MC9S08QE8 [FREESCALE]

8-Bit HCS08 Central Processor Unit; 8位HCS08中央处理器
MC9S08QE8
型号: MC9S08QE8
厂家: Freescale    Freescale
描述:

8-Bit HCS08 Central Processor Unit
8位HCS08中央处理器

文件: 总46页 (文件大小:942K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MC9S08QE8  
Rev. 3, 1/2008  
20-Pin SOIC  
751D-07  
MC9S08QE8 Series  
Covers: MC9S08QE8 and  
MC9S08QE4  
32-Pin LQFP  
Case 873A  
16-Pin PDIP  
648  
28-Pin SOIC  
751F-05  
Features  
16-Pin TSSOP  
948F  
8-Bit HCS08 Central Processor Unit (CPU)  
Up to 20 MHz CPU at 3.6 V to 1.8 V across temperature range of  
–40°C to 85°C  
HC08 instruction set with added BGND instruction  
Support for up to 32 interrupt/reset sources  
Peripherals  
ADC — 10-channel, 12-bit resolution; 2.5 μs conversion time;  
automatic compare function; 1.7 mV/°C temperature sensor;  
internal bandgap reference channel; operation in stop3; fully  
functional from 3.6 V to 1.8 V  
On-Chip Memory  
Flash read/program/erase over full operating voltage and  
temperature  
Random-Access memory (RAM)  
Security circuitry to prevent unauthorized access to RAM and  
flash contents  
ACMPx — Two analog comparators with selectable interrupt on  
rising, falling, or either edge of comparator output; compare  
option to fixed internal bandgap reference voltage; outputs can be  
optionally routed to TPM module; operation in stop3  
SCI — Full-Duplex non-return to zero (NRZ); LIN master  
extended break generation; LIN slave extended break detection;  
wake-up on active edge  
SPI — Full-Duplex or single-wire bidirectional; double-buffered  
transmit and receive; master or slave mode; MSB-first or  
LSB-first shifting  
IIC — Up to 100 kbps with maximum bus loading; multi-master  
operation; programmable slave address; interrupt driven  
byte-by-byte data transfer; supporting broadcast mode and 10-bit  
addressing  
TPMx — Two 3-channel (TPM1 and TPM2); selectable input  
capture, output compare, or buffered edge- or center-aligned  
PWM on each channel  
Power-Saving Modes  
Two low power stop modes  
Reduced power wait mode  
Low power run and wait modes allow peripherals to run while  
voltage regulator is in standby  
Peripheral clock gating register can disable clocks to unused  
modules, thereby reducing currents  
Very low power external oscillator that can be used in stop2 or  
stop3 modes to provide accurate clock source to real time counter  
6 μs typical wake-up time from stop3 mode  
Clock Source Options  
Oscillator (XOSC) — Loop-Control Pierce oscillator; crystal or  
ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to  
16 MHz  
Internal Clock Source (ICS) — Internal clock source module  
containing a frequency-locked-loop (FLL) controlled by internal  
or external reference; precision trimming of internal reference  
allows 0.2% resolution and 2% deviation over temperature and  
voltage; supporting bus frequencies from 1 MHz to 10 MHz  
RTC — (Real-time counter) 8-bit modulus counter with binary or  
decimal based prescaler; external clock source for precise time  
base, time-of-day, calendar or task scheduling functions; free  
running on-chip low power oscillator (1 kHz) for cyclic wake-up  
without external components; runs in all MCU modes  
System Protection  
Input/Output  
Watchdog computer operating properly (COP) reset with option to  
run from dedicated 1 kHz internal clock source or bus clock  
Low-Voltage warning with interrupt  
Low-Voltage detection with reset or interrupt  
Illegal opcode detection with reset  
26 GPIOs, one output-only pin and one input-only pin  
Eight KBI interrupts with selectable polarity  
Hysteresis and configurable pullup device on all input pins;  
configurable slew rate and drive strength on all output pins.  
Package Options  
Illegal address detection with reset  
Flash block protection  
32-pin LQFP, 28-pin SOIC, 20-pin SOIC, 16-pin PDIP,  
16-pin TSSOP  
Development Support  
Single-Wire background debug interface  
Breakpoint capability to allow single breakpoint setting during  
in-circuit debugging (plus two more breakpoints in on-chip debug  
module)  
On-Chip in-circuit emulator (ICE) debug module containing two  
comparators and nine trigger modes; eight deep FIFO for storing  
change-of-flow addresses and event-only data; debug module  
supports both tag and force breakpoints  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2007–2008. All rights reserved.  
