MC68SZ328UM/D [FREESCALE]

i.MX Integrated Portable System Processor; i.MX集成的便携式系统处理器
MC68SZ328UM/D
型号: MC68SZ328UM/D
厂家: Freescale    Freescale
描述:

i.MX Integrated Portable System Processor
i.MX集成的便携式系统处理器

便携式
文件: 总96页 (文件大小:1501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC9328MX1/D  
Rev. 4, 08/2004  
Freescale Semiconductor  
Advance Information  
MC9328MX1/D  
Rev. 3.0, 12/2003  
MC9328MX1  
MC9328MX1  
(i.MX1) Integrated  
Portable System  
Processor  
Package Information  
Plastic Package  
(MAPBGA–256)  
MC9328MX1  
Ordering Information  
See Table 2 on page 5  
Contents  
1 Introduction  
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Signals and Connections . . . . . . . . . . . . . . . . . . . . 6  
3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4 Pin-Out and Package Information . . . . . . . . . . . . 93  
Contact Information. . . . . . . . . . . . . . . . . . . Last Page  
Motorola’s i.MX family of microprocessors has  
demonstrated leadership in the portable handheld market.  
Continuing this legacy, the i.MX series provides a leap in  
performance with an ARM9™ microprocessor core and  
highly integrated system functions. The i.MX products  
specifically address the requirements of the personal,  
portable product market by providing intelligent integrated  
peripherals, an advanced processor core, and power  
management capabilities.  
The new MC9328MX1 features the advanced and power-  
efficient ARM920T™ core that operates at speeds up to  
200 MHz. Integrated modules, which include an LCD  
controller, static RAM, USB support, an A/D converter (with  
touch panel control), and an MMC/SD host controller,  
support a suite of peripherals to enhance any product seeking  
to provide a rich multimedia experience. In addition, the  
MC9328MX1 is the first Bluetooth™ technology-ready  
applications processor. It is packaged in a 256-pin Mold  
Array Process-Ball Grid Array (MAPBGA). Figure 1 on  
page 2 shows the functional block diagram of the  
MC9328MX1.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
This document contains information on a new product. Specifications and information herein are  
subject to change without notice.  
Introduction  
Standard  
System I/O  
System Control  
Power  
Control  
CGM  
(DPLLx2)  
JTAG/ICE  
Bootstrap  
GPIO  
PWM  
Connectivity  
MC9328MX1  
CPU Complex  
MMC/SD  
Timer 1 & 2  
RTC  
Memory Stick®  
Host Controller  
ARM9TDMI™  
SPI 1 and  
SPI 2  
Watchdog  
UART 1  
I Cache  
D Cache  
Multimedia  
UART 2 & 3  
Multimedia  
Accelerator  
2
Interrupt  
Controller  
SSI/I S 1 & 2  
AIPI 1  
AIPI 2  
VMMU  
DMAC  
Video Port  
2
I C  
Bus  
Control  
USB Device  
Human Interface  
(11 Chnl)  
Analog Signal  
Processor  
SmartCard I/F  
EIM &  
SDRAMC  
eSRAM  
(128K)  
Bluetooth  
Accelerator  
LCD Controller  
Figure 1. MC9328MX1 Functional Block Diagram  
1.1 Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and  
high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are  
hexadecimal.  
MC9328MX1 Advance Information, Rev. 4  
2
Freescale Semiconductor  
Introduction  
1.2 Features  
To support a wide variety of applications, the MC9328MX1 provides a robust array of features, including the  
following:  
ARM920T Microprocessor Core  
AHB to IP Bus Interfaces (AIPIs)  
External Interface Module (EIM)  
SDRAM Controller (SDRAMC)  
DPLL Clock and Power Control Module  
Three Universal Asynchronous Receiver/Transmitters (UART 1 UART 2 and UART 3)  
Two Serial Peripheral Interfaces (SPI)  
Two General-Purpose 32-bit Counters/Timers  
Watchdog Timer  
Real-Time Clock/Sampling Timer (RTC)  
LCD Controller (LCDC)  
Pulse-Width Modulation (PWM) Module  
Universal Serial Bus (USB) Device  
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module  
Memory Stick® Host Controller (MSHC)  
SmartCard Interface Module (SIM)  
Direct Memory Access Controller (DMAC)  
Two Synchronous Serial Interfaces and Inter-IC Sound (SSI 1 and SSI 2/I2S) Module  
Inter-IC (I2C) Bus Module  
Video Port  
General-Purpose I/O (GPIO) Ports  
Bootstrap Mode  
Analog Signal Processing (ASP) Module  
Bluetooth Accelerator (BTA)  
Multimedia Accelerator (MMA)  
256-pin MAPBGA Package  
1.3 Target Applications  
The MC9328MX1 is targeted for advanced information appliances, smart phones, Web browsers, digital MP3  
audio players, handheld computers based on the popular Palm OS platform, and messaging applications such as  
Motorola's wireless cellular products, including the AccompliTM 008 GSM/GPRS interactive communicator.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
3
Introduction  
1.4 Document Revision History  
The following table provides revision history for this release. This history includes technical content revisions only  
and not stylistic or grammatical changes.  
Table 1. MC9328MX1 Data Sheet Revision History  
Revision Location  
Throughout  
Revision  
Clarified instances where BCLK signal is burst clock.  
Maximum Ratings table replaced.  
Table 4 on page 14  
Section 3.3, “Power Sequence  
Requirements” on page 15  
Added reference to AN2537.  
Section 3.12, “Bluetooth Accelerator”  
on page 58  
Added “Important” note regarding no software support for the BTA.  
1.5 Product Documentation  
The following documents are required for a complete description of the MC9328MX1 and are necessary to design  
properly with the device. Especially for those not familiar with the ARM920T processor or previous DragonBall  
products, the following documents are helpful when used in conjunction with this manual.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)  
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)  
MC9328MX1 Product Brief (order number MC9328MX1P/D)  
MC9328MX1S Reference Manual (order number MC9328MX1SRM/D)  
MC68VZ328 Product Brief (order number MC68VZ328P/D)  
MC68VZ328 Users Manual (order number MC68VZ328UM/D)  
MC68VZ328 Users Manual Addendum (order number MC68VZ328UMAD/D)  
MC68SZ328 Product Brief (order number MC68SZ328P/D)  
MC68SZ328 Users Manual (order number MC68SZ328UM/D)  
The Motorola manuals are available on the Motorola Semiconductors Web site at http://www.motorola.com/  
semiconductors. These documents may be downloaded directly from the Motorola Web site, or printed versions  
may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.  
MC9328MX1 Advance Information, Rev. 4  
4
Freescale Semiconductor  
Introduction  
1.6 Ordering Information  
Table 2 provides ordering information for the 256-lead mold array process ball grid array (MAPBGA) package.  
Table 2. MC9328MX1 Ordering Information  
Package Type  
Frequency Temperature Solderball Type  
Order Number  
256-lead MAPBGA  
256-lead MAPBGA  
256-lead MAPBGA  
256-lead MAPBGA  
256-lead MAPBGA  
256-lead MAPBGA  
200 MHz  
200 MHz  
200 MHz  
200 MHz  
150 MHz  
150 MHz  
0°C to 70°C  
0°C to 70°C  
Standard  
Pb-free  
MC9328MX1VH20(R2)  
MC9328MX1VM20(R2)  
MC9328MX1DVH20(R2)  
MC9328MX1DVM20(R2)  
MC9328MX1CVH15(R2)  
MC9328MX1CVM15(R2)  
-30°C to 70°C  
-30°C to 70°C  
-40°C to 85°C  
-40°C to 85°C  
Standard  
Pb-free  
Standard  
Pb-free  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
5
Signals and Connections  
2 Signals and Connections  
Table 3 identifies and describes the MC9328MX1 signals that are assigned to package pins. The signals are  
grouped by the internal module that they are connected to.  
Table 3. Signal Names and Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip Select (EIM)  
A [24:0]  
Address bus signals  
Data bus signals  
D [31:0]  
EB0  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24]  
Byte Strobe—Active low external enable byte signal that controls D [23:16]  
Byte Strobe—Active low external enable byte signal that controls D [15:8]  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0]  
Memory Output Enable—Active low output enables external data bus  
EB1  
EB2  
EB3  
OE  
CS [5:0]  
Chip Select—The chip select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by  
the Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected.  
ECB  
LBA  
Active low input signal sent by flash device to the EIM whenever the flash device must terminate an  
on-going burst sequence and initiate a new (long first access) burst sequence.  
Active low signal sent by flash device causing the external burst device to latch the starting burst  
address.  
BCLK (burst clock)  
RW  
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE  
input signal by external DRAM.  
Bootstrap  
BOOT [3:0]  
System Boot Mode Select—The operational system boot mode of the MC9328MX1 upon system  
reset is determined by the settings of these pins.  
SDRAM Controller  
SDBA [4:0]  
SDIBA [3:0]  
SDRAM/SyncFlash non-interleave mode bank address multiplexed with address signals A [15:11].  
These signals are logically equivalent to core address p_addr [25:21] in SDRAM/SyncFlash cycles.  
SDRAM/SyncFlash interleave addressing mode bank address multiplexed with address signals A  
[19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM/SyncFlash  
cycles.  
MA [11:10]  
MA [9:0]  
SDRAM address signals  
SDRAM address signals which are multiplex with address signals A [10:1]. MA [9:0] are selected on  
SDRAM/SyncFlash cycles.  
MC9328MX1 Advance Information, Rev. 4  
6
Freescale Semiconductor  
Signals and Connections  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
Signal Name  
DQM [3:0]  
SDRAM data enable  
CSD0  
SDRAM/SyncFlash Chip Select signal which is multiplexed with the CS2 signal. These two signals  
are selectable by programming the system control register.  
CSD1  
SDRAM/SyncFlash Chip Select signal which is multiplex with CS3 signal. These two signals are  
selectable by programming the system control register. By default, CSD1 is selected, so it can be  
used as SyncFlash boot chip select by properly configuring BOOT [3:0] input pins.  
RAS  
SDRAM/SyncFlash Row Address Select signal  
SDRAM/SyncFlash Column Address Select signal  
SDRAM/SyncFlash Write Enable signal  
SDRAM/SyncFlash Clock Enable 0  
SDRAM/SyncFlash Clock Enable 1  
SDRAM/SyncFlash Clock  
CAS  
SDWE  
SDCKE0  
SDCKE1  
SDCLK  
RESET_SF  
SyncFlash Reset  
Clocks and Resets  
EXTAL16M  
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when internal oscillator circuit is shut  
down.  
XTAL16M  
EXTAL32K  
XTAL32K  
CLKO  
Crystal output  
32 kHz crystal input  
32 kHz crystal output  
Clock Out signal selected from internal clock signals. Please refer to clock controller for internal  
clock selection.  
RESET_IN  
RESET_OUT  
POR  
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all  
modules (except the reset module and the clock control module) are reset.  
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from  
the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.  
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally  
generated by an external RC circuit designed to detect a power-up event.  
JTAG  
TRST  
TDO  
TDI  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
7
Signals and Connections  
Signal Name  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
TCK  
TMS  
Test Clock to synchronize test logic and control register access through the JTAG port.  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge  
of TCK.  
System  
BIG_ENDIAN  
BIG_ENDIAN—This signal determines the memory endian configuration. BIG_ENDIAN is a static  
pin to inner module. If the pin is driven logic-high the memory system is configured into big endian. If  
it is driven logic-low the memory system is configured into little endian. The pin is not supposed to  
be changed on the fly.  
ETM  
ETMTRACESYNC  
ETMTRACECLK  
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.  
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.  
ETMPIPESTAT [2:0]  
ETM status signals which are multiplex with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM  
mode.  
ETMTRACEPKT [7:0] ETM packet signals which are multiplex with ECB, LBA, BCLK (burst clock), PA17, A [19:16].  
ETMTRACEPKT [7:0] are selected in ETM mode.  
CMOS Sensor Interface  
CSI_D [7:0]  
CSI_MCLK  
CSI_VSYNC  
CSI_HSYNC  
CSI_PIXCLK  
Sensor port data  
Sensor port master clock  
Sensor port vertical sync  
Sensor port horizontal sync  
