MCF51MM256CLL [FREESCALE]

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.; 低成本,低功耗,高性能的ColdFire® V1系列专为手持式计量设备的32位微控制器(MCU ) 。
MCF51MM256CLL
型号: MCF51MM256CLL
厂家: Freescale    Freescale
描述:

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
低成本,低功耗,高性能的ColdFire® V1系列专为手持式计量设备的32位微控制器(MCU ) 。

微控制器 外围集成电路 PC 时钟
文件: 总52页 (文件大小:1485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advanced Information  
Document Number: MCF51MM256  
Rev. 3, 04/2010  
An Energy-Efficient Solution from Freescale  
MCF51MM256/128  
MCF51MM256/128  
The MCF51MM256 series devices are members of the  
low-cost, low-power, high-performance ColdFire® V1 family of  
32-bit microcontrollers (MCUs) designed for handheld  
metering devices.  
Not all features are available in all devices or packages; see  
Table 2 for a comparison of features by device.  
80-LQFP  
12mm x 12mm  
100-LQFP  
14mm x 14mm  
81-BGA  
10mm x 10mm  
104-BGA  
10mm x 10mm  
help save system cost, fully compliant with USB Specification 2.0. Allows  
control, bulk, interrupt and isochronous transfers.  
32-Bit ColdFire V1 Central Processor Unit (CPU)  
Up to 50.33-MHz ColdFire CPU above 2.4 V and 40 MHz CPU above  
2.1 V and 20 MHz CPU above 1.8 V across temperature range of -40°C to  
105°C.  
ColdFire Instruction Set Revision C (ISA_C).  
32-bit multiply and accumulate (MAC) supports signed or unsigned integer  
or signed fractional inputs.  
SCIx — Two serial communications interfaces with optional 13-bit break;  
option to connect Rx input to PRACMP output on SCI1 and SCI2; High  
current drive on Tx on SCI1 and SCI2; wake-up from stop3 on Rx edge.  
SPI1 — Serial peripheral interface with 64-bit FIFO buffer; 16-bit or 8-bit  
data transfers; full-duplex or single-wire bidirectional; double-buffered  
transmit and receive; master or slave mode; MSB-first or LSB-first shifting.  
SPI2 — Serial peripheral interface with full-duplex or single-wire  
bidirectional; Double-buffered transmit and receive; Master or Slave  
mode; MSB-first or LSB-first shifting.  
On-Chip Memory  
256 K Flash comprised of two independent 128 K flash arrays;  
read/program/erase over full operating voltage and temperature; allows  
interrupt processing while programming.  
32 Kbytes System Random-access memory (RAM).  
Security circuitry to prevent unauthorized access to RAM and Flash  
contents.  
IIC — Up to 100 kbps with maximum bus loading; Multi-master operation;  
Programmable slave address; Interrupt driven byte-by-byte data transfer;  
supports broadcast mode and 11-bit addressing.  
CMT — Carrier Modulator timer for remote control communications.  
Carrier generator, modulator and driver for dedicated infrared out (IRO).  
Can be used as an output compare timer.  
TPMx — Two 4-channel Timer/PWM Module; Selectable input capture,  
output compare, or buffered edge- or center-aligned PWM on each  
channel; external clock input/pulse accumulator.  
Mini-FlexBus — Multi-function external bus interface with user  
programmable chip selects and the option to multiplex address and data  
lines.  
PRACMP — Analog comparator with selectable interrupt; compare option  
to programmable internal reference voltage; operation in stop3.  
Power-Saving Modes  
Two ultra-low power stop modes. Peripheral clock enable register can  
disable clocks to unused modules to reduce currents.  
Time of Day (TOD) — Ultra low-power 1/4 sec counter with up to 64s  
timeout.  
Ultra-low power external oscillator that can be used in stop modes to  
provide accurate clock source to the TOD. 6 usec typical wake up time  
from stop3 mode.  
Clock Source Options  
Oscillator (XOSC1) — Loop-control Pierce oscillator; 32.768 kHz crystal or  
Measurement Engine  
ceramic resonator dedicated for TOD operation.  
ADC16 — 16-bit successive approximation ADC with up to 4 dedicated  
Oscillator (XOSC2) for high frequency crystal input for MCG reference to  
be used for system clock and USB operations.  
Multipurpose Clock Generator (MCG) — PLL and FLL; precision trimming  
of internal reference allows 0.2% resolution and 2% deviation over  
temperature and voltage; supports CPU frequencies from 4 kHz to  
50 MHz.  
differential channels and 8 single-ended channels; range compare  
function; 1.7 mV/°C temperature sensor; internal bandgap reference  
channel; operation in stop3; fully functional from 3.6 V to 1.8 V,  
Configurable hardware trigger for 8 Channel select and result registers.  
PDB — Programmable delay block with 16-bit counter and modulus and  
prescale to set reference clock to bus divided by 1 to bus divided by 2048;  
8 trigger outputs for ADC module provides periodic coordination of ADC  
sampling sequence with sequence completion interrupt; Back-to-Back  
mode and Timed mode.  
System Protection  
Watchdog computer operating properly (COP) reset with option to run from  
dedicated 1 kHz internal clock source or bus clock.  
Low-voltage detection with reset or interrupt; selectable trip points;  
separate low voltage warning with optional interrupt; selectable trip points.  
Illegal opcode and illegal address detection with reset.  
Flash block protection for each array to prevent accidental write/erasure.  
Hardware CRC to support fast cyclic redundancy checks.  
DAC — 12-bit resolution; 16-word data buffers with configurable  
watermark.  
OPAMPx — 2 flexible operational amplifiers configurable for general  
operations; Low offset and temperature drift.  
TRIAMPx — 2 trans-impedance amplifiers dedicated for converting  
current inputs into voltages.  
Development Support  
Integrated ColdFire DEBUG_Rev_B+ interface with single wire BDM  
connection supports same electrical interface used by the S08 family  
debug modules.  
Real-time debug with 6 hardware breakpoints (4 PC, 1 address and 1  
data).  
On-chip trace buffer provides programmable start/stop recording  
conditions.  
Peripherals  
USB — Dual-role USB On-The-Go (OTG) device, supports USB in either  
device, host or OTG configuration. On-chip transceiver and 3.3V regulator  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Table of Contents  
Figure 7. Offset at Half Scale vs Temperature . . . . . . . . . . . . . 27  
List of Topics  
Figure 9. ADC Input Impedance Equivalency Diagram (MM256  
16-BIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Figure 9. Mini-FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . 37  
Figure 10. Mini-FlexBus Write Timing . . . . . . . . . . . . . . . . . . . 37  
Figure 11. Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 12. IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 13. Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 14. Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . 40  
Figure 15. SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . 41  
Figure 16. SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . 42  
Figure 17. SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 42  
Figure 18. SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . 43  
2 Pinouts and Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . .7  
2.1 104-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
2.2 100-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.3 81-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.4 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3 Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . .15  
3.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.4 ESD Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . .18  
3.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . .22  
3.7 PRACMP Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.8 12-bit DAC Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
3.10 MCG and External Oscillator (XOSC) Characteristics . . . .33  
3.11 Mini-FlexBus Timing Specifications . . . . . . . . . . . . . . . . . . .36  
3.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
3.13 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.14 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
3.15 USB Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
3.16 VREF Electrical Specifications . . . . . . . . . . . . . . . . . . . . . .45  
3.17 TRIAMP Electrical Parameters . . . . . . . . . . . . . . . . . . . . . .47  
3.18 OPAMP Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . .48  
List of Tables  
Table 2. MCF51MM256/128 Functional Units . . . . . . . . . . . . . . 5  
Table 2. Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . 16  
Table 6. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 7. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 18  
Table 8. ESD and Latch-Up Protection Characteristics . . . . . . 18  
Table 9. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 10. Supply Current Characteristics . . . . . . . . . . . . . . . . . 22  
Table 11. Typical Stop Mode Adders . . . . . . . . . . . . . . . . . . . . 24  
Table 12. PRACMP Electrical Specifications . . . . . . . . . . . . . . 22  
Table 13. DAC12LV Specifications . . . . . . . . . . . . . . . . . . . . . . 22  