Preliminary  
Subject to Change Without Notice  
Table of Contents  
1
2
3
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . 8  
3.3 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 8  
3.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . 9  
3.5 ESD Protection and Latch-Up Immunity . . . . . . 10  
3.6 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 11  
3.7 Supply Current Characteristics . . . . . . . . . . . . . 15  
3.8 External Oscillator (XOSCVLP) Characteristics 16  
3.9 Internal Clock Source (ICS) Characteristics . . . 17  
3.10 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 18  
3.10.1Control Timing. . . . . . . . . . . . . . . . . . . . . 19  
3.10.2TPM Module Timing . . . . . . . . . . . . . . . . 20  
3.10.3SPI Timing . . . . . . . . . . . . . . . . . . . . . . . .20  
3.11 Analog Comparator (ACMP) Electricals . . . . . . .23  
3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . .24  
3.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . .27  
3.14 EMC Performance . . . . . . . . . . . . . . . . . . . . . . .28  
3.14.1Conducted Transient Susceptibility. . . . . .28  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.1 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . .29  
4
5
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current.  
Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Rev  
Date  
Description of Changes  
Initial preliminary product preview release.  
2
3
7 Nov 2007  
22 Jan 2008 Initial public release.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08QE8RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08QE8 Series, Rev. 3  
2
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of MC9S08QE8 series MCU.  
BKGD/MS  
HCS08 CORE  
DEBUG MODULE (DBG)  
BDC  
CPU  
REAL-TIME COUNTER  
(RTC)  
PTA7/TPM2CH2/ADP9  
HCS08 SYSTEM CONTROL  
PTA6/TPM1CH2/ADP8  
SCL  
SDA  
PTA5/IRQ/TCLK/RESET  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
IIC MODULE (IIC)  
PTA4/ACMP1O/BKGD/MS  
PTA3/KBIP3/SCL/ADP3  
IRQ  
RxD  
TxD  
SERIAL COMMUNICATIONS  
INTERFACE MODULE (SCI)  
PTA2/KBIP2/SDA/ADP2  
COP  
IRQ  
LVD  
PTA1/KBIP1/TPM2CH0/ADP1/ACMP1–  
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
SS  
MISO  
USER FLASH  
(MC9S08QE8 = 8192 BYTES)  
(MC9S08QE4 = 4096 BYTES)  
PTB7/SCL/EXTAL  
SERIAL PERIPHERAL  
INTERFACE MODULE (SPI)  
MOSI  
SPSCK  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
PTB3/KBIP7/MOSI/ADP7  
PTB2/KBIP6/SPSCK/ADP6  
PTB1/KBIP5/TxD/ADP5  
PTB0/KBIP4/RxD/ADP4  
TCLK  
USER RAM  
(MC9S08QE8 = 512 BYTES)  
(MC9S08QE4 = 256 BYTES)  
TPM1CH0  
16-BIT TIMER PWM  
MODULE (TPM1)  
TPM1CH1  
TPM1CH2  
TCLK  
20 MHz INTERNAL CLOCK  
SOURCE (ICS)  
TPM2CH0  
16-BIT TIMER PWM  
MODULE (TPM2)  
PTC7/ACMP2–  
PTC6/ACMP2+  
PTC5/ACMP2O  
PTC4  
TPM2CH1  
TPM2CH2  
LOW-POWER OSCILLATOR  
31.25 kHz to 38.4 kHz  
1 MHz to 16 MHz  
EXTAL  
XTAL  
(XOSCVLP)  
ACMP1O  
ACMP1–  
ACMP1+  
VSSA  
VDDA  
ANALOG COMPARATOR  
(ACMP1)  
PTC3  
VSS  
VDD  
PTC2  
VOLTAGE REGULATOR  
ACMP2O  
ACMP2–  
ACMP2+  
PTC1/TPM2CH2  
PTC0/TPM1CH2  
VSSA  
VDDA  
ANALOG COMPARATOR  
(ACMP2)  
VSSA/VREFL  
VDDA/VREFH  
PTD3  
PTD2  
PTD1  
PTD0  
12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC12)  
ADP9–ADP0  
KBIP7–KBIP0  
VREFL  
VREFH  
KEYBOARD INTERRUPT  
MODULE (KBI)  
pins not available on 16-pin packages  
pins not available on 16-pin or 20-pin packages  
pins not available on 16-pin, 20-pin or 28-pin packages  
Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device.  
When PTA4 is configured as BKGD, pin becomes bi-directional.  
For the 16-pin and 20-pin packages, VSSA/VREFL and VDDA/VREFH are double bonded to VSS and VDD respectively.  
Figure 1. MC9S08QE8 Series Block Diagram  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
3
Subject to Change Without Notice  
Pin Assignments  
2
Pin Assignments  
This section shows the pin assignments for the MC9S08QE8 series devices.  
31 30 29 28 27 26 25  
32  
PTA2/KBIP2/SDA/ADP2  
PTA3/KBIP3/SCL/ADP3  
PTD1  
PTD0  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
PTD2  
VDD  
PTD3  
VDDA/VREFH  
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
VSSA/VREFL  
VSS  
PTB0/KBIP4/RxD/ADP4  
PTB1/KBIP5/TxD/ADP5  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
9
15 16  
10 11 12 13 14  
