MCF51QU128 [FREESCALE]

MCF51QU128;
MCF51QU128
型号: MCF51QU128
厂家: Freescale    Freescale
描述:

MCF51QU128

文件: 总69页 (文件大小:1030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MCF51QU128  
Rev. 4, 01/2012  
Freescale Semiconductor  
Data Sheet: Technical Data  
MCF51QU128  
MCF51QU128  
Supports the MCF51QU128VLH,  
MCF51QU128VHS, MCF51QU64VLF,  
MCF51QU64VHS, MCF51QU32VHS,  
MCF51QU32VFM  
Features  
Security and integrity  
– Hardware CRC module to support fast cyclic  
redundancy checks  
Operating characteristics  
– Voltage range: 1.71 V to 3.6 V  
– Flash write voltage range: 1.71 V to 3.6 V  
– Temperature range (ambient): -40°C to 105°C  
– 128-bit unique identification (ID) number per chip  
Analog  
– 12-bit SAR ADC  
– 12-bit DAC  
– Analog comparator (CMP) containing a 6-bit DAC  
and programmable reference input  
– Voltage reference (VREF)  
Core  
– Up to 50 MHz V1 ColdFire CPU  
– Dhrystone 2.1 performance: 1.10 DMIPS per MHz  
when executing from internal RAM, 0.99 DMIPS  
per MHz when executing from flash memory  
System  
Timers  
– DMA controller with four programmable channels  
– Integrated ColdFire DEBUG_Rev_B+ interface with  
single-wire BDM connection  
– Programmable delay block (PDB)  
– Motor control/general purpose/PWM timers (FTM)  
– 16-bit low-power timers (LPTMRs)  
– 16-bit modulo timer (MTIM)  
– Carrier modulator transmitter (CMT)  
Power management  
– 10 low power modes to provide power optimization  
based on application requirements  
– Low-leakage wakeup unit (LLWU)  
– Voltage regulator (VREG)  
Communication interfaces  
– UARTs with Smart Card support and FIFO  
– SPI modules, one with FIFO  
– Inter-Integrated Circuit (I2C) modules  
Clocks  
– Crystal oscillators (two, each with range options): 1  
kHz to 32 kHz (low), 1 MHz to 8 MHz (medium), 8  
MHz to 32 MHz (high)  
Human-machine interface  
– Up to 48 EGPIO pins  
– Up to 16 rapid general purpose I/O (RGPIO) pins  
– Low-power hardware touch sensor interface (TSI)  
– Interrupt request pin (IRQ)  
– Multipurpose clock generator (MCG)  
Memories and memory interfaces  
– Flash memory, FlexNVM, FlexRAM, and RAM  
– Serial programming interface (EzPort)  
– Mini-FlexBus external bus interface  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2010–2012 Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts...........................................................................3  
5.3.1 General Switching Specifications..........................18  
5.4 Thermal specifications.......................................................20  
5.4.1 Thermal operating requirements...........................20  
5.4.2 Thermal attributes.................................................21  
6 Peripheral operating requirements and behaviors....................21  
6.1 Core modules....................................................................21  
6.1.1 Debug specifications.............................................21  
6.2 System modules................................................................22  
6.2.1 VREG electrical specifications..............................22  
6.3 Clock modules...................................................................23  
6.3.1 MCG specifications...............................................23  
6.3.2 Oscillator electrical specifications.........................25  
6.4 Memories and memory interfaces.....................................27  
6.4.1 Flash (FTFL) electrical specifications....................27  
6.4.2 EzPort Switching Specifications............................32  
6.4.3 Mini-Flexbus Switching Specifications..................33  
6.5 Security and integrity modules..........................................36  
6.6 Analog...............................................................................37  
6.6.1 ADC electrical specifications.................................37  
6.6.2 CMP and 6-bit DAC electrical specifications.........39  
6.6.3 12-bit DAC electrical characteristics.....................42  
6.6.4 Voltage reference electrical specifications............45  
6.7 Timers................................................................................46  
6.8 Communication interfaces.................................................47  
6.8.1 SPI switching specifications..................................47  
6.9 Human-machine interfaces (HMI)......................................50  
6.9.1 TSI electrical specifications...................................50  
7 Dimensions...............................................................................51  
7.1 Obtaining package dimensions.........................................51  
8 Pinout........................................................................................52  
8.1 Signal Multiplexing and Pin Assignments..........................52  
8.2 Pinout diagrams.................................................................54  
8.3 Module-by-module signals.................................................58  
9 Revision History........................................................................68  
1.1 Determining valid orderable parts......................................3  
2 Part identification......................................................................3  
2.1 Description.........................................................................3  
2.2 Format...............................................................................3  
2.3 Fields.................................................................................3  
2.4 Example............................................................................4  
3 Terminology and guidelines......................................................4  
3.1 Definition: Operating requirement......................................4  
3.2 Definition: Operating behavior...........................................5  
3.3 Definition: Attribute............................................................5  
3.4 Definition: Rating...............................................................5  
3.5 Result of exceeding a rating..............................................6  
3.6 Relationship between ratings and operating  
requirements......................................................................6  
3.7 Guidelines for ratings and operating requirements............6  
3.8 Definition: Typical value.....................................................7  
4 Ratings......................................................................................8  
4.1 Thermal handling ratings...................................................8  
4.2 Moisture handling ratings..................................................8  
4.3 ESD handling ratings.........................................................9  
4.4 Voltage and current operating ratings...............................9  
5 General.....................................................................................9  
5.1 Typical Value Conditions...................................................9  
5.2 Nonswitching electrical specifications...............................10  
5.2.1 Voltage and Current Operating Requirements......10  
5.2.2 LVD and POR operating requirements.................11  
5.2.3 Voltage and current operating behaviors..............12  
5.2.4 Power mode transition operating behaviors..........12  
5.2.5 Power consumption operating behaviors..............13  
5.2.6 EMC radiated emissions operating behaviors.......17  
5.2.7 Designing with radiated emissions in mind...........18  
5.2.8 Capacitance attributes..........................................18  
5.3 Switching electrical specifications.....................................18  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
2
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device:  
1. Go to http://www.freescale.com.  
2. Perform a part number search for the following partial device numbers: PCF51QU  
and MCF51QU.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q CCCC DD MMM T PP  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Qualification status  
Values  
Q
• M = Fully qualified, general  
market flow  
• P = Prequalification  
CCCC  
DD  
Core code  
CF51 = ColdFire V1  
Device number  
JF, JU, QF, QH, QM, QU  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
3
Terminology and guidelines  
Field  
Description  
Values  
• 32 = 32 KB  
Memory size (program flash memory)1  
MMM  
• 64 = 64 KB  
• 128 = 128 KB  
T
Temperature range, ambient (°C)  
Package identifier  
V = –40 to 105  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• HS = 44 Laminate QFN (5 mm x 5  
mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
1. All parts also have FlexNVM, FlexRAM, and RAM.  
2.4 Example  
This is an example part number:  
MCF51QU128VLH  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
4
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal  
range  
Normal  
operating  
range  
Fatal  
range  
- Probable permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Probable permanent failure  
Handling range  
- No permanent failure  
 