Sensor port data latch clock  
LCD Controller  
LD [15:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.  
FLM/VSYNC  
Frame Sync or Vsync—This signal also serves as the clock signal output for gate.  
driver (dedicated signal SPS for Sharp panel HR-TFT).  
LP/HSYNC  
LSCLK  
Line Pulse or H Sync  
Shift Clock  
ACD/OE  
Alternate Crystal Direction/Output Enable  
This signal is used to control the LCD bias voltage as contrast control.  
Program horizontal scan direction (Sharp panel dedicated signal).  
CONTRAST  
SPL_SPR  
MC9328MX1 Advance Information, Rev. 4  
8
Freescale Semiconductor  
Signals and Connections  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
Signal Name  
PS  
Control signal output for source driver (Sharp panel dedicated signal).  
CLS  
REV  
Start signal output for gate driver. This signal is invert version of PS (Sharp panel dedicated signal).  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).  
SIM  
SIM_CLK  
SIM_RST  
SIM_RX  
SIM Clock  
SIM Reset  
Receive Data  
SIM_TX  
Transmit Data  
SIM_PD  
Presence Detect Schmitt trigger input  
SIM Vdd Enable  
SIM_SVEN  
SPI  
SPI1_MOSI  
SPI1_MISO  
SPI1_SS  
Master Out/Slave In  
Slave In/Master Out  
Slave Select (Selectable polarity)  
Serial Clock  
SPI1_SCLK  
SPI1_SPI_RDY  
SPI2_TXD  
Serial Data Ready  
SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin however it does show up  
as a primary or alternative signal in the signal multiplex scheme table. Refer to Chapter 16, “Serial  
Peripheral Interface Modules (SPI 1 and SPI 2),” and Chapter 29, “GPIO Module and I/O Multiplexer  
(IOMUX),” for information on how to bring this signal to the assigned pin.  
SPI2_RXD  
SPI2_SS  
SPI2 master RxData input—This signal is multiplexed with a GPI/O pin however it does show up as  
a primary or alternative signal in the signal multiplex scheme table. Refer to Chapter 16, “Serial  
Peripheral Interface Modules (SPI 1 and SPI 2),” and Chapter 29, “GPIO Module and I/O Multiplexer  
(IOMUX),” for information on how to bring this signal to the assigned pin.  
SPI2 Slave Select—This signal is multiplexed with a GPI/O pin, however it does show up as a  
primary or alternative signal in the signal multiplex scheme table. Refer to Chapter 16, “Serial  
Peripheral Interface Modules (SPI 1 and SPI 2),” and Chapter 29, “GPIO Module and I/O Multiplexer  
(IOMUX),” for information on how to bring this signal to the assigned pin.  
SPI2_SCLK  
SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin however it does show up as a  
primary or alternative signal in the signal multiplex scheme table. Refer to Chapter 16, “Serial  
Peripheral Interface Modules (SPI 1 and SPI 2),” and Chapter 29, “GPIO Module and I/O Multiplexer  
(IOMUX),” for information on how to bring this signal to the assigned pin.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
9
Signals and Connections  
Signal Name  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
General Purpose Timers  
TIN  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers  
simultaneously.  
TMR2OUT  
Timer 2 Output  
USB Device  
USBD_VMO  
USBD_VPO  
USBD_VM  
USB Minus Output  
USB Plus Output  
USB Minus Input  
USB Plus Input  
USBD_VP  
USBD_SUSPND  
USBD_RCV  
USBD_OE  
USB Suspend Output  
USB RxD  
USB OE  
USBD_AFE  
USB Analog Front End Enable  
Secure Digital Interface  
SD_CMD  
SD Command—If the system designer does not want to make use of the internal pull-up, via the  
Pull-up enable register, a 4.7K–69K external pull up resistor must be added.  
SD_CLK  
MMC Output Clock  
SD_DAT [3:0]  
Data—If the system designer does not want to make use of the internal pull-up, via the Pull-up  
enable register, a 50 K–69K external pull up resistor must be added.  
Memory Stick Interface  
MS_BS  
Memory Stick Bus State (Output)—Serial bus control signal  
Memory Stick Serial Data (Input/Output)  
MS_SDIO  
MS_SCLKO  
MS_SCLKI  
Memory Stick Serial Clock (Output)Serial Protocol clock output  
Memory Stick External Clock (Input)Test clock input pin for SCLK divider. This pin is only for test  
purposes, not for use in application mode.  
MS_PI0  
MS_PI1  
General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect  
General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect  
UARTs – IrDA/Auto-Bauding  
UART1_RXD  
Receive Data  
MC9328MX1 Advance Information, Rev. 4  
10  
Freescale Semiconductor  
Signals and Connections  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
Signal Name  
UART1_TXD  
Transmit Data  
UART1_RTS  
UART1_CTS  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
UART2_DSR  
UART2_RI  
Request to Send  
Clear to Send  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART2_DCD  
UART2_DTR  
UART3_RXD  
UART3_TXD  
UART3_RTS  
UART3_CTS  
UART3_DSR  
UART3_RI  
Data Carrier Detect  
Data Terminal Ready  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART3_DCD  
UART3_DTR  
Data Carrier Detect  
Data Terminal Ready  
Serial Audio Ports – SSI (configurable to I2S protocol)  
SSI1_TXDAT  
SSI1_RXDAT  
SSI1_TXCLK  
SSI1_RXCLK  
SSI1_TXFS  
TxD  
RxD  
Transmit Serial Clock  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
TxD  
SSI1_RXFS  
SSI2_TXDAT  
SSI2_RXDAT  
RxD  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
11  
Signals and Connections  
Signal Name  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
SSI2_TXCLK  
SSI2_RXCLK  
SSI2_TXFS  
SSI2_RXFS  
Transmit Serial Clock  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
I2C  
I2C_SCL  
I2C_SDA  
I2C Clock  
I2C Data  
PWM  
PWMO  
PWM Output  
ASP  
UIN  
Positive U analog input (for low voltage, temperature measurement)  
Negative U analog input (for low voltage, temperature measurement)  
Positive pen-X analog input  
UIP  
PX1  
PY1  
PX2  
PY2  
R1A  
R1B  
R2A  
R2B  
RVP  
RVM  
AVDD  
AGND  
Positive pen-Y analog input  
Negative pen-X analog input  
Negative pen-Y analog input  
Positive resistance input (a)  
Positive resistance input (b)  
Negative resistance input (a)  
Negative resistance input (b)  
Positive reference for pen ADC  
Negative reference for pen ADC  
Analog power supply  
Analog ground  
BlueTooth  
BT1  
BT2  
I/O clock signal  
Output  
MC9328MX1 Advance Information, Rev. 4  
12  
Freescale Semiconductor  
Signals and Connections  
Table 3. Signal Names and Descriptions (Continued)  
Function/Notes  
Signal Name  
BT3  
BT4  
BT5  
BT6  
BT7  
BT8  
BT9  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
BT10  
BT11  
BT12  
BT13  
TRISTATE  
BTRF VDD  
BTRF GND  
Sets all I/O pins to tristate; Can be used for flash loading and is pulled low for normal operations.  
Power supply from external BT RFIC  
Ground from external BT RFIC  
Noisy Supply Pins  
NVDD  
NVSS  
Noisy Supply for the I/O pins  
Noisy Ground for the I/O pins  
Supply Pins – Analog Modules  
AVDD  
AVSS  
Supply for analog blocks  
Quiet GND for analog blocks  
Internal Power Supply  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
GND pins for silicon internal circuitry  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
13  
Specifications  
3 Specifications  
This section contains the electrical specifications and timing diagrams for the MC9328MX1 processor.  
3.1 Maximum Ratings  
Table 4 provides information on maximum ratings which are those values beyond which damage to the device may  
occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on  
page 15 or the DC Characteristics table.  
1
Table 4. Maximum Ratings  
Symbol  
NVdd  
QVdd  
AVdd  
Rating  
Minimum  
Maximum  
Unit  
V
DC I/O Supply Voltage  
DC Internal (core) Supply Voltage  
DC Analog Supply Voltage  
DC Bluetooth Supply Voltage  
Supply voltage  
V
V
BTRFVdd  
Vdd  
V
-0.3  
0
3.3  
70  
V
TA  
Maximum operating temperature range  
MC9328MX1VH20/MC9328MX1VM20  
°C  
TA  
TA  
Maximum operating temperature range  
MC9328MX1DVH20/MC9328MX1DVM20  
-30  
-40  
70  
85  
°C  
°C  
Maximum operating temperature range  
MC9328MX1CVH15/MC9328MX1CVM15  
VESD_HBM  
VESD_MM  
ILatchup  
Test  
ESD at human body model (HBM)  
ESD at machine model (MM)  
Latch-up current  
2000  
100  
200  
150  
V
V
mA  
°C  
Storage temperature  
-55  
8002  
13003  
Pmax  
Power Consumption  
mW  
1. Voltages referenced to Vss and BTRFGND, which are both tied to the same potential.  
2. A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from  
the ARM core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.  
3. A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches  
from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core  
running its heaviest OS application at 200MHz, and where the whole image is running out of SDRAM. QVDD at  
2.0V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment,  
max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.  
MC9328MX1 Advance Information, Rev. 4  
14  
Freescale Semiconductor  
Specifications  
3.2 Recommended Operating Range  
Table 5 provides the recommended operating ranges for the supply voltages. The MC9328MX1 processor has  
multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic.  
All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power  
to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.  
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the  
AVDD pins from other VDD pins.  
BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data transmit/receive  
accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used in the system, these  
Bluetooth pins can be used as general purpose I/O pins and BTRFVDD can be used as other NVDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 3 on page 6.  
1
Table 5. Recommended Operating Range  
Symbol  
Rating  
I/O supply voltage  
Minimum Maximum Unit  
NVDD  
MSHC, SPI, BTA, USBd, LCD and  
CSI are only 3V interface  
2.70  
3.30  
V
NVDD  
QVDD  
I/O supply voltage  
1.70  
1.70  
3.30  
1.90  
V
V
Internal supply voltage (Core =  
150 MHz)  
QVDD  
Internal supply voltage (Core =  
200 MHz)  
1.80  
2.00  
V
AVDD  
Analog supply voltage  
1.70  
1.70  
3.30  
3.10  
V
V
BTRFVD Bluetooth I/O voltage (Bluetooth)  
D1  
BTRFVD Bluetooth I/O voltage (Non Bluetooth  
1.70  
3.30  
V
D2  
applications)  
1. Voltages referenced to Vss and BTRFGND, which are both tied to the same potential.  
3.3 Power Sequence Requirements  
For required power-up and power-down sequencing, please refer to the "Power-Up Sequence" section of  
application note AN2537 on the i.MX website page.  
3.4 DC Electrical Characteristics  
Table 6 contains both maximum and minimum DC characteristics of the MC9328MX1.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
15  
Specifications  
Table 6. Maximum and Minimum DC Characteristics  
Number  
or Symbol  
Parameter  
Minimum  
Typical  
Maximum Unit  
Iop  
Full running operating current at 1.8V for  
QVDD, 3.3V for NVDD/AVDD (Core = 96 MHz,  
System = 96 MHz, MPEG4 decoding playback  
from external memory card to both external SSI  
audio decoder and TFT display panel, and OS  
with MMU enabled memory system is running  
on external SDRAM)  
QVDD at 1.8v  
= 120mA; NVDD+AVDD  
at 3.0v = 30mA  
mA  
Please refer to application note: AN2537,  
Power Performance of MC9328MX1.  
Sidd1  
Sidd2  
Sidd3  
Sidd4  
Standby current (QVDD = 1.8V, temp = 25°C)  
Standby current (QVDD = 1.8V, temp = 55°C)  
Standby current (QVDD = 2.0V, temp = 25°C)  
Standby current (QVDD = 2.0V, temp = 55°C)  
Input high voltage  
25  
45  
35  
60  
µA  
µA  
µA  
µA  
V
V
0.7V  
Vdd+0.2  
0.4  
IH  
DD  
DD  
V
Input low voltage  
V
IL  
V
Output high voltage (I  
= 2.0 mA)  
OH  
0.7V  
Vdd  
0.4  
V
OH  
V
Output low voltage (I = -2.5 mA)  
OL  
V
OL  
IL  
I
Input low leakage current  
1
µA  
(V = GND, no pull-up or pull-down)  
IN  
I
Input high leakage current  
1
4.0  
µA  
mA  
mA  
µA  
IH  
(V = V , no pull-up or pull-down)  
IN  
DD  
I
Output high current  
(V = 0.8VDD, VDD = 1.8V)  
OH  
OH  
I
Output low current  
4.0  
OL  
OZ  
(V = 0.4V, VDD = 1.8V)  
OL  
I
Output leakage current  
5
(V = V , output is tri-stated)  
out  
DD  
C
Input capacitance  
5
5
pF  
pF  
i
C
Output capacitance  
o
MC9328MX1 Advance Information, Rev. 4  
16  
Freescale Semiconductor  
Specifications  
3.5 AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are  