Pins shown in bold type are lost in the next lower pin count package.  
Figure 2. MC9S08QE8 Series in 32-LQFP  
MC9S08QE8 Series, Rev. 3  
4
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Pin Assignments  
PTC6/ACMP2+  
PTC7/ACMP2–  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PTC5/ACMP2O  
PTC4  
2
PTA5/IRQ/TCLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
3
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBIP1/TPM2CH0/ADP1/ACMP1–  
PTA2/KBIP2/SDA/ADP2  
4
5
VDDA/VREFH  
6
PTA3/KBIP3/SCL/ADP3  
VSSA/VREFL  
PTA6/TPM1CH2/ADP8  
7
VSS  
8
PTA7/TPM2CH2/ADP9  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
9
PTB0/KBIP4/RxD/ADP4  
10  
11  
12  
13  
14  
PTB1/KBIP5/TxD/ADP5  
PTB2/KBIP6/SPSCK/ADP6  
PTB3/KBIP7/MOSI/ADP7  
PTC0/TPM1CH2  
PTB4/TPM2CH1/MISO  
PTC3  
PTC2  
PTC1/TPM2CH2  
Pins shown in bold type are lost in the next lower pin count package.  
Figure 3. MC9S08QE8 Series in 28-pin SOIC Package  
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBIP1/TPM2CH0/ADP1/ACMP1–  
PTA2/KBIP2/SDA/ADP2  
1
20  
19  
18  
17  
16  
15  
14  
13  
PTA5/IRQ/TCLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
2
3
4
PTA3/KBIP3/SCL/ADP3  
VSS  
5
PTB0/KBIP4/RxD/ADP4  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
6
PTB1/KBIP5/TxD/ADP5  
7
PTB2/KBIP6/SPSCK/ADP6  
PTB3/KBIP7/MOSI/ADP7  
8
9
PTC3  
PTC2  
12  
11  
PTC0/TPM1CH2  
PTC1/TPM2CH2  
10  
Pins shown in bold type are lost in the next lower pin count package.  
Figure 4. MC9S08QE8 Series in 20-pin SOIC Package  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
5
Subject to Change Without Notice  
Pin Assignments  
16  
15  
14  
13  
PTA0/KBIP0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBIP1/TPM2CH0ADP1/ACMP1–  
PTA2/KBIP2/SDA/ADP2  
1
2
3
4
5
6
7
8
PTA5/IRQ/TCLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
PTA3/KBIP3/SCL/ADP3  
VSS  
12  
11  
PTB0/KBIP4/RxD/ADP4  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
PTB1/KBIP5/TxD/ADP5  
10  
9
PTB2/KBIP6/SPSCK/ADP6  
PTB3/KBIP7/MOSI/ADP7  
Figure 5. MC9S08QE8 Series in 16-pin PDIP and TSSOP Packages  
MC9S08QE8 Series, Rev. 3  
6
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Pin Assignments  
Table 2-1. Pin Availability by Package Pin-Count  
Pin Number  
<-- Lowest Priority --> Highest  
Alt 1 Alt 2 Alt 3  
32  
28  
20  
16  
Port Pin  
Alt 4  
1
5
3
3
PTD1  
PTD0  
2
3
VDD  
4
6
4
4
VDDA/VREFH  
VSSA/VREFL  
VSS  
5
7
6
8
7
9
5
5
PTB7  
PTB6  
PTB5  
PTB4  
PTC3  
PTC2  
PTC1  
PTC0  
PTB3  
SCL1  
SDA1  
EXTAL  
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1
6
6
XTAL  
9
7
7
TPM1CH1 SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
8
8
TPM2CH1 MISO  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
TPM2CH22  
TPM1CH23  
KBIP7  
MOSI  
SPSCK  
TxD  
ADP7  
10 PTB2  
11 PTB1  
12 PTB0  
KBIP6  
ADP6  
ADP5  
ADP4  
ADP9  
ADP8  
KBIP5  
KBIP4  
RxD  
PTA7  
PTA6  
PTD3  
PTD2  
TPM2CH22  
TPM1CH23  
13 PTA3  
14 PTA2  
15 PTA1  
16 PTA0  
KBIP3  
KBIP2  
KBIP1  
KBIP0  
SCL1  
SDA1  
TPM2CH0 ADP14  
TPM1CH0 ADP04  
ADP3  
ADP2  
ACMP1–4  
ACMP1+4  
ACMP2–  
ACMP2+  
ACMP2O  
1
PTC7  
PTC6  
PTC5  
PTC4  
PTA5  
PTA4  
2
3
IRQ  
TCLK  
RESET  
MS  
4
2
2
ACMP1O  
BKGD  
1
2
3
4
IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2, default reset locations  
are PTA3 and PTA2.  
TPM2CH2 pin can be repositioned using TPM2CH2PS in SOPT2, default reset location is  
PTA7.  
TPM1CH2 pin can be repositioned using TPM1CH2PS in SOPT2, default reset location is  
PTA6.  
If ADC and ACMP1 are enabled, both modules will have access to the pin.  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
7
Subject to Change Without Notice  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08QE8 series of microcontrollers available at the time  
of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pullup resistor associated with the pin is enabled.  
SS  
DD  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
–0.3 to 3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
ID  
±25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
MC9S08QE8 Series, Rev. 3  
8
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
Input must be current limited to the value specified. To determine the value of the required  
1
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 4. Thermal Characteristics  
Symbol  