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
7
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TSTG  
Storage temperature  
–55  
150  
260  
245  
°C  
1
TSDR  
Solder temperature, lead-free  
Solder temperature, leaded  
°C  
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
8
Freescale Semiconductor, Inc.  
General  
4.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human body model  
-2000  
+2000  
V
1
VCDM  
ILAT  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
-500  
-100  
+500  
+100  
V
2
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage  
–0.3  
3.8  
V
IDD  
VDIO  
VAIO  
ID  
Digital supply current  
120  
VDD + 0.3  
VDD + 0.3  
25  
mA  
V
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog, RESET, EXTAL, and XTAL input voltage  
–0.3  
–0.3  
–25  
V
Instantaneous maximum current single pin limit (applies to all  
port pins)  
mA  
VDDA  
Analog supply voltage  
Regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
6.0  
V
V
VREGIN  
5 General  
5.1 Typical Value Conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Value  
Unit  
TA  
Ambient temperature  
25  
°C  
V
VDD  
3.3 V supply voltage  
3.3  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
9
Nonswitching electrical specifications  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and Current Operating Requirements  
Table 1. Voltage and current operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
VDDA  
Analog supply voltage  
1.71  
–0.1  
–0.1  
3.6  
0.1  
0.1  
V
V
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
VIH  
VIL  
IIC  
Input high voltage  
1
2
3
3
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
DC injection current — single pin  
• VIN > VDD  
0
0
2
mA  
mA  
–0.2  
• VIN < VSS  
DC injection current — total MCU limit, includes sum  
of all stressed pins  
0
0
25  
–5  
mA  
mA  
• VIN > VDD  
• VIN < VSS  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
1. The device always interprets an input as a 1 when the input is greater than or equal to VIH (min.) and less than or equal to  
VIH (max.), regardless of whether input hysteresis is turned on.  
2. The device always interprets an input as a 0 when the input is less than or equal to VIL (max.) and greater than or equal to  
VIL (min.), regardless of whether input hysteresis is turned on.  
3. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified.  
To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp  
voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during  
instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the  
injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external  
VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not  
consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall  
power consumption).  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
10  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
5.2.2 LVD and POR operating requirements  
Table 2. LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR  
Falling VDD POR detect voltage  
0.8  
1.1  
1.5  
V
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
VLVDL  
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period  
factory trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
11  
Nonswitching electrical specifications  
5.2.3 Voltage and current operating behaviors  
Table 3. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
100  
mA  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
mA  
Input leakage current (per pin)  
• @ full temperature range  
• @ 25 °C  
1.0  
0.1  
μA  
μA  
1
IOZ  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Total Hi-Z (off-state) leakage current (all input pins)  
Internal pullup resistors  
22  
22  
1
4
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
50  
50  
2
3
Internal pulldown resistors  
1. Tested by ganged leakage method  
2. Measured at Vinput = VSS  
3. Measured at Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSx-RUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 50 MHz  
• Bus clock (and flash and Mini-FlexBus clocks) = 25 MHz  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
12  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Table 4. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
1
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
1, 2  
1, 2  
1, 2  
2
150  
75  
μs  
μs  
μs  
μs  
μs  
μs  
75  
6.5  
4.6  
4.6  
• VLPS RUN  
• STOP RUN  
2
2
1. Normal boot (FTFL_FOPT[LPBOOT] is 1)  
2. The wakeup time includes the execution time for a small amount of firmware used to produce a GPIO clear event. Wakeup  
time is measured from the falling edge of the external wakeup event to the falling edge of a GPIO clear performed by  
software.  
5.2.5 Power consumption operating behaviors  
Table 5. Power consumption operating behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
IDD_RUN  
Run mode current — all peripheral clocks  
disabled, code executing from RAM  
2
• @ 1.8 V  
• @ 3.0 V  
13  
13  
mA  
mA  
16  
IDD_RUN  
Run mode current — all peripheral clocks  
disabled, code executing from flash memory with  
page buffering disabled  
2
14.3  
14.5  
mA  
mA  
• @ 1.8 V  
• @ 3.0 V  
17.9  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
13  
Nonswitching electrical specifications  
Table 5. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN  
Run mode current — all peripheral clocks  
enabled, code executing from RAM, exercising  
flash memory  
3
20  
20  
23.5  
25  
mA  
mA  
• @ 1.8 V  
• @ 3.0 V  
IDD_WAIT  
Wait mode current at 3.0 V — all peripheral  
clocks disabled  
5.8  
6.8  
mA  
4
IDD_STOP  
Stop mode current at 3.0 V  
• @ –40 to 25 °C  
0.34  
0.90  
0.63  
0.41  
1.8  
mA  
mA  
mA  
• @ 105 °C  
IDD_VLPR  
Very low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.32  
5
6
IDD_VLPR  
Very low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
0.78  
0.15  
1.46  
0.62  
mA  
IDD_VLPW  
IDD_VLPS  
Very low-power wait mode current at 3.0 V  
mA  
μA  
7
8
Very low-power stop mode current at 3.0 V  
• @ –40 to 25 °C  
19  
45  
• @ 105 °C  
145  
312  
IDD_LLS  
IDD_VLLS3  
IDD_VLLS2  
IDD_VLLS1  
IDD_RTC  
Low leakage stop mode current at 3.0 V  
• @ –40 to 25 °C  
8,9,10  
8,9,10  
8,9  
3.0  
4.8  
μA  
μA  
• @ 105 °C  
53.3  
157  
Very low-leakage stop mode 3 current at 3.0 V  
• @ –40 to 25 °C  
1.8  
3.3  
μA  
μA  
• @ 105 °C  
39.2  
115  
Very low-leakage stop mode 2 current at 3.0 V  
• @ –40 to 25 °C  
1.6  
2.8  
65  
μA  
μA  
• @ 105 °C  
22.2  
Very low-leakage stop mode 1 current at 3.0 V  
• @ –40 to 25 °C  
8,9  
1.4  
2.6  
50  
μA  
μA  
• @ 105 °C  
17.6  
Average current adder for real-time clock  
function  
11  
0.7  
μA  
• @ –40 to 25 °C  
1. The analog supply current is the sum of the active current for each of the analog modules on the device. See each  
module's specification for its supply current.  
2. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks disabled.  
3. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks enabled, but  
peripherals are not in active operation.  
4. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
14  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
5. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
Code executing from flash memory.  
6. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks enabled, but  
peripherals are not in active operation. Code executing from flash memory.  
7. 2 MHz core and system clocks, and 1 MHz bus clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
8. OSC clocks disabled.  
9. All pads disabled.  
10. Data reflects devices with 32 KB of RAM. For devices with 16 KB of RAM, power consumption is reduced by 500 nA. For  
devices with 8 KB of RAM, power consumption is reduced by 750 nA.  
11. RTC function current includes LPTMR with OSC enabled with 32.768 kHz crystal at 3.0 V  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode, except for 50 MHz core (FEI mode)  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
