maximum junction temperature  
150  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ  
can be determined for any value of TA.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
152  
Freescale Semiconductor  
DC Electrical Characteristics  
16.5 DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage (for VDD > 2.7 V)  
ILoad = –4 mA  
ILoad = –10 mA, PTA0, PTA1, PTA3–PTA5 only  
VDD–0.8  
VDD–0.8  
VOH  
V
Output high voltage (for VDDMIN < VDD < VDDMAX  
)
VDD–0.8  
VDD–0.8  
ILoad = –2 mA  
ILoad = –5 mA, PTA0, PTA1, PTA3–PTA5 only  
VOH  
VOL  
VOL  
V
V
V
Output low voltage (for VDD > 2.7 V)  
ILoad = 4 mA  
ILoad = 10 mA, PTA0, PTA1, PTA3–PTA5 only  
0.8  
0.8  
Output low voltage (for VDDMIN < VDD < VDDMAX  
ILoad = 2 mA  
ILoad = 5 mA, PTA0, PTA1, PTA3–PTA5 only  
)
0.8  
0.8  
Maximum combined IOH (all I/O pins)  
Maximum combined IOL (all I/O pins)  
IOHT  
IOLT  
50  
50  
mA  
mA  
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
VIH  
VIL  
0.7 x VDD  
VSS  
VDD  
V
V
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
0.3 x VDD  
VHYS  
IINJ  
0.06 x VDD  
–2  
Input hysteresis  
+2  
V
DC injection current, all ports  
Total dc current injection (sum of all I/O)  
mA  
mA  
IINJTOT  
–25  
+25  
Digital I/O ports Hi-Z leakage current  
Typical at 25°C  
–1  
0.1  
+1  
IIL  
µA  
µA  
IIN  
Digital input only ports leakage current (PA2/IRQ/KBI2)  
–1  
+1  
Capacitance  
Ports (as input)  
Ports (as output)  
CIN  
COUT  
12  
8
pF  
POR rearm voltage(3)  
VPOR  
RPOR  
VTST  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(4)  
Monitor mode entry voltage  
0.035  
VDD + 2.5  
9.1  
Pullup resistors(5)  
PTA0–PTA5, PTB0–PTB7  
RPU  
16  
26  
36  
kΩ  
— Continued on next page  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
153  
Electrical Specifications  
Characteristic(1)  
Typ(2)  
2.12  
2.18  
60  
Symbol  
VTRIPF  
VTRIPR  
VHYS  
Min  
2.00  
2.04  
Max  
2.24  
2.30  
Unit  
V
Low-voltage inhibit reset, trip falling voltage (LVR)  
Low-voltage inhibit reset, trip rising voltage (LVR)  
Low-voltage inhibit reset/recover hysteresis  
Low-voltage detect, trip falling voltage (LVD)  
Low-voltage detect, trip rising voltage (LVD)  
Low-voltage detect reset/recover hysteresis  
V
mV  
V
VDTRIPF  
VDTRIPR  
VDHYS  
2.20  
2.21  
2.32  
2.33  
10  
2.44  
2.45  
V
mV  
1. VDD = VDDMIN to VDDMAX, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at VDD = 3.0 V, 25°C only.  
3. Maximum is highest voltage that POR is guaranteed.  
4. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
VDD is reached.  
5. RPU is measured at VDD = 3.0 V.  
16.6 Control Timing  
Characteristic(1)  
Internal operating frequency  
Symbol  
fOP (fBus  
tcyc  
Min  
Max  
Unit  
)
2
MHz  
ns  
Internal clock period (1/fOP  
)
500  
400  
400  
tRL  
RST input pulse width low  
ns  
tILIH  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
ns  
Note(2)  
tILIL  
tcyc  
1. VDD >= 2.2 V, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 16-1. RST and IRQ Timing  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
154  
Freescale Semiconductor  
Typical 3.0-V Output Drive Characteristics  
16.7 Typical 3.0-V Output Drive Characteristics  
1.5  
1.0  
0.5  
0.0  
3V PTA  
3V PTB  
0
-5  
-10  
-15  
-20  
IOH (mA)  
Figure 16-2. Typical 3-Volt Output High Voltage  
versus Output High Current (25°C)  
1.5  
1.0  
0.5  
0.0  
3V PTA  
3V PTB  
0
5
10  
15  
20  
IOL (mA)  
Figure 16-3. Typical 3-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
155  
Electrical Specifications  
16.8 Oscillator Characteristics  
Characteristic  
Internal oscillator frequency(1)  
Symbol  
Min  
30  
2
Typ  
4.0  
Max  
Unit  
MHz  
kHz  
MHz  
MHz  
pF  
fINTCLK  
Crystal frequency, XTALCLK(1)  
External RC oscillator frequency, RCCLK(1)  
External clock reference frequency(1), (2)  
Crystal load capacitance(3)  
fOSCXCLK  
fRCCLK  
fOSCXCLK  
CL  
32.768  
100  
8
dc  
1
8
12.5  
2 x CL  
2 x CL  
Crystal fixed capacitance(3)  
C1  
Crystal tuning capacitance(3)  
Feedback bias resistor  
Series resistor  
C2  
RB  
10  
330  
22  
470  
MΩ  
kΩ  
RS  
100  
REXT  
RC oscillator external resistor  
See Figure 16-4  
1. Bus frequency, fOP, is oscillator frequency divided by 4.  
2. No more than 10% duty cycle deviation from 50%.  
3. Consult crystal vendor data sheet.  
12  
10  
8
MCU  
3V  
2.3V  
6
OSC1  
4
VDD  
REXT  
2
0
0
10  
20  
30  
40  
50  
60  
REXT (K)  
Figure 16-4. Typical RC Oscillator Frequency versus REXT (25°C)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
156  
Freescale Semiconductor  
Supply Current Characteristics  
16.9 Supply Current Characteristics  
Bus Freq.  
(MHz)  
Characteristic  
Voltage  
Symbol  
RIDD  
Typ  
Max  
Unit  
mA  
mA  
3.0  
2.2  
1
1
1.5  
1.0  
2.5  
1.5  
Run mode VDD supply current(1)  
3.0  
2.2  
1
1
1.2  
1.0  
2.0  
1.0  
WAIT mode VDD supply current(2)  
Stop mode VDD supply current(3)  
WIDD  
25°C  
0.006  
0.08  
0.12  
5.70  
110  
2.0  
3.0  
2.2  
0 to 70°C  
–40 to 85°C  
25°C with auto wake-up enabled  
Incremental current with LVI enabled at 25°C  
µA  
µA  
SIDD  
25°C  
0 to 70°C  
0.005  
0.08  
0.12  
1.30  
100  
1.0  
–40 to 85°C  
25°C with auto wake-up enabled  
Incremental current with LVI enabled at 25°C  
1. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. All ports configured as inputs. Measured with all modules except ADC enabled.  
2. Wait (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. All ports configured as inputs. Measured with all modules except ADC enabled.  
3. Stop IDD measured with all ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured as  
inputs with pullups enabled.  
2.5  
2
1.5  
1
0.5  
0
2
2.5  
3
3.5  
4
VDD (V)  
INT OSC w/ ADC  
INT OSC w/o ADC  
32K CRYSTAL w/ ADC  
32K CRYSTAL w/o ADC  
Figure 16-5. Typical Run Current versus VDD (25°C)  
(fBus = 1 MHz for Internal Oscillator, fBus = 8 kHz for Crystal Oscillator)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
157  