specified relative to an appropriate edge of other signals. All timing specifications are specified at a system  
operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an operating supply voltage  
from VDD min to VDD max under an operating temperature from TL to TH. All timing is measured at 30 pF loading.  
Table 7. Tri-State Signal Timing  
Pin  
Parameter  
Minimum  
Maximum  
Unit  
TRISTATE  
Time from TRISTATE activate until I/O becomes Hi-Z  
20.8  
ns  
Table 8. 32k/16M Oscillator Signal Timing  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter (peak to peak) for both System PLL and  
MCUPLL  
5
20  
ns  
EXTAL32k input jitter (peak to peak) for MCUPLL only  
EXTAL32k startup time  
800  
5
100  
ns  
ms  
EXTAL16M input jitter (peak to peak)  
EXTAL16M startup time  
TBD  
TBD  
TBD  
Table 9. CLKO Rise/Fall Time (at 30pF Loaded)  
Best  
Case  
Worst  
Case  
Typical  
Units  
Rise Time  
Fall Time  
0.80  
0.74  
1.00  
1.08  
1.40  
1.67  
ns  
ns  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
17  
Specifications  
3.6 Embedded Trace Macrocell  
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the  
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift  
register comprised of the following:  
32-bit data field  
7-bit address field  
A read/write bit  
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field,  
and a 1 into the read/write bit.  
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field  
is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing  
diagram for the ETM9 is shown in Figure 2. See Table 10 on page 18 for the ETM9 timing parameters used in  
Figure 2.  
2a  
1
2b  
3a  
TRACECLK  
3b  
TRACECLK  
(Half-Rate Clocking Mode)  
Output Trace Port  
Valid Data  
Valid Data  
4a  
4b  
Figure 2. Trace Port Timing Diagram  
Table 10. Trace Port Timing Diagram Parameter Table  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency  
0
1.3  
3
85  
0
2
2
2
3
100  
MHz  
ns  
2a  
2b  
3a  
3b  
4a  
4b  
Clock high time  
Clock low time  
Clock rise time  
Clock fall time  
ns  
4
3
ns  
3
3
ns  
Output hold time  
Output setup time  
2.28  
3.42  
ns  
ns  
MC9328MX1 Advance Information, Rev. 4  
18  
Freescale Semiconductor  
Specifications  
3.7 DPLL Timing Specifications  
Parameters of the DPLL are given in Table 11. In this table, Tref is a reference clock period after the pre-divider  
and Tdck is the output double clock period.  
Table 11. DPLL Specifications  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Unit  
Reference clock freq range  
Vcc = 1.8V  
Vcc = 1.8V  
5
5
100  
30  
MHz  
MHz  
Pre-divider output clock  
freq range  
Double clock freq range  
Pre-divider factor (PD)  
Vcc = 1.8V  
80  
1
220  
16  
MHz  
Total multiplication factor  
(MF)  
Includes both integer  
and fractional parts  
5
15  
MF  
integer part  
5
0
1
15  
MF  
numerator  
Should be less than the  
denominator  
1022  
1023  
MF  
denominator  
Pre-multiplier lock-in time  
312.5  
300  
µsec  
Freq lock-in time after  
full reset  
FOL mode for non-integer MF  
(does not include pre-must lock-in time)  
250  
280  
(56 µs)  
Tref  
Freq lock-in time after  
partial reset  
FOL mode for non-integer MF (does not  
include pre-multi lock-in time)  
220  
300  
270  
250  
(~50 µs)  
270  
400  
370  
0.01  
1.5  
Tref  
Phase lock-in time after  
full reset  
FPL mode and integer MF (does not include  
pre-multi lock-in time)  
350  
(70 µs)  
Tref  
Phase lock-in time after  
partial reset  
FPL mode and integer MF (does not include  
pre-multi lock-in time)  
320  
(64 µs)  
Tref  
Freq jitter (p-p)  
0.005  
(0.01%)  
2•Tdck  
ns  
Phase jitter (p-p)  
Integer MF, FPL mode, Vcc=1.8V  
1.0  
(10%)  
Power supply voltage  
Power dissipation  
1.7  
2.5  
4
V
FOL mode, integer MF,  
mW  
fdck = 200 MHz, Vcc = 1.8V  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
19  
Specifications  
3.8 Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and Figure 4.  
NOTE:  
Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up  
to prevent forward biasing.  
90% AVDD  
1
10% AVDD  
POR  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 3. Timing Relationship with POR  
MC9328MX1 Advance Information, Rev. 4  
20  
Freescale Semiconductor  
Specifications  
5
RESET_IN  
14 cycles @ CLK32  
4
HRESET  
RESET_OUT  
6
CLK32  
HCLK  
Figure 4. Timing Relationship with RESET_IN  
Table 12. Reset Module Timing Parameter Table  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
note1  
300  
note1  
300  
1
2
Width of input POWER_ON_RESET  
Width of internal POWER_ON_RESET  
(9600 *CLK32 at 32 KHz)  
300  
300  
ms  
3
4
5
6
7K to 32K-cycle stretcher for SDRAM reset  
7
14  
4
7
14  
7
14  
4
7
14  
Cycles of  
CLK32  
14K to 32K-cycle stretcher for internal system reset  
HRESERT and output reset at pin RESET_OUT  
Cycles of  
CLK32  
Width of external hard-reset RESET_IN  
Cycles of  
CLK32  
4K to 32K-cycle qualifier  
4
4
4
4
Cycles of  
CLK32  
1. POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should  
allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence.  
Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have  
developed a working knowledge of start-up time of their crystals. Typically, start-up times range from  
400 ms to 1.2 seconds for this type of crystal.  
If an external stable clock source (already running) is used instead of a crystal, the width of POR should  
be ignored in calculating timing for the start-up process.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
21  
Specifications  
3.9 External Interface Module  
The External Interface Module (EIM) handles the interface to devices external to the MC9328MX1, including  
generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in  
Figure 5, and Table 13 defines the parameters of signals.  
(HCLK) Bus Clock  
1a  
2a  
3a  
1b  
2b  
3b  
Address  
Chip-select  
Read (Write)  
4a  
5a  
4b  
5b  
OE (rising edge)  
4c  
5c  
4d  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
5d  
6b  
6a  
6a  
LBA (negated falling edge)  
LBA (negated rising edge)  
6c  
7a  
7b  
BCLK (burst clock) - rising edge  
7c  
7d  
BCLK (burst clock) - falling edge  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
DTACK_B  
10a  
10a  
Figure 5. EIM Bus Timing Diagram  
Table 13. EIM Bus Timing Parameter Table  
1.8 ± 0.10V  
3.0 0.3V  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
3.31 9.11  
Min  
Typical Max  
1a  
Clock fall to address valid  
2.48  
2.4  
3.2  
8.8  
ns  
MC9328MX1 Advance Information, Rev. 4  
22  
Freescale Semiconductor  
Specifications  
Table 13. EIM Bus Timing Parameter Table (Continued)  
1.8 ± 0.10V  
3.0 0.3V  
Typical Max  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
1b  
2a  
2b  
3a  
3b  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
Clock fall to address invalid  
1.55  
2.69  
1.55  
1.35  
1.86  
2.32  
2.11  
2.38  
2.17  
1.91  
1.81  
1.97  
1.76  
2.07  
1.97  
1.91  
1.61  
1.61  
1.55  
1.55  
5.54  
0
2.48  
3.31  
2.48  
2.79  
2.59  
2.62  
2.52  
2.69  
2.59  
2.52  
2.42  
2.59  
2.48  
2.79  
2.79  
2.62  
2.62  
2.62  
2.48  
2.59  
5.69  
7.87  
6.31  
6.52  
6.11  
6.85  
6.55  
7.04  
6.73  
5.54  
5.24  
5.69  
5.38  
6.73  
6.83  
6.45  
5.64  
5.84  
5.59  
5.80  
1.5  
2.6  
1.5  
1.3  
1.8  
2.3  
2.1  
2.3  
2.1  
1.9  
1.8  
1.9  
1.7  
2.0  
1.9  
1.9  
1.6  
1.6  
1.5  
1.5  
5.5  
0
2.4  
3.2  
2.4  
2.7  
2.5  
2.6  
2.5  
2.6  
2.5  
2.5  
2.4  
2.5  
2.4  
2.7  
2.7  
2.6  
2.6  
2.6  
2.4  
2.5  
5.5  
7.6  
6.1  
6.3  
5.9  
6.8  
6.5  
6.8  
6.5  
5.5  
5.2  
5.5  
5.2  
6.5  
6.6  
6.4  
5.6  
5.8  
5.4  
5.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
Clock fall to Read (Write) Invalid  
Clock1 rise to Output Enable Valid  
Clock1 rise to Output Enable Invalid  
Clock1 fall to Output Enable Valid  
Clock1 fall to Output Enable Invalid  
Clock1 rise to Enable Bytes Valid  
Clock1 rise to Enable Bytes Invalid  
Clock1 fall to Enable Bytes Valid  
Clock1 fall to Enable Bytes Invalid  
Clock1 fall to Load Burst Address Valid  
Clock1 fall to Load Burst Address Invalid  
Clock1 rise to Load Burst Address Invalid  
Clock1 rise to Burst Clock rise  
Clock1rise to Burst Clock fall  
Clock1 fall to Burst Clock rise  
Clock1 fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
Clock1 rise to Write Data Valid  
Clock1 fall to Write Data Invalid  
Clock1 rise to Write Data Invalid  
DTACK setup time  
1.81  
1.45  
1.63  
2.52  
2.72  
2.48  
6.85  
5.69  
1.8  
1.4  
1.62  
2.5  
2.7  
2.4  
6.8  
5.5  
1. Clock refers to the system clock signal, HCLK, generated from the System DPLL  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
23  
Specifications  
3.9.1 DTACK Signal Description  
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal as a  
data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the  
external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal  
function when the external DTACK signal is used for data acknowledgement.  
3.9.2 DTACK Signal Timing  
Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units of  
measure for this figure are found in the associated tables.  
3.9.2.1 DTACK READ Cycle without DMA  
(3)  
Address  
(2)  
(8)  
CS5  
(1)  
(9)  
programmable  
min 0ns  
EB  
OE  
(5)  
(4)  
DTACK  
(6)  
(10)  
Databus  
(input to MX1)  
(7)  
Figure 6. DTACK READ Cycle without DMA  
Table 14. Parameters for Read Cycle, WSC = 111111, DTACK_SEL=0, HKCL=96MHz  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
3
4
OE and EB assertion time  
CS5 pulse width  
See note 2  
ns  
ns  
ns  
ns  
3T  
46.44  
OE negated to address inactive  
DTACK asserted after CS5 asserted  
1019T  
MC9328MX1 Advance Information, Rev. 4  
24  
Freescale Semiconductor  
Specifications  
Table 14. Parameters for Read Cycle, WSC = 111111, DTACK_SEL=0, HKCL=96MHz (Continued)  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
5
DTACK asserted to OE negated  
Data hold timing after OE negated  
Data ready after DTACK asserted  
OE negated to CS negated  
OE negated after EB negated  
DTACK pulse width  
3T+2.2  
4T+6.86  
ns  
ns  
ns  
ns  
ns  
ns  
6
0
7
8
0
0.5T+0.24  
0.5  
T
0.5T+0.67  
1.5  
9
10  
1T  
3T  
Note:  
0. DTACK assert means DTACK become low level.  
1. T is the system clock period. (For 96MHz system clock)  
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur  
only when EBC bit in CS5L register is clear.  
3. Address becomes valid and CS asserts at the start of read access cycle.  
4. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
3.9.2.2 DTACK Read Cycle DMA Enabled  
(4)  
Address  
(2)  
(9)  
CS5  
(1)  
(10)  
programmable  
min 0ns  
EB  
OE  
(3)  
(6)  
(logic high)  
RW  
(5)  
DTACK  
(7)  
Databus  
(input to MX1)  
(11)  
(8)  
Figure 7. DTACK Read Cycle DMA Enabled  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
25  
Specifications  
Table 15. Parameters for Read Cycle WSC = 111111, DTACK_SEL=0, HCLK=96MHz  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
OE and EB assertion time  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
CS pulse width  
3T  
3
OE negated before CS5 is negated  
Address inactive before CS negated  
DTACK asserted after CS5 asserted  
DTACK asserted to OE negated  
Data hold timing after OE negated  
Data ready after DTACK is asserted  
CS deactive to next CS active  
OE negate after EB negate  
0.5T+0.24  
0.5T+0.67  
4
0.93  
5
1019T  
6
3T+2.2  
4T+6.86  
7
8
0
T
9
T
10  
0.5  
1T  
1.5  
3T  
11  
DTACK pulse width  
Note:  
0. DTACK assert mean DTACK become low.  
1. T is the system clock period. (For 96MHz system clock)  
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only  
when EBC bit in CS5L register is clear.  
3. Address becomes valid and CS asserts at the start of read access cycle.  
4. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
MC9328MX1 Advance Information, Rev. 4  
26  
Freescale Semiconductor  
Specifications  
3.9.2.3 DTACK Write Cycle without DMA  
(5)  
Address  
(3)  
(1)  
programmable  
min 0ns  
CS5  
(10)  
(2)  
programmable  
min 0ns  
EB  
(4)  
(7)  
RW  
(6)  
(logic high)  
DTACK  
OE  
(9)  
(11)  
Databus  
(output from MX1)  
(8)  
Figure 8. DTACK Write Cycle without DMA  