Table 13. DAC 12LV Operating Requirements . . . . . . . . . . . . . 26  
Table 14. DAC 12-Bit Operating Behaviors . . . . . . . . . . . . . . . 27  
Table 16. 16-bit ADC Operating Conditions . . . . . . . . . . . . . . . 25  
Table 17. MCG (Temperature Range = –40 to 105°C Ambient) 33  
Table 18. XOSC (Temperature Range = –40 to 105°C Ambient) 35  
Table 19. Mini-FlexBus AC Timing Specifications . . . . . . . . . . 36  
Table 21. TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 22. SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 23. Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 24. Internal USB 3.3 V Voltage Regulator Characteristics 44  
Table 31. VREVREF Electrical Specifications . . . . . . . . . . . . . 59  
Table 28. TRIAMP Characteristics 1.8-3.6 V, -40°C~105°C . . . 47  
Table 29. OPAMP Characteristics 1.8-3.6 V . . . . . . . . . . . . . . . 48  
Table 26. Orderable Part Number Summary . . . . . . . . . . . . . . 39  
Table 31. Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 32. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
4.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . . . . . .50  
4.2 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
4.3 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
4.4 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
5 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
List of Figures  
Figure 1. MCF51MM256/128 Block Diagran . . . . . . . . . . . . . . . .3  
Figure 2. 104-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Figure 3. 100-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Figure 4. 81-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Figure 5. 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Figure 6. Typical INL Error vs Digital Code . . . . . . . . . . . . . . . .24  
2
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Figure 1. MCF51MM256/128 Block Diagran  
Freescale Semiconductor  
3
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Features  
1
Features  
The following table provides a cross-comparison of the features of the MCF51MM256/128 according to  
package.  
Table 1. MCF51MM256/128 Features by MCU and Package  
Feature  
MCF51MM256  
MCF51MM128  
FLASH Size (bytes)  
RAM Size (bytes)  
Pin Quantity  
262144  
32K  
131072  
32K  
104  
yes  
yes  
yes  
yes  
yes  
16  
100  
yes  
yes  
yes  
yes  
yes  
16  
81  
80  
yes  
yes  
yes  
yes  
yes  
16  
81  
yes  
yes  
yes  
yes  
yes  
16  
80  
yes  
yes  
yes  
yes  
yes  
16  
Programmable Analog Comparator (PRACMP)  
Debug Module (DBG)  
yes  
yes  
yes  
yes  
yes  
16  
Multipurpose Clock Generator (MCG)  
Inter-Integrated Communication (IIC)  
Interrupt Request Pin (IRQ)  
Keyboard Interrupt (KBI)  
Digital General Purpose I/O1  
Dedicated Analog Input Pins  
Power and Ground Pins  
Time Of Day (TOD)  
69  
65  
48  
47  
48  
47  
14  
14  
14  
14  
14  
14  
8
8
8
8
8
8
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
Serial Communications (SCI1)  
Serial Communications (SCI2)  
Serial Peripheral Interface (SPI1(FIFO))  
Serial Peripheral Interface(SPI2)  
Carrier Modulator Timer Pin (IRO)  
TPM Input Clock Pin (TPMCLK)  
TPM1 Channels  
TPM2 Channels  
4
4
4
4
4
4
XOSC1  
yes  
yes  
yes  
yes  
16  
yes  
yes  
yes  
yes  
16  
yes  
yes  
yes  
DATA  
9
yes  
yes  
yes  
DATA  
9
yes  
yes  
yes  
DATA  
9
yes  
yes  
yes  
DATA  
9
XOSC2  
USB On-the-Go  
Mini-FlexBus  
Rapid GPIO  
MEASUREMENT ENGINE  
Programmable Delay Block (PDB)  
yes  
4
yes  
4
yes  
4
yes  
4
yes  
4
yes  
4
16-Bit SAR ADC Differential Channels2  
16-Bit SAR ADC Single-Ended Channels  
DAC Ouput Pin (DACO)  
8
8
8
8
8
8
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
Voltage Reference Output Pin (VREFO)  
General Purpose Operational Amplifier (OPAMP)  
Trans-Impedance Amplifier (TRIAMP)  
1
Port I/O count does not include BLMS, BKGD and IRQ. BLMS and BKGD are Output only, IRQ is input only.  
Each differential channel is comprised of 2 pin inputs.  
2
4
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Features  
The following table describes the functional units of the MCF51MM256/128.  
Table 2. MCF51MM256/128 Functional Units  
Unit  
Function  
DAC (digital to analog converter) — Used to output voltage levels.  
16-BIT SAR ADC (analog-to-digital converter) — Measures analog  
voltages at up to 16 bits of resolution. The ADC has up to four differential  
and 8 single-ended inputs.  
OPAMP — General purpose op amp used for signal filtering or  
amplification.  
Measurement Engine  
TRIAMP —- Transimpedance amplifier optimized for converting small  
currents into voltages.  
Measurement Engine PDB — The measurement engine PDB is used to  
precisely trigger the DAC and the ADC modules to complete sensor  
biasing and measuring.  
Mini-FlexBus  
Provides expansion capability for off-chip memory and peripherals.  
Supports the USB On-the-Go dual-role controller.  
USB On-the-Go  
CMT (Carrier Modulator Timer)  
Infrared output used for the Remote Controller operation.  
Provides clocking options for the device, including a phase-locked loop  
(PLL) and frequency-locked loop (FLL) for multiplying slower reference  
clock sources.  
MCG (Multipurpose Clock Generator)  
BDM (Background Debug Module)  
CF1 CORE (V1 ColdFire Core)  
Provides single pin debugging interface (part of the V1 ColdFire core).  
Executes programs and interrupt handlers.  
Analog comparators for comparing external analog signals against  
each other, or a variety of reference levels.  
PRACMP  
COP (Computer Operating Properly)  
IRQ (Interrupt Request)  
Software Watchdog.  
Single-pin high-priority interrupt (part of the V1 ColdFire core).  
High-speed CRC calculation.  
CRC (Cyclic Redundancy Check)  
Provides debugging and emulation capabilities (part of the V1 ColdFire.  
core)  
DBG (Debug)  
FLASH (Flash Memory)  
IIC (Inter-integrated Circuits)  
INTC (Interrupt Controller)  
KBI1 & KBI2  
Provides storage for program code, constants, and variables.  
Supports standard IIC communications protocol and SMBus.  
Controls and prioritizes all device interrupts.  
Keyboard Interfaces 1 and 2.  
Provides an interrupt to theColdFire V1 CORE in the event that the  
supply voltage drops below a critical value. The LVD can also be  
programmed to reset the device upon a low voltage event.  
LVD (Low-voltage Detect)  
VREF (Voltage Reference)  
The Voltage Reference output is available for both on- and off-chip use.  
Provides stack and variable storage.  
RAM (Random-Access Memory)  
RGPIO (Rapid General-purpose  
Input/output)  
Allows for I/O port access at CPU clock speeds. RGPIO is used to  
implement GPIO functionality.  
Freescale Semiconductor  
5
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Features  
Table 2. MCF51MM256/128 Functional Units (continued)  
Function  
Unit  
SCI1, SCI2 (Serial Communications  
Interfaces)  
Serial communications UARTs capable of supporting RS-232 and LIN  
protocols.  
SIM (system integration unit)  
SPI1 (FIFO), SPI2 (Serial Peripheral  
Interfaces)  
SPI1 and SPI2 provide standard master/slave capability. SPI contains a  
FIFO buffer in order to increase the throughput for this peripheral.  
Timer/PWM module can be used for a variety of generic timer  
operations as well as pulse-width modulation.  
TPM1, TPM2 (Timer/PWM Module)  
VREG (Voltage Regulator)  
Controls power management across the device.  
These devices incorporate redundant crystal oscillators. One is  
XOSC1 and XOSC2 (Crystal Oscillators) intended primarily for use by the TOD, and the other by the CPU and  
other peripherals.  
6
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
2
Pinouts and Pin Assignments  
2.1  
104-Pin MAPBGA  
The following figure shows the 104-pin MAPBGA pinout configuration.  
1
2
3
4
5
6
7
8
9
10  
11  
PTF6  
PTF7  
USB_DP USB_DM VUSB33  
PTF4  
PTF3  
FB_AD12  
PTJ7  
PTJ5  
PTJ4  
A
B
C
D
E
A
B
C
D
E
F
PTG0  
IRO  
PTA0  
PTG4  
PTA4  
PTG3  
PTA6  
VBUS  
PTG2  
VDD1  
PTF5  
PTG6  
PTJ6  
PTG5  
VDD2  
PTH0  
PTG7  
PTE5  
PTH1  
VDD3  
PTF0  
PTE4  
PTA1  
PTA2  
PTJ2  
PTD5  
PTD4  
PTC2  
PTC4  
PTF1  
PTE6  
PTE3  
PTJ3  
PTJ0  
PTD7  
PTD3  
PTC0  
PTC5  
PTF2  
PTE7  
PTE2  
PTE1  
PTJ1  
PTE0  
PTD2  
PTC1  
PTC6  
PTA5  
PTB1  
PTB0  
INP2-  
OUT2  
PTA3  
VSSA  
PTA7  
VREFL  
TRIOUT1  
VINP1  
DADP0  
VINP2  
INP1-  
OUT1  
VINN1  
DADM0  
VINN2  
PTG1  
PTC7  
F
G
G
H
J
H
VSS1  
PTH6  
PTH5  
VSS2  
PTH3  
PTB7  
VSS3  
PTD6  
PTD1  
PTH7  
DADP1  
PTH4  
PTB6  
PTH2  
PTC3  
J
K
L
K
L
TRIOUT2  
DACO  
DADM1  
VREFO  
VREFH  
VDDA  
PTB3  
PTB2  
PTD0  
PTB5  
PTB4  
1
2
3
4
5
6
7
8
9
10  
11  
Figure 2. 104-Pin MAPBGA  
Freescale Semiconductor  
7
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
2.2  
100-Pin LQFP  
The following figure shows the 100-pin LQFP pinout configuration.  
PTE4/CMPP3/TPMCLK/IRQ  
PTA0/FB_D2/SS1  
IRO  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE3/KBI2P6/FB_AD8  
PTE2/KBI2P5/RGPIOP14/FB_AD7  
PTE1/KBI2P4/RGPIOP13/FB_AD6  
PTJ3/RGPIOP12/FB_AD5  
PTJ2/FB_AD4  
2
3
PTG5/FB_RW  
