MCF5208CVM166 [FREESCALE]

Microprocessor Data Sheet; 微处理器数据表
MCF5208CVM166
型号: MCF5208CVM166
厂家: Freescale    Freescale
描述:

Microprocessor Data Sheet
微处理器数据表

微处理器
文件: 总46页 (文件大小:979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF5208EC  
Rev. 0.5, 3/2006  
Freescale Semiconductor  
Data Sheet: Advance Information  
MCF5208 ColdFire®  
Microprocessor Data Sheet  
Supports MCF5207 & MCF5208  
by: Microcontroller Division  
Table of Contents  
The MCF5207 and MCF5208 devices are  
1
2
3
4
5
6
MCF5207/8 Device Configurations......................2  
Ordering Information ...........................................3  
Signal Descriptions..............................................3  
Mechanicals and Pinouts ....................................8  
Preliminary Electrical Characteristics................18  
Revision History ................................................43  
highly-integrated 32-bit microprocessors based on the  
version 2 ColdFire microarchitecture. Both devices  
contain a 16-Kbyte internal SRAM, an 8-Kbyte  
configurable cache, a 2-bank SDR/DDR SDRAM  
controller, a 16-channel DMA controller, up to three  
UARTs, a queued SPI, a low-power management  
modeule, and other peripherals that enable the MCF5207  
and MCF5208 for use in industrial control and  
connectivity applications. The MCF5208 device also  
features a 10/100 Mbps fast ethernet controller.  
This document provides detailed information on power  
considerations, DC/AC electrical characteristics, and AC  
timing specifications of the MCF5207 and MCF5208  
microprocessors. It was written from the perspective of  
the MCF5208 device. See the following section for a  
summary of differences between the two devices.  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
• Preliminary  
MCF5207/8 Device Configurations  
1 MCF5207/8 Device Configurations  
The following table compares the two devices described in this document:  
Table 1. MCF5207 & MCF5208 Configurations  
Module  
MCF5207  
MCF5208  
Version 2 ColdFire Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
x
x
Core (System) Clock  
up to 166.67 MHz  
Peripheral and External Bus Clock  
up to 83.33 MHz  
(Core clock ÷ 2)  
Performance (Dhrystone/2.1 MIPS)  
Instruction/Data Cache  
Static RAM (SRAM)  
up to 159  
8 Kbytes  
16 Kbytes  
SDR/DDR SDRAM Controller  
Fast Ethernet Controller (FEC)  
Low-Power Management Module  
UARTs  
x
x
x
x
x
3
3
I2C  
x
x
QSPI  
x
x
32-bit DMA Timers  
4
4
Watchdog Timer (WDT)  
Periodic Interrupt Timers (PIT)  
Edge Port Module (EPORT)  
Interrupt Controllers (INTC)  
16-channel Direct Memory Access (DMA)  
FlexBus External Interface  
General Purpose I/O Module (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
x
x
4
4
x
x
1
1
x
x
x
x
x
x
x
x
144 LQFP  
160 QFP  
144 MAPBGA 196 MAPBGA  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
2
Freescale Semiconductor  
Ordering Information  
2 Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part  
Number  
Description  
Speed  
Temperature  
MCF5207CAG166  
MCF5207CVM166  
MCF5208CAB166  
MCF5208CVM166  
MCF5207 RISC Microprocessor, 144 LQFP  
MCF5207 RISC Microprocessor, 144 MAPBGA  
MCF5208 RISC Microprocessor, 160 QFP  
MCF5208 RISC Microprocessor, 196 MAPBGA  
166.67 MHz  
166.67 MHz  
166.67 MHz  
166.67 MHz  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
3 Signal Descriptions  
The following table lists all the MCF5208 pins grouped by function. The “Dir” column is the direction for  
the primary function of the pin only. Refer to Section 4, “Mechanicals and Pinouts,” for package diagrams.  
For a more detailed discussion of the MCF5208 signals, consult the MCF5208 Reference Manual  
(MCF5208RM).  
NOTE  
In this table and throughout this document a single signal within a group is  
designated without square brackets (i.e., A23), while designations for  
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to  
include all signals within the two bracketed numbers when these numbers  
are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality.  