Rating  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
°C  
°C  
Maximum junction temperature  
TJM  
95  
Thermal resistance  
Single-layer board  
32-pin LQFP  
28-pin SOIC  
20-pin SOIC  
16-pin PDIP  
16-pin TSSOP  
66  
57  
θJA  
71  
°C/W  
64  
108  
Thermal resistance  
Four-layer board  
32-pin LQFP  
28-pin SOIC  
20-pin SOIC  
16-pin PDIP  
16-pin TSSOP  
47  
42  
52  
47  
78  
θJA  
°C/W  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
9
Subject to Change Without Notice  
Electrical Characteristics  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions must be taken to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the  
charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless instructed otherwise in the device specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
1500  
Ω
pF  
Human  
Body  
Storage capacitance  
C
100  
3
Number of pulses per pin  
Series resistance  
R1  
0
Ω
pF  
V
Machine  
Latch-up  
Storage capacitance  
C
200  
3
Number of pulses per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
Table 6. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
Min  
±2000  
±200  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Machine model (MM)  
VMM  
2
V
MC9S08QE8 Series, Rev. 3  
10  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
Table 6. ESD and Latch-Up Protection Characteristics (continued)  
VCDM  
ILAT  
3
4
Charge device model (CDM)  
±500  
±100  
V
Latch-up current at TA = 85°C  
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 7. DC Characteristics  
Num C  
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
1
Operating Voltage  
1.8  
3.6  
V
All I/O pins,  
low-drive strength  
VDD > 1.8 V,  
ILoad = –2 mA  
C
VDD – 0.5  
VDD – 0.5  
Output high  
voltage  
VDD > 2.7 V,  
ILoad = –10 mA  
2
P
C
D
C
P
C
D
VOH  
V
mA  
V
All I/O pins,  
high-drive strength  
VDD > 1.8V,  
ILoad = –2 mA  
VDD – 0.5  
Output high  
current  
Max total IOH for all ports IOHT  
100  
0.5  
0.5  
0.5  
100  
3
4
All I/O pins,  
low-drive strength  
VDD > 1.8 V,  
ILoad = 0.6 mA  
Output low  
voltage  
VDD > 2.7 V,  
ILoad = 10 mA  
VOL  
All I/O pins,  
high-drive strength  
VDD > 1.8 V,  
ILoad = 3 mA  
Output low  
current  
5
6
Max total IOL for all ports  
all digital inputs  
IOLT  
VIH  
mA  
V
P
C
P
C
VDD > 2.7 V  
VDD > 1.8 V  
VDD > 2.7 V  
VDD > 1.8 V  
0.70 x VDD  
Input high  
voltage  
0.85 x VDD  
0.35 x VDD  
0.30 x VDD  
Input low  
voltage  
7
8
all digital inputs  
VIL  
Input  
hysteresis  
C
all digital inputs Vhys  
0.06 x VDD  
mV  
Input  
P leakage  
current  
all input only pins  
|IIn|  
9
VIn = VDD or VSS  
0.1  
1
μA  
(Per pin)  
Hi-Z  
(off-state)  
leakage  
current  
all input/output  
10  
P
|IOZ  
|
VIn = VDD or VSS  
0.1  
1
μA  
kΩ  
(per pin)  
all digital inputs, when  
enabled (all I/O pins other RPU,  
Pullup,  
11a P Pulldown  
resistors  
17.5  
52.5  
than  
RPD  
PTA5/IRQ/TCLK/RESET  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
11  
Subject to Change Without Notice  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num C  
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
RPU,  
RPD  
Pullup,  
11b C Pulldown  
resistors  
(PTA5/IRQ/TCLK/RESET)  
Single pin limit  
17.5  
52.5  
kΩ  
(Note2)  
–0.2  
–5  
0.2  
5
mA  
mA  
DCinjection  
12 C current 3, 4,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
5
13 C Input Capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage6  
16 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
VDD falling  
VDD rising  
1.80  
1.88  
1.84  
1.92  
1.88  
1.96  
17 P Low-voltage detection threshold  
VLVD  
VLVW  
V
V
VDD falling  
VDD rising  
18 P Low-voltage warning threshold  
Low-voltage inhibit reset/recover  
2.08  
2.14  
2.24  
19  
P
Vhys  
VBG  
80  
mV  
V
hysteresis  
20 P Bandgap Voltage Reference7  
1.15  
1.17  
1.18  
1
2
Typical values are measured at 25°C. Characterized, not tested  
The specified resistor value is the actual value internal to the device. The pullup or pulldown value may appear higher when  
measured externally on the pin.  
3
4
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
6
7
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 3.0 V, Temp = 25 °C  
PULLUP RESISTOR TYPICALS  
PULLDOWN RESISTOR TYPICALS  
40  
35  
30  
25  
20  
85°C  
40  
35  
30  
25  
20  
85°C  
25°C  
25°C  
–40°C  