Table 16. Parameters for Write Cycle WSC = 111111, DTACK_SEL=0, HKCL=96MHz  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
CS5 assertion time  
See note 2.  
See note 2  
3T  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
EB assertion time  
3
CS5 pulse width  
4
RW negated before CS5 is negated  
RW negated to Address inactive  
DTACK asserted after CS5 asserted  
DTACK asserted to RW negated  
Data hold timing after RW negated  
Data ready after CS5 is asserted  
EB negated before CS5 is negated  
DTACK pulse width  
1.5T+0.58  
57.31  
1.5T+1.58  
5
1019T  
3T+5.26  
6
7
2T+1.8  
1.5T-0.59  
8
9
T
10  
11  
0.5T+0.74  
1T  
0.5T+2.17  
3T  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
27  
Specifications  
Table 16. Parameters for Write Cycle WSC = 111111, DTACK_SEL=0, HKCL=96MHz (Continued)  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
Note:  
0. DTACK assert mean DTACK become low.  
1. T is the system clock period. (For 96MHz system clock)  
2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmed by WEA bits in the CS5L register.  
3. Address becomes valid and RW asserts at the start of write access cycle.  
4. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
3.9.2.4 DTACK Write Cycle DMA Enabled  
(5)  
Address  
(3)  
(10)  
(1)  
(2)  
programmable  
min 0ns  
CS5  
(11)  
programmable  
min 0ns  
EB  
(4)  
(7)  
RW  
(6)  
(logic high)  
OE  
DTACK  
(9)  
(12)  
Databus  
(output from MX1)  
(8)  
Figure 9. DTACK Write Cycle DMA Enabled  
Table 17. Parameters for Write Cycle WSC = 111111, DTACK_SEL=0, HCLK=96MHz  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
CS5 assertion time  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
EB assertion time  
See note 2  
CS5 pulse width  
3T  
RW negated before CS5 is negated  
Address inactive before CS negated  
DTACK asserted after CS5 asserted  
1.5T+0.58  
1.5T+1.58  
0.93  
1019T  
MC9328MX1 Advance Information, Rev. 4  
28  
Freescale Semiconductor  
Specifications  
Table 17. Parameters for Write Cycle WSC = 111111, DTACK_SEL=0, HCLK=96MHz (Continued)  
(3.0 0.3) V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
7
8
DTACK asserted to RW negated  
Data hold timing after RW negated  
Data ready after CS5 is asserted  
CS deactive to next CS active  
EB negate to CS negate  
2T+1.8  
3T+5.26  
ns  
ns  
ns  
ns  
ns  
ns  
1.5T-0.59  
9
T
10  
T
0.5T+0.74  
1T  
0.5T+2.17  
3T  
11  
12  
DTACK pulse width  
Note:  
0. DTACK assert mean DTACK become low.  
1. T is the system clock period. (For 96MHz system clock)  
2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmed by WEA bits in the CS5L register.  
3. Address becomes valid and RW asserts at the start of write access cycle.  
4.The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
29  
Specifications  
3.9.3 EIM External Bus Timing  
The following timing diagrams show the timing of accesses to memory or a peripheral.  
hclk  
hsel_weim_cs[0]  
htrans  
hwrite  
Seq/Nonseq  
Read  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
BCLK (burst clock)  
ADDR  
Last Valid Address  
V1  
CS2  
R/W  
Read  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
V1  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 10. WSC = 1, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
30  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Address  
V1  
CS0  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
Write Data (V1)  
Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
31  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS0  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
1/2 Half Word  
2/2 Half Word  
DATA  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
32  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS0  
R/W  
LBA  
Write  
OE  
EB  
DATA  
1/2 Half Word  
2/2 Half Word  
Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
33  
Specifications  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3]  
R/W  
BA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
34  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS3  
R/W  
LBA  
OE  
Write  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
35  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Read  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
36  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
37  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
38  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
39  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 20. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
40  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
OE  
Write  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
41  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
Last Valid Data  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
CS2  
R/W  
LBA  
Read  
Write  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
42  
Freescale Semiconductor  
Specifications  
Read  
Idle  
Write  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
Write  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
43  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
44  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Write Data  
Read Data  
Last Valid Data  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V8  
CS4  
R/W  
LBA  
OE  
Read  
Write  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
Read Data  
DATA  
DATA  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
45  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
BCLK (burst clock)  
ADDR  
Last Valid  
Address V1  
Address V2  
CNC  
CS4  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
Read Data  
(V1)  
Read Data  
(V2)  
DATA  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
46  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle Nonseq  
hwrite  
haddr  
Write  
V8  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
Last Valid Data  
Read Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
CNC  
CS4  
R/W  
LBA  
OE  
Read  
Write  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
47  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Nonse  
Read  
V5  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V5  
CS2  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 Word V2 Word  
V5 Word V6 Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
48  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Last Valid Addr  
Address V1  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 29. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
49  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Seq  
Nonseq  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
CS2  
Last Valid  
Address V1  
Address V2  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 30. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
50  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
Non  
seq  
Idle  
htrans  
hwrite  
Seq  
Read  
V2  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
Last  
ADDR  
CS2  
Address V1  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
51  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Non  
seq  
Idle  
Seq  
Read  
V2  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last  
Address V1  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
MC9328MX1 Advance Information, Rev. 4  
52  
Freescale Semiconductor  
Specifications  
LSCLK  
LD[15:0]  
1
Figure 33. SCLK to LD Timing Diagram  
Table 18. LCDC SCLK Timing  
3.0 +/- 0.3V  
Num  
Characteristic  
Unit  
Minimum  
Maximum  
1
SCLK to LD valid  
3
ns  
3.9.4 Non-TFT Panel Timing  
T1  
T1  
VSYN  
T3  
T4  
T2  
T2  
XMAX  
HSYN  
SCLK  
Ts  
LD[15:0]  
Figure 34. Non-TFT Panel Timing  
Table 19. Non TFT Panel Timing Diagram  
Allowed Register Minimum  
Symbol  
Parameter  
Actual Value  
Unit  
Value  
T1  
T2  
T3  
T4  
HSYN to VSYN delay  
HSYN pulse width  
VSYN to SCLK  
0
0
0
HWAIT2+2  
HWIDTH+1  
0<= T3<=Ts  
HWAIT1+1  
Tpix  
Tpix  
SCLK to HSYN  
Tpix  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
53  
Specifications  
VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all  
these 3 signals are active high.  
Ts is the shift clock period.  
Ts = Tpix * (panel data bus width).  
Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).  
Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.  
Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.  
MC9328MX1 Advance Information, Rev. 4  
54  
Freescale Semiconductor  
Specifications  
3.10 Pen ADC Specifications  
The specifications for the pen ADC are shown in Table 20 through Table 22.  
Table 20. Pen ADC System Performance  
Full Range Resolution1  
Non-Linearity Error1  
Accuracy 1  
13 bits  
4 bits  
9 bits  
1. Tested under input = 0~1.8V at 25°C  
Table 21. Pen ADC Test Conditions  
Vp max 1800 mV ip max +7 µA  
Vp min  
Vn  
GND  
GND  
ip min  
in  
1.5 µA  
1.5 µA  
Sample frequency  
Sample rate  
12 MHz  
1.2 KHz  
100 Hz  
Input frequency  
Input range  
0–1800 mV  
Note: Ru1 = Ru2 = 200K  
Table 22. Pen ADC Absolute Rating  
ip max  
ip min  
in max  
in min  
+9.5 µA  
-2.5 µA  
+9.5 µA  
-2.5 µA  
3.11 ASP Touch Panel Controller  
The following sections contain the electrical specifications of the ASP touch panel controller. The value of  
parameters and their corresponding measuring conditions are mentioned as well.  
3.11.1 Electrical Specifications  
Test conditions: Temperature = 25º C, QVDD = 1800mV.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
55  
Specifications  
Table 23. ASP Touch Panel Controller Electrical Spec  
Parameter  
Minimum  
Type  
Maximum  
Unit  
Offset  
32768  
8199  
Offset Error  
mV-1  
Gain  
13.65  
Gain Error  
DNL  
9
33%  
8
Bits  
Bits  
Bits  
mV  
mV  
Ohm  
INL  
0
Accuracy (without missing code)  
Operating Voltage Range (Pen)  
Operating Voltage Range (U)  
On-resistance of switches SW[8:1]  
8
9
QVDD  
QVDD  
Negative QVDD  
10  
Note that QVDD should be 1800mV.  
3.11.2 Gain Calculations  
The ideal mapping of input voltage to output digital sample is defined as follows:  
Sample  
65535  
Smax  
G0  
C0  
Vi  
2400  
-2400  
1800  
Figure 35. Gain Calculations  
In general, the mapping function is:  
S = G * V + C  
Where V is input, S is output, G is the slope, and C is the y-intercept.  
Nominal Gain G0 = 65535 / 4800 = 13.65mV-1  
Nominal Offset C0 = 65535 / 2 = 32767  
MC9328MX1 Advance Information, Rev. 4  
56  
Freescale Semiconductor  
Specifications  
3.11.3 Offset Calculations  
The ideal mapping of input voltage to output digital sample is defined as:  
Sample  
65535  
Smax  
G0  
C0  
Vi  
2400  
-2400  
1800  
Figure 36. Offset Calculations  
In general, the mapping function is:  
S = G * V + C  
Where V is input, S is output, G is the slope, and C is the y-intercept.  
Nominal Gain G0 = 65535 / 4800 = 13.65mV-1  
Nominal Offset C0 = 65535 / 2 = 32767  
3.11.4 Gain Error Calculations  
Gain error calculations are made using the information in this section.  
Sample  
Gmax  
65535  
Smax  
G0  
C0  
Vi  
2400  
- 2400  
1800  
Figure 37. Gain Error Calculations  
Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the maximum gain  
allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit range, 65535.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
57  
Specifications  
Maximum Offset Gmax,  
Gmax = (65535 - C0) / 1800  
= (65535 - 32767) / 1800  
= 18.20  
Gain Error Gr,  
Gr  
= (Gmax - G0) / G0 * 100%  
= (18.20 - 13.65) / 13.65 * 100%  
= 33%  
3.12 Bluetooth Accelerator  
IMPORTANT:  
On-chip accelerator hardware is not supported by software. An external  
Bluetooth chip interfaced to a UART is recommended.  
The Bluetooth Accelerator (BTA) radio interface supports the Motorola Radio, MC13180 using an SPI interface.  
This section provides the data bus timing diagrams and SPI interface timing diagrams shown in Figure 38 and  
Figure 39 on page 59, and the associated parameters shown in Table 24 and Table 25 on page 59.  
2
BT CLK (BT1)  
7
Receive  
FS (BT5)  
1
PKT DATA (BT3)  
3
4
RXTX_EN (BT9)  
PKT DATA (BT2)  
Transmit  
8
5
6
Figure 38. Motorola MC13180 Data Bus Timing Diagram  
Table 24. Motorola MC13180 Data Bus Timing Parameter Table  
Ref No.  
Parameter  
Minimum Typical Maximum Unit  
1
2