Electrical Specifications  
1
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
4
VDD (V)  
INT OSC w/ ADC  
INT OSC w/o ADC  
32K CRYSTAL w/ ADC  
32K CRYSTAL w/o ADC  
Figure 16-6. Typical Wait Current versus VDD (25°C)  
f
Bus = 1 MHz for Internal Oscillator, fBus = 8 kHz for Crystal Oscillator)  
10  
8
6
4
2
0
2
2.2  
2.4  
2.6  
2.8  
VDD (V)  
3
3.2  
3.4  
3.6  
3.8  
Figure 16-7. Typical Stop Current versus VDD (25°C)  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
158  
Freescale Semiconductor  
Analog-to-Digital (ADC) Converter Characteristics  
16.10 Analog-to-Digital (ADC) Converter Characteristics  
16.10.1 ADC Electrical Operating Conditions  
The ADC accuracy characteristics below are guaranteed over two operating conditions as stated here.  
Characteristic  
Symbol  
Min  
2.7  
Max  
3.6  
1
Unit  
V
VDD  
ATD supply  
fADIC  
TA  
Condition A  
Condition B  
ADC internal clock  
Ambient temperature  
ATD supply  
0.008  
TL  
MHz  
°C  
TH  
VDD  
fADIC  
TA  
2.3  
8
2.7  
63  
V
ADC internal clock  
Ambient temperature  
kHz  
°C  
TH  
0
16.10.2 ADC Performance Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Comments  
VADIN  
VSS  
VDD  
Input voltages  
V
Resolution (1 LSB)  
Condition A  
Condition B  
10.5  
8.99  
14.1  
10.5  
RES  
mV  
Absolute accuracy  
(Total unadjusted error)  
Condition A  
Condition B  
1.5  
2.0  
ETUE  
LSB  
Includes quantization  
VAIN  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
IIL  
VSS  
16  
16  
5
VDD  
17  
01  
FF  
8
Conversion range  
Power-up time  
V
tADIC cycles  
tADIC cycles  
tADIC cycles  
tADIC = 1/fADIC  
tADIC = 1/fADIC  
tADIC = 1/fADIC  
Conversion time  
Sample time(1)  
Zero input reading(2)  
V
IN = VSS  
00  
FE  
Hex  
Hex  
pF  
Full-scale reading(3)  
Input capacitance  
VIN = VDD  
Not tested  
Input leakage(3)  
1
µA  
ADC supply current (VDD = 3 V)  
IADAD  
Typical = 0.45  
mA  
Enabled  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
159  
Electrical Specifications  
16.11 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width  
Timer input capture period  
Symbol  
tTH, TL  
Min  
Max  
Unit  
t
tcyc  
2
Note(1)  
tcyc + 5  
tTLTL  
tcyc  
ns  
t
TCL, tTCH  
Timer input clock pulse width  
1. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
tTCH  
TCLK  
tTCL  
Figure 16-8. Timer Input Timing  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
160  
Freescale Semiconductor  
Memory Characteristics  
16.12 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Typ  
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
MHz  
V
FLASH PGM/ERASE supply voltage (VDD  
FLASH read bus clock frequency  
)
VPGM/ERASE  
2.7  
3.6  
(1)  
0
2
MHz  
fRead  
FLASH page erase time  
<1 k cycles  
>1 k cycles  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
tMErase  
tNVS  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
ms  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
tNVH  
tNVHL  
tPGS  
FLASH high-voltage hold time (mass erase)  
FLASH program setup time  
FLASH program time  
100  
5
tPROG  
30  
1
(2)  
FLASH return to read time  
tRCV  
(3)  
FLASH cumulative program hv period  
10 k  
15  
4
ms  
tHV  
FLASH endurance(4)  
100 k  
100  
Cycles  
Years  
FLASH data retention time(5)  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by  
clearing HVEN to 0.  
3. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum.  
4. Typical endurance was evaluated for this product family. For additional information on how Freescale defines Typical  
Endurance, please refer to Engineering Bulletin EB619.  
5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please  
refer to Engineering Bulletin EB618.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
161  
Electrical Specifications  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
162  
Freescale Semiconductor  
Chapter 17  
Ordering Information and Mechanical Specifications  
17.1 Introduction  
This section contains ordering numbers for MC68HLC908QY1, MC68HLC908QY2, MC68HLC908QY4,  
MC68HLC908QT1, MC68HLC908QT2, and MC69HLC908QT4. Refer to Figure 17-1 for an example of  
the device numbering system.  
In addition, this section gives the package dimensions for:  
8-pin plastic dual in-line package (PDIP)  
8-pin small outline integrated circuit (SOIC) package  
8-pin dual flat no lead (DFN) package  
16-pin PDIP  
16-pin SOIC  
16-pin thin shrink small outline package (TSSOP)  
17.2 MC Order Numbers  
Table 17-1. MC Order Numbers  
MC Order Number  
MCL908QY1  
MCL908QY2  
MCL908QY4  
MCL908QT1  
MCL908QT2  
MCL908QT4  
ADC  
FLASH Memory  
1536 bytes  
1536 bytes  
4096 bytes  
1536 bytes  
1536 bytes  
4096 bytes  
Package  
16-pins  
PDIP, SOIC,  
and TSSOP  
Yes  
Yes  
8-pins  
PDIP, SOIC,  
and DFN  
Yes  
Yes  
Temperature and package designators:  
Blank = 0°C to 70°C  
C = –40°C to 85°C  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
DT = Thin shrink small outline package (TSSOP)  
FQ = Dual flat no lead (DFN)  
M C L 9 0 8 Q Y 4 X X X E  
Pb FREE  
FAMILY  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 17-1. Device Numbering System  
17.3 Package Dimensions  
Refer to the following pages for detailed package dimensions.  
MC68HLC908QY/QT Family Data Sheet, Rev. 3  
Freescale Semiconductor  
163  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
How to Reach Us:  
USA/Europe/Locations not listed:  
Freescale Semiconductor Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals” must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu  
Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor H.K. Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T. Hong Kong  
852-26668334  
Learn More:  
For more information about Freescale  
Semiconductor products, please visit  
http://www.freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004.  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
MC68HLC908QY4  
Rev. 3, 07/2005  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  