Pins that are muxed with GPIO will default to their GPIO functionality.  
Table 3. MCF5207/8 Signal Information and Muxing  
MCF5207  
144  
MCF5207  
144  
MCF5208  
160  
MCF5208  
196  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
LQFP  
MAPBGA  
QFP  
MAPBGA  
Reset  
RESET2  
RSTOUT  
I
82  
74  
J10  
90  
82  
J14  
O
M12  
N14  
Clock  
EXTAL  
XTAL  
I
78  
80  
34  
K12  
J12  
L1  
86  
88  
40  
L14  
K14  
N1  
O
O
FB_CLK  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
3
Signal Descriptions  
Signal Name  
Table 3. MCF5207/8 Signal Information and Muxing (continued)  
MCF5207  
144  
MCF5207  
144  
MCF5208  
160  
MCF5208  
196  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
LQFP  
MAPBGA  
QFP  
MAPBGA  
Mode Selection  
RCON2  
I
I
144  
79  
C4  
160  
87  
C3  
DRAMSEL  
H10  
K11  
FlexBus  
A[23:22]  
A[21:16]  
FB_CS[5:4]  
O
O
118, 117  
B9, A10  
126, 125  
B11, A11  
116–114,  
112, 108,  
107  
C9, A11,  
B10, A12,  
C11, B11  
124, 123,  
122, 120,  
116, 115  
B12, A12,  
A13, B13,  
B14, C13  
A[15:14]  
A[13:11]  
SD_BA[1:0]  
SD_A[13:11]  
O
O
106, 105  
104–102  
B12, C12  
114, 113  
C14, D12  
D11, E10,  
D12  
112, 111,  
110  
D13, D14,  
E11  
A10  
O
O
101  
C10  
109  
E12  
A[9:0]  
SD_A[9:0]  
100–91  
E11, D9,  
E12, F10,  
F11, E9,  
F12, G10,  
G12, F9  
108–99  
E13, E14,  
F11–F14,  
G11–G14  
D[31:16]  
D[15:0]  
SD_D[31:16]3  
FB_D[31:16]3  
SD_DQM[3:0]  
O
O
O
21–28,  
40–47  
F1, F2, G1,  
G2, G4, G3,  
H1, H2, K3,  
L2, L3, K2,  
M3, J4, M4,  
K4  
27–34,  
46–53  
J4–J1,  
K4–K1, M3,  
N3, M4, N4,  
P4, L5, M5,  
N5  
8–15, 51–58 B2, B1, C2,  
C1, D2, D1,  
E2, E1, L5,  
16–23,  
57–64  
F3–F1,  
G4–G1, H1,  
N6, P6, L7,  
M7, N7, P7,  
N8, P8  
K5, L6, J6,  
M6, J7, L7,  
K7  
BE/BWE[3:0]  
PBE[3:0]  
20, 48, 18, F4, L4, E3, 26, 54, 24, H2, P5, H4,  
50  
60  
90  
59  
4
J5  
56  
66  
98  
65  
12  
M6  
M8  
H14  
L8  
OE  
TA2  
R/W  
TS  
PBUSCTL3  
PBUSCTL2  
PBUSCTL1  
PBUSCTL0  
O
I
J8  
G11  
K6  
O
O
DACK0  
B3  
E3  
Chip Selects  
FB_CS[3:2]  
FB_CS1  
PCS[3:2]  
PCS1  
SD_CS1  
O
O
O
119, 120  
121  
D7, A9  
C8  
C11, A10  
B10  
127  
128  
FB_CS0  
122  
B8  
C10  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
4
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5207/8 Signal Information and Muxing (continued)  
MCF5207  
144  
MCF5207  
144  
MCF5208  
MCF5208  
196  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
160  
LQFP  
MAPBGA  
QFP  
MAPBGA  
SDRAM Controller  
SD_A10  