• For the ALLON curve, all peripheral clocks are enabled, but peripherals are not in  
active operation  
• Voltage Regulator disabled  
• No GPIOs toggled  
• Code execution from flash memory with cache enabled  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
15  
Nonswitching electrical specifications  
Figure 1. Run mode supply current vs. core frequency  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
16  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Figure 2. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 6. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
20  
19  
17  
16  
L
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions, and IEC Standard 61967-2, Integrated Circuits - Measurement  
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
17  
Nonswitching electrical specifications  
2. VDD = 3 V, TA = 25 °C, fOSC = 32 kHz (crystal), fBUS = 24 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method.  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to http://www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 7. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_A  
Input capacitance: analog pins  
7
pF  
CIN_D  
Input capacitance: digital pins  
7
pF  
5.3 Switching electrical specifications  
Table 8. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
50  
25  
25  
25  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fLPTMR  
Mini-FlexBus clock  
LPTMR clock  
1
VLPR mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
2
1
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fLPTMR  
Mini-FlexBus clock  
LPTMR clock2  
1
1
25  
1. When the Mini-FlexBus is enabled, its clock frequency is always the same as the bus clock frequency.  
2. A maximum frequency of 25 MHz for the LPTMR in VLPR mode is possible when the LPTMR is configured for pulse  
counting mode and is driven externally via the LPTMR_ALT1, LPTMR_ALT2, or LPTMR_ALT3 pin.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
18  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
5.3.1 General Switching Specifications  
These general purpose specifications apply to all signals configured for EGPIO, MTIM,  
CMT, PDB, IRQ, and I2C signals. The conditions are 50 pf load, VDD = 1.71 V to 3.6 V,  
and full temperature range. The GPIO are set for high drive, no slew rate control, and no  
input filter, digital or analog, unless otherwise specified.  
Table 9. EGPIO General Control Timing  
Symbol  
G1  
Description  
Min.  
Max.  
Unit  
Bus clock from CLK_OUT pin high to GPIO output valid  
1
32  
ns  
ns  
G2  
Bus clock from CLK_OUT pin high to GPIO output invalid  
(output hold)  
G3  
G4  
GPIO input valid to bus clock high  
28  
4
ns  
ns  
Bus clock from CLK_OUT pin high to GPIO input invalid  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
Synchronous path1  
1.5  
Bus  
clock  
cycles  
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter enabled)  
100  
50  
ns  
ns  
ns  
Asynchronous path2  
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter disabled)  
Asynchronous path2  
External reset pulse width (digital glitch filter disabled)  
Mode select (MS) hold time after reset deassertion  
100  
2
Bus  
clock  
cycles  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
Bus clock  
G1  
G2  
Data outputs  
G3  
G4  
Data inputs  
Figure 3. EGPIO timing diagram  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
19  
Thermal specifications  
The following general purpose specifications apply to all signals configured for RGPIO,  
FTM, and UART. The conditions are 25 pf load, VDD = 3.6 V to 1.71 V, and full  
temperature range. The GPIO are set for high drive, no slew rate control, and no input  
filter, digital or analog, unless otherwise specified.  
Table 10. RGPIO General Control Timing  
Symbol  
R1  
Description  
Min.  
Max.  
Unit  
CPUCLK from CLK_OUT pin high to GPIO output valid  
1
16  
ns  
ns  
R2  
CPUCLK from CLK_OUT pin high to GPIO output invalid  
(output hold)  
R3  
R4  
GPIO input valid to bus clock high  
17  
2
ns  
ns  
CPUCLK from CLK_OUT pin high to GPIO input invalid  
Bus clock  
R1  
R2  
Data outputs  
R3  
R4  
Data inputs  
Figure 4. RGPIO timing diagram  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
TJ  
Die junction temperature  
–40  
115  
105  
°C  
TA  
Ambient temperature  
–40  
°C  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
20  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
5.4.2 Thermal attributes  
Board type Symbol  
Description  
64 LQFP 48 LQFP  
44  
32 QFN Unit Notes  
Laminate  
QFN  
Single-layer RθJA  
(1s)  
Thermal resistance, junction to  
ambient (natural convection)  
73  
54  
61  
48  
37  
79  
55  
66  
48  
34  
108  
98  
33  
81  
28  
13  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
2
Four-layer  
(2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
69  
Single-layer RθJMA  
(1s)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
91  
Four-layer  
(2s2p)  
RθJMA  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
63  
RθJB  
Thermal resistance, junction to  
board  
44  
RθJC  
Thermal resistance, junction to case 20  
20  
31  
2.2  
6.0  
°C/W  
°C/W  
3
4
ΨJT  
Thermal characterization  
5.0  
4.0  
6.0  
parameter, junction to package top  
outside center (natural convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions  
—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions  
—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions  
—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 Debug specifications  
Table 12. Background debug mode (BDM) timing  
Number  
Symbol  
tMSSU  
Description  
Min.  
500  
Max.  
Unit  
1
2
BKGD/MS setup time after issuing background  
debug force reset to enter user mode or BDM  
ns  
µs  
tMSH  
BKGD/MS hold time after issuing background  
debug force reset to enter user mode or BDM1  
100  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
21  
System modules  
1. To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after  
VDD rises above VLVD  
.
6.2 System modules  
6.2.1 VREG electrical specifications  
Table 13. VREG electrical specifications  
Typ.1  
Symbol Description  
Min.  
2.7  
Max.  
5.5  
Unit  
V
Notes  
VREGIN Input supply voltage  
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
1.54  
μA  
Quiescent current — Shutdown mode  
• VREGIN = 5.0 V and temperature=25C  
• Across operating voltage and temperature  
650  
4
nA  
μA  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
22  
Freescale Semiconductor, Inc.  
Clock modules  
6.3 Clock modules  
6.3.1 MCG specifications  
Table 14. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
10  
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
1.0  
4.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
3.3  
4
5
MHz  
MHz  
kHz  
kHz  
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
2, 3  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
50  
75  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
100  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
23  
Clock modules  
Table 14. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
23.99  
MHz  
4, 5  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
47.97  
71.99  
95.98  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
6
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
7
7
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
2.0  
4.0  
MHz  
Jcyc_pll  
PLL period jitter (RMS)  
• fvco = 48 MHz  
8
8
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
%
%
s
150 × 10-6  
+ 1075(1/  
tpll_lock  
9
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
24  
Freescale Semiconductor, Inc.  
Clock modules  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC electrical specifications  
Table 15. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