FrameSync setup time relative to BT CLK rising edge1  
FrameSync hold time relative to BT CLK rising edge1  
4
ns  
ns  
12  
MC9328MX1 Advance Information, Rev. 4  
58  
Freescale Semiconductor  
Specifications  
Table 24. Motorola MC13180 Data Bus Timing Parameter Table (Continued)  
Ref No.  
Parameter  
Minimum Typical Maximum Unit  
3
4
5
6
7
8
Receive Data setup time relative to BT CLK rising edge1  
Receive Data hold time relative to BT CLK rising edge1  
Transmit Data setup time relative to RXTX_EN rising edge2  
TX DATA period  
6
ns  
ns  
µs  
ns  
%
13  
172.5  
192.5  
1000 +/- 0.02  
BT CLK duty cycle  
40  
4
60  
10  
Transmit Data hold time relative to RXTX_EN falling edge  
µs  
1. Please refer to Motorola 2.4 GHz RF Transceiver Module (MC13180) Technical Data documentation.  
2. The setup and hold times of RX_TX_EN can be adjusted by programming Time_A_B register  
(0x00216050) and RF_Status (0x0021605C) registers.  
5
1
4
6
SPI CLK (BT13)  
SPI_EN (BT11)  
9
8
SPI_DATA_OUT (BT12)  
SPI_DATA_IN (BT4)  
3
7
2
Figure 39. SPI Interface Timing Diagram Using Motorola MC13180  
Table 25. SPI Interface Timing Parameter Table Using Motorola MC13180  
Ref No.  
Parameter  
Minimum Maximum  
Unit  
1
2
3
4
5
6
SPI_EN setup time relative to rising edge of SPI_CLK  
Transmit data delay time relative to rising edge of SPI_CLK  
Transmit data hold time relative to rising edge of SPI_EN  
SPI_CLK rise time  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
15  
15  
25  
25  
0
0
SPI_CLK fall time  
0
SPI_EN hold time relative to falling edge of SPI_CLK  
15  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
59  
Specifications  
Table 25. SPI Interface Timing Parameter Table Using Motorola MC13180 (Continued)  
Ref No.  
Parameter  
Minimum Maximum  
Unit  
7
8
9
Receive data setup time relative to falling edge of SPI_CLK1  
Receive data hold time relative to falling edge of SPI_CLK1  
SPI_CLK frequency, 50% duty cycle required1  
15  
15  
ns  
ns  
20  
MHz  
1. The SPI_CLK clock frequency and duty cycle, setup and hold times of receive data can be set by  
programming SPI_Control (0x00216138) register together with system clock.  
3.13 SPI Timing Diagrams  
To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a master,  
two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY signal (input).  
The SPI 1 Sample Period Control Register (PERIODREG1) and the SPI 2 Sample Period Control Register  
(PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or SPI 2. When the SPI 1  
module is configured as a slave, the user can configure the SPI 1 Control Register (CONTROLREG1) to match the  
external SPI master’s timing. In this configuration, SS becomes an input signal, and is used to latch data into or  
load data out to the internal data shift registers, as well as to increment the data FIFO.  
.
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 40. Master SPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 41. Master SPI Timing Diagram Using SPI_RDY Level Trigger  
MC9328MX1 Advance Information, Rev. 4  
60  
Freescale Semiconductor  
Specifications  
SS (output)  
SCLK, MOSI, MISO  
Figure 42. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 43. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 44. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge  
Table 26. Timing Parameter Table for Figure 40 through Figure 44  
Ref  
Parameter  
Minimum  
Maximum  
Unit  
No.  
2T 1  
1
SPI_RDY to SS output low  
ns  
ns  
3·Tsclk 2  
2·Tsclk  
0
2
SS output low to first SCLK edge  
3
4
5
Last SCLK edge to SS output high  
SS output high to SPI_RDY low  
SS output pulse width  
ns  
ns  
ns  
Tsclk + WAIT 3  
6
7
SS input low to first SCLK edge  
SS input pulse width  
T
T
ns  
ns  
1. T = CSPI system clock period (PERCLK2).  
2. Tsclk = Period of SCLK.  
3. WAIT = Number of bit clocks (SCLK) or 32.768 KHz clocks per Sample  
Period Control Register.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
61  
Specifications  
3.14 LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD controller  
with various display configurations, refer to the LCD controller chapter of the MC9328MX1 Reference Manual.  
LSCLK  
LD[15:0]  
1
Figure 45. SCLK to LD Timing Diagram  
Table 27. LCDC SCLK Timing Parameter Table  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
SCLK to LD valid  
2
ns  
Non-display region  
Display region  
T3  
T1  
T4  
VSYN  
HSYN  
OE  
T2  
Line Y  
Line 1  
Line Y  
LD[15:0]  
T6  
T7  
T5  
XMAX  
HSYN  
SCLK  
OE  
T8  
(1,1)  
(1,2)  
LD[15:0]  
VSYN  
(1,X)  
Figure 46. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing Diagram  
MC9328MX1 Advance Information, Rev. 4  
62  
Freescale Semiconductor  
Specifications  
Table 28. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing Table  
Symbol  
Description  
Minimum  
Corresponding Register Value  
Unit  
T1  
End of OE to beginning of VSYN  
T5+T6  
(VWAIT1·T2)+T5+T6+T7+T9  
Ts  
+T7+T9  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
HSYN period  
XMAX+5  
XMAX+T5+T6+T7+T9+T10  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
ns  
Ts  
VSYN pulse width  
T2  
2
VWIDTH·(T2)  
VWAIT2·(T2)  
HWIDTH+1  
HWAIT2+1  
HWAIT1+1  
3
End of VSYN to beginning of OE  
HSYN pulse width  
1
End of HSYN to beginning to T9  
End of OE to beginning of HSYN  
SCLK to valid LD data  
1
1
-3  
2
End of HSYN idle2 to VSYN edge  
(for non-display region)  
2
T9  
T10  
End of HSYN idle2 to VSYN edge  
(for Display region)  
1
1
2
1
1
2
Ts  
Ts  
Ts  
VSYN to OE active (Sharp = 0),  
when VWAIT2 = 0  
T10  
VSYN to OE active (Sharp = 1),  
when VWAIT2 = 0  
Note:  
Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.  
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 46, all 3 signals are active low.  
The polarity of SCLK and LD[15:0] can also be programmed.  
SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 46, SCLK is  
always active.  
For T9 non-display region, VSYN is non-active. It is used as an reference.  
XMAX is defined in pixels.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
63  
Specifications  
3.15 Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal MMC/SD  
module data bus, and internal system FIFO access through a dedicated state machine that monitors the status of  
FIFO content (empty or full), FIFO address, and byte/block counters for the MMC/SD module (inner system) and  
the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6a  
6b  
Figure 47. Chip-Select Read Cycle Timing Diagram  
Table 29. SDHC Bus Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
1
CLK frequency at Data transfer Mode (PP)110/30 cards  
CLK frequency at Identification Mode2  
Clock high time110/30 cards  
0
0
25/5  
400  
0
0
25/5  
400  
MHz  
KHz  
ns  
2
3a  
3b  
4a  
6/33  
15/75  
10/50  
10/50  
Clock low time110/30 cards  
ns  
Clock fall time110/30 cards  
10/50  
ns  
10/50 (5.00)3  
14/67 (6.67)3  
4b  
Clock rise time110/30 cards  
10/50  
ns  
5a  
5b  
6a  
6b  
7
Input hold time310/30 cards  
Input setup time310/30 cards  
Output hold time310/30 cards  
Output setup time310/30 cards  
Output delay time3  
5.7/5.7  
5.7/5.7  
5.7/5.7  
5.7/5.7  
0
5/5  
5/5  
5/5  
5/5  
0
ns  
ns  
ns  
ns  
ns  
16  
14  
1. CL 100 pF / 250 pF (10/30 cards)  
2. CL 250 pF (21 cards)  
3. CL 25 pF (1 card)  
MC9328MX1 Advance Information, Rev. 4  
64  
Freescale Semiconductor  
Specifications  
3.15.1 Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card response  
to the host command starts after exactly NID clock cycles. For the card address assignment, SET_RCA is also  
processed in the open-drain mode. The minimum delay between the host command and card response is NCR  
clock cycles as illustrated in Figure 48. The symbols for Figure 48 through Figure 52 are defined in Table 30.  
Table 30. State Signal Parameters for Figure 48 through Figure 52  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
High impedance state  
Data bits  
S
T
Start bit (0)  
D
Transmitter bit  
(Host = 1, Card = 0)  
*
Repetition  
P
E
One-cycle pull-up (1)  
End bit (1)  
CRC  
Cyclic redundancy check bits (7 bits)  
N
ID cycles  
Host Command  
CID/OCR  
Content  
CMD  
CMD  
Content  
******  
CRC  
ST  
E Z  
Z S T  
Z Z Z  
Identification Timing  
N
CR cycles  
Host Command  
Content  
CRC  
CID/OCR  
******  
Content  
ST  
E Z  
Z S T  
Z Z Z  
SET_RCA Timing  
Figure 48. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 49 on  
page 66, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a period of  
two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the responding card.  
The other two diagrams show the separating periods NRC and NCC  
.
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
65  
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CMD  
Content  
******  
CRC  
CRC  
E Z Z Z  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
Content  
CMD  
******  
CRC  
CRC  
E Z Z Z  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
E Z  
******  
ST  
Z S T  
Timing of command sequences (all modes)  
Figure 49. Timing Diagrams at Data Transfer Mode  
Figure 50 on page 67 shows basic read operation timing. In a read operation, the sequence starts with a single block  
read command (which specifies the start address in the argument field). The response is sent on the SD_CMD lines  
as usual. Data transmission from the card starts after the access time delay NAC, beginning from the last bit of the  
read command. If the system is in multiple block read mode, the card sends a continuous flow of data blocks with  
distance NAC until the card sees a stop transmission command. The data stops two clock cycles after the end bit of  
the stop command.  
MC9328MX1 Advance Information, Rev. 4  
66  
Freescale Semiconductor  
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
******  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
ST  
E Z Z P  
Z Z P  
P S T  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
P S DDDD  
P
P S DDDD  
NAC cycles  
NAC cycles  
Timing of multiple block read  
NCR cycles  
Host Command  
Response  
CMD  
Content  
CRC  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDD E Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 50. Timing Diagrams at Data Read  
Figure 51 on page 68 shows the basic write operation timing. As with the read operation, after the card response,  
the data transfer starts after NWR cycles. The data is suffixed with CRC check bits to allow the card to check for  
transmission errors. The card sends back the CRC check result as a CC status token on the data line. If there was a  
transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC status (010) is returned.  
The card expects a continuous flow of data blocks if it is configured to multiple block mode, with the flow  
terminated by a stop transmission command.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
67  
Specifications  
Figure 51. Timing Diagrams at Data Write  
MC9328MX1 Advance Information, Rev. 4  
68  
Freescale Semiconductor  
Specifications  
The stop transmission command may occur when the card is in different states. Figure 52 shows the different  
scenarios on the bus.  
Figure 52. Stop Transmission During Different Scenarios  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
69  
Specifications  
Table 31. Timing Values for Figure 48 through Figure 52  
Parameter Symbol Minimum Maximum  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)  
Unit  
Command response cycle  
Identification response cycle  
Access time delay cycle  
Command read cycle  
NCR  
NID  
2
5
2
8
8
2
2
64  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
5
NAC  
NRC  
NCC  
NWR  
NST  
TAAC + NSAC  
2
Command-command cycle  
Command write cycle  
Stop transmission cycle  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104]  
3.15.2 SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the interrupt  
response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data in this mode. The  
memory controller generates an interrupt according to this low and the system interrupt continues until the source  
is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the "Interrupt Period"  