SD_CKE  
O
O
O
O
O
O
O
O
O
O
37  
6
M1  
C3  
43  
14  
N2  
E1  
SD_CLK  
31  
32  
7
J1  
37  
L1  
SD_CLK  
K1  
38  
M1  
F4  
SD_CS0  
A1  
15  
SD_DQS[3:2]  
SD_SCAS  
SD_SRAS  
SD_SDR_DQS  
SD_WE  
19, 49  
38  
39  
29  
5
F3, M5  
M2  
J2  
25, 55  
44  
H3, L6  
P2  
45  
P3  
H3  
35  
L3  
D3  
13  
E2  
External Interrupts Port4  
IRQ72  
IRQ42  
IRQ12  
PIRQ72  
PIRQ42  
PIRQ12  
DREQ02  
I
I
I
134  
133  
132  
A5  
C6  
B6  
142  
141  
140  
C7  
D7  
D8  
FEC  
FEC_MDC  
FEC_MDIO  
FEC_TXCLK  
FEC_TXEN  
FEC_TXD0  
FEC_COL  
PFECI2C3  
PFECI2C2  
PFECH7  
PFECH6  
PFECH5  
PFECH4  
PFECH3  
PFECH2  
PFECH1  
PFECH0  
I2C_SCL2  
U2TXD  
U2RXD  
O
148  
147  
157  
158  
3
D6  
I2C_SDA2  
I/O  
I
C6  
B3  
O
O
I
A2  
B1  
7
D3  
FEC_RXCLK  
FEC_RXDV  
FEC_RXD0  
FEC_CRS  
I
154  
153  
152  
8
B4  
A4  
I
I
D5  
I
D2  
FEC_TXD[3:1] PFECL[7:5]  
FEC_TXER PFECL4  
FEC_RXD[3:1] PFECL[3:1]  
O
O
I
6–4  
156  
149–151  
155  
C1, C2, B2  
A3  
A5, B5, C5  
C4  
FEC_RXER  
PFECL0  
I
I2C  
I2C_SDA2  
PFECI2C02  
U2RXD2  
I/O  
D1  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
5
Signal Descriptions  
Signal Name  
Table 3. MCF5207/8 Signal Information and Muxing (continued)  
MCF5207  
144  
MCF5207  
144  
MCF5208  
160  
MCF5208  
196  
MAPBGA  
GPIO  
PFECI2C12  
Alternate 1  
Alternate 2 Dir.1  
LQFP  
MAPBGA  
QFP  
I2C_SCL2  
U2TXD2  
I/O  
DMA  
E4  
DACK0 and DREQ0 do not have a dedicated bond pads. Please refer to the following pins for muxing:  
TS and QSPI_CS2 for DACK0, IRQ4 and QSPI_DIN for DREQ0.  
QSPI  
QSPI_CS2  
QSPI_CLK  
QSPI_DOUT  
QSPI_DIN  
PQSPI3  
PQSPI0  
PQSPI1  
PQSPI2  
DACK0  
I2C_SCL2  
I2C_SDA2  
DREQ02  
U2RTS  
O
O
O
I
126  
127  
128  
129  
A8  
C7  
A7  
B7  
132  
133  
134  
135  
D10  
A9  
B9  
U2CTS  
C9  
Note: The QSPI_CS1 and QSPI_CS0 signals are available on the U1CTS, U1RTS, U0CTS, or U0RTS pins for the 196 and  
160-pin packages.  
UARTs  
U1CTS  
U1RTS  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
U0RTS  
U0CTS  
U0RTS  
U0TXD  
U0RXD  
PUARTL7  
PUARTL6  
PUARTL7  
PUARTL6  
PUARTL5  
PUARTL4  
PUARTL3  
PUARTL2  
PUARTL3  
PUARTL2  
PUARTL1  
PUARTL0  
I
O
I
139  
142  
B4  
A2  
DT1IN  
DT1OUT  
QSPI_CS1  
136  
137  
139  
138  
D9  
C8  
A8  
QSPI_CS1  
O
O
I
131  
130  
140  
141  
A6  
D6  
E4  
D5  
B8  
I
QSPI_CS0  
QSPI_CS0  
O
I
DT0IN  
DT0OUT  
76  
N12  
P12  
P13  
N13  
O
O
I
77  
71  
L10  
M10  
79  
70  
78  
Note: The UART2 signals are multiplexed on the DMA Timers, QSPI, FEC, and I2C pins.  