μA  
mA  
mA  
• 1 MHz  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
300  
400  
500  
2.5  
3
μA  
μA  
• 1 MHz  
• 4 MHz  
μA  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
25  
Clock modules  
Table 15. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RF Feedback resistor — low-frequency, low-power  
MΩ  
2, 4  
mode (HGO=0)  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
• 1 MHz resonator  
• 2 MHz resonator  
• 4 MHz resonator  
• 8 MHz resonator  
• 16 MHz resonator  
• 20 MHz resonator  
• 32 MHz resonator  
6.6  
3.3  
0
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
V
0
0
0
0
5
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
26  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
6.3.2.2 Oscillator frequency specifications  
Table 16. Oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Oscillator crystal or resonator frequency — low  
32  
40  
kHz  
frequency mode (MCG_C2[RANGE]=00)  
fosc_hi_1  
Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
(MCG_C2[RANGE]=01)  
1
8
8
MHz  
MHz  
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it  
remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFL) electrical specifications  
This section describes the electrical characteristics of the FTFL module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
27  
Memories and memory interfaces  
Table 17. NVM program/erase timing specifications  
Symbol Description  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
Min.  
Typ.  
Max.  
Unit  
Notes  
7.5  
18  
μs  
13  
52  
113  
452  
ms  
ms  
ms  
1
1
1
thversblk32k Erase Block high-voltage time for 32 KB  
thversblk128k Erase Block high-voltage time for 128 KB  
208  
1808  
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash timing specifications — commands  
Table 18. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk32k  
• 32 KB data flash  
0.5  
1.7  
ms  
ms  
• 128 KB program flash  
trd1blk128k  
trd1sec1k  
Read 1s Section execution time (data flash  
sector)  
60  
μs  
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
65  
45  
30  
μs  
μs  
μs  
1
1
tpgm4  
145  
Erase Flash Block execution time  
• 32 KB data flash  
2
2
tersblk32k  
55  
465  
ms  
ms  
• 128 KB program flash  
220  
1850  
tersblk128k  
tersscr  
Erase Flash Sector execution time  
14  
114  
ms  
Program Section execution time  
• 512 B flash  
tpgmsec512  
tpgmsec1k  
4.7  
9.3  
ms  
ms  
• 1 KB flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
μs  
ms  
μs  
trdonce  
1
tpgmonce Program Once execution time  
65  
275  
tersall  
Erase All Blocks execution time  
2350  
30  
2
1
tvfykey  
Verify Backdoor Access Key execution time  
Program Partition for EEPROM execution time  
• 32 KB FlexNVM  
tpgmpart32k  
70  
ms  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
28  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
Table 18. Flash command timing specifications (continued)  
Symbol Description  
Set FlexRAM Function execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
tsetramff  
tsetram8k  
tsetram32k  
• Control Code 0xFF  
50  
0.3  
0.7  
μs  
ms  
ms  
• 8 KB EEPROM backup  
• 32 KB EEPROM backup  
0.5  
1.0  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
260  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b8k  
teewr8b16k  
teewr8b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b8k  
teewr16b16k  
teewr16b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b8k  
teewr32b16k  
teewr32b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
545  
630  
810  
1950  
2050  
2250  
μs  
μs  
μs  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash (FTFL) current and power specfications  
Table 19. Flash (FTFL) current and power specfications  
Symbol  
Description  
Typ.  
Unit  
mA  
IDD_PGM  
Worst case programming current in program flash  
10  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
29  
Memories and memory interfaces  
6.4.1.4 Reliability specifications  
Table 20. NVM reliability specifications  
Typ.1  
Symbol Description  
Min.  
Program Flash  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
tnvmretp100 Data retention after up to 100 cycles  
nnvmcycp Cycling endurance  
5
10  
50  
years  
years  
years  
cycles  
2
2
2
3
100  
100  
35 K  
15  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
tnvmretd100 Data retention after up to 100 cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
years  
cycles  
2
2
2
3
10  
100  
100  
35 K  
15  
10 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
tnvmretee1 Data retention up to 1% of write endurance  
Write endurance  
5
50  
years  
years  
years  
2
2
2
4
10  
15  
100  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree8k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
• EEPROM backup to FlexRAM ratio = 8192  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
writes  
20 M  
100 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology.  
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).  
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical values  
assume all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size  
can be set to any of several non-zero values.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
30  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that can  
be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout the  
entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
EEPROM – 2 × EEESIZE  
Writes_FlexRAM =  
× Write_efficiency × nnvmcycd  
EEESIZE  
where  
• Writes_FlexRAM — minimum number of writes to each FlexRAM location  
• EEPROM — allocated FlexNVM based on DEPART; entered with Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition  
command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycd — data flash cycling endurance  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
31  
Memories and memory interfaces  
Figure 5. EEPROM backup writes to FlexRAM  
6.4.2 EzPort Switching Specifications  
All timing is shown with respect to a maximum pin load of 50 pF and input signal  
transitions of 3 ns.  
Table 21. EzPort switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
2 x tEZP_CK  
15  
fSYS/8  
MHz  
ns  
ns  
0.0  
ns  
15  
ns  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
32  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
Table 21. EzPort switching specifications (continued)  
Num  
EP6  
EP7  
EP8  
EP9  
Description  
Min.  
0.0  
Max.  
Unit  
ns  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid (setup)  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
25  
ns  
0.0  
ns  
12  
ns  
EZP_CK  
EZP_CS  
EP3  
EP4  
EP2  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 6. EzPort Timing Diagram  
6.4.3 Mini-Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Mini-Flexbus output clock (FB_CLK). All other timing relationships  
can be derived from these values.  
Table 22. Flexbus switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
25  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
MHz  
ns  
FB1  
40  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
33  
Memories and memory interfaces  
Table 22. Flexbus switching specifications  
(continued)  
Num  
FB2  
FB3  
FB4  
FB5  
Description  
Min.  
Max.  
20  
Unit  
ns  
Notes  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
1
1
2
2
1
ns  
20  
10  
ns  
Data and FB_TA input hold  
ns  
1. Specification is valid for all FB_AD[31:0], FB_CSn, FB_OE, FB_R/W, and FB_TS.  
2. Specification is valid for all FB_AD[31:0].  
Note  
The following diagrams refer to signal names that may not be  
included on your particular device. Ignore these extraneous  
signals.  
Also, ignore the AA=0 portions of the diagrams because this  
setting is not supported in the Mini-FlexBus.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
34  
Freescale Semiconductor, Inc.  