4
PTG6/FB_AD19  
PTG7/FB_AD18  
PTH0/FB_OE  
5
6
7
PTH1/FB_D0  
PTJ1/FB_AD3  
PTA1/KBI1P0/TX1/FB_D1  
PTA2/KBI1P1/RX1/ADP4  
8
PTJ0/FB_AD2  
PTE0/KBI2P3/FB_ALE/FB_CS1  
9
PTD7/USB_PULLUP(D+)/RX1  
PTA3/KBI1P2/FB_D6/ADP5  
PTA4/INP1+  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PTD6/USB_ALTCLK/TX1  
PTA5  
PTA6  
PTA7/INP2+  
PTD5/SCL/RGPIOP11/TPM1CH3  
PTD4/SDA/RGPIOP10/TPM1CH2  
100 LQFP  
PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1  
PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0  
PTB0  
PTB1/BLMS  
VSSA  
PTD1/CMPP2/RESET  
PTD0/BKGD/MS  
VREFL  
INP1-  
OUT1  
PTC7/KBI2P2/CLKOUT/ADP11  
PTC6/KBI2P1/PRACMPO/ADP10  
PTC5/KBI2P0/CMPP1/ADP9  
PTC4/KBI1P7/CMPP0/ADP8  
PTC3/KBI1P6/SS2/ADP7  
TRIOUT1/DADP2-  
VINP1  
VINN1/DADM2  
INP2-  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC1/MISO2/FB_D0/FB_AD1  
PTC0/MOSI2/FB_OE/FB_CS0  
OUT2  
Figure 3. 100-Pin LQFP  
8
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
2.3  
81-Pin MAPBGA  
The following figure shows the 81-pin MAPBGA pinout configuration.  
1
2
3
4
5
6
7
8
9
IRO  
PTG0  
PTF6  
USB_DP  
VBUS  
VUSB33  
PTF4  
PTF3  
PTE4  
A
B
C
D
E
F
A
B
C
D
E
F
PTF7  
PTA4  
PTA0  
PTA5  
PTG1  
PTA6  
USB_DM  
PTA1  
PTF5  
PTF2  
PTE7  
PTE6  
PTA3  
VDD1  
VSS1  
PTB6  
PTC4  
PTF1  
PTE5  
PTD5  
PTD2  
PTB7  
PTC0  
PTD0  
PTF0  
PTE2  
PTD7  
PTD3  
PTC7  
PTC1  
PTC5  
PTE3  
PTE1  
PTE0  
PTD6  
PTD4  
PTC2  
PTC6  
INP1-  
PTA7  
PTB0  
PTB1  
PTA2  
OUT1  
VINP1  
DADP0  
DADM0  
VINN1  
TRIOUT1  
DACO  
DADM1  
OUT2  
VDD2  
VSS2  
VDD3  
VSS3  
VREFO  
PTC3  
INP2-  
TRIOUT2  
DADP1  
VINN2  
VINP2  
G
H
J
G
H
J
VSSA  
VREFL  
VREFH  
VDDA  
PTB2  
PTB3  
PTD1  
PTB4  
PTB5  
1
2
3
4
5
6
7
8
9
Figure 4. 81-Pin MAPBGA  
Freescale Semiconductor  
9
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
2.4  
80-Pin LQFP  
The following figure shows the 80-pin LQFP pinout configuration.  
PTA0/FB_D2/SS1  
IRO  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PTE4/CMPP3/TPMCLK/IRQ  
PTE3/KBI2P6/FB_AD8  
2
PTA1/KBI1P0/TX1/FB_D1  
PTA2/KBI1P1/RX1/ADP4  
PTA3/KBI1P2/FB_D6/ADP5  
PTA4/INP1+  
3
PTE2/KBI2P5/RGPIOP14/FB_AD7  
PTE1/KBI2P4/RGPIOP13/FB_AD6  
PTE0/KBI2P3/FB_ALE/FB_CS1  
PTD7/USB_PULLUP(D+)/RX1  
PTD6/USB_ALTCLK/TX1  
4
5
6
PTA5  
PTA6  
PTA7/INP2+  
7
8
PTD5/SCL/RGPIOP11/TPM1CH3  
PTD4/SDA/RGPIOP10/TPM1CH2  
PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1  
PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0  
PTD1/CMPP2/RESET  
9
PTB0  
PTB1/BLMS  
VSSA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-Pin LQFP  
VREFL  
PTD0/BKGD/MS  
INP1-  
PTC7/KBI2P2/CLKOUT/ADP11  
PTC6/KBI2P1/PRACMPO/ADP10  
PTC5/KBI2P0/CMPP1/ADP9  
PTC4/KBI1P7/CMPP0/ADP8  
PTC3/KBI1P6/SS2/ADP7  
OUT1  
TRIOUT1/DADP2-  
VINP1  
VINN1DADM2  
INP2-  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC1/MISO2/FB_D0/FB_AD1  
OUT2  
Figure 5. 80-Pin LQFP  
10  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
2.5  
Pin Assignments  
Table 3. Package Pin Assignments  
Package  
Default  
Function  
Alternate  
Alternate Alternate  
Composite Pin Name  
1
2
3
B2  
C1  
C6  
C5  
C7  
B7  
C8  
D9  
E9  
H3  
D2  
D1  
C3  
E2  
E3  
D3  
E1  
F1  
F2  
1
2
B2  
A1  
1
PTA0  
IRO  
FB_D2  
SS1  
PTA0/FB_D2/SS1  
IRO  
2
3
3
PTG5  
PTG6  
PTG7  
PTH0  
PTH1  
PTA1  
FB_RW  
FB_AD19  
FB_AD18  
FB_OE  
FB_D0  
KBI1P0  
KBI1P1  
KBI1P2  
INP1+  
PTG5/FB_RW  
PTG6/FB_AD19  
PTG7/FB_AD18  
PTH0/FB_OE  
PTH1/FB_D0  
PTA1/KBI1P0/TX1/FB_D1  
PTA2/KBI1P1/RX1/ADP4  
PTA3/KBI1P2/FB_D6/ADP5  
PTA4/INP1+  
PTA5  
4
5
6
7
8
C4  
D5  
D6  
C1  
C2  
C3  
D2  
D3  
D4  
J1  
TX1  
RX1  
FB_D6  
FB_D1  
ADP4  
ADP5  
9
4
PTA2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
5
PTA3  
6
PTA4  
7
PTA5  
8
PTA6  
PTA6  
9
PTA7  
INP2+  
PTA7/INP2+  
PTB0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PTB0  
PTB1  
VSSA  
VREFL  
INP1-  
OUT1  
DADP2  
VINP1  
DADM2  
INP2-  
OUT2  
DACO  
DADP3  
VINP2  
DADM3  
BLMS  
PTB1/BLMS  
VSSA  
J2  
VREFL  
D1  
E1  
F2  
F1  
E2  
F3  
E3  
G2  
G3  
H4  
G4  
INP1-  
G2 20  
G1 21  
OUT1  
TRIOUT1  
DADP2/TRIOUT1  
VINP1  
H1  
H2  
F3  
22  
23  
24  
VINN1  
DADM2/VINN1  
INP2-  
G3 25  
OUT2  
L2  
L1  
K1  
K2  
26  
27  
28  
29  
DACO  
TRIOUT2  
DADP3/TRIOUT2  
VINP2  
VINN2  
DADM3/VINN2  
Freescale Semiconductor  
11  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
Package  
Table 3. Package Pin Assignments  
Default  
Function  
Alternate  
Alternate Alternate  
Composite Pin Name  
1
2
3
J1  
J2  
L4  
K3  
L3  
L5  
L6  
H6  
L8  
L7  
D6  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
G1  
H1  
G5  
H3  
H2  
J3  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
DADP0  
DADM0  
VREFO  
DADP1  
DADM1  
VREFH  
VDDA  
VSS2  
PTB2  
PTB3  
VDD2  
PTB4  
PTB5  
PTB6  
PTB7  
PTH2  
PTH3  
PTH4  
PTH5  
PTH6  
PTH7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTD0  
PTD1  
DADP0  
DADM0  
VREFO  
DADP1  
DADM1  
VREFH  
J4  
VDDA  
F4  
J5  
VSS2  
EXTAL1  
XTAL1  
PTB2/EXTAL1  
J6  
PTB3/XTAL1  
E4  
J8  
VDD2  
L11 41  
L10 42  
EXTAL2  
XTAL2  
KBI1P3  
KBI1P4  
RGPIOP2  
RGPIOP3  
RGPIOP4  
RGPIOP5  
RGPIOP6  
RGPIOP7  
MOSI2  
MISO2  
KBI1P5  
KBI1P6  
KBI1P7  
KBI2P0  
KBI2P1  
KBI2P2  
BKGD  
CMPP2  
PTB4/EXTAL2  
J9  
PTB5/XTAL2  
K5  
K6  
J7  
J6  
J5  
K4  
J4  
J3  
43  
44  
45  
46  
47  
48  
49  
50  
G6  
F7  
RGPIOP0 FB_AD17  
RGPIOP1 FB_AD0  
PTB6/KBI1P3/RGPIOP0/FB_AD17  
PTB7/KBI1P4/RGPIOP1/FB_AD0  
PTH2/RGPIOP2/FB_D7  
PTH3/RGPIOP3/FB_D6  
PTH4/RGPIOP4/FB_D5  
PTH5/RGPIOP5/FB_D4  
PTH6/RGPIOP6/FB_D3  
PTH7/RGPIOP7/FB_D2  
PTC0/MOSI2/FB_OE/FB_CS0  
PTC1/MISO2/FB_D0/FB_AD1  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC3/KBI1P6/SS2/ADP7  
PTC4/KBI1P7/CMPP0/ADP8  
PTC5/KBI2P0/CMPP1/ADP9  
PTC6/KBI2P1/PRACMPO/ADP10  
PTC7/KBI2P2/CLKOUT/ADP11  
PTD0/BKGD/MS  
FB_D7  
FB_D6  
FB_D5  
FB_D4  
FB_D3  
FB_D2  
FB_OE  
FB_D0  
SPSCK2  
SS2  
J10 51  
J11 52  
G7  
G8  
G9  
H5  
H6  
H8  
H9  
F8  
H7  
J7  
FB_CS0  
FB_AD1  
ADP6  
ADP7  
ADP8  
ADP9  
J9  
K7  
K9  
53  
54  
55  
CMPP0  
CMPP1  
K10 56  
K11 57  
PRACMPO ADP10  
F8  
L9  
K8  
58  
59  
60  
CLKOUT  
MS  
ADP11  
RESET  
PTD1/CMPP2/RESET  
12  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
Table 3. Package Pin Assignments  
Package  
Default  
Function  
Alternate  
Alternate Alternate  
Composite Pin Name  
1
2
3
H11 61  
H10 62  
E7  
E8  
50  
51  
PTD2  
PTD3  
USB_ALTCLK RGPIOP8 TPM1CH0  
USB_PULLUP  
PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0  
RGPIOP9 TPM1CH1 PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1  
(D+)  
H9  
G9 64  
J8 65  
63  
F9  
D7  
E9  
52  
53  
54  
PTD4  
PTD5  
PTD6  
SDA  
RGPIOP10 TPM1CH2  
RGPIOP11 TPM1CH3  
PTD4/SDA/RGPIOP10/TPM1CH2  
PTD5/SCL/RGPIOP11/TPM1CH3  
PTD6/USB_ALTCLK/TX1  
SCL  
USB_ALTCLK  
TX1  
RX1  
USB_PULLUP  
(D+)  
G10 66  
D8  
55  
PTD7  
PTD7/USB_PULLUP(D+) /RX1  
G11 67  
F10 68  
F11 69  
D9  
56  
57  
58  
59  
60  
61  
62  
PTE0  
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PTE1  
PTE2  
PTE3  
PTE4  
VSS3  
VDD3  
KBI2P3  
FB_AD2  
FB_AD3  
FB_AD4  
RGPIOP12  
KBI2P4  
KBI2P5  
KBI2P6  
CMPP3  
FB_ALE  
FB_CS1  
PTE0/KBI2P3/FB_ALE/FB_CS1  
PTJ0/FB_AD2  
PTJ1/FB_AD3  
F9  
70  
PTJ2/FB_AD4  
E10 71  
E11 72  
D11 73  
D10 74  
FB_AD5  
PTJ3/RGPIOP12/FB_AD5  
PTE1/KBI2P4/RGPIOP13/FB_AD6  
PTE2/KBI2P5/RGPIOP14/FB_AD7  
PTE3/KBI2P6/FB_AD8  
PTE4/CMPP3/TPMCLK/IRQ  
VSS3  
C9  
C8  
B9  
A9  
F5  
E5  
RGPIOP13 FB_AD6  
RGPIOP14 FB_AD7  
FB_AD8  
TPMCLK  
IRQ  
C9  
H8  
D8  
75  
76  
77  
VDD3  
USB_  
SESSVLD  
B8  
78  
C7  
C6  
63  
64  
PTE5  
PTE6  
FB_D7  
TX2  
RX2  
PTE5/FB_D7/USB_SESSVLD/TX2  
PTE6/FB_RW/USB_SESSEND/RX2  
USB_  
SESSEND  
C10 79  
C11 80  
FB_RW  
USB_  
VBUSVLD  
B6  
B8  
B7  
65  
66  
67  
PTE7  
PTF0  
PTF1  
TPM2CH3  
TPM2CH2  
PTE7/USB_VBUSVLD/TPM2CH3  
PTF0/USB_ID/TPM2CH2  
B9  
81  
USB_ID  
RX2  
USB_DP_D  
OWN  
B10 82  
B11 83  
TPM2CH1  
PTF1/RX2/USB_DP_DOWN/TPM2CH1  
USB_DM_  
DOWN  
C5  
68  
PTF2  
TX2  
TPM2CH0  
PTF2/TX2/USB_DM_DOWN/TPM2CH0  
A11 84  
A10 85  
PTJ4  
PTJ5  
PTJ6  
PTJ7  
RGPIOP15  
FB_AD15  
FB_AD14  
FB_AD13  
FB_AD16  
PTJ4/RGPIOP15/FB_AD16  
PTJ5/FB_AD15  
B6  
A9  
86  
87  
PTJ6/FB_AD14  
PTJ7/FB_AD13  
Freescale Semiconductor  
13  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Pinouts and Pin Assignments  
Package  
Table 3. Package Pin Assignments  
Default  
Function  
Alternate  
Alternate Alternate  
Composite Pin Name  
1
2
3
A8  
A7  
A6  
B5  
A5  
A4  
A3  
B4  
H4  
D4  
A1  
A2  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
A8  
A7  
B5  
A6  
B4  
A4  
A5  
F6  
E6  
A3  
B1  
69  
70  
71  
72  
FB_AD12  
PTF3  
SCL  
SDA  
KBI2P7  
FB_D5  
FB_D4  
FB_D3  
FB_AD12  
PTF3/SCL/FB_D5/FB_AD11  
PTF4/SDA/FB_D4/FB_AD10  
PTF5/KBI2P7/FB_D3/FB_AD9  
VUSB33  
FB_AD11  
PTF4  
FB_AD10  
PTF5  
FB_AD9  
VUSB33  
73 USB_DM  
USB_DM  
74  
75  
76  
77  
78  
79  
80  
USB_DP  
VBUS  
VSS1  
VDD1  
PTF6  
USB_DP  
VBUS  
VSS1  
VDD1  
MOSI1  
MISO1  
SPSCK1  
PTF6/MOSI1  
PTF7  
PTF7/MISO1  