DMA Timers  
DT3IN  
DT2IN  
DT1IN  
DT0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
U2CTS  
U2RTS  
U2RXD  
U2TXD  
I
I
I
I
135  
136  
137  
138  
B5  
C5  
A4  
A3  
143  
144  
145  
146  
B7  
A7  
A6  
B6  
BDM/JTAG5  
JTAG_EN6  
DSCLK  
I
I
83  
76  
J11  
91  
84  
J13  
L12  
TRST2  
K11  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
6
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5207/8 Signal Information and Muxing (continued)  
MCF5207  
144  
MCF5207  
144  
MCF5208  
MCF5208  
196  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
160  
LQFP  
MAPBGA  
QFP  
MAPBGA  
PSTCLK  
BKPT  
TCLK2  
TMS2  
TDI2  
TDO  
O
I
64  
75  
77  
69  
M7  
L12  
H9  
70  
83  
85  
75  
P9  
M14  
K12  
M12  
DSI  
I
DSO  
O
O
M9  
DDATA[3:0]  
K9, L9, M11,  
M8  
P11, N11,  
M11, P10  
PST[3:0]  
ALLPST  
O
O
L11, L8,  
K10, K8  
N10, M10,  
L10, L9  
67  
73  
Test  
TEST6  
I
I
109  
C12  
M13  
PLL_TEST  
Power Supplies  
EVDD  
IVDD  
1, 63, 66, 72, E5–E6, F5, 2, 9, 69, 72, E5–E7, F5,  
81, 87, 125  
G8–G9,  
H7–H8  
80, 89, 95, F6, G5, H10,  
131  
J9, J10,  
K8–K10,  
K13, M9  
30, 68, 84, D4, D8, H4, 36, 74, 92,  
J12, D4,  
D11, H11,  
L4, L11,  
113, 143  
H11, J9  
121, 159  
PLL_VDD  
SD_VDD  
86  
H12  
94  
H13  
3, 17, 33, 35, E7–E8, F8, 11, 39, 41, E8–E10, F9,  
61, 89, 110, G5, H5–H6, 67, 97, 118, F10, G10,  
123  
J3  
129  
H5, J5, J6,  
K5–K7, L2  
VSS  
2, 16, 36, 62, D10, F6–F7, 1, 10, 42, 68,  
A1, A14,  
F7–F8,  
G6–G9,  
H6–H9,  
65, 73, 88,  
111, 124  
G6–G7  
71, 81, 96,  
117, 119,  
130  
J7–J8, L13,  
M2, N9, P1,  
P14  
PLL_VSS  
85  
93  
H12  
NOTES:  
1
2
3
Refers to pin’s primary function.  
Pull-up enabled internally on this signal for this mode.  
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating  
the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.  
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate  
functions.  
4
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Freescale Semiconductor  
7
Preliminary  
Mechanicals and Pinouts  
5
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for  
assigning these pins.  
Pull-down enabled internally on this signal for this mode.  
6
4 Mechanicals and Pinouts  
This section contains drawings showing the pinout and the packaging and mechanical characteristics of  
the MCF5207 and MCF5208 devices.  
NOTE  
The mechanical drawings are the latest revisions at the time of publication  
of this document. The most up-to-date mechanical drawings can be found at  
the product summary page located at http://www.freescale.com/coldfire.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
8
Freescale Semiconductor  
Preliminary  
Mechanicals and Pinouts  
4.1 Pinout—144 LQFP  
Figure 1 shows a pinout of the MCF5207CAG166 device.  