Memories and memory interfaces  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB3  
FB5  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 7. Mini-FlexBus read timing diagram  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
35  
Memories and memory interfaces  
FB1  
FB_CLK  
FB2  
FB3  
FB_A[Y]  
Address  
Address  
Data  
FB_D[X]  
FB_RW  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 8. Mini-FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
36  
Freescale Semiconductor, Inc.  
Analog  
6.6 Analog  
6.6.1 ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
6.6.1.1 12-bit ADC operating conditions  
Table 23. 12-bit ADC operating conditions  
Typ.1  
Symbol Description  
Conditions  
Absolute  
Min.  
1.71  
-100  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage  
Supply voltage  
ΔVDDA  
Delta to VDD (VDD  
-
0
+100  
mV  
2
2
VDDA  
)
ΔVSSA  
Ground voltage  
Delta to VSS (VSS  
-
-100  
0
+100  
mV  
VSSA  
)
VREFH  
ADC reference  
voltage high  
1.13  
VSSA  
VREFL  
VDDA  
VDDA  
V
V
VREFL  
Reference  
voltage low  
VSSA  
VSSA  
VADIN  
CADIN  
Input voltage  
4
VREFH  
5
V
Input  
capacitance  
• 8/10/12 bit  
modes  
pF  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
12 bit modes  
fADCK < 4MHz  
3
fADCK  
ADC conversion ≤ 12 bit modes  
clock frequency  
4
5
1.0  
18.0  
MHz  
Ksps  
Crate  
ADC conversion ≤ 12 bit modes  
rate  
No ADC hardware  
averaging  
20.000  
818.330  
Continuous  
conversions enabled,  
subsequent conversion  
time  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the  
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS  
/
CAS time constant should be kept to <1ns.  
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
37  
Analog  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/  
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 9. ADC input impedance equivalency diagram  
6.6.1.2 12-bit ADC electrical characteristics  
Table 24. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IDDA_ADC Supply current  
0.215  
1.7  
mA  
3
ADC  
asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
1.2  
3.0  
2.4  
4.4  
2.4  
4.0  
5.2  
6.2  
3.9  
7.3  
6.1  
9.5  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
fADACK  
Sample Time  
See Reference Manual chapter for sample times  
LSB4  
LSB4  
TUE  
DNL  
Total unadjusted  
error  
• 12 bit modes  
• <12 bit modes  
4
6.8  
2.1  
5
5
1.4  
Differential non-  
linearity  
• 12 bit modes  
0.7  
-1.1 to  
+1.9  
-0.3 to 0.5  
• <12 bit modes  
• 12 bit modes  
0.2  
1.0  
LSB4  
INL  
Integral non-  
linearity  
-2.7 to  
+1.9  
5
-0.7 to  
+0.5  
• <12 bit modes  
0.5  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
38  
Freescale Semiconductor, Inc.  
Analog  
Notes  
Table 24. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
• 12 bit modes  
Typ.2  
-4  
Symbol Description  
Min.  
Max.  
-5.4  
-1.8  
Unit  
LSB4  
EFS  
Full-scale error  
VADIN =  
VDDA  
• <12 bit modes  
-1.4  
5
LSB4  
mV  
EQ  
EIL  
Quantization  
error  
• 12 bit modes  
0.5  
Input leakage  
error  
IIn × RAS  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
–40°C to 105°C  
25°C  
1.715  
719  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock  
speed.  
1 LSB = (VREFH - VREFL)/2N  
4.  
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 25. Comparator and 6-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
mV  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
39  
Analog  
Table 25. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
40  
Freescale Semiconductor, Inc.  
Analog  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
41  
12-bit DAC electrical characteristics  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 11. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 26. 12-bit DAC operating requirements  
Symbol  
Desciption  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
VDACR  
TA  
Reference voltage  
Temperature  
1.13  
−40  
3.6  
105  
100  
1
V
1
°C  
pF  
mA  
CL  
Output load capacitance  
Output load current  
2
IL  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
42  
Freescale Semiconductor, Inc.  
12-bit DAC electrical characteristics  
6.6.3.2 12-bit DAC operating behaviors  
Table 27. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
450  
μA  
P
IDDA_DAC Supply current — high-speed mode  
1000  
μA  
HP  
tDACLP  
Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
100  
15  
200  
30  
1
μs  
μs  
μs  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
EG  
PSRR  
TCO  
TGE  
Gain error  
Power supply rejection ratio, VDDA > = 2.4 V  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance load = 3 kΩ  
3.7  
0.000421  
μV/C  
%FSR/C  
Ω
6
Rop  
SR  
250  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
0.05  
0.12  
)
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100 mV to VDACR−100 mV  
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
43  
12-bit DAC electrical characteristics  
5. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV  
6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set  
to 0x800, Temp range from -40C to 105C  
Figure 12. Typical INL error vs. digital code  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
44  
Freescale Semiconductor, Inc.  
12-bit DAC electrical characteristics  
Figure 13. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 28. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
TA  
CL  
Temperature  
−40  
105  
°C  
nF  
Output load capacitance  
100  
1
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
45  
12-bit DAC electrical characteristics  
Table 29. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1965  
1.2  
1.2027  
V
nominal VDDA and temperature=25C  
Voltage reference output with— factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.198  
1.2376  
1.202  
V
V
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Itr  
Bandgap only (MODE_LV = 00) current  
80  
µA  
mA  
mV  
Tight-regulation buffer (MODE_LV =10) current  
1.1  
ΔVLOAD Load regulation (MODE_LV = 10)  
• current = + 1.0 mA  
1
2
5
• current = - 1.0 mA  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range) (MODE_LV = 10, REGEN = 1)  
mV  
1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 30. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Notes  
TA  
Temperature  
0
50  
°C  
Table 31. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General Switching Specifications.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
46  
Freescale Semiconductor, Inc.  
Communication interfaces  
6.8 Communication interfaces  
6.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the  
chip's Reference Manual for information about the modified transfer formats used for  
communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 70% VDD, unless noted, as well as  
input signal transitions of 3 ns and a 50 pF maximum load on all SPI pins. All timing  
assumes slew rate control is disabled and high drive strength is enabled for SPI output  
pins.  
Table 32. SPI master mode timing  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
fBUS/2048  
fBUS/2  
Hz  
fBUS is the  
bus clock  
as defined  
in Table 8.  
2
tSPSCK  
SPSCK period  
2 x tBUS  
2048 x  
tBUS  
ns  
tBUS = 1/  
fBUS  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tBUS - 30  
1024 x  
tBUS  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
21  
0
ns  
ns  
ns  
ns  
ns  
8
tv  
0
25  
9
tHO  
tRI  
10  
tBUS - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
47  
Communication interfaces  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
5
=
(CPOL 0)  
(OUTPUT)  
5
SPSCK  
(CPOL 1)  
=
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
LSB OUT  
MSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI master mode timing (CPHA=0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL 0)  
=
(OUTPUT)  
5
5
SPSCK  
(CPOL 1)  
=