–40°C  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
VDD (V)  
Figure 6. Pullup and Pulldown Typical Resistor Values (V = 3.0 V)  
DD  
MC9S08QE8 Series, Rev. 3  
12  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
1
85°C  
25°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
°
C, IOL = 2 mA  
C, IOL = 2 mA  
C, IOL = 2 mA  
0.05  
0
°
°
1
2
3
4
0
5
10  
OL (mA)  
15  
20  
VDD (V)  
I
Figure 7. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85°C  
85°C  
25°C  
–40°C  
25°C  
0.8  
0.6  
0.4  
0.2  
–40°C  
IOL = 10 mA  
IOL = 6 mA  
IOL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
IOL (mA)  
Figure 8. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
85 C, IOH = 2 mA  
1.2  
1
0.25  
0.2  
85°C  
°
25°C  
25 C, IOH = 2 mA  
°
–40°C  
–40 C, IOH = 2 mA  
°
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
0
–5  
–10  
IOH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
Figure 9. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
13  
Subject to Change Without Notice  
Electrical Characteristics  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
0.3  
0.2  
0.1  
85°C  
25°C  
–40°C  
TYPICAL V – V VS I AT V = 3.0 V  
DD  
OH  
OH  
DD  
0.8  
85°C  
25°C  
0.6  
0.4  
0.2  
0
–40°C  
IOH = –10 mA  
IOH = –6 mA  
I
OH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 10. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
MC9S08QE8 Series, Rev. 3  
14  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 8. Supply Current Characteristics  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(°C)  
Typical1  
Num  
C
Symbol  
Max  
Unit  
P
T
T
T
10 MHz  
1 MHz  
10 MHz  
1 MHz  
5.60  
0.80  
3.60  
0.51  
8.2  
Run supply current  
FEI mode, all modules on  
mA  
1
RIDD  
–40 to 85°C  
3
3
Run supply current  
FEI mode, all modules off  
2
3
RIDD  
mA  
–40 to 85°C  
–40 to 85°C  
16 kHz  
FBILP  
T
T
T
T
T
T
165  
105  
77  
Run supply current  
LPRS=0, all modules off  
RIDD  
3
3
3
μA  
16 kHz  
FBELP  
16 kHz  
FBILP  
Run supply current  
LPRS=1, all modules off; running  
from Flash  
4
5
RIDD  
μA  
μA  
–40 to 85°C  
–40 to 85°C  
16 kHz  
FBELP  
21  
16 kHz  
FBILP  
77  
Run supply current  
LPRS=1, all modules off; running  
from RAM  
RIDD  
16 kHz  
FBELP  
7.3  
T
T
10 MHz  
1 MHz  
570  
290  
Wait mode supply current  
FEI mode, all modules off  
6
7
8
WIDD  
WIDD  
S2IDD  
3
3
μA  
μA  
nA  
–40 to 85°C  
–40 to 85°C  
Wait mode supply current  
LPRS = 1, all modules off  
16 kHz  
FBELP  
T
1
P
C
P
C
T
3
2
300  
250  
400  
350  
200  
2500  
2000  
6000  
5500  
–40 to 85°C  
–40 to 85°C  
–40 to 85°C  
–40 to 85°C  
Stop2 mode supply current  
3
Stop3 mode supply current  
no clocks active  
9
S3IDD  
nA  
nA  
2
10  
RTC using LPO  
Stop2 and  
Stop 3 adders:  
RTC using low  
power crystal  
oscillator  
EREFSTEN=1  
IREFSTEN=1  
–40 to 85°C  
11  
T
3
nA  
500  
12  
13  
14  
15  
16  
T
T
T
T
T
300  
70  
nA  
μA  
μA  
μA  
μA  
–40 to 85°C  
–40 to 85°C  
LVD  
100  
20  
Stop3 adders:  
ACMP2  
ADC3  
0.007  
1
2
3
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
Also applies to LPRun and LPWait modes.  
ADC current measured on VDDA pin on 28-pin and 32-pin devices, adder to VDD on 16-pin and 20-pin packages.  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
15  
Subject to Change Without Notice  
Electrical Characteristics  
3.8  
External Oscillator (XOSCVLP) Characteristics  
Refer to Figure 11 and Figure 12 for crystal or resonator circuits.  
Table 9. XOSCVLP and ICS Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1 Max. Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
See Note2  
See Note3  
C1,C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, high gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
kΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
t
600  
400  
5
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
20  
20  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08QE8 Series, Rev. 3  
16  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Power  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min. Typical1 Max.  
Unit  
Average internal reference frequency — factory trimmed  
at VDD = 3.6 V and temperature = 25°C  
fint_ft  
1
P
32.768  
kHz  
Internal reference frequency — user trimmed  
Internal reference start-up time  
fint_ut  
tIRST  
fdco_u  
2
3
4
P
T
P
31.25  