1
EVDD  
EVSS  
SD_VDD  
TS  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
A17  
2
A16  
3
A15  
4
A14  
SD_WE  
SD_CKE  
SD_CS  
D15  
5
A13  
6
A12  
7
A11  
8
A10  
D14  
9
A9  
D13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A8  
D12  
98  
A7  
D11  
D10  
97  
A6  
96  
A5  
D9  
D8  
95  
A4  
94  
A3  
EVSS  
93  
A2  
SD_VDD  
BE/BWE1  
SD_DQS1/3  
BE/BWE3  
92  
A1  
91  
A0  
90  
TA  
89  
SD_VDD  
VSS  
D31  
D30  
88  
87  
EVDD  
PLL_VDD  
PLL_VSS  
IVDD  
JTAG_EN  
RESET  
EVDD  
XTAL  
DRAMSEL  
EXTAL  
TDI/DSI  
TRST/DSCLK  
TMS/BKPT  
RSTOUT  
VSS  
D29  
86  
D28  
85  
D27  
84  
D26  
83  
D25  
82  
D24  
81  
SD_SDR_DQS  
IVDD  
80  
79  
SD_CLK  
SD_CLK  
SD_VDD  
FB_CLK  
SD_VDD  
VSS  
78  
77  
76  
75  
74  
73  
Figure 1. MCF5207CAG166 Pinout Top View (144 LQFP)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
9
Mechanicals and Pinouts  
4.2 Package Dimensions—144 LQFP  
Figure 2 and Figure 3 show MCF5207CAB166 package dimensions.  
Figure 2. MCF5207CAB166 Package Dimensions (Sheet 1 of 2)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
10  
Freescale Semiconductor  
Mechanicals and Pinouts  
View A  
Section A-A  
Rotated 90× CW  
144 Places  
View B  
Figure 3. MCF5207CAB166 Package Dimensions (Sheet 2 of 2)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
11  
Mechanicals and Pinouts  
4.3 Pinout—144 MAPBGA  
The pinout of the MCF5207CVM166 device is shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
QSPI_  
DOUT  
A
B
C
D
E
F
SD_CS  
U1RTS  
DT0IN  
DT1IN  
IRQ7  
U1TXD  
QSPI_CS2 FB_CS2  
A22  
A20  
A18  
A
B
C
D
E
F
D14  
D12  
D10  
D8  
D15  
D13  
D11  
D9  
TS  
U1CTS  
RCON  
IVDD  
DT3IN  
DT2IN  
IRQ1  
IRQ4  
U1RXD  
EVDD  
VSS  
QSPI_DIN FB_CS0  
A23  
A21  
A19  
A10  
VSS  
A12  
A6  
A16  
A17  
A15  
A14  
QSPI_  
FB_CS1  
CLK  
SD_CKE  
SD_WE  
BE/BWE1  
U0RTS  
EVDD  
FB_CS3  
IVDD  
A8  
A13  
A11  
U0CTS  
SD_VDD SD_VDD  
A4  
A9  
A7  
D31  
D29  
D25  
D30  
D28  
D24  
SD_DQS1 BE/BWE3  
EVDD  
VSS  
VSS  
EVDD  
D2  
SD_VDD  
EVDD  
EVDD  
OE  
A0  
A5  
A3  
G
H
J
D26  
D27  
IVDD  
SD_VDD  
VSS  
EVDD  
TDI/DSI  
IVDD  
DDATA3  
DDATA2  
A2  
TA  
A1  
G
H
J
SD_SDR_  
DQS  
DRAM  
SEL  
SD_VDD SD_VDD  
IVDD  
JTAG_EN  
PLL_VDD  
XTAL  
EXTAL  
SD_CLK SD_RAS SD_VDD  
D18  
BE/BWE0  
D6  
D4  
R/W  
D5  
RESET  
PST1  
TRST/  
DSCLK  
K
L
SD_CLK  
FB_CLK  
D20  
D22  
D23  
D21  
D16  
D0  
PST0  
PST2  
K
L
TMS/  
BKPT  
BE/BWE2  
D7  
D1  
U0TXD  
PST3  
TCLK/  
PSTCLK  
M
SD_A10 SD_CAS  
D19  
3
D17  
4
SD_DQS0  
5
D3  
6
DDATA0 TDO/DSO  
U0RXD  
10  
DDATA1 RSTOUT  
M
1
2
7
8
9
11  
12  
Figure 4. MCF5207CVM166 Pinout Top View (144 MAPBGA)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
12  
Freescale Semiconductor  
Mechanicals and Pinouts  
4.4 Package Dimensions—144 MAPBGA  
Figure 5 shows the MCF5207CAB166 package dimensions.  