B1 100 A2  
PTG0  
PTG0/SPSCK1  
USB_  
SESSEND  
F4  
C4  
A1  
PTG1  
PTG2  
PTG1/USB_SESSEND  
PTG2/USB_DM_DOWN  
USB_DM_  
DOWN  
USB_DP_  
DOWN  
B3  
C2  
PTG3  
PTG4  
PTG3/USB_DP_DOWN  
PTG4/USB_SESSVLD  
USB_SESSVLD  
14  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3
Preliminary Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the  
MCF51MM256/128 microcontroller, including detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These  
specifications will, however, be met for production silicon. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this data sheet supersede any values found in the module  
specifications.  
3.1  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 4. Parameter Classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause  
permanent damage to the device. For functional operating conditions, refer to the remaining tables in this  
section.  
Freescale Semiconductor  
15  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 5. Absolute Maximum Ratings  
#
Rating  
Symbol  
Value  
Unit  
1
2
3
Supply voltage  
VDD  
IDD  
VIn  
–0.3 to +3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
4
5
ID  
± 25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two  
resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of  
VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current  
greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power.  
Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ).  
SS  
DD  
3.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take  
P
into account in power calculations, determine the difference between actual pin voltage and V or  
I/O  
SS  
V
and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy  
DD  
loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
16  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 6. Thermal Characteristics  
Rating  
#
Symbol  
Value  
Unit  
Operating temperature range (packaged):  
1
TA  
°C  
MCF51MM256  
MCF51MM128  
–40 to 105  
–40 to 105  
150  
2
3
TJM  
Maximum junction temperature  
°C  
Thermal resistance1,2,3,4  
Single-layer board — 1s  
θJA  
°C/W  
104-pin MBGA  
100-pin LQFP  
81-pin MBGA  
80-pin LQFP  
67  
53  
67  
53  
Thermal resistance1, 2, 3, 4  
Four-layer board — 2s2p  
4
θJA  
°C/W  
104-pin MBGA  
100-pin LQFP  
81-pin MBGA  
80-pin LQFP  
39  
41  
39  
39  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2
3
4
Junction to Ambient Natural Convection  
1s — Single layer board, one signal layer  
2s2p — Four layer board, 2 signal and 2 power layers  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
DD DD  
= Power dissipation on input and output pins — user determined  
int  
I/O  
For most applications, P << P and can be neglected. An approximate relationship between P and T  
I/O  
int  
D
J
(if P is neglected) is:  
I/O  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Freescale Semiconductor  
17  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Solving Equation 1 and Equation 2 for K gives:  
2
K = P × (T + 273°C) + θ × (P )  
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
3.4  
ESD Protection Characteristics  
Although damage from static discharge is much less common on these devices than on early CMOS  
circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification  
tests are performed to ensure that these devices can withstand exposure to reasonable levels of static  
without suffering any permanent damage.  
All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade  
Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.  
A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the  
device specification requirements. Complete dc parametric and functional testing is performed per the  
applicable device specification at room temperature followed by hot temperature, unless specified  
otherwise in the device specification.  
Table 7. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Series Resistance  
R1  
C
1500  
100  
3
Ω
pF  
Ω
Human Body  
Storage Capacitance  
Number of Pulse per pin  
Series Resistance  
R1  
C
0
Machine  
Latch-up  
Storage Capacitance  
200  
3
pF  
V
Number of Pulse per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
Table 8. ESD and Latch-Up Protection Characteristics  
#
Rating  
Symbol  
Min  
Max  
Unit  
C
1
2
3
4
Human Body Model (HBM)  
Machine Model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
±2000  
±200  
±500  
±100  
V
V
T
T
T
T
Charge Device Model (CDM)  
Latch-up Current at TA = 125°C  
V
mA  
18  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.5  
DC Characteristics  
This section includes information about power supply requirements, I/O pin characteristics, and power  
supply current in various operating modes.  
Table 9. DC Characteristics  
Num  
Symbol  
Characteristic  
Operating Voltage  
Condition  
Min  
Typ1  
Max  
Unit  
C
1
2
1.82  
3.6  
V
VOH  
Output high voltage  
All I/O pins, low-drive strength  
1.8 V, ILoad VDD  
= –600 μA 0.5  
V
C
All I/O pins, high-drive strength  
2.7 V, ILoad VDD  
= –10 mA 0.5  
V
V
V
P
T
2.3 V, ILoad VDD  
= –6 mA  
0.5  
1.8V, ILoad  
–3 mA  
=
VDD  
0.5  
C
3
4
IOHT  
Output high current  
Output low voltage  
Max total IOH for all ports  
100  
0.5  
mA  
V
D
C
VOL  
All I/O pins, low-drive strength  
1.8 V, ILoad  
= 600 μA  
All I/O pins, high-drive strength  
2.7 V, ILoad  
= 10 mA  
0.5  
0.5  
0.5  
100  
V
V
P
T
2.3 V, ILoad  
= 6 mA  
1.8 V, ILoad  
= 3 mA  
V
C
D
Max total IOL for all  
ports  
5
6
IOLT  
VIH  
Output low current  
Input high voltage  
mA  
all digital inputs  
0.70 x  
VDD  
VDD > 2.7 V  
VDD > 1.8 V  
V
V
P
C
0.85 x  
VDD  
Freescale Semiconductor  
19  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 9. DC Characteristics (continued)  
Num  
Symbol  
Characteristic  
all digital inputs  
Condition  
Min  
Typ1  
Max  
Unit  
C
7
VIL  
Input low voltage  
0.35 x  
VDD  
VDD > 2.7 V  
VDD >1.8 V  
V
V
P
C
C
P
P
P
0.30 x  
VDD  
0.06 x  
VDD  
8
9
Vhys  
|IIn|  
Input hysteresis  
all digital inputs  
mV  
μA  
μA  
all input only pins VIn = VDD or  
(Per pin) VSS  
0.25  
(TBD)  
Input leakage current  
Hi-Z (off-state) leakage  
current  
all input/output VIn = VDD or  
(per pin) VSS  
10  
|IOZ|  
0.25  
0.5  
Leakage current for analog  
output pins (DACO, VREFO,  
and OUTx, TRIOUTx)  
all input/output VIn = VDD or  
11  
12  
|IOZ|  
μA  
(per pin)  
VSS  
all digital inputs,  
when enabled  
RPU  
Pull-up resistors  
17.5  
17.5  
52.5  
52.5  
kΩ  
kΩ  
P
P
13  
14  
RPD  
IIC  
Internal pull-down resistors3  
DC injection current 4, 5, 6  
Single pin limit  
V
SS > VIN  
VDD  
>
–0.2  
0.2  
5
mA  
D
Total MCU limit, includes sum of all stressed pins  
VSS > VIN  
>
–5  
mA  
D
VDD  
15  
16  
17  
18  
CIn  
Input Capacitance, all pins  
RAM retention voltage  
POR re-arm voltage7  
POR re-arm time  
0.6  
1.4  
8
pF  
V
C
C
C
D
VRAM  
VPOR  
tPOR  
1.0  
1.79  
0.9  
10  
V
μs  
Low-voltage detection  
threshold —  
8
19  
VLVDH  
VDD falling  
VDD rising  
VDD falling  
VDD rising  
high range9  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
V
V
P
P
Low-voltage detection  
threshold —  
20  
VLVDL  
low range14  
1.80  
1.86  
1.82  
1.90  
1.91  
1.99  
V
V
P
P
20  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 9. DC Characteristics (continued)  
Num  
Symbol  
Characteristic  
Condition  
Min  
Typ1  
Max  
Unit  
C
Low-voltage warning  
21  
VLVWH threshold —  
high range14  
VDD falling  
2.36  
2.36  
2.46  
2.46  
2.56  
2.56  
V
V
P
P
VDD rising  
VDD falling  
Low-voltage warning  
22  
VLVWL threshold —  
low range14  
2.11  
2.16  
2.22  
V
P
VDD rising  
2.16  
2.21  
50  
2.27  
V
mV  
V
P
C
P
23  
24  
Vhys  
VBG  
Low-voltage inhibit reset/recover hysteresis14  
Bandgap Voltage Reference10  
1.145  
1.17  
1.195  
1
2
3
Typical values are measured at 25°C. Characterized, not tested  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
.
Measured with VIn = VDD  
.
4
5
All functional non-supply pins are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values  
for positive and negative clamp voltages, then use the larger of the two values.  
6
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive  
injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of  
regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is  
not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).  
Maximum is highest voltage that POR is guaranteed.  
7
8
Run at 1 MHz bus frequency  
9
Low voltage detection and warning limits measured at 1 MHz bus frequency.  
Factory trimmed at VDD = 3.0 V, Temp = 25°C  
10  
Freescale Semiconductor  
21  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.6  
Supply Current Characteristics  
Table 10. Supply Current Characteristics  
Bus  
Freq  
Temp  
(°C)  
#
Symbol  
Parameter  
VDD (V)  
Typ1  
Max  
Unit  
C
Run  
supply  
current  
FEI mode  
All modules ON  
1
RIDD  
25.165  
MHz  
–40 to  
25  
3
3
3
3
3
43  
43  
48  
48  
mA  
mA  
mA  
mA  
mA  
P
P
T
T
T
25.165  
MHz  
105  
–40 to  
105  
20 MHz  