60  
39.06  
100  
60  
kHz  
μs  
DCO output frequency range — trimmed2  
48  
MHz  
DCO output frequency2  
Reference = 32768 Hz and DMX32 = 1  
fdco_DMX32  
Δfdco_res_t  
Δfdco_res_t  
5
6
7
P
C
C
59.77  
± 0.1  
± 0.2  
MHz  
%fdco  
%fdco  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (using FTRIM)  
± 0.2  
± 0.4  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (not using FTRIM)  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
Subject to Change Without Notice  
17  
Electrical Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min. Typical1 Max.  
Unit  
Total deviation of trimmed DCO output frequency over voltage  
and temperature  
+ 0.5  
Δfdco_t  
%fdco  
8
C
± 2  
-1.0  
± 0.5  
Total deviation of trimmed DCO output frequency over fixed  
voltage and temperature range of 0°C to 70 °C  
Δfdco_t  
tAcquire  
CJitter  
%fdco  
ms  
9
C
C
C
± 1  
1
FLL acquisition time3  
10  
11  
Long term jitter of DCO output clock (averaged over 2-ms  
interval)4  
%fdco  
0.02  
0.2  
1
2
3
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a  
given interval.  
1.00%  
0.50%  
0.00%  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
Temperature  
Figure 13. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
MC9S08QE8 Series, Rev. 3  
18  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
3.10.1 Control Timing  
Table 11. Control Timing  
Num  
C
D
D
D
D
Rating  
Symbol  
fBus  
tLPO  
textrst  
trstdrv  
Min  
Typical1  
Max  
10  
Unit  
MHz  
μs  
Bus frequency (tcyc = 1/fBus  
)
1
2
3
4
dc  
700  
Internal low power oscillator period  
1300  
External reset pulse width2  
Reset low drive  
100  
ns  
34 x tcyc  
ns  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
μs  
IRQ pulse width  
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 × tcyc  
ns  
ns  
7
D
8
D
Keyboard interrupt pulse width  
Asynchronous path2  
tILIH, IHIL  
t
100  
1.5 × tcyc  
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
t
Rise, tFall  
ns  
ns  
16  
23  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
5
9
1
2
3
Typical values are based on characterization data at VDD = 3.0V, 25°C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
5
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 85°C.  
textrst  
RESET PIN  
Figure 14. Reset Timing  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
19  
Subject to Change Without Notice  
Electrical Characteristics  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 15. IRQ/KBIPx Timing  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 12. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 16. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 17. Timer Input Capture Pulse  
3.10.3 SPI Timing  
Table 13 and Figure 18 through Figure 21 describe the timing requirements for the SPI system.  
MC9S08QE8 Series, Rev. 3  
20  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
Table 13. SPI Timing  
Symbol  
No.  
C
Function  
Operating frequency  
Min  
Max  
Unit  
D
Master  
Slave  
fop  
tSPSCK  
tLead  
tLag  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
1
2
3
4
5
6
D
D
D
D
D
D
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
7
8
D
D
Slave access time  
ta  
1
1
tcyc  
tcyc  
Slave MISO disable time  
tdis  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
tv  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
10  
11  
12  
tHO  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
21  
Subject to Change Without Notice  
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
11  
2
3
12  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
BIT 6 . . . 1  
LSB IN  
9
10  
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 19. SPI Master Timing (CPHA =1)  
MC9S08QE8 Series, Rev. 3  
22  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
SLAVE  
6
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 20. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 21. SPI Slave Timing (CPHA = 1)  
3.11 Analog Comparator (ACMP) Electricals  
Table 14. Analog Comparator Electrical Specifications  
C
D
P
Characteristic  
Symbol  
VDD  
Min  
1.8  
Typical  
Max  
Unit  
V
Supply voltage  
Supply current (active)  
3.6  
35  
IDDAC  
20  
μA  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
23  
Subject to Change Without Notice  
Electrical Characteristics  
Table 14. Analog Comparator Electrical Specifications (continued)  