Figure 5. MCF5207CAB166 Package Dimensions (144 MAPBGA)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
13  
Mechanicals and Pinouts  
4.5 Pinout—160 QFP  
Figure 6 shows a pinout of the MCF5208CAB166 device.  
1
VSS  
EVDD  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
A18  
2
VSS  
FEC_TXD0  
FEC_TXD1  
FEC_TXD2  
FEC_TXD3  
FEC_COL  
FEC_CRS  
EVDD  
3
SD_VDD  
VSS  
4
5
A17  
6
A16  
7
A15  
8
A14  
9
A13  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
A12  
SD_VDD  
A11  
TS  
A10  
SD_WE  
A9  
SD_CKE  
SD_CS  
D15  
A8  
A7  
A6  
D14  
A5  
D13  
A4  
D12  
A3  
D11  
A2  
D10  
A1  
D9  
A0  
D8  
98  
TA  
BE/BWE1  
SD_DQS1/3  
BE/BWE3  
D31  
97  
SD_VDD  
VSS  
96  
95  
EVDD  
PLL_VDD  
PLL_VSS  
IVDD  
JTAG_EN  
RESET  
EVDD  
XTAL  
DRAMSEL  
EXTAL  
TDI/DSI  
TRST/DSCLK  
TMS/BKPT  
RSTOUT  
VSS  
94  
D30  
93  
D29  
92  
D28  
91  
D27  
90  
D26  
89  
D25  
88  
D24  
87  
SD_SDR_DQS  
IVDD  
86  
85  
SD_CLK  
SD_CLK  
SD_VDD  
FB_CLK  
84  
83  
82  
81  
Figure 6. MCF5208CAB166 Pinout Top View (160 QFP)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
14  
Freescale Semiconductor  
Mechanicals and Pinouts  
4.6 Package Dimensions—160 QFP  
The package dimensions of the MCF5208CAB166 device are shown in the figures below.  
Top View  
Figure 7. MCF5208CAB166 Package Dimensions (Sheet 1 of 2)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
15  
Mechanicals and Pinouts  
SECTION B-B  
DETAIL A  
Figure 8. MCF5208CAB166 Package Dimensions (Sheet 2 of 2)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
16  
Freescale Semiconductor  
Mechanicals and Pinouts  
4.7 Pinout—196 MAPBGA  
Figure 6 shows a pinout of the MCF5208CVM166 device.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
FEC_  
TXEN  
FEC_  
TXER  
FEC_  
RXDV  
FEC_  
RXD3  
QSPI_  
CLK  
A
B
C
D
E
F
VSS  
DT1IN  
DT2IN  
U1TXD  
FB_CS2  
A22  
A20  
A19  
VSS  
A
B
C
D
E
F
FEC_  
TXD0  
FEC_  
TXD1  
FEC_  
TXCLK  
FEC_  
RXCLK  
FEC_  
RXD2  
QSPI_  
DOUT  
DT0IN  
DT3IN  
IRQ7  
IRQ4  
EVDD  
VSS  
U1RXD  
U1RTS  
IRQ1  
FB_CS1  
A23  
A21  
TEST  
A14  
A10  
A6  
A18  
A16  
A13  
A9  
A17  
A15  
FEC_  
TXD3  
FEC_  
TXD2  
FEC_  
RXER  
FEC_  
RXD1  
FEC_  
MDIO  
QSPI_  
DIN  
RCON  
FB_CS0 FB_CS3  
FEC_  
CRS  
FEC_  
COL  
FEC_  
RXD0  
FEC_  
MDC  
QSPI_  
IVDD  
CS2  
I2C_SDA  
IVDD  
I2C_SCL  
SD_CS  
D12  
U1CTS  
A12  
SD_CKE SD_WE  
TS  
EVDD  
EVDD  
EVDD  
EVDD  
VSS  
SD_VDD SD_VDD SD_VDD  
A11  
A7  
A8  
D13  
D9  
D14  
D10  
D15  
D11  
VSS  
VSS  
VSS  
VSS  
EVDD  
R/W  
OE  
SD_VDD SD_VDD  
A5  
A4  
G
H
J
EVDD  
VSS  
VSS  
VSS  
SD_VDD  
EVDD  
EVDD  
EVDD  
PST1  
A3  
A2  
A1  
A0  
G
H
J
BE/  
BWE3  
SD_  
DQS1  
BE/  
BWE1  
PLL_  
VSS  
PLL_  
VDD  
D8  
SD_VDD  
VSS  
VSS  
IVDD  
NC  
TA  
JTAG_  
EN  
D28  
D24  
D29  
D25  
D30  
D26  
D31  
D27  
IVDD  
D21  
D20  
SD_VDD SD_VDD  
VSS  
EVDD  
EVDD  
PST0  
EVDD  
VSS  
IVDD  
RESET  
XTAL  
EXTAL  
DRAM  
SEL  
TDI/  
DSI  
K
L
SD_VDD SD_VDD SD_VDD  
SD_  
EVDD  
VSS  
K
L
SD_DR_  
DQS  