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
MSB IN  
BIT 6 . . . 1  
LSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER LSB OUT  
PORT DATA  
MASTER MSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI master mode timing (CPHA=1)  
Table 33. SPI slave mode timing  
Num.  
Symbol Description  
fop Frequency of operation  
Min.  
Max.  
fBUS/4  
Unit  
Comment  
1
0
Hz  
fBUS is the  
bus clock  
as defined  
in Table 8.  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
48  
Freescale Semiconductor, Inc.  
Communication interfaces  
Table 33. SPI slave mode timing (continued)  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
2
tSPSCK  
SPSCK period  
4 x tBUS  
ns  
tBUS = 1/  
fBUS  
3
4
5
6
7
8
tLead  
tLag  
Enable lead time  
Enable lag time  
1
tBUS  
tBUS  
ns  
1
tBUS - 30  
19.5  
0
tWSPSCK Clock (SPSCK) high or low time  
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
ns  
ns  
tBUS  
ns  
Time to  
data active  
from high-  
impedanc  
e state  
9
tdis  
Slave MISO disable time  
tBUS  
ns  
Hold time  
to high-  
impedanc  
e state  
10  
11  
12  
tv  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
0
27  
ns  
ns  
ns  
tHO  
tRI  
tBUS - 25  
tFI  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
SS  
(INPUT)  
2
12  
12  
13 4  
SPSCK  
(CPOL 0)  
=
(INPUT)  
5
5
3
13  
SPSCK  
=
(CPOL 1)  
(INPUT)  
9
8
10  
11  
11  
MISO  
(OUTPUT)  
see  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
SLAVE MSB  
7
note  
NOTE  
6
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE: Not defined!  
Figure 16. SPI slave mode timing (CPHA=0)  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
49  
Human-machine interfaces (HMI)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
=
(CPOL 0)  
(INPUT)  
5
5
SPSCK  
=
(CPOL 1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
MISO  
(OUTPUT)  
see  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
note  
8
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined!  
Figure 17. SPI slave mode timing (CPHA=1)  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 34. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
Target electrode capacitance range  
Reference oscillator frequency  
Electrode oscillator frequency  
Internal reference capacitor  
Oscillator delta voltage  
1
20  
5.5  
0.5  
1
500  
14  
pF  
MHz  
MHz  
pF  
1
2
3
fREFmax  
fELEmax  
CREF  
4.0  
1.2  
760  
0.5  
100  
VDELTA  
IREF  
600  
mV  
μA  
4
Reference oscillator current source base current  
• 1uA setting (REFCHRG=0)  
3 , 5  
1.133  
36  
1.5  
50  
• 32uA setting (REFCHRG=31)  
IELE  
Electrode oscillator current source base current  
• 1uA setting (EXTCHRG=0)  
μA  
3 , 6  
1.133  
36  
1.5  
50  
• 32uA setting (EXTCHRG=31)  
Pres5  
Electrode capacitance measurement precision  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
12.5  
38400  
38400  
38400  
%
%
7
8
Pres20  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
%
9
0.003  
fF/count  
10  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
50  
Freescale Semiconductor, Inc.  
Dimensions  
Table 34. TSI electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
16  
Unit  
bits  
μs  
Notes  
Res  
Resolution  
TCon20  
Response time @ 20 pF  
8
15  
25  
11  
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
55  
μA  
μA  
1.3  
2.5  
12  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.  
3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.  
4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.  
5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref  
* Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following  
configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The  
minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best  
sensitivity but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based  
on the following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5  
pF  
11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, DELVOL = 2, EXTCHRG = 15.  
12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and  
fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to http://www.freescale.com and perform a keyword  
search for the drawing’s document number:  
If you want the drawing for this package  
32-pin QFN  
Then use this document number  
98ARE10566D  
44-pin Laminate QFN  
48-pin LQFP  
98ASA00239D  
98ASH00962A  
98ASS23234W  
64-pin LQFP  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
51  
Pinout  
8 Pinout  
8.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Mux Control module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
• On PTB0, EZP_MS_b is active only during reset. Refer to  
the detailed boot description.  
• PTC1 is open drain.  
64-  
pin  
48-  
pin  
44-  
pin  
32-  
pin  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
1
2
3
4
5
1
VDD  
VDD  
VSS  
VSS  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTC6  
UART0_TX  
I2C0_SCL  
RGPIO6  
RGPIO7  
RGPIO8  
SPI1_MOSI FBa_AD11  
SPI1_MISO FBa_AD12  
SPI1_SCLK FBa_AD13  
PTC7  
PTD0  
UART0_RX I2C0_SDA  
UART0_CT  
S_b  
I2C1_SDA  
6
2
Disabled  
Disabled  
PTD1  
UART0_RT  
S_b  
I2C1_SCL  
RGPIO9  
SPI1_SS  
SPI0_SS  
FBa_AD14  
7
8
3
4
5
6
7
1
2
3
4
5
1
2
3
4
5
Disabled  
Disabled  
Disabled  
Disabled  
ADC0_SE2  
Disabled  
Disabled  
Disabled  
Disabled  
ADC0_SE2  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
I2C2_SCL  
I2C2_SDA  
FTM1_CH0  
FTM1_CH1  
FTM1_CH2  
FTM1_CH3  
FTM1_CH4  
FBa_AD15  
FBa_AD16  
9
UART1_TX  
UART1_RX  
SPI1_SS  
10  
11  
SPI1_SCLK  
SPI1_MISO  
EZP_CLK  
EZP_DI  
UART1_CT  
S_b  
I2C2_SCL  
I2C2_SDA  
12  
8
6
6
ADC0_SE3  
ADC0_SE3  
PTA5  
UART1_RT  
S_b  
FTM1_CH5  
SPI1_MOSI CLKOUT  
EZP_DO  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
9
7
7
VDDA  
VDDA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
8
8
VREFH  
VREFH  
9
VREF_OUT VREF_OUT  
10  
11  
12  
13  
14  
15  
16  
17  
VREFL  
VSSA  
VREFL  
VSSA  
9
DAC0_OUT DAC0_OUT  
10  
11  
12  
13  
14  
ADC0_SE0  
ADC0_SE1  
VREGIN  
VOUT33  
VSS  
ADC0_SE0  
ADC0_SE1  
VREGIN  
VOUT33  
VSS  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
52  
Freescale Semiconductor, Inc.  
Pinout  
64-  
pin  
48-  
pin  
44-  
pin  
32-  
pin  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
24  
25  
20  
21  
18  
19  
VDD  
ADC0_SE8/ ADC0_SE8/ PTA6  
TSI0_CH0 TSI0_CH0  
ADC0_SE9/ ADC0_SE9/ PTD2  
VDD  
15  
LPTMR_AL  
T1  
FTM_FLT1  
FTM0_CH0  
FTM0_CH1  
FBa_D7  
FBa_AD17  
26  
27  
28  
29  
30  
31  
32  
33  
22  
23  
24  
20  
21  
22  
16  
FTM0_QD_ RGPIO10  
PHA  
TSI0_CH1  
TSI0_CH1  
ADC0_SE1  
ADC0_SE1  
PTD3  
PTD4  
PTD5  
PTA7  
PTD6  
PTD7  
PTE0  
FTM0_QD_ RGPIO11  
PHB  
FBa_D6  
FBa_AD0  
FBa_D7  
FBa_D6  
FBa_D5  
FBa_D4  
FBa_D3  
FBa_D2  
FBa_D1  
0/TSI0_CH2 0/TSI0_CH2  
ADC0_SE1 ADC0_SE1  
1/TSI0_CH3 1/TSI0_CH3  
ADC0_SE1 ADC0_SE1  
2/TSI0_CH4 2/TSI0_CH4  
ADC0_SE1 ADC0_SE1  
3/TSI0_CH5 3/TSI0_CH5  
ADC0_SE1 ADC0_SE1  
4/TSI0_CH6 4/TSI0_CH6  
ADC0_SE1 ADC0_SE1  
5/TSI0_CH7 5/TSI0_CH7  
RGPIO12  
RGPIO13  
UART0_TX  
FTM0_QD_  
PHA  
UART0_RX RGPIO14  
UART0_CT  
S_b  
I2C3_SCL  
I2C3_SDA  
RGPIO15  
TSI0_CH8  
TSI0_CH8  
UART0_RT  
S_b  
34  
35  
TSI0_CH9  
TSI0_CH9  
Disabled  
PTE1  
PTB0  
SPI0_SS  
FTM_FLT0  
FTM_FLT2  
25  
23  
17  
IRQ/  
I2C0_SCL  
IRQ/  
EZP_MS_b  
EZP_CS_b  
EZP_MS_b  
36  
26  
24  
18  
TSI0_CH10 TSI0_CH10 PTB1  
SPI0_SCLK I2C0_SDA  
LPTMR_AL  
T2  
FTM0_QD_ FB_CLKOU  
PHB  
T
37  
38  
TSI0_CH11 TSI0_CH11 PTE2  
I2C3_SCL  
FBa_D0  
FBa_OE_b  
ADC0_SE1  
6/  
ADC0_SE1  
6/  
PTE3  
PTB2  
PTB3  
PTE4  
SPI0_MOSI I2C3_SDA  
TSI0_CH12 TSI0_CH12  
39  
40  
41  
27  
28  
29  
25  
26  
19  
20  
ADC0_SE1  
7/  
ADC0_SE1  
7/  
SPI0_MISO  
SPI0_MOSI  
FBa_CS0_b  
TSI0_CH13 TSI0_CH13  
ADC0_SE1  
8/  
ADC0_SE1  
8/  
FBa_CS1_b FBa_ALE  
FBa_AD1  
TSI0_CH14 TSI0_CH14  
ADC0_SE1  
9/  
ADC0_SE1  
9/  
UART0_RT  
S_b  
LPTMR_AL  
T3  
SPI1_SS  