8 MHz  
1 MHz  
31.6  
15.4  
2.9  
–40 to  
105  
–40 to  
105  
Run  
2
RIDD  
supply  
current  
FEI mode; All modules OFF  
25.165  
MHz  
–40 to  
105  
3
3
3
3
28.1  
23.2  
12.3  
2.4  
29.6  
mA  
mA  
mA  
mA  
C
T
T
T
–40 to  
105  
20 MHz  
8 MHz  
1 MHz  
–40 to  
105  
–40 to  
105  
Run  
3
RIDD  
supply  
current  
LPS=0; All modules OFF  
16 kHz  
FBILP  
–40 to  
105  
3
3
TBD  
TBD  
μA  
μA  
T
T
16 kHz  
FBELP  
–40 to  
105  
Run  
RIDD  
4
supply  
current  
LPS=1, all modules OFF  
16 kHz  
FBELP  
3
3
TBD  
TBD  
μA  
μA  
0 to 70  
T
T
16 kHz  
FBELP  
–40 to  
105  
22  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 10. Supply Current Characteristics (continued)  
Bus  
Freq  
Temp  
(°C)  
#
Symbol  
Parameter  
VDD (V)  
Typ1  
Max  
Unit  
C
Waitmode  
supply  
FEI mode, all modules OFF  
WIDD  
5
current  
25.165  
MHz  
–40 to  
105  
3
3
3
3
5
mA  
mA  
mA  
mA  
C
T
T
T
–40 to  
105  
20 MHz  
8 MHz  
1 MHz  
TBD  
TBD  
TBD  
–40 to  
105  
–40 to  
105  
Stop2  
mode  
supply  
current  
S2IDD  
6
–40 to  
25  
N/A  
3
0.410  
0.640  
µA  
P
N/A  
N/A  
N/A  
3
3
3
3.5  
10  
21  
10  
20  
µA  
µA  
µA  
70  
85  
C
C
P
31.5  
105  
–40 to  
25  
N/A  
2
0.410  
0.640  
µA  
C
N/A  
N/A  
N/A  
2
2
2
3.4  
9.5  
20  
9
µA  
µA  
µA  
70  
85  
C
C
C
18  
30  
105  
Stop3  
mode  
supply  
current  
S3IDD  
7
No clocks active  
–40 to  
25  
N/A  
3
0.650  
1.2  
µA  
P
N/A  
N/A  
N/A  
3
3
3
7.1  
20  
37  
18  
28  
63  
µA  
µA  
µA  
70  
85  
C
C
P
105  
–40 to  
25  
N/A  
2
0.400  
0.900  
µA  
C
N/A  
N/A  
N/A  
2
2
2
7.1  
18  
33  
16  
26  
59  
µA  
µA  
µA  
70  
85  
C
C
C
105  
Freescale Semiconductor  
23  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
1
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
Table 11. Typical Stop Mode Adders  
Temperature (°C)  
#
Parameter  
Condition  
Units  
C
-40  
25  
70  
85  
105  
1
2
LPO  
50  
75  
100  
750  
150  
850  
250  
nA  
nA  
D
D
600  
650  
1000  
EREFSTEN  
RANGE = HGO = 0  
(TBD) (TBD) (TBD) (TBD) (TBD)  
3
4
5
6
IREFSTEN1  
TOD  
68  
50  
70  
75  
77  
100  
123  
23  
86  
150  
135  
33  
120  
250  
170  
65  
µA  
nA  
µA  
µA  
T
D
T
T
Does not include clock source current  
LVDSE = 1  
LVD1  
114  
18  
115  
20  
ACMP1  
Not using the bandgap (BGBE = 0)  
ADLPC = ADLSMP = 1  
Not using the bandgap (BGBE = 0)  
7
8
ADC1  
DAC1  
75  
85  
100  
500  
115  
500  
165  
500  
µA  
µA  
T
T
High power mode; no load on DACO  
500  
500  
1
Not available in stop2 mode.  
24  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Figure 6. Stop IDD versus Temperature  
3.7  
PRACMP Electricals  
Table 12. PRACMP Electrical Specifications  
#
Characteristic  
Supply voltage  
Symbol  
Min  
Typical  
Max  
Unit  
C
1
2
3
VPWR  
IDDACT1  
IDDACT2  
1.8  
3.6  
60  
40  
V
P
C
C
Supply current (active) (PRG enabled)  
Supply current (active) (PRG disabled)  
μA  
μA  
Supply current (ACMP and PRG all  
disabled)  
4
IDDDIS  
2
nA  
D
5
6
7
8
9
Analog input voltage  
VAIN  
VAIO  
VH  
VSS – 0.3  
5
VDD  
40  
V
T
Analog input offset voltage  
Analog comparator hysteresis  
Analog input leakage current  
Analog comparator initialization delay  
3.0  
mV  
mV  
nA  
μs  
20.0  
1
T
IALKG  
tAINIT  
D
T
1.0  
Freescale Semiconductor  
25  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 12. PRACMP Electrical Specifications  
#
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
C
10 Programmable reference generator inputs  
VIn2(VDD25  
)
1.8  
2.75  
V
Programmable reference generator setup  
delay  
11  
tPRGST  
Vstep  
1
1
0.25  
Vin  
µs  
LSB  
V
D
D
P
Programmable reference generator step  
size  
12  
–0.25  
VIn/32  
Programmable reference generator voltage  
range  
13  
Vprgout  
3.8  
12-bit DAC Electricals  
Table 13. DAC 12LV Operating Requirements  
#
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
C
Notes  
1
2
3
VDDA  
VDACR  
TA  
1.8  
1.15  
–40  
3.6  
3.6  
105  
V
V
P
C
C
Reference voltage  
Temperature  
°C  
A small load capaci-  
tance (47 pF) can  
improve the band-  
width performance of  
the DAC.  
4
5
Output load capacitance  
Output load current  
CL  
100  
1
pF  
C
C
IL  
mA  
26  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 14. DAC 12-Bit Operating Behaviors  
#
Characteristic  
Resolution  
Symbol  
Min  
Max  
Unit  
C
Notes  
1
N
C
12  
12  
bit  
µA  
2
3
Supply current low-power mode  
Supply current high-power mode  
IDDA_DACLP  
IDDA_DACHP  
50  
100  
C
C
500  
(TBD)  
120  
µA  
µs  
Full-scale Settling time  
(±0.5 LSB)  
(0x080 to 0xF7F or 0xF7F to 0x080)  
low-power mode  
200  
(TBD)  
4
5
TsFSLP  
C
C
Full-scale Settling time  
(±0.5 LSB)  
(0x080 to 0xF7F or 0xF7F to 0x080)  
high-power mode  
TsFSHP  
TsC-CLP  
30  
5
µs  
µs  
Code-to-code Settling time  
(±0.5 LSB)  
(0xBF8 to 0xC08 or 0xC08 to  
0xBF8)  
6
7
C
C
low-power mode  
Code-to-code Settling time  
(±0.5 LSB)  
(0xBF8 to 0xC08 or 0xC08 to  
0xBF8)  
TsC-CHP  
1
µs  
(TBD)  
high-power mode  
DAC output voltage range low  
(high-power mode, no load, DAC  
set to 0)  
100  
8
9
Vdacoutl  
mV  
mV  
C
C
(TBD)  
DAC output voltage range high  
(high-power mode, no load, DAC  
set to 0x0FFF)  
Vdacouth  
V
DAC  
-100  
R
10  
11  
Integral non-linearity error  
INL  
C
C
± 10  
± 1  
LSB  
LSB  
Differential non-linearity error  
VDACR is > 2.4 V  
DNL  
%FS  
R
12  
13  
14  
Offset error  
Gain error  
EO  
EG  
C
C
C
± 0.5  
± 0.5  
(TBD)  
%FS  
R
Power supply rejection ratio  
VDD 2.4 V  
PSRR  
60  
dB  
Temperature drift of offset voltage  
(DAC set to 0x0800)  
See Typical  
Drift figure  
that follows.  
15  
16  
Tco  
Ac  
C
C
2(TBD)  
TBD  
mV  
Offset aging coefficient  
µV/yr  
Figure 7. Offset at Half Scale vs Temperature  
Freescale Semiconductor  
27  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.9  
ADC Characteristics  
Table 15. 16-bit ADC Operating Conditions  
#
Symb  
Characteristic  
Conditions  
Min  
Typ1  
Max  
Unit  
C
Comment  
1
VDDAD Supply voltage Absolute  
1.8  
3.6  
V
D
Delta to VDD  
2
3
ΔVDDAD  
-100  
-100  
0
0
+100  
+100  
mV  
mV  
D
D
2
(VDD-VDDAD  
)
Delta to VSS  
(VSS-VSSAD  
ΔVSSAD Ground voltage  
2
)
4
5
6
VREFH Ref Voltage High  
VREFL Ref Voltage Low  
1.13  
VDDAD VDDAD  
VSSAD VSSAD  
V
V
V
D
D
D
VSSAD  
VREFL  
VADIN  
CADIN  
Input Voltage  
VREFH  
Input  
Capacitance  
16-bit modes  
8/10/12-bit modes  
8
4
10  
5
7
8
pF  
C
C
RADIN Input Resistance  
2
5
kΩ  
28  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 15. 16-bit ADC Operating Conditions (continued)  
#
Symb  
Characteristic  
Conditions  
Min  
Typ1  
Max  
Unit  
C
Comment  
External to  
MCU  
Assumes  
ADLSMP=0  
Analog Source  
Resistance  
9
RAS  
16-bit mode  
ADCK > 8 MHz  
C
0.5  
kΩ  
f
4 MHz < fADCK < 8  
MHz  
1
2
1
kΩ  
kΩ  
kΩ  
C
C
C
fADCK < 4 MHz  
13/12-bit mode  
fADCK > 8 MHz  
4 MHz < fADCK < 8  
MHz  
2
5
2
kΩ  
kΩ  
kΩ  
C
C
C
f
ADCK < 4 MHz  
11/10-bit mode  
fADCK > 8 MHz  
4 MHz < fADCK < 8  
MHz  
5
10  
5
kΩ  
kΩ  
kΩ  
kΩ  
C
C
C
C
fADCK < 4 MHz  
9/8-bit mode  
f
ADCK > 4 MHz  
fADCK < 4 MHz  
10  
High Speed  
(ADLPC=0,  
ADHSC=1)  
ADCConversion  
Clock Freq.  
10  
fADCK  
1.0  
1.0  
1.0  
8.0  
5.0  
2.5  
MHz  
MHz  
MHz  
D
D
D
High Speed  
(ADLPC=0,  
ADHSC=0)  
Low Power  
(ADLPC=1,  
ADHSC=1)  
1
2
Typical values assume VDDAD = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and  
are not tested in production.  
DC potential difference.  
Freescale Semiconductor  
29  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
Z
ADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
Z
AS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
R
R
AS  
ADIN  
protection  
+
V
ADIN  
C
AS  
V
+
AS  
R
R
R
ADIN  
ADIN  
ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C
ADIN  
Figure 8. ADC Input Impedance Equivalency Diagram  
30  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 16. 16-bit SAR ADC Characteristics full operating range  
(V = V , > 1.8, V = V 8 MHz)  
REFH  
DDAD  
REFL  
SSAD  
Characteristic  
Conditions1  
Symb  
Min  
Typ2  
Max  
Unit  
C
Comment  
ADLPC=1, ADHSC=0  
215  
470  
610  
0.01  
2.4  
Supply Current ADLPC=0, ADHSC=0  
ADLPC=0, ADHSC=1  
ADLSMP=0  
ADCO=1  
IDDAD  
IDDAD  
μA  
μA  
T
Supply Current Stop, Reset, Module Off  
C
ADLPC=1, ADHSC=0  
ADC  
Asynchronous  
Clock Source  
ADLPC=0, ADHSC=0  
5.2  
tADACK  
1/fADACK  
=
fADACK  
MHz  
P
ADLPC=0, ADHSC=1  
6.2  
Sample Time  
See Block Guide for sample times  
Conversion  
Time  
See Block Guide for conversion times  
32x  
Total  
Unadjusted  
Error  
Hardware  
Averaging  
(AVGE = %1  
AVGS = %11)  
16-bit differential mode  
TUE  
±16  
±20  
+48/-40  
+56/-28  
LSB3  
T
16-bit single-ended mode  
13-bit differential mode  
12-bit single-ended mode  
±1.5  
±1.75  
±3.0  
±3.5  
T
T
T
T
T
T
T
T
T
T
T
11-bit differential mode  
10-bit single-ended mode  
±0.7  
±0.8  
±1.5  
±1.5  
9-bit differential mode  
8-bit single-ended mode  
±0.5  
±0.5  
±1.0  
±1.0  
Differential  
Non-Linearity  