during the data access, and the controller must sample SD_DAT[1] during this short period to determine the IRQ  
status of the attached card. The interrupt period only happens at the boundary of each block (512 bytes).  
CMD  
Content  
CRC  
Response  
******  
ST  
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
S
E
For 4-bit  
L H  
DAT[1]  
Interrupt Period  
For 1-bit  
Figure 53. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In this  
mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps the clock  
running, and allows the user to submit commands as normal. After all commands are submitted, the user can switch  
back to the data transfer operation and all counter and status values are resumed as access continues.  
MC9328MX1 Advance Information, Rev. 4  
70  
Freescale Semiconductor  
Specifications  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
For 4-bit  
DAT[2]  
Block Data  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
For 4-bit  
Figure 54. SDIO ReadWait Timing Diagram  
3.16 Memory Stick Host Controller  
The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS, MS_SDIO,  
and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in either four-state or  
two-state access mode.  
The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according to its  
attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet transmissions occur.  
During the BS1, BS2, and BS3 states, packet communications are executed. The BS1, BS2, and BS3 states are  
regarded as one packet length and one communication transfer is always completed within one packet length (in  
four-state access mode).  
The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When an error  
occurs during packet communication, the mode is shifted to two-state access mode, and the BS0 and BS1 bus states  
are automatically repeated to avoid a bus collision on the SDIO.  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
71  
Specifications  
2
3
5
1
4
MS_SCLKI  
6
8
7
MS_SCLKO  
MS_BS  
9
10  
11  
12  
11  
12  
MS_SDIO (output)  
14  
13  
MS_SDIO (input)  
(RED bit = 0)  
15  
16  
MS_SDIO (input)  
(RED bit = 1)  
Figure 55. MSHC Signal Timing Diagram  
Table 32. MSHC Signal Timing Parameter Table  
Parameter  
Ref No.  
Minimum Maximum Unit  
1
2
MS_SCLKI frequency  
20  
20  
25  
MHz  
ns  
MS_SCLKI high pulse width  
MS_SCLKI low pulse width  
MS_SCLKI rise time  
3
ns  
4
3
ns  
5
MS_SCLKI fall time  
3
ns  
6
MS_SCLKO frequency1  
MS_SCLKO high pulse width1  
MS_SCLKO low pulse width1  
MS_SCLKO rise time1  
MS_SCLKO fall time1  
25  
MHz  
ns  
7
20  
15  
8
ns  
9
5
ns  
10  
5
ns  
MC9328MX1 Advance Information, Rev. 4  
72  
Freescale Semiconductor  
Specifications  
Table 32. MSHC Signal Timing Parameter Table (Continued)  
Parameter Minimum Maximum Unit  
Ref No.  
11  
12  
13  
14  
15  
16  
MS_BS delay time1  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
MS_SDIO output delay time1,2  
MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1)4  
MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4  
18  
0
23  
0
1. Loading capacitor condition is less than or equal to 30pF.  
2. An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin,  
because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin  
direction changes.  
3. If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.  
4. If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.  
3.17 Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected clock signal  
is passed through a divider and a prescaler before being input to the counter. The output is available at the pulse-  
width modulator output (PWMO) external pin.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 56. PWM Output Timing Diagram  
Table 33. PWM Output Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
System CLK frequency1  
Clock high time1  
0
87  
0
100  
MHz  
ns  
2a  
2b  
3.3  
7.5  
5/10  
5/10  
Clock low time1  
ns  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
73  
Specifications  
Table 33. PWM Output Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3a  
3b  
4a  
4b  
Clock fall time1  
5
6.67  
5
5
5/10  
5/10  
ns  
ns  
ns  
ns  
Clock rise time1  
Output delay time1  
Output setup time1  
5.7  
5.7  
1. CL of PWMO = 30 pF  
3.18 SDRAM Memory Controller  
A write to an address within the memory region initiates the program sequence. The first command issued to the  
SyncFlash is Load Command Register. A [7:0] determine which operation the command performs. For this write  
setup operation, an address of 0x40 is hardware generated. The bank and other address lines are driven with the  
address to be programmed. The next command is Active which registers the row address and confirms the bank  
address. The third command supplies the column address, re-confirms the bank address, and supplies the data to be  
written. SyncFlash does not support burst writes, therefore a Burst Terminate command is not required.  
A read to the memory region initiates the status read sequence. The first command issued to the SyncFlash is the  
Load Command Register with A [7:0] set to 0x70 which corresponds to the Read Status Register operation. The  
bank and other address lines are driven to the selected address. The second command is Active which sets up the  
status register read. The bank and row addresses are driven during this command. The third command of the triplet  
is Read. Bank and column addresses are driven on the address bus during this command. Data is returned from  
memory on the low order 8 data bits following the CAS latency.  
MC9328MX1 Advance Information, Rev. 4  
74  
Freescale Semiconductor  
Specifications  
1
SDCLK  
CS  
2
3S  
3
3H  
3S  
RAS  
CAS  
3S  
3H  
3S  
3H  
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
8
5
6
Data  
7
3S  
DQM  
3H  
Note: CKE is high during the read/write cycle.  
Figure 57. SDRAM/SyncFlash Read Cycle Timing Diagram  
Table 34. SDRAM Timing Parameter Table  
1.8V  
3.0V  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
1
2
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
3
10.4  
3.42  
10  
3
3S  
CS, RAS, CAS, WE, DQM setup time  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
75  
Specifications  
Table 34. SDRAM Timing Parameter Table (Continued)  
1.8V  
3.0V  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
3H  
4S  
4H  
5
CS, RAS, CAS, WE, DQM hold time  
2.28  
3.42  
2.28  
2
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup time  
Address hold time  
2
SDRAM access time (CL = 3)  
SDRAM access time (CL = 2)  
SDRAM access time (CL = 1)  
Data out hold time  
6.84  
6.84  
22  
6
5
6
5
22  
6
2.85  
2.5  
7
Data out high-impedance time (CL = 3)  
Data out high-impedance time (CL = 2)  
Data out high-impedance time (CL = 1)  
Active to read/write command period (RC = 1)  
6.84  
6.84  
22  
6
7
6
7
22  
1
1
8
tRCD  
tRCD  
1. tRCD = SDRAM clock cycle time. The tRCD setting can be found in the MC9328MX1 reference manual.  
MC9328MX1 Advance Information, Rev. 4  
76  
Freescale Semiconductor  
Specifications  
SDCLK  
CS  
1
3
2
RAS  
CAS  
6
WE  
ADDR  
DQ  
4
5
7
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQM  
Figure 58. SDRAM/SyncFlash Write Cycle Timing Diagram  
Table 35. SDRAM Write Timing Parameter Table  
1.8V  
Maximum  
3.3V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Minimum  
Maximum  
1
2
3
4
5
6
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
10.4  
3.42  
2.28  
10  
3
Address hold time  
2
Precharge cycle period1  
2
2
tRP  
tRP  
2
2
7
Active to read/write command delay  
ns  
tRCD  
tRCD  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
77  
Specifications  
Table 35. SDRAM Write Timing Parameter Table (Continued)  
1.8V 3.3V  
Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Minimum  
Maximum  
8
9
Data setup time  
Data hold time  
4.0  
2
2
ns  
ns  
2.28  
1. Precharge cycle timing is included in the write timing diagram.  
2. RP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference  
manual.  
t
SDCLK  
CS  
1
3
2
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 59. SDRAM Refresh Timing Diagram  
Table 36. SDRAM Refresh Timing Parameter Table  
1.8V  
3.3V  
Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
1
SDRAM clock high-level width  
2.67  
4
ns  
MC9328MX1 Advance Information, Rev. 4  
78  
Freescale Semiconductor  
Specifications  
Table 36. SDRAM Refresh Timing Parameter Table (Continued)  
1.8V 3.3V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
2
3
4
5
6
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
6
4
10  
3
ns  
ns  
ns  
ns  
ns  
10.4  
3.42  
2.28  
Address hold time  
2
1
1
Precharge cycle period  
tRP  
tRP  
1
1
7
Auto precharge command period  
ns  
tRC  
tRC  
1. tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference  
manual.  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
BA  
DQ  
DQM  
CKE  
Figure 60. SDRAM Self-Refresh Cycle Timing Diagram  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
79  
Specifications  
3.19 USB Device Port  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers,  
and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk  
data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and  
how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet  
transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of  
packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is  
no end-of-transfer.  
USBD_AFE  
(Output)  
t VMO_ROE  
4
t ROE_VPO  
1
USBD_ROE  
(Output)  
6
3
tPERIOD  
tVPO_ROE  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
tROE_VMO  
tFEOPT  
USBD_SUSPND  
(Output)  
2
5
USBD_RCV  
(Input)  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 61. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 37. USB Device Timing Parameter Table for Data Transfer to USB Transceiver (TX)  
Ref No.  
Parameter  
Minimum Maximum  
Unit  
1
2
3
4
5
t
t
t
t
t
ROE_VPO; USBD_ROE active to USBD_VPO low  
ROE_VMO; USBD_ROE active to USBD_VMO high  
VPO_ROE; USBD_VPO high to USBD_ROE deactivated  
VMO_ROE; USBD_VMO low to USBD_ROE deactivated (includes SE0)  
FEOPT; SE0 interval of EOP  
83.14  
81.55  
83.47  
81.98  
ns  
ns  
ns  
ns  
ns  
83.54  
83.80  
248.90  
160.00  
249.13  
175.00  
MC9328MX1 Advance Information, Rev. 4  
80  
Freescale Semiconductor  
Specifications  
Table 37. USB Device Timing Parameter Table for Data Transfer to USB Transceiver (TX) (Continued)  
Ref No.  
Parameter  
Minimum Maximum  
11.97 12.03  
Unit  
6
tPERIOD; Data transfer rate  
Mb/s  
USBD_AFE  
(Output)  
USBD_ROE  
(Output)  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
USBD_SUSPND  
(Output)  
USBD_RCV  
(Input)  
1
tFEOPR  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 62. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 38. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)  
Ref  
Parameter  
Minimum  
Maximum Unit  
No.  
1
t
FEOPR; Receiver SE0 interval of EOP  
82  
ns  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
81  
Specifications  
3.20 I2C Module  
The I2C communication protocol consists of seven elements: START, Data Source/Recipient, Data Direction,  
Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
5
3
4
SCL  
2
6
1
2
Figure 63. Definition of Bus Timing for I C  
2
Table 39. I C Bus Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
182  
0
171  
160  
0
150  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
11.4  
80  
10  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
120  
320  
160  
480  
182.4  
3.21 Synchronous Serial Interface  
The MC9328MX1 processor contains two identical SSI modules. The transmit and receive sections of the SSI can  
be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and  
frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and  
frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock  
runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external  
clock timing diagrams are shown in Figure 65 through Figure 67 on page 84.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used  
in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division  
multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These  
distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.  
MC9328MX1 Advance Information, Rev. 4  