TSI0_CH15 TSI0_CH15  
42  
43  
44  
30  
31  
27  
ADC0_SE2  
0
ADC0_SE2  
0
PTE5  
PTE6  
PTE7  
UART0_CT  
S_b  
I2C1_SCL  
SPI1_SCLK  
SPI1_MISO  
FBa_AD2  
FBa_AD3  
ADC0_SE2  
1
ADC0_SE2  
1
UART0_RX I2C1_SDA  
ADC0_SE2  
2
ADC0_SE2  
2
UART0_TX  
BKGD/MS  
PDB0_EXT  
RG  
SPI1_MOSI FBa_RW_b  
FBa_AD4  
45  
46  
47  
48  
32  
33  
34  
35  
28  
29  
30  
31  
21  
22  
23  
24  
BKGD/MS  
XTAL2  
Disabled  
XTAL2  
EXTAL2  
VDD  
PTB4  
PTB5  
PTB6  
EXTAL2  
VDD  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
53  
Pinout  
64-  
pin  
48-  
pin  
44-  
pin  
32-  
pin  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
49  
50  
36  
37  
32  
33  
25  
26  
VSS  
VSS  
EXTAL1  
EXTAL1  
PTB7  
I2C1_SDA  
I2C1_SCL  
TMR_CLKI  
N1  
51  
38  
34  
27  
XTAL1  
XTAL1  
PTC0  
TMR_CLKI  
N0  
RGPIO0  
52  
53  
54  
55  
56  
57  
39  
40  
41  
35  
36  
37  
28  
29  
RESET_b  
CMP0_IN0  
Disabled  
Disabled  
PTC1  
PTF0  
PTF1  
PTF2  
PTF3  
PTC2  
RESET_b  
SPI0_SS  
CMP0_IN0  
Disabled  
FBa_AD5  
SPI0_SCLK  
SPI0_MISO  
SPI0_MOSI  
CMP0_OUT FBa_AD6  
FBa_AD7  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
RGPIO1  
RGPIO2  
FBa_AD8  
UART1_RT  
S_b  
SPI1_SS  
FBa_AD18  
58  
42  
38  
Disabled  
Disabled  
PTF4  
UART1_CT  
S_b  
SPI1_SCLK  
FBa_D3  
FBa_AD19  
59  
60  
61  
43  
44  
45  
39  
40  
41  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTF5  
PTF6  
PTF7  
UART1_RX SPI1_MISO  
FBa_D2  
FBa_D1  
FBa_D0  
FBa_RW_b  
FBa_AD9  
UART1_TX  
SPI1_MOSI  
RGPIO3  
UART0_RT  
S_b  
SPI0_SS  
FBa_AD10  
62  
63  
64  
46  
47  
48  
42  
43  
44  
30  
31  
32  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTC3  
PTC4  
PTC5  
UART0_CT  
S_b  
SPI0_SCLK CLKOUT  
UART0_RX RGPIO4  
SPI0_MISO PDB0_EXT  
RG  
UART0_TX  
RGPIO5  
SPI0_MOSI CMT_IRO  
8.2 Pinout diagrams  
The following diagrams show pinouts for the 64-pin, 48-pin, 44-pin, and 32-pin  
packages. These diagrams are representations for ease of reference. See the package  
drawings for mechanical details.  
For each pin, the diagrams show the default function or (when disabled is the default) the  
ALT1 signal for a GPIO function. However, many signals may be multiplexed onto a  
single pin.  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
54  
Freescale Semiconductor, Inc.  
Pinout  
VDD  
VSS  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
EXTAL2  
PTC6  
3
XTAL2  
PTC7  
4
BKGD/MS  
PTD0  
5
ADC0_SE22  
PTD1  
6
ADC0_SE21  
PTA0  
7
ADC0_SE20  
PTA1  
8
ADC0_SE19/TSI0_CH15  
ADC0_SE18/TSI0_CH14  
ADC0_SE17/TSI0_CH13  
ADC0_SE16/TSI0_CH12  
TSI0_CH11  
PTA2  
9
PTA3  
10  
11  
12  
13  
14  
15  
16  
ADC0_SE2  
ADC0_SE3  
VDDA  
TSI0_CH10  
VREFH  
VREF_OUT  
VREFL  
IRQ/EZP_MS_b  
TSI0_CH9  
TSI0_CH8  
Figure 18. 64-pin LQFP  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
55  
Pinout  
VSS  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD0  
PTD1  
1
2
VDD  
EXTAL2  
PTA0  
3
XTAL2  
PTA1  
4
BKGD/MS  
PTA2  
5
ADC0_SE22  
ADC0_SE20  
ADC0_SE19/TSI0_CH15  
ADC0_SE18/TSI0_CH14  
ADC0_SE17/TSI0_CH13  
TSI0_CH10  
PTA3  
6
ADC0_SE2  
ADC0_SE3  
VDDA  
7
8
9
VREFH  
VREF_OUT  
VREFL  
10  
11  
12  
IRQ/EZP_MS_b  
Figure 19. 48-pin LQFP  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
56  
Freescale Semiconductor, Inc.  
Pinout  
PTA0  
PTA1  
1
3
5
7
9
33 EXTAL1  
2
4
32  
30  
28  
26  
24  
VSS  
PTA2  
31 VDD  
PTA3  
EXTAL2  
ADC0_SE2  
ADC0_SE3  
VDDA  
29 XTAL2  
6
BKGD/MS  
27 ADC0_SE22  
ADC0_SE18/TSI0_CH14  
25 ADC0_SE17/TSI0_CH13  
TSI0_CH10  
VREFH  
8
VREF_OUT  
VREFL  
10  
VSSA 11  
23 IRQ/EZP_MS_b  
Figure 20. 44-pin Laminate QFN  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
57  
Pinout  
VDD  
PTA0  
PTA1  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
EXTAL2  
XTAL2  
PTA2  
BKGD/MS  
PTA3  
ADC0_SE18/TSI0_CH14  
ADC0_SE17/TSI0_CH13  
TSI0_CH10  
ADC0_SE2  
ADC0_SE3  
VDDA  
18  
17  
VSSA  
IRQ/EZP_MS_b  
Figure 21. 32-pin QFN  
8.3 Module-by-module signals  
NOTE  
• On PTB0, EZP_MS_b is active only during reset. Refer to  
the detailed boot description.  
• PTC1 is open drain.  
Table 35. Module signals by GPIO port and pin  
64-pin  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
Power and ground  
1
VDD  
VDD  
24  
20  
18  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
58  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
48  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
35  
31  
24  
VDD  
VSS  
VSS  
VSS  
2
23  
19  
36  
17  
32  
14  
25  
49  
System  
45  
12  
62  
10  
11  
12  
35  
32  
8
28  
6
21  
6
PTB4  
PTA5  
PTC3  
PTA3  
PTA4  
PTA5  
PTB0  
BKGD/MS  
CLKOUT  
CLKOUT  
EZP_CLK  
EZP_DI  
46  
6
42  
4
30  
4
7
5
5
8
6
6
EZP_DO  
25  
23  
17  
IRQ/EZP_MS_b,  
EZP_CS_b  
52  
39  
35  
28  
PTC1  
RESET_b  
OSC  
50  
47  
51  
46  
37  
34  
38  
33  
33  
30  
34  
29  
26  
23  
27  
22  
PTB7  
PTB6  
PTC0  
PTB5  
EXTAL1  
EXTAL2  
XTAL1  
XTAL2  
LLWU  
4
PTC7  
PTD1  
PTA5  
PTA7  
PTD7  
PTB0  
PTB1  
PTB2  
PTE7  
PTB4  
PTF2  
PTF3  
PTC2  
PTF5  
PTC3  
LLWU_P0  
LLWU_P1  
LLWU_P2  
LLWU_P3  
LLWU_P4  
LLWU_P5  
LLWU_P6  
LLWU_P7  
LLWU_P8  
LLWU_P9  
LLWU_P10  
LLWU_P11  
LLWU_P12  
LLWU_P13  
LLWU_P14  
6
2
8
12  
30  
32  
35  
36  
39  
44  
45  
55  
56  
57  
59  
62  
6
6
23  
21  
16  
25  
26  
27  
31  
32  
23  
24  
25  
27  
28  
17  
18  
19  
21  
40  
41  
43  
46  
36  
37  
39  
42  
29  
30  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
59  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
63  
47  
43  
31  
PTC4  
LLWU_P15  
RGPIO  
51  
56  
57  
62  
63  
64  
3
38  
40  
41  
46  
47  
48  
34  
36  
37  
42  
43  
44  
27  
PTC0  
PTF3  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
RGPIO0  
RGPIO1  
RGPIO2  
RGPIO3  
RGPIO4  
RGPIO5  
RGPIO6  
RGPIO7  
RGPIO8  
RGPIO9  
RGPIO10  
RGPIO11  
RGPIO12  
RGPIO13  
RGPIO14  
RGPIO15  
29  
30  
31  
32  
4
5
1
2
6
26  
27  
28  
29  
31  
32  
22  
24  
20  
22  
LPTMR  
25  
36  
41  
21  
26  
29  
19  
24  
15  
18  
PTA6  
PTB1  
PTE4  
LPTMR_ALT1  
LPTMR_ALT2  
LPTMR_ALT3  
LPTMR-TOD  
50  
47  
25  
36  
41  
51  
46  
37  
34  
21  
26  
29  
38  
33  
33  
30  
19  
24  
26  
23  
15  
18  
PTB7  
PTB6  
PTA6  
PTB1  
PTE4  
PTC0  
PTB5  
EXTAL1  
EXTAL2  
LPTMR_ALT1  
LPTMR_ALT2  
LPTMR_ALT3  
XTAL1  
34  
29  
27  
22  
XTAL2  
PTA  
7
8
3
4
5
6
1
2
3
4
1
2
3
4
PTA0  
PTA1  
PTA2  
PTA3  
PTA0  
PTA1  
PTA2  
PTA3  
9
10  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
60  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
11  
48-pin  
44-pin  
32-pin  
Port  
PTA4  
PTA5  
PTA6  
PTA7  
Module signal(s)  
PTA4  
7
8
5
6
5
6
12  
PTA5  
25  
21  
23  
19  
21  
15  
16  
PTA6  
30  
PTA7  
PTB  
PTC  
PTD  
PTE  
35  
36  
39  
40  
45  
46  
47  
50  
25  
26  
27  
28  
32  
33  
34  
37  
23  
24  
25  
26  
28  
29  
30  
33  
17  
18  
19  
20  
21  
22  
23  
26  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
51  
52  
57  
62  
63  
64  
3
38  
39  
41  
46  
47  
48  
34  
35  
37  
42  
43  
44  
27  
28  
29  
30  
31  
32  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
4
5
1
2
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
6
26  
27  
28  
29  
31  
32  
22  
24  
20  
22  
33  
34  
38  
PTE0  
PTE1  
PTE3  
PTE0  
PTE1  
PTE2  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
61  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
39  
48-pin  
27  
44-pin  
32-pin  
Port  
PTB2  
PTE4  
PTE5  
PTE6  
PTE7  
Module signal(s)  
PTE3  
25  
19  
41  
29  
PTE4  
42  
30  
PTE5  
43  
PTE6  
44  
31  
27  
PTE7  
PTF  
53  
54  
55  
56  
58  
59  
60  
61  
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTF5  
PTF6  
PTF7  
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTF5  
PTF6  
PTF7  
40  
42  
43  
44  
45  
36  
38  
39  
40  
41  
5 V VREG  
ADC0  
22  
21  
18  
17  
16  
15  
13  
12  
VOUT33  
VREGIN  