16-bit differential mode  
DNL  
±2.5  
±2.5  
+5/-3  
+5/-3  
LSB2  
16-bit single-ended mode  
13-bit differential mode  
12-bit single-ended mode  
±0.7  
±0.7  
±1  
±1  
11-bit differential mode  
10-bit single-ended mode  
±0.5  
±0.5  
±0.75  
±0.75  
9-bit differential mode  
8-bit single-ended mode  
±0.2  
±0.2  
±0.5  
±0.5  
Integral  
Non-Linearity  
16-bit differential mode  
INL  
±6.0  
±10.0  
±16.0  
±20.0  
LSB2  
16-bit single-ended mode  
13-bit differential mode  
12-bit single-ended mode  
±1.0  
±1.0  
±2.5  
±2.5  
11-bit differential mode  
10-bit single-ended mode  
±0.5  
±0.5  
±1.0  
±1.0  
9-bit differential mode  
8-bit single-ended mode  
±0.3  
±0.3  
±0.5  
±0.5  
Freescale Semiconductor  
31  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 16. 16-bit SAR ADC Characteristics full operating range  
(V = V , > 1.8, V = V 8 MHz) (continued)  
REFH  
DDAD  
REFL  
SSAD  
Characteristic  
Conditions1  
Symb  
Min  
Typ2  
Max  
Unit  
C
Comment  
Zero-Scale  
Error  
16-bit differential mode  
16-bit single-ended mode  
±4.0  
±4.0  
+32/-24  
+24/-16  
EZS  
LSB2  
T
VADIN = VSSAD  
13-bit differential mode  
12-bit single-ended mode  
±0.7  
±0.7  
±2.5  
±2.0  
T
T
T
T
T
T
T
11-bit differential mode  
10-bit single-ended mode  
±0.4  
±0.4  
±1.0  
±1.0  
9-bit differential mode  
8-bit single-ended mode  
±0.2  
±0.2  
±0.5  
±0.5  
Full-Scale  
Error  
16-bit differential mode  
16-bit single-ended mode  
+10/0  
+14/0  
+42/-2  
+46/-2  
EFS  
LSB2  
VADIN = VDDAD  
13-bit differential mode  
12-bit single-ended mode  
±1.0  
±1.0  
±3.5  
±3.5  
11-bit differential mode  
10-bit single-ended mode  
±0.4  
±0.4  
±1.5  
±1.5  
9-bit differential mode  
8-bit single-ended mode  
±0.2  
±0.2  
±0.5  
±0.5  
Quantization  
Error  
16-bit modes  
EQ  
-1 to 0  
LSB2  
D
C
<13-bit modes  
±0.5  
16-bit differential mode  
Avg=32  
Avg=16  
Avg=8  
Avg=4  
12.8  
12.7  
12.6  
12.5  
11.9  
14.2  
13.8  
13.6  
13.3  
12.5  
Avg=1  
Effective  
Number of Bits  
Fin  
=
ENOB  
Bits  
Fsample/100  
16-bit single-ended mode  
Avg=32  
Avg=16  
Avg=8  
Avg=4  
Avg=1  
13.2  
12.8  
12.6  
12.3  
11.5  
D
Signal to Noise  
plus Distortion  
SINAD = 6.02 ENOB + 1.76  
See ENOB  
SINAD  
THD  
dB  
dB  
16-bit differential mode  
Avg=32  
C
D
-91.5  
-85.5  
-74.3  
Total Harmonic  
Distortion  
Fin  
=
Fsample/100  
16-bit single-ended mode  
Avg=32  
32  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 16. 16-bit SAR ADC Characteristics full operating range  
(V = V , > 1.8, V = V 8 MHz) (continued)  
REFH  
DDAD  
REFL  
SSAD  
Characteristic  
Conditions1  
Symb  
Min  
Typ2  
Max  
Unit  
C
Comment  
16-bit differential mode  
Avg=32  
C
Spurious Free  
Dynamic  
Range  
75.0  
92.2  
86.2  
Fin  
sample/100  
=
SFDR  
dB  
F
16-bit single-ended mode  
Avg=32  
D
D
I
In = leakage  
current  
(refer to DC  
characteristics  
)
Input Leakage  
Error  
all modes  
EIL  
IIn * RAS  
mV  
1.646  
1.769  
701.2  
Temp Sensor  
Slope  
mV/×  
C
–40°C – 25°C  
25°C – 125°C  
m
C
C
Temp Sensor  
Voltage  
25°C  
VTEMP25  
mV  
1
2
All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD  
Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=2.0MHz unless otherwise stated. Typical values are for reference only  
and are not tested in production.  
1 LSB = (VREFH - VREFL)/2N  
3
3.10 MCG and External Oscillator (XOSC) Characteristics  
Table 17. MCG (Temperature Range = –40 to 105°C Ambient)  
#
Rating  
Internal reference startup time  
Symbol  
Min  
Typical  
Max  
Unit  
C
tirefst  
1
55  
100  
μs  
D
factory trimmed at  
VDD=3.0 V and  
temp=25°C  
31.25  
C
Average internal reference  
frequency  
fint_ft  
2
3
kHz  
user trimmed  
31.25  
16  
39.0625  
20  
C
C
C
Low range (DRS=00)  
DCO output frequency range -  
trimmed  
fdco_t  
MHz  
Mid range (DRS=01)  
32  
40  
High range1  
(DRS=10)  
40  
60  
C
Resolution of trimmed DCO output with FTRIM  
frequency at fixed voltage and  
± 0.1  
± 0.2  
± 0.2  
± 0.4  
C
C
Δfdco_res_t  
%fdco  
4
without FTRIM  
temperature  
over voltage and  
temperature  
±1.0  
± 2  
± 1  
p
Total deviation of trimmed DCO  
output frequency over voltage and  
temperature  
Δfdco_t  
%fdco  
5
6
over fixed voltage  
and temp range  
of 0 - 70 °C  
± 0.5  
C
FLL2  
PLL3  
1
1
C
D
tfll_acquire  
tpll_acquire  
Acquisition time  
ms  
Freescale Semiconductor  
33  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 17. MCG (Temperature Range = –40 to 105°C Ambient) (continued)  
#
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
C
Long term Jitter of DCO output clock (averaged over 2mS  
interval) 4  
CJitter  
%fdco  
7
0.02  
0.2  
C
fvco  
8
9
VCO operating frequency  
7.0  
1.0  
55.0  
2.0  
MHz  
MHz  
D
D
fpll_ref  
PLL reference frequency range  
Jitter of PLL output clock measured  
Long term  
fpll_jitter_625  
0.5664  
%fpll  
%
10  
D
over 625ns 5  
ns  
Entry6  
Exit7  
± 1.49  
± 4.47  
± 2.98  
± 5.97  
D
D
Dlock  
Dunl  
11 Lock frequency tolerance  
12 Lock time  
tfll_acquire+  
1075(1/fint_t)  
tfll_lock  
FLL  
D
s
tpll_acquire+  
tpll_lock  
floc_low  
floc_high  
PLL  
D
D
D
1075(1/fpll_ref)  
(3/5) x  
fint_t  
Loss of external clock minimum frequency - RANGE = 0  
Loss of external clock minimum frequency - RANGE = 1  
13  
14  
kHz  
kHz  
(16/5) x  
fint_t  
1
2
This should not exceed the maximum CPU frequency for this device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is  
changed, DRS bit is changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is  
being used as the reference, this specification assumes it is already running.  
3
4
This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI)  
to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are  
made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via  
VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval.  
625 ns represents 5 time quanta for CAN applications, under worst-case conditions of 8 MHz CAN bus clock, 1 Mbps CAN Bus speed, and  
8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit  
using 8 time quanta per bit.  
5
6
7
Below Dlock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG will not enter lock. But if the MCG is already  
in lock, then the MCG may stay in lock.  
Below Dunl minimum, the MCG will not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock.  
34  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 18. XOSC (Temperature Range = –40 to 105°C Ambient)  
#
Characteristic  
• Low range (RANGE = 0)  
Symbol  
Min  
Typ1  
Max  
Unit  
flo  
32  
1
38.4  
5
kHz  
• High range (RANGE = 1),  
• FEE or FBE mode 2  
fhi  
MHz  
Oscillator crystal or resonator  
(EREFS = 1, ERCLKEN = 1)  
• High range (RANGE = 1),  
• High gain (HGO = 1),  
• FBELP mode  
1
fhi  
fhi  
1
1
16  
8
MHz  
MHz  
• High range (RANGE = 1),  
• Low power (HGO = 0),  
• FBELP mode  
C1  
C2  
2
3
Load capacitors  
See Note 3  
Low range  
(32 kHz to 38.4 kHz)  
Feedback resistor  
RF  
10  
1
MΩ  
kΩ  
High range  
(1 MHz to 16 MHz)  
Series resistor — Low range  
Series resistor — High range  
Low Gain (HGO = 0)  
High Gain (HGO = 1)  
• Low Gain (HGO = 0)  
• High Gain (HGO = 1)  
8 MHz  
0
4
5
RS  
100  
RS  
0
0
0
0
kΩ  
4 MHz  
10  
20  
1 MHz  
Low range, low gain (RANGE = 0,  
HGO = 0)  
200  
400  
t
CSTL  
Low range, high gain (RANGE =  
0, HGO = 1)  
6
Crystal start-up time 4, 5  
ms  
High range, low gain (RANGE = 1,  
HGO = 0)  
5
tCSTH  
High range, high gain (RANGE =  
1, HGO = 1)  
15  
1
2
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to  
39.0625 kHz.  
3
4
See crystal or resonator manufacturer’s recommendation.  
This parameter is characterized and not tested on each device.  
Proper PC board layout procedures must be followed to achieve specifications.  
5
o
Freescale Semiconductor  
35  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.11 Mini-FlexBus Timing Specifications  
A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to  
interface to slave-only devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected  
to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or  
other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple  
chip-select based interface can be used.  
All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect  
to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus  
frequency.  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the  
Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values.  
Table 19. Mini-FlexBus AC Timing Specifications  
Num  
C
Characteristic  
Frequency of Operation  
Min  
Max  
Unit  
Notes  
D
T
39.73  
25.1666  
MHz  
ns  
MB1  
MB2  
MB3  
MB4  
MB5  
Clock Period  
Output Valid  
Output Hold  
Input Setup  
Input Hold  
20  
1
ns  
1
2
2
D
T
1.0  
22  
ns  
ns  
D
10  
ns  
1
2
Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE.  
Specification is valid for all MB_D[7:0].  
36  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
S0  
S1  
S2  
S3  
S0  
FB_CLK  
MB1  
MB3  
FB_A[19:16]  
ADDR[19:0]  
MB2  
ADDR[31:24]  
MB5  