82  
Freescale Semiconductor  
Specifications  
1
STCK Output  
4
2
STFS (bl) Output  
STFS (wl) Output  
6
8
12  
10  
11  
32  
STXD Output  
31  
SRXD Input  
Note: SRXD input in synchronous mode only.  
Figure 64. SSI Transmitter Internal Clock Timing Diagram  
1
SRCK Output  
3
5
SRFS (bl) Output  
SRFS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 65. SSI Receiver Internal Clock Timing Diagram  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
83  
Specifications  
15  
16  
17  
STCK Input  
18  
20  
STFS (bl) Input  
STFS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only.  
Figure 66. SSI Transmitter External Clock Timing Diagram  
15  
16  
17  
SRCK Input  
19  
21  
SRFS (bl) Input  
SRFS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 67. SSI Receiver External Clock Timing Diagram  
Table 40. SSI 1 Timing Parameter Table  
1.8V +/- 0.10V  
Minimum Maximum  
Internal Clock Operation1 (Port C Primary Function)2  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum  
1
2
STCK/SRCK clock period1  
95  
83.3  
1.3  
ns  
ns  
STCK high to STFS (bl) high3  
1.5  
4.5  
3.9  
MC9328MX1 Advance Information, Rev. 4  
84  
Freescale Semiconductor  
Table 40. SSI 1 Timing Parameter Table (Continued)  
NOTES  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3
4
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
-1.2  
2.5  
-1.7  
4.3  
-1.1  
2.2  
-1.5  
3.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
0.1  
-0.8  
4.45  
-1.5  
4.33  
-0.8  
15.73  
0.1  
-0.8  
3.9  
6
1.48  
-1.1  
2.51  
0.1  
1.3  
7
-1.1  
2.2  
-1.5  
3.8  
8
9
0.1  
-0.8  
13.8  
10  
STCK high to STXD valid from high  
impedance  
14.25  
12.5  
11a  
11b  
12  
STCK high to STXD high  
0.91  
0.57  
12.88  
21.1  
0
3.08  
3.19  
13.57  
0.8  
0.5  
11.3  
18.5  
0
2.7  
2.8  
11.9  
ns  
ns  
ns  
ns  
ns  
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
13  
14  
External Clock Operation (Port C Primary Function)2  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
STCK/SRCK clock period1  
92.8  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
27.1  
61.1  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
28.16  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
24.7  
0
0
0
0
0
0
0
STCK high to STXD valid from high  
impedance  
18.01  
15.8  
27a  
STCK high to STXD high  
8.98  
18.13  
7.0  
15.9  
ns  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
85  
Specifications  
Table 40. SSI 1 Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
27b  
28  
STCK high to STXD low  
9.12  
18.47  
1.14  
0
18.24  
28.5  
8.0  
16.2  
1.0  
0
16.0  
25.0  
ns  
ns  
ns  
ns  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
29  
30  
Synchronous Internal Clock Operation (Port C Primary Function)2  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
15.4  
0
13.5  
0
ns  
ns  
Synchronous External Clock Operation (Port C Primary Function)2  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a  
non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync  
STFS/SRFS shown in the tables and in the figures.  
2. There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (PC3 – PC8)  
and Port B alternate function (PB14 – PB19). When SSI signals are configured as outputs, they can be  
viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as  
input, the SSI module selects the input based on status of the FMCR register bits in the Clock controller  
module (CRM). By default, the input are selected from Port C primary function.  
3. bl = bit length; wl = word length.  
Table 41. SSI 2 Timing Parameter Table  
1.8V +/- 0.10V  
Minimum Maximum  
Internal Clock Operation1 (Port B Alternate Function)2  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum  
1
2
3
4
5
STCK/SRCK clock period1  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
95  
83.3  
1.5  
ns  
ns  
ns  
ns  
ns  
1.7  
4.8  
4.2  
1.0  
4.6  
2.0  
-0.1  
3.08  
1.25  
1.0  
-0.1  
2.7  
5.24  
2.28  
1.1  
MC9328MX1 Advance Information, Rev. 4  
86  
Freescale Semiconductor  
Specifications  
Table 41. SSI 2 Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
6
7
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
1.71  
-0.1  
4.79  
1.0  
1.5  
-0.1  
2.7  
4.2  
1.0  
ns  
ns  
ns  
ns  
ns  
8
3.08  
1.25  
14.93  
5.24  
2.28  
16.19  
4.6  
9
1.1  
2.0  
10  
STCK high to STXD valid from high  
impedance  
13.1  
14.2  
11a  
11b  
12  
STCK high to STXD high  
1.25  
2.51  
12.43  
20  
3.42  
3.99  
14.59  
1.1  
2.2  
10.9  
17.5  
0
3.0  
3.5  
12.8  
ns  
ns  
ns  
ns  
ns  
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
13  
14  
0
External Clock Operation (Port B Alternate Function)2  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
STCK/SRCK clock period1  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
29.07  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
25.5  
0
0
0
0
0
0
0
STCK high to STXD valid from high  
impedance  
18.9  
16.6  
27a  
27b  
STCK high to STXD high  
STCK high to STXD low  
9.23  
20.75  
21.32  
8.1  
9.3  
18.2  
18.7  
ns  
ns  
10.60  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
87  
Specifications  
Table 41. SSI 2 Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
28  
29  
30  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
17.90  
1.14  
0
29.75  
15.7  
1.0  
0
26.1  
ns  
ns  
ns  
Synchronous Internal Clock Operation (Port B Alternate Function)2  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
18.81  
0
16.5  
0
ns  
ns  
Synchronous External Clock Operation (Port B Alternate Function)2  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1. All the timings for both SSI modules are given for a non-inverted serial clock polarity (TSCKP/RSCKP =  
0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync  
STFS/SRFS shown in the tables and in the figures.  
2. There is one set of I/O signals for the SSI2 module. They are from Port C alternate function (PC19 –  
PC24). When SSI signals are configured as outputs, they can be viewed at Port C alternate function a.  
When SSI signals are configured as inputs, the SSI module selects the input based on FMCR register bits  
in the Clock controller module (CRM). By default, the input is selected from Port C alternate function.  
3. bl = bit length; wl = word length  
3.22 CMOS Sensor Interface  
The CSI module consists of a control register to configure the interface timing, a control register for statistic data  
generation, a status register, interface logic, a 32 × 32 image data receive FIFO, and a 16 × 32 statistic data FIFO.  
3.22.1 Gated Clock Mode  
Figure 68 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the  
CSI is programmed to received data on the positive edge. Figure 69 on page 89 shows the timing diagram when the  
CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative  
edge. The parameters for the timing diagrams are listed in Table 42 on page 89.  
MC9328MX1 Advance Information, Rev. 4  
88  
Freescale Semiconductor  
Specifications  
1
VSYNC  
7
HSYNC  
PIXCLK  
5
6
2
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
4
3
Figure 68. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
7
HSYNC  
PIXCLK  
5
6
2
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
4
3
Figure 69. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 42. Gated Clock Mode Timing Parameters  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
csi_vsync to csi_hsync  
9 * THCLK  
ns  
2
3
csi_hsync to csi_pixclk  
csi_d setup time  
3
1
(Tp / 2) - 3  
ns  
ns  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
89  
Specifications  
Table 42. Gated Clock Mode Timing Parameters (Continued)  
Ref No.  
Parameter  
csi_d hold time  
Minimum  
Maximum  
Unit  
4
5
6
7
1
ns  
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and  
setup time, according to:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
3.22.2 Non-Gated Clock Mode  
Figure 70 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the  
CSI is programmed to received data on the positive edge. Figure 71 on page 91 shows the timing diagram when the  
CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative  
edge. The parameters for the timing diagrams are listed in Table 43 on page 91.  
MC9328MX1 Advance Information, Rev. 4  
90  
Freescale Semiconductor  
Specifications  
1
VSYNC  
6
5
4
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 70. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 71. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 43. Non-Gated Clock Mode Parameters  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
csi_vsync to csi_pixclk  
9 * THCLK  
ns  
2
3
4
csi_d setup time  
csi_d hold time  
1
1
ns  
ns  
ns  
csi_pixclk high time  
10.42  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
91  
Specifications  
Table 43. Non-Gated Clock Mode Parameters (Continued)  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
5
6
csi_pixclk low time  
csi_pixclk frequency  
10.42  
0
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and  
setup time, according to:  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore:  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MC9328MX1 Advance Information, Rev. 4  
92  
Freescale Semiconductor  
4 Pin-Out and Package Information  
Table 44. MC9328MX1 BGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
BT5  
BT7  
12  
13  
14  
15  
16  
A
B
C
VSS SD_DAT3 SD_CLK VSS  
A24 SD_DAT1 SD_CMD SIM_TX  
USBD_AFE NVDD4  
VSS  
UART1_RTS UART1_RXD  
NVDD3  
BT11  
BT3  
BT1  
QVDD4  
VSS  
RVP  
RVM  
UIP  
UIN  
VSS  
NC  
USBD_OE USBD_VP SSI_RXCLK SSI_TXCLK SPI1_SCLK  
NC  
A23 D31  
SD_DAT0 SIM_PD  
USBD_RCV UART2_  
CTS  
UART2_RXD SSI_RXFS  
UART1_TXD  
BTRFGND BT8  
BTRFVDD  
NC  
AVDD2  
R1B  
D
A22 D30  
D29  
SIM_SVEN USBD_  
USBD_VPO USBD_VMO SSI_RXDAT SPI1_SPI_RDY BT13  
BT6  
NC  
NC  
NC  
R1A  
PX2  
R2B  
R2A  
SUSPND  
SD_DAT2  
A16  
E
F
A20 A21  
A18 D27  
A15 A17  
A13 D22  
A12 A11  
A10 D16  
A8 A7  
D28  
D25  
D24  
A14  
D18  
A9  
D26  
A19  
D23  
D20  
D19  
D17  
D15  
A6  
USBD_VM UART2_RTS SSI_TXDAT SPI1_SS  
BT12  
BT10  
BT9  
BT4  
BT2  
CLS  
LD0  
LD6  
LD10  
NC  
NC  
PY2  
PX1  
SIM_RST  
SIM_RX  
NVDD1  
NVDD1  
VSS  
UART2_TXD SSI_TXFS  
SPI1_MISO  
REV  
PY1  
LSCLK  
SPL_SPR  
G
H
J
D21  
SIM_CLK  
VSS  
UART1_CTS SPI1_MOSI  
CONTRAST ACD/OE  
LP/HSYNC FLM/VSYNC LD1  
NVDD1  
NVDD1  
NVDD1  
D14  
VSS  
QVDD1  
VSS  
PS  
LD2  
LD4  
LD5  
LD9  
LD3  
VSS  
VSS  
NVDD1  
NVDD1  
CAS  
VSS  
NVDD2  
TIN  
LD7  
LD8  
LD11  
LD14  
CSI_D1  
QVDD3  
K
L
VSS  
NVDD2  
TCK  
LD12  
LD13  
TMR2OUT LD15  
CSI_D2 CSI_D3  
D13  
D11  
NVDD1  
VSS  
VSS  
PWMO CSI_MCLK CSI_D0  
M
A5 D12  
SDCLK  
RW  
MA10  
RAS  
RESET_IN BIG_  
ENDIAN  
CSI_D4  
CSI_HSYNC CSI_VSYNC CSI_D6  
CSI_D5  
N
A4 EB1  
D10  
D7  
A0  
D4  
PA17  
D1  
DQM1  
RESET_  
SF  
RESET_ BOOT2  
OUT  
CSI_PIXCLK CSI_D7  
TMS  
TDI  
P
R
T
A3 D9  
EB2 EB3  
VSS A2  
EB0  
A1  
CS3  
CS4  
CS5  
D6  
ECB  
D5  
D2  
D3  
DQM3  
D0  
SDCKE1  
DQM0  
BOOT3 BOOT0  
SDCKE0 POR  
TRST  
I2C_SCL  
TDO  
I2C_SDA  
QVDD2  
XTAL32K  
EXTAL32K  
VSS  
1
D8  
LBA  
CS0  
BCLK  
BOOT1  
TRISTATE  
OE  
CS2  
CS1  
MA11  
DQM2  
SDWE  
CLKO  
AVDD1  
EXTAL16M XTAL16M  
1.  
burst clock  
Pin-Out and Package Information  
4.1 MAPBGA Package Dimensions  
Figure 72 illustrates the MAPBGA 14 mm × 14 mm × 1.30 mm package, which has 0.8 mm spacing between the  
pads. The device designator for the MAPBGA package is VH.  
Figure 72. MC9328MX1 MAPBGA Mechanical Drawing  
MC9328MX1 Advance Information, Rev. 4  
94  
Freescale Semiconductor  
NOTES  
MC9328MX1 Advance Information, Rev. 4  
Freescale Semiconductor  
95  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
How to Reach Us:  
USA/Europe/Locations Not Listed:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
Home Page:  
www.freescale.com  
Learn More: For more information about Freescale products, please visit www.freescale.com.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners. The ARM POWERED logo is  
the registered trademark of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the trademarks of  
ARM Limited.  
© Freescale Semiconductor, Inc. 2004. All rights reserved.  
MC9328MX1/D  
Rev. 4  
08/2004  