C
Characteristic  
Analog input voltage  
Symbol  
Min  
Typical  
Max  
Unit  
D
P
C
VAIN  
VAIO  
VH  
VSS – 0.3  
20  
VDD  
40  
V
Analog input offset voltage  
mV  
mV  
Analog comparator hysteresis  
3.0  
9.0  
15.0  
IALKG  
tAINIT  
P
C
Analog input leakage current  
1.0  
1.0  
μA  
μs  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 15. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage  
Absolute  
Delta to VDD (VDD-VDDAD  
VDDAD  
ΔVDDAD  
ΔVSSAD  
1.8  
0
3.6  
V
2
)
–100  
–100  
+100  
+100  
mV  
mV  
2
Ground voltage  
Delta to VSS (VSS-VSSAD  
)
0
Ref Voltage  
High  
VREFH  
VADIN  
CADIN  
1.8  
VREFL  
VDDAD  
VDDAD  
VREFH  
5.5  
V
V
Input Voltage  
Input  
Capacitance  
4.5  
pF  
Input  
Resistance  
RADIN  
5
7
kΩ  
kΩ  
Analog Source  
Resistance  
12 bit mode  
fADCK > 4MHz  
fADCK < 4MHz  
2
5
10 bit mode  
RAS  
External to MCU  
f
ADCK > 4MHz  
5
10  
fADCK < 4MHz  
8 bit mode (all valid fADCK  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
)
10  
ADC  
Conversion  
Clock Freq.  
0.4  
8.0  
fADCK  
MHz  
0.4  
4.0  
1
2
Typical values assume VDDAD = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
DC potential difference.  
MC9S08QE8 Series, Rev. 3  
24  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 22. ADC Input Impedance Equivalency Diagram  
Table 16. 12-bit ADC Characteristics (V = V , V = V  
)
REFH  
DDAD REFL  
SSAD  
C
Characteristic  
Conditions  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDAD  
120  
μA  
μA  
μA  
mA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
P
IDDAD  
IDDAD  
IDDAD  
202  
288  
1
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.532  
ADC  
Asynchronous  
Clock Source  
High Speed  
(ADLPC=0)  
tADACK  
1/fADACK  
=
P
C
2
3.3  
2
5
fADACK  
MHz  
Low Power  
(ADLPC=1)  
1.25  
3.3  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
25  
Subject to Change Without Notice  
Electrical Characteristics  
Table 16. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSAD  
REFH  
DDAD REFL  
C
Characteristic  
Conditions  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Comment  
Conversion  
Time(Including (ADLSMP=0)  
sample time)  
Short Sample  
See ADC  
chapter in the  
QE8 Reference  
Manual for  
conversion time  
variances  
P
20  
ADCK  
cycles  
tADC  
Long Sample  
C
P
C
40  
3.5  
(ADLSMP=1)  
Short Sample  
(ADLSMP=0)  
Sample Time  
ADCK  
cycles  
tADS  
Long Sample  
(ADLSMP=1)  
23.5  
T
P
Total  
Unadjusted  
Error  
(28-pin and  
32-pin  
packages)  
12 bit mode  
10 bit mode  
±3.0  
±1  
For 28-pin and  
32-pin packages  
only.  
±2.5  
ETUE  
LSB2  
Includes  
quantization  
T
8 bit mode  
±0.5  
±1.0  
T
P
Total  
Unadjusted  
Error  
(16-pin and  
20-pin  
package)  
12 bit mode  
10 bit mode  
±4.0  
±1.5  
For 16-pin and  
20-pin packages  
only.  
±3.5  
ETUE  
LSB2  
Includes  
quantization  
T
8 bit mode  
±0.7  
±1.5  
T
P
T
T
C
T
T
P
T
T
P
T
12 bit mode  
10 bit mode3  
8 bit mode3  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
±0.5  
±0.5  
±1.0  
±0.5  
±0.5  
–1 to 0  
±1.0  
±0.5  
Differential  
Non-Linearity  
DNL  
INL  
EZS  
EFS  
EQ  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Integral  
Non-Linearity  
±1.0  
±0.5  
Zero-Scale  
Error  
±1.5  
±0.5  
VADIN = VSSAD  
VADIN = VDDAD  
Full-Scale  
Error  
±1  
±0.5  
Quantization  
Error  
D
±0.5  
±0.5  
MC9S08QE8 Series, Rev. 3  
26  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Electrical Characteristics  
) (continued)  
Table 16. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
REFH  
DDAD REFL SSAD  
C
Characteristic  
Conditions  
12 bit mode  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Comment  
±2  
±4  
Input Leakage  
Error  
Pad leakage4  
*RAS  
D
10 bit mode  
8 bit mode  
EIL  
±0.2  
LSB2  
±0.1  
±1.2  
–40°C to 25°C  
25°C to 85°C  
1.646  
1.769  
Temp Sensor  
Slope  
D
D
m
mV/°C  
Temp Sensor  
Voltage  
25°C  
VTEMP25  
701.2  
mV  
1
Typical values assume VDDAD = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes  
Based on input pad leakage current. Refer to pad electricals.  
3.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section.  
Table 17. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40°C to 85°C  
D
Vprog/erase  
VRead  
fFCLK  
1.8  
1.8  
150  
5
3.6  