8-bit Non-Mux’d Bus  
16-bit Mux’d Bus  
DATA[7:0]  
FB_D[7:0]  
MB4  
ADDR[19:16]  
FB_AD[19:16]  
FB_AD[15:0]  
ADDR[15:0]  
DATA[15:0]  
FB_R/W  
FB_ALE  
FB_CSn, FB_OE  
Figure 9. Mini-FlexBus Read Timing  
S0  
S1  
S2  
S3  
S0  
FB_CLK  
MB1  
MB3  
ADDR[19:8]  
FB_AD[19:8]  
MB2  
8-bit Non-Mux’d Bus  
16-bit Mux’d Bus  
ADDR[7:0]  
FB_AD[7:0]  
DATA[7:0]  
ADDR[19:16]  
FB_AD[19:16]  
ADDR[15:0]  
DATA[15:0]  
FB_AD[15:0]  
FB_R/W  
FB_ALE  
FB_CSn  
FB_OE  
Figure 10. Mini-FlexBus Write Timing  
3.12 AC Characteristics  
This section describes ac timing characteristics for each peripheral system.  
Freescale Semiconductor  
37  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.12.1 Control Timing  
Table 20. Control Timing  
#
Symbol  
Parameter  
Min  
Typical1  
Max  
C
Unit  
fBus  
1
Bus frequency (tcyc = 1/fBus  
)
MHz  
VDD 1.8 V  
DD > 2.1 V  
VDD > 2.4 V  
dc  
dc  
10  
20  
D
D
V
25.165  
D
D
dc  
Internal low-power oscillator  
period  
990  
(TBD)  
2
tLPO  
800  
1500  
μs  
External reset pulse width2  
3
4
5
textrst  
trstdrv  
tMSSU  
100  
66 x tcyc  
500  
D
D
D
ns  
ns  
ns  
(tcyc = 1/fSelf_reset  
)
Reset low drive  
Active background debug  
mode latch setup time  
Active background debug  
mode latch hold time  
6
7
tMSH  
100  
D
D
ns  
ns  
IRQ pulse width  
Asynchronous path2  
Synchronous path3  
100  
1.5 x tcyc  
t
ILIH, tIHIL  
KBIPx pulse width  
8
9
Asynchronous path2  
Synchronous path3  
100  
1.5 x tcyc  
D
tILIH, IHIL  
t
ns  
ns  
tRise, tFall  
Port rise and fall time (load = 50 pF)4, Low Drive  
Slew rate control  
disabled (PTxSE = 0)  
11  
35  
40  
75  
D
D
D
D
Slew rate control  
enabled (PTxSE = 1)  
Slew rate control  
disabled (PTxSE = 0)  
Slew rate control  
enabled (PTxSE = 1)  
1
2
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources.  
3
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may  
not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 105 °C.  
38  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
textrst  
RESET PIN  
Figure 11. Reset Timing  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 12. IRQ/KBIPx Timing  
3.12.2 TPM Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 21. TPM Input Timing  
#
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
External clock frequency  
External clock period  
fTPMext  
tTPMext  
tclkh  
dc  
4
fBus/4  
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
D
tclkl  
D
tICPW  
tTPMext  
tclkh  
TPMxCLK  
tclkl  
Figure 13. Timer External Clock  
Freescale Semiconductor  
39  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
tICPW  
TPMxCHn  
TPMxCHn  
tICPW  
Figure 14. Timer Input Capture Pulse  
3.13 SPI Characteristics  
Table 22 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.  
Table 22. SPI Timing  
No.1  
Characteristic2  
Operating frequency  
Symbol  
Min  
Max  
Unit  
C
1
Master  
Slave  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
Hz  
D
SPSCK period  
2
3
4
5
6
7
Master  
Slave  
tSPSCK  
2
4
2048  
tcyc  
tcyc  
D
D
D
D
D
D
Enable lead time  
Master  
Slave  
tLead  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
tLag  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
tSU  
tSU  
Master  
Slave  
15  
15  
ns  
ns  
tHI  
tHI  
Master  
Slave  
0
25  
ns  
ns  
8
9
Slave access time3  
ta  
1
1
tcyc  
tcyc  
D
D
Slave MISO disable time4  
tdis  
40  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Table 22. SPI Timing (continued)  
No.1  
Characteristic2  
Symbol  
Min  
Max  
Unit  
C
Data valid (after SPSCK edge)  
10  
Master  
Slave  
tv  
25  
25  
ns  
ns  
D
Data hold time (outputs)  
Rise time  
11  
12  
13  
Master  
Slave  
tHO  
0
0
ns  
ns  
D
D
D
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
1
2
Numbers in this column identify elements in Figure 15 through Figure 18.  
All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. All timing assumes slew  
rate control disabled and high drive strength enabled for SPI output pins.  
Time to data active from high-impedance state.  
3
4
Hold time to high-impedance state.  
SS1  
(OUTPUT)  
2
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN2  
11  
BIT 6 . . . 1  
11  
LSB IN  
12  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI Master Timing (CPHA = 0)  
Freescale Semiconductor  
41  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
SS(1)  
(OUTPUT)  
2
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
5
6
SCK  
(CPOL = 1)  
(OUTPUT)  
4
7
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
12  
BIT 6 . . . 1  
LSB IN  
11  
MOSI  
(OUTPUT)  
MSB OUT(2)  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 16. SPI Master Timing (CPHA = 1)  
SS  
(INPUT)  
3
2
SCK  
(CPOL = 0)  
(INPUT)  
5
4
2
SCK  
(CPOL = 1)  
5
4
(INPUT)  
9
8
12  
11  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
7
SLAVE  
6
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined, but normally MSB of character just received  
Figure 17. SPI Slave Timing (CPHA = 0)  
42  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
SS  
(INPUT)  
2
3
2
SCK  
(CPOL = 0)  
(INPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(INPUT)  
11  
SLAVE MSB OUT  
12  
9
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
6
7
8
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
LSB IN  
NOTE:  
1. Not defined, but normally LSB of character just received  
Figure 18. SPI Slave Timing (CPHA = 1)  
3.14 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the Flash  
memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
For more detailed information about program/erase operations, see the Memory chapter in the Reference  
Manual for this device (MCF51MM256RM).  
Table 23. Flash Characteristics  
#
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
C
Supply voltage for program/erase  
-40°C to 105°C  
1
D
Vprog/erase  
VRead  
fFCLK  
tFcyc  
1.8  
1.8  
150  
5
3.6  
3.6  
V
2
3
4
5
6
7
8
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
V
D
D
D
P
P
P
P
200  
6.67  
kHz  
μs  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
tBurst  
4
tPage  
4000  
20,000  
Mass erase time2  
tMass  
Program/erase endurance3  
TL to TH = –40°C to + 105°C  
T = 25°C  
9
10,000  
100,000  
C
C
cycles  
years  
10  
Data retention4  
tD_ret  
15  
100  
1
The frequency of this clock is controlled by a software setting.  
Freescale Semiconductor  
43  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
2
3
4
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating  
approximate time to program and erase.  
Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines  
typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the  
Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, Typical  
Data Retention for Nonvolatile Memory.  
3.15 USB Electricals  
The USB electricals for the USB On-the-Go module conform to the standards documented by the  
Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.  
If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the  
standard or require additional information, this space would be used to communicate that information.  
Table 24. Internal USB 3.3 V Voltage Regulator Characteristics  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
C
1
2
Regulator operating voltage  
VREG output  
Vregin  
3.9  
3
5.5  
3.6  
V
V
C
P
Vregout  
3.3  
VUSB33 input with internal VREG  
disabled  
3
4
Vusb33in  
IVRQ  
3
3.3  
0.5  
3.6  
V
C
C
VREG Quiescent Current  
mA  
44  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.16 VREF Electrical Specifications  
Table 25. VREF Electrical Specifications  
Num  
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
C
1
2
3
4
VDDA  
TA  
1.80  
–40  
3.6  
105  
100  
10  
V
°C  
nf  
C
C
D
Temperature  
Output Load Capacitance  
Maximum Load  
CL  
mA  
P
Voltage Reference Output with Factory  
Trim. VDD = 3 V.  
1.148  
1.152  
5
Vout  
V
Temperature Drift (Vmin - Vmax across  
the full temperature range)  
10  
(TBD)  
6
7
8
Tdrift  
mV1  
ppm/year  
µA  
T
Aging Coefficient  
Ac  
I
TBD  
0.10  
C
C
Powered down Current (Off Mode,  
VREFEN=0, VRSTEN=0)  
9
Bandgap only (MODE_LV[1:0] = 00)  
Low-Power buffer (MODE_LV[1:0] = 01)  
I
I
75  
µA  
µA  
T
T
10  
125  
Tight-Regulation buffer (MODE_LV[1:0]  
= 10)  
11  
I
1.1  
mA  
T
12  
13  
14  
Load Regulation MODE_LV = 10  
DC  
AC  
100  
TBD  
µV/mA  
mV  
C
Line Regulation (Power Supply  
Rejection)  
C
TBD  
dB  
1
See typical chart below.  
Table 26. VREF Limited Range Operating Requirements  
#
Characteristic  
Temperature  
Symbol  
Min  
Max  
Unit  
C
Notes  
1
TA  
0
50  
°C  
C
Table 27. VREF Limited Range Operating Behaviors  
#
Characteristic  
Symbol  
Min  
Max  
Unit  
µA  
C
Notes  
Voltage Reference Output with  
Factory Trim  
1
Vout  
TBD  
TBD  
C
Freescale Semiconductor  
45  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Figure 19. Typical Output vs. Temperature  
TBD  
Figure 20. Typical Output vs. V  
DD  
46  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
3.17 TRIAMP Electrical Parameters  