相关型号:

MC68VZ328

i.MX Integrated Portable System Processor
FREESCALE

MC68VZ328AG

MC68VZ328AG
FREESCALE

MC68VZ328CPV33V

Microcontroller, 32-Bit, 33MHz, HCMOS, PQFP144, 20 X 20 MM, 0.50 MM PITCH, PLASTIC, TQFP-144
MOTOROLA

MC68VZ328P

Integrated Portable System Processor Product Brief
MOTOROLA

MC68VZ328P/D

i.MX Integrated Portable System Processor
FREESCALE

MC68VZ328PV33V

Microcontroller, 32-Bit, 33MHz, HCMOS, PQFP144, 20 X 20 MM, 0.50 MM PITCH, PLASTIC, TQFP-144
MOTOROLA

MC68VZ328PV33VR2

MICROCONTROLLER, PQFP144, 20 X 20 MM, 0.50 MM PITCH, PLASTIC, TQFP-144
MOTOROLA

MC68VZ328UM/D

i.MX Integrated Portable System Processor
FREESCALE

MC68VZ328UMAD/D

i.MX Integrated Portable System Processor
FREESCALE

MC68VZ328VF33V

Microcontroller, 32-Bit, 33MHz, HCMOS, PBGA144, 13 X 13 MM, 1 MM PITCH, MOLD ARRAY PROCESS, PLASTIC, BGA-144
MOTOROLA

MC68VZ328VF33VR2

MICROCONTROLLER, PBGA144, 13 X 13 MM, 1 MM PITCH, MOLD ARRAY PROCESS, PLASTIC, BGA-144
MOTOROLA

MC690

INTEGRATED CIRCUITS
ETC