11  
12  
25  
26  
27  
28  
29  
30  
31  
32  
38  
39  
40  
41  
42  
43  
44  
7
8
5
6
5
6
PTA4  
PTA5  
PTA6  
PTD2  
PTD3  
PTD4  
PTD5  
PTA7  
PTD6  
PTD7  
PTE3  
PTB2  
PTB3  
PTE4  
PTE5  
PTE6  
PTE7  
ADC0_SE2  
ADC0_SE3  
ADC0_SE8  
ADC0_SE9  
ADC0_SE10  
ADC0_SE11  
ADC0_SE12  
ADC0_SE13  
ADC0_SE14  
ADC0_SE15  
ADC0_SE16  
ADC0_SE17  
ADC0_SE18  
ADC0_SE19  
ADC0_SE20  
ADC0_SE21  
ADC0_SE22  
21  
19  
15  
22  
20  
23  
24  
21  
22  
16  
27  
28  
29  
30  
25  
26  
19  
20  
31  
27  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
62  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
13  
48-pin  
9
44-pin  
32-pin  
Port  
Module signal(s)  
VDDA  
7
8
7
14  
10  
VREFH  
16  
12  
10  
11  
VREFL  
17  
13  
8
9
VSSA  
DAC0  
VREF  
CMP0  
18  
15  
14  
11  
12  
9
DAC0_OUT  
VREF_OUT  
53  
55  
56  
57  
54  
PTF0  
PTF2  
PTF3  
PTC2  
PTF1  
CMP0_IN0  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
CMP0_OUT  
40  
41  
36  
37  
29  
CMT  
TSI0  
64  
48  
21  
22  
44  
19  
20  
32  
15  
PTC5  
CMT_IRO  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
36  
37  
38  
39  
40  
41  
PTA6  
PTD2  
PTD3  
PTD4  
PTD5  
PTA7  
PTD6  
PTD7  
PTE0  
PTE1  
PTB1  
PTE2  
PTE3  
PTB2  
PTB3  
PTE4  
TSI0_CH0  
TSI0_CH1  
TSI0_CH2  
TSI0_CH3  
TSI0_CH4  
TSI0_CH5  
TSI0_CH6  
TSI0_CH7  
TSI0_CH8  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
TSI0_CH12  
TSI0_CH13  
TSI0_CH14  
TSI0_CH15  
23  
24  
21  
22  
16  
18  
26  
24  
27  
28  
29  
25  
26  
19  
20  
PDB0  
44  
31  
27  
PTE7  
PDB0_EXTRG  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
63  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
48-pin  
44-pin  
32-pin  
Port  
Module signal(s)  
63  
47  
43  
31  
PTC4  
PDB0_EXTRG  
FTM0  
34  
25  
36  
PTE1  
PTA6  
PTB1  
FTM_FLT0  
FTM_FLT1  
21  
26  
19  
24  
15  
18  
FTM_FLT2 /  
FTM0_QD_PHB  
26  
27  
PTD2  
PTD3  
FTM0_CH0/  
FTM0_QD_PHA  
22  
20  
FTM0_CH1 /  
FTM0_QD_PHB  
30  
51  
50  
23  
38  
37  
21  
34  
33  
16  
27  
26  
PTA7  
PTC0  
PTB7  
FTM0_QD_PHA  
TMR_CLKIN0  
TMR_CLKIN1  
FTM1  
34  
25  
36  
7
PTE1  
PTA6  
PTB1  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTC0  
PTB7  
FTM_FLT0  
FTM_FLT1  
FTM_FLT2  
FTM1_CH0  
FTM1_CH1  
FTM1_CH2  
FTM1_CH3  
FTM1_CH4  
FTM1_CH5  
TMR_CLKIN0  
TMR_CLKIN1  
21  
26  
3
19  
24  
1
15  
18  
1
8
4
2
2
9
5
3
3
10  
11  
12  
51  
50  
6
4
4
7
5
5
8
6
6
38  
37  
34  
33  
27  
26  
MTIM  
51  
50  
38  
37  
34  
33  
27  
26  
PTC0  
PTB7  
TMR_CLKIN0  
TMR_CLKIN1  
Mini-FlexBus  
36  
27  
41  
42  
43  
44  
53  
26  
22  
29  
30  
24  
20  
18  
PTB1  
PTD3  
PTE4  
PTE5  
PTE6  
PTE7  
PTF0  
FB_CLKOUT  
FBa_AD0  
FBa_AD1  
FBa_AD2  
FBa_AD3  
FBa_AD4  
FBa_AD5  
31  
27  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
64  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
54  
55  
56  
60  
61  
3
48-pin  
44-pin  
32-pin  
Port  
PTF1  
PTF2  
PTF3  
PTF6  
PTF7  
PTC6  
PTC7  
PTD0  
PTD1  
PTA0  
PTA1  
PTA6  
PTC2  
PTF4  
PTB3  
PTB2  
PTE2  
PTE1  
PTE0  
PTD7  
PTD6  
PTA7  
PTD5  
PTD4  
PTE3  
PTF5  
Module signal(s)  
FBa_AD6  
FBa_AD7  
FBa_AD8  
FBa_AD9  
FBa_AD10  
FBa_AD11  
FBa_AD12  
FBa_AD13  
FBa_AD14  
FBa_AD15  
FBa_AD16  
FBa_AD17  
FBa_AD18  
FBa_AD19  
FBa_ALE  
FBa_CS0_b  
FBa_D0  
40  
44  
45  
36  
40  
41  
4
5
1
2
6
7
3
1
1
2
8
4
2
25  
57  
58  
40  
39  
37  
34  
33  
32  
31  
30  
29  
28  
38  
59  
21  
41  
42  
28  
27  
19  
37  
38  
26  
25  
15  
29  
20  
19  
FBa_D1  
FBa_D2  
FBa_D3  
24  
23  
22  
21  
FBa_D4  
16  
FBa_D5  
FBa_D6  
FBa_D7  
FBa_OE_b  
FBa_RW_b  
43  
39  
DATA_BUS  
8
4
2
2
PTA1  
PTB2  
PTF7  
PTF6  
PTF5  
PTF4  
PTD6  
PTA7  
FBa_AD16  
FBa_CS0_b  
FBa_D0  
39  
61  
60  
59  
58  
31  
30  
27  
45  
44  
43  
42  
24  
23  
25  
41  
40  
39  
38  
22  
21  
19  
FBa_D1  
FBa_D2  
FBa_D3  
FBa_D4  
16  
FBa_D5  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
65  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
27  
48-pin  
22  
44-pin  
20  
32-pin  
Port  
PTD3  
PTA6  
PTE7  
Module signal(s)  
FBa_D6  
25  
21  
19  
15  
FBa_D7  
44  
31  
27  
FBa_RW_b  
I2C0 and I2C1  
3
35  
4
PTC6  
PTB0  
PTC7  
PTB1  
PTD1  
PTE5  
PTC0  
PTD0  
PTE6  
PTB7  
I2C0_SCL  
I2C0_SCL  
I2C0_SDA  
I2C0_SDA  
I2C1_SCL  
I2C1_SCL  
I2C1_SCL  
I2C1_SDA  
I2C1_SDA  
I2C1_SDA  
25  
23  
24  
17  
18  
36  
6
26  
2
42  
51  
5
30  
38  
1
34  
33  
27  
26  
43  
50  
37  
I2C2 and I2C3  
7
3
7
4
8
1
5
2
6
1
5
2
6
PTA0  
PTA4  
PTA1  
PTA5  
PTD7  
PTE2  
PTE0  
PTE3  
I2C2_SCL  
I2C2_SCL  
I2C2_SDA  
I2C2_SDA  
I2C3_SCL  
I2C3_SCL  
I2C3_SDA  
I2C3_SDA  
11  
8
12  
32  
37  
33  
38  
SPI0  
39  
55  
63  
38  
40  
56  
64  
36  
54  
62  
7
27  
47  
25  
43  
19  
31  
20  
PTB2  
PTF2  
PTC4  
PTE3  
PTB3  
PTF3  
PTC5  
PTB1  
PTF1  
PTC3  
PTA0  
SPI0_MISO  
SPI0_MISO  
SPI0_MISO  
SPI0_MOSI  
SPI0_MOSI  
SPI0_MOSI  
SPI0_MOSI  
SPI0_SCLK  
SPI0_SCLK  
SPI0_SCLK  
SPI0_SS  
28  
40  
48  
26  
26  
36  
44  
24  
32  
18  
46  
3
42  
1
30  
1
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
66  
Freescale Semiconductor, Inc.  
Pinout  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
34  
48-pin  
44-pin  
32-pin  
Port  
PTE1  
PTF0  
PTF7  
Module signal(s)  
SPI0_SS  
53  
SPI0_SS  
61  
45  
41  
SPI0_SS  
SPI1  
4
PTC7  
PTA4  
PTE6  
PTF5  
PTC6  
PTA5  
PTE7  
PTF6  
PTD0  
PTA3  
PTE5  
PTF4  
PTD1  
PTA2  
PTE4  
PTC2  
SPI1_MISO  
SPI1_MISO  
SPI1_MISO  
SPI1_MISO  
SPI1_MOSI  
SPI1_MOSI  
SPI1_MOSI  
SPI1_MOSI  
SPI1_SCLK  
SPI1_SCLK  
SPI1_SCLK  
SPI1_SCLK  
SPI1_SS  
11  
43  
59  
3
7
5
5
6
4
43  
39  
12  
44  
60  
5
8
31  
44  
1
6
27  
40  
10  
42  
58  
6
6
4
38  
3
30  
42  
2
9
5
3
SPI1_SS  
41  
57  
29  
41  
SPI1_SS  
37  
29  
SPI1_SS  
UART0  
5
1
PTD0  
PTD7  
PTE5  
PTC3  
PTD1  
PTE0  
PTE4  
PTF7  
PTC7  
PTD6  
PTE6  
PTC4  
PTC6  
PTA7  
UART0_CTS_b  
UART0_CTS_b  
UART0_CTS_b  
UART0_CTS_b  
UART0_RTS_b  
UART0_RTS_b  
UART0_RTS_b  
UART0_RTS_b  
UART0_RX  
32  
42  
62  
6
30  
46  
2
42  
30  
33  
41  
61  
4
29  
45  
41  
22  
43  
21  
31  
43  
63  
3
24  
47  
23  
UART0_RX  
UART0_RX  
31  
16  
UART0_RX  
UART0_TX  
30  
UART0_TX  
Table continues on the next page...  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
Freescale Semiconductor, Inc.  
67  
Revision History  
Table 35. Module signals by GPIO port and pin (continued)  
64-pin  
44  
48-pin  
31  
44-pin  
27  
32-pin  
Port  
PTE7  
PTC5  
Module signal(s)  
UART0_TX  
64  
48  
44  
32  
5
UART0_TX  
UART1  
11  
58  
12  
57  
10  
59  
9
7
42  
8
5
38  
6
PTA4  
PTF4  
PTA5  
PTC2  
PTA3  
PTF5  
PTA2  
PTF6  
UART1_CTS_b  
UART1_CTS_b  
UART1_RTS_b  
UART1_RTS_b  
UART1_RX  
6
29  
4
41  
6
37  
4
43  
5
39  
3
UART1_RX  
3
UART1_TX  
60  
44  
40  
UART1_TX  
9 Revision History  
The following table summarizes content changes since the previous release of this  
document.  
Table 36. Revision History  
Rev. No.  
Date  
Substantial Changes  
4
01/2012 Thermal operating requirements: Changed maximum TJ value from 125°C to 115°C  
MCF51QU128 Data Sheet, Rev. 4, 01/2012.  
68  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2010–2012 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF51QU128  
Rev. 4, 01/2012  

相关型号:

MCF51QU128VHS

MCF51QU128
FREESCALE

MCF51QU128VHX

Advance Information Temperature range (ambient): -40°C to 105°C
FREESCALE

MCF51QU128VLF

FLASH, 50MHz, MICROCONTROLLER, PQFP48, 7 X 7 MM, LQFP-48
NXP

MCF51QU128VLH

MCF51QU128
FREESCALE

MCF51QU128_12

MCF51QU128
FREESCALE

MCF51QU32VFM

MCF51QU128
FREESCALE

MCF51QU32VHS

MCF51QU128
FREESCALE

MCF51QU32VHX

FLASH, 50 MHz, MICROCONTROLLER, QCC64, 9 X 9 MM, QFN-64
NXP

MCF51QU32VLH

FLASH, 50MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, LQFP-64
NXP

MCF51QU64VHS

MCF51QU128
FREESCALE

MCF51QU64VLF

MCF51QU128
FREESCALE

MCF51QU64VLFR

Microcontroller
NXP