Table 28. TRIAMP Characteristics 1.8-3.6 V, -40°C~105°C  
#
Characteristic1  
Operating Voltage  
Symbol  
Min  
Typ2  
Max  
Unit  
C
VDD  
1
1.8  
3.6  
V
C
Supply Current (IOUT=0mA, CL=0)  
Low-power mode  
ISUPPLY  
ISUPPLY  
VOS  
2
3
4
80  
TBD  
TBD  
± 10  
μA  
μA  
P
P
C
Supply Current (IOUT=0mA, CL=0)  
High-speed mode  
350  
±
Input Offset Voltage  
mV  
3(TBD)  
Input Offset Voltage Temperature  
Coefficient  
αVOS  
IOS  
5
6
7
TBD  
μV/C  
pA  
C
C
C
Input Offset Current  
±270  
TBD  
±300  
(TBD)  
±500  
(TBD)  
IBIAS  
Input Bias Current (0 ~ 50°C)  
pA  
IBIAS  
VCML  
VCMH  
RIN  
8
Input Bias Current (-40 ~ 105°C)  
Input Common Mode Voltage Low  
Input Common Mode Voltage High  
Input Resistance  
0
TBD  
TBD  
pA  
V
C
D
C
Τ
T
Τ
9
VDD–1.4  
10  
11  
12  
13  
500  
V
5
MΩ  
pF  
MΩ  
CIN  
Input Capacitances  
AC Input Impedance (fIN=100kHz)  
50  
|XIN|  
14  
15  
Input Common Mode Rejection Ratio  
Power Supply Rejection Ration  
CMRR  
PSRR  
60  
60  
70  
70  
dB  
dB  
C
C
Slew Rate (ΔVIN=100mV) Low-power  
mode  
16  
SR  
SR  
0.1  
V/μs  
C
Slew Rate (ΔVIN=100mV) High-speed  
mode  
17  
18  
19  
0.15  
1
0.5  
2
V/μs  
MHz  
MHz  
C
C
C
Unity Gain Bandwidth (Low-power mode)  
50pF  
GBW  
Unity Gain Bandwidth (High-speed mode)  
50pF  
GBW  
AV  
20  
21  
22  
DC Open Loop Voltage Gain (RL = 20 KΩ)  
Load Capacitance Driving Capability  
Output Resistance  
80  
50  
dB  
pF  
Ω
C
C
C
CL(max)  
ROUT  
TBD  
VDD  
23  
Output Voltage Range  
triout  
IOUT  
0.15  
V
C
0.15  
24  
25  
26  
Output Drive Capability  
Gain Margin  
20  
45  
± 1.0  
mA  
dB  
C
T
GM  
PM  
Phase Margin  
55  
deg  
C
1
All parameters are measured at 3.3 V, CL= 47 pF across temperature -40 to + 105 °C unless specified.  
Freescale Semiconductor  
47  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
2
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
3.18 OPAMP Electrical Parameters  
Table 29. OPAMP Characteristics 1.8-3.6 V  
#
Characteristics1  
Symbol  
Min  
Typ2  
Max  
Unit  
C
1
Operating Voltage  
VDD  
1.8  
3.6  
V
C
Supply Current (IOUT=0mA, CL=0) Low-power  
mode  
55  
(TBD)  
2
3
ISUPPLY  
ISUPPLY  
40  
μA  
μA  
P
P
Supply Current (IOUT=0mA, CL=0)  
High-speed mode  
420  
(TBD)  
450  
(TBD)  
4
Input Offset Voltage  
Input Offset Voltage Temperature Coefficient  
Input Offset Current  
VOS  
αVOS  
IOS  
±3  
1
±10  
mV  
μV/C  
pA  
C
C
C
C
C
T
5
6
± TBD  
± TBD  
± TBD  
± TBD  
7
Input Bias Current  
IBIAS  
VCML  
VCMH  
RIN  
pA  
8
Input Common Mode Voltage Low  
Input Common Mode Voltage High  
Input Resistance  
0.1  
V
9
VDD+0.1  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
500  
MΩ  
pF  
T
Input Capacitances  
CIN  
10  
T
AC Input Impedance (fIN=100kHz)  
Input Common Mode Rejection Ratio  
Power Supply Rejection Ration  
Slew Rate (ΔVIN=100mV) Low-power mode  
Slew Rate (ΔVIN=100mV) High speed mode  
Unity Gain Bandwidth Low-power mode  
Unity Gain Bandwidth High Speed mode  
DC Open Loop Voltage Gain  
Load Capacitance Driving Capability  
Output Resistance  
|XIN|  
CMRR  
PSRR  
SR  
TBD  
65  
MΩ  
dB  
T
55  
60  
0.1  
1
C
C
C
C
C
C
C
C
C
C
C
T
65  
dB  
V/μs  
V/μs  
MHz  
MHz  
dB  
SR  
GBW  
GBW  
AV  
0.2  
1
80  
90  
CL(max)  
ROUT  
VOUT  
IOUT  
GM  
100  
1500  
VDD-0.15  
pF  
Ω
Output Voltage Range  
0.15  
±0.5  
20  
45  
V
Output Drive Capability  
±1.0  
mA  
dB  
Gain Margin  
Phase Margin  
PM  
55  
deg  
C
GPAMP settling time (low-power mode)  
(To < 0.1%, Vin = 2Vp-p, CL = 25pF, RL = 2k)  
26  
27  
28  
29  
Tstartup  
Tstartup  
Tstartup  
Tstartup  
TBD  
TBD  
TBD  
TBD  
uS  
uS  
uS  
uS  
C
C
C
C
GPAMP settling time (low-power mode)  
GPAMP settling time (high-speed mode)  
(To < 0.1%, Vin = 2Vp-p, CL = 25pF, RL = 2k)  
GPAMP settling time (high-speed mode)  
1
All parameters are measured at 3.3 V, CL =4 7 pF across temperature -40 to + 105°C unless specified.  
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
2
48  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Preliminary Electrical Characteristics  
Freescale Semiconductor  
49  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Ordering Information  
4
Ordering Information  
This section contains ordering information for the device numbering system. See Table 2 for feature  
summary by package information.  
4.1  
4.2  
Device Numbering System  
Part Numbers  
Table 30. Orderable Part Number Summary  
Freescale Part  
Flash / SRAM  
(Kbytes)  
Description  
Package  
Temperature  
Number  
MCF51MM256VML  
MCF51MM256VLL  
MCF51MM256VMB  
MCF51MM256VLK  
MCF51MM128VMB  
MCF51MM128VLK  
MCF51MM256CML  
MCF51MM256CLL  
MCF51MM256CMB  
MCF51MM256CLK  
MCF51MM128CMB  
MCF51MM128CLK  
MCF51MM256 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM128 ColdFire Microcontroller  
MCF51MM128 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM256 ColdFire Microcontroller  
MCF51MM128 ColdFire Microcontroller  
MCF51MM128 ColdFire Microcontroller  
256K/32K  
256K/32K  
256K/32K  
256K/32K  
128K/32K  
128K/32K  
256K/32K  
256K/32K  
256K/32K  
256K/32K  
128K/32K  
128K/32K  
104 MAPBGA  
100 LQFP  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
81 MAPBGA  
80 LQFP  
81 MAPBGA  
80 LQFP  
104 MAPBGA  
100 LQFP  
81 MAPBGA  
80 LQFP  
81 MAPBGA  
80 LQFP  
4.3  
Package Information  
Table 31. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
100  
80  
Low Quad Flat Package  
Low Quad Flat Package  
MAPBGA Package  
LQFP  
LQFP  
LL  
LK  
983-03  
1418  
98ASS23308W  
98ASS23174W  
98ARH98267A  
98ASA10670D  
104  
81  
MAPBGA  
MAPBGA  
ML  
MB  
1285-02  
1662-01  
MAPBGA Package  
4.4  
Mechanical Drawings  
Table 31 provides the available package types and their document numbers. The latest package  
outline/mechanical drawings are available on the MCF51MM256/128 Product Summary pages at  
http://www.freescale.com.  
50  
Freescale Semiconductor  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Revision History  
To view the latest drawing, either:  
Click on the appropriate link in Table 31, or  
Open a browser to the Freescale website (http://www.freescale.com), and enter the appropriate  
document number (from Table 31) in the “Enter Keyword” search box at the top of the page.  
®
5
Revision History  
This section lists major changes between versions of the MCF51MM256 Data Sheet.  
Table 32. Revision History  
Revision  
Date  
Description  
0
March/April 09 Initial Draft  
• Revised to follow standard template.  
• Removed extraneous headings from the TOC.  
• Corrected units for Monotoncity to be blank in for the DAC specification.  
• Updated ADC characteristic tables to include 16-Bit SAR in headings.  
1
2
July 09  
July 09  
• Changed MCG (XOSC) Electricals Table - Row 2, Average Internal Reference  
Frequency typical value from 32.768 to 31.25.  
• Updated Thermal Characteristics table. Reinserted the 81 and 104 MapBGA devices.  
• Revised the ESD and Latch-Up Protection Characeristic description to read: Latch-up  
Current at TA = 125°C.  
• Changed Table . DC Characteristics rows 2 and 4, to 1.8 V, ILoad = -600 mA  
conditions to 1.8 V, ILoad = 600μA respectively.  
• Corrected the 16-bit SAR ADC Operating Condition table Ref Voltage High Min value  
to be 1.13 instead of 1.15.  
• Updated the ADC electricals.  
3
April 10  
• Inserted the Mini-FlexBus Timing Specifications.  
• Added a Temp Drift parameter to the VREF Electrical Specifications.  
• Removed the S08 Naming Convention diagram.  
• Updated the Orderable Part Number Summary to include the Freescale Part Number  
suffixes.  
• Completed the Package Description table values.  
• Changed the 80LQFP package drawing from 98ARL10530D to 98ASS23174W.  
MM256 uses 80LQFP12x12.  
• Updated electrical characteristic data.  
Freescale Semiconductor  
51  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009-2010. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF51MM256  
Rev. 3  
04/2010  
Non-Disclosure Agreement Required  
Preliminary — Subject to Change  

相关型号:

MCF51MM256CMB

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
FREESCALE

MCF51MM256CML

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
FREESCALE

MCF51MM256VLK

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
FREESCALE

MCF51MM256VLL

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
FREESCALE

MCF51MM256VMB

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
FREESCALE

MCF51MM256VML

low-cost, low-power, high-performance ColdFire® V1 family of 32-bit microcontrollers (MCUs) designed for handheld metering devices.
FREESCALE

MCF51QE128

32-Bit Version 1 ColdFire㈢ Central Processor Unit (CPU)
FREESCALE

MCF51QE128CLH

32-Bit Version 1 ColdFire㈢ Central Processor Unit (CPU)
FREESCALE

MCF51QE128CLK

32-Bit Version 1 ColdFire㈢ Central Processor Unit (CPU)
FREESCALE

MCF51QE128_08

32-Bit Version 1 ColdFire㈢ Central Processor Unit (CPU)
FREESCALE

MCF51QE32

32-Bit Version 1 ColdFire㈢ Central Processor Unit (CPU)
FREESCALE

MCF51QE32CLH

32-Bit Version 1 ColdFire㈢ Central Processor Unit (CPU)
FREESCALE