3.6  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
Mass erase time2  
Byte program current3  
Page erase current3  
V
200  
6.67  
kHz  
μs  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
Program/erase endurance4  
TL to TH = –40°C to + 85°C  
T = 25°C  
C
C
10,000  
15  
100,000  
cycles  
years  
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
27  
Subject to Change Without Notice  
Electrical Characteristics  
3
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.0 V, bus frequency = 4.0 MHz.  
4
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
3.14 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
3.14.1 Conducted Transient Susceptibility  
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The  
measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC  
test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient  
susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC  
61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is  
greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 18.  
Table 18. Conducted Susceptibility, EFT/B  
Amplitude1  
fOSC/fBUS  
Parameter  
Symbol  
Conditions  
Result  
Unit  
(Min)  
A
B
C
D
2.3  
VDD = 3.3 V  
TA = +25oC  
package type  
32 LQFP  
8 MHz  
crystal  
8 MHz bus  
4.0  
Conducted susceptibility, electrical  
fast transient/burst (EFT/B)  
VCS_EFT  
kV  
>4.0  
>4.0  
1
Data based on qualification test results. Not tested in production.  
The susceptibility performance classification is described in Table 19.  
Table 19. Susceptibility Performance Classification  
Performance Criteria  
Result  
A
No failure  
The MCU performs as designed during and after exposure.  
Self-recovering The MCU does not perform as designed during exposure. The MCU returns  
B
C
failure  
automatically to normal operation after exposure is removed.  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the RESET pin is asserted.  
Soft failure  
MC9S08QE8 Series, Rev. 3  
28  
Preliminary  
Freescale Semiconductor  
Subject to Change Without Notice  
Ordering Information  
Table 19. Susceptibility Performance Classification (continued)  
Performance Criteria  
Result  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the power to the MCU is cycled.  
D
Hard failure  
Damage  
The MCU does not perform as designed during and after exposure. The MCU cannot  
be returned to proper operation due to physical damage or other permanent  
performance degradation.  
E
4
Ordering Information  
This section contains ordering information for the device numbering system.  
Example of the device numbering system:  
8
C
XX  
MC 9 S08 QE  
Status  
(MC = Fully Qualified)  
Package designator (see Table 20)  
Temperature range  
(C = –40°C to 85°C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in Kbytes  
Family  
5
Package Information  
Table 20. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
32  
28  
20  
16  
16  
Low Quad Flat Package  
LQFP  
SOIC  
LC  
WL  
WJ  
PG  
TG  
873A  
751F  
751D  
648  
98ASH70029A  
98ASB42345B  
98ASB42343B  
98ASB42431B  
98ASH70247A  
Small Outline Integrated Circuit  
Small Outline Integrated Circuit  
Plastic Dual In-line Package  
Thin Shrink Small Outline Package  
SOIC  
PDIP  
TSSOP  
948F  
5.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 20.  
MC9S08QE8 Series, Rev. 3  
Freescale Semiconductor  
Preliminary  
29  
Subject to Change Without Notice  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
© Freescale Semiconductor, Inc. 2007–2008. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08QE8  
Rev. 3  
1/2008  
Preliminary  
Subject to Change Without Notice  

相关型号:

MC9S08QE8C16

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C20

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C28

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C32

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CLC

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CLC

S08QE 8-bit MCU, S08 core, 8KB Flash, 20MHz, QFP 32
NXP

MC9S08QE8CPG

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CTG

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CTG

S08QE 8-bit MCU, S08 core, 8KB Flash, 20MHz, SOP 16
NXP

MC9S08QE8CTGR

S08QE 8-bit MCU, S08 core, 8KB Flash, 20MHz, SOP 16
NXP

MC9S08QE8CWJ

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CWL

8-Bit HCS08 Central Processor Unit
FREESCALE