相关型号:

MC68HLC908QT1CDT

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,SOP,8PIN,PLASTIC
NXP

MC68HLC908QT1CDW

8-BIT, FLASH, 2MHz, MICROCONTROLLER, PDSO8, SOIC-8
NXP

MC68HLC908QT1CFQ

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,LLCC,8PIN,PLASTIC
NXP

MC68HLC908QT1CFQ

8-BIT, FLASH, 2 MHz, MICROCONTROLLER, PQCC8, DFN-8
ROCHESTER

MC68HLC908QT1CFQE

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,LLCC,8PIN,PLASTIC
NXP

MC68HLC908QT1CP

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,DIP,8PIN,PLASTIC
NXP

MC68HLC908QT1CPE

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,DIP,8PIN,PLASTIC
NXP

MC68HLC908QT1DT

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,SOP,8PIN,PLASTIC
NXP

MC68HLC908QT1DWE

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,SOP,8PIN,PLASTIC
NXP

MC68HLC908QT1FQ

8-BIT, FLASH, 2MHz, MICROCONTROLLER, PQCC8, DFN-8
NXP

MC68HLC908QT1P

8-BIT, FLASH, 2MHz, MICROCONTROLLER, PDIP8, PLASTIC, DIP-8
NXP

MC68HLC908QT2

Microcontrollers
MOTOROLA