TRST/  
DSCLK  
SD_CLK SD_VDD  
D18  
D17  
D16  
D5  
D4  
D3  
IVDD  
DQS0  
BE/  
BWE0  
TDO/  
DSO  
PLL_  
TEST  
TMS/  
BKPT  
M
N
P
SD_CLK  
VSS  
D23  
D22  
PST2  
DDATA1  
DDATA2  
M
N
P
FB_CLK SD_A10  
D7  
D1  
PST3  
U0CTS  
U0RXD RSTOUT  
BE/  
BWE2  
TCLK/  
PSTCLK  
VSS  
1
SD_CAS SD_RAS  
D19  
4
D6  
6
D2  
7
D0  
8
DDATA0 DDATA3  
U0RTS  
12  
U0TXD  
13  
VSS  
14  
2
3
5
9
10  
11  
Figure 9. MCF5208CVM166 Pinout Top View (196 MAPBGA)  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
17  
Preliminary Electrical Characteristics  
4.8 Package Dimensions—196 MAPBGA  
The package dimensions for the MCF5208CVM166 device is shown below.  
Top View  
Bottom View  
Figure 10. MCF5208CVM166 Package Dimensions (196 MAPBGA)  
5 Preliminary Electrical Characteristics  
The following electrical specifications are preliminary and are from previous designs or design  
simulations. These specifications may not be fully tested or guaranteed at this early stage of the product  
life cycle, however for production silicon these specifications will be met. Finalized specifications will be  
published after complete characterization and device qualifications have been completed.  
5.1 Maximum Ratings  
1, 2  
Table 4. Absolute Maximum Ratings  
Rating  
Core Supply Voltage  
Symbol  
Value  
Unit  
IVDD  
EVDD  
– 0.5 to +2.0  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to +2.0  
V
V
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
PLL Supply Voltage  
SDVDD  
PLLVDD  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
18  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
(continued)  
1, 2  
Table 4. Absolute Maximum Ratings  
Digital Input Voltage 3  
VIN  
ID  
– 0.3 to +3.6  
25  
V
Instantaneous Maximum Current  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
Storage Temperature Range  
TA  
(TL - TH)  
– 40 to 85  
°C  
°C  
Tstg  
– 55 to 150  
NOTES:  
1
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is  
not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
2
3
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application of  
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,  
either VSS or EVDD).  
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD range during instantaneous  
and operating maximum current conditions. If positive injection current (Vin > EVDD is greater  
than IDD, the injection current may flow out of EVDD and could result in external power supply  
going out of regulation. Insure external EVDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power (ex; no  
clock). Power supply must maintain regulation within operating EVDD range during  
instantaneous and operating maximum current conditions.  
5.2 Thermal Characteristics  
Table 5 lists thermal resistance values  
Table 5. Thermal Characteristics  
Characteristic  
Symbol  
196MBGA  
160QFP  
Unit  
Junction to ambient, natural convection  
Four layer board  
(2s2p)  
θJMA  
321,2  
401,2  
°C/W  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
θJMA  
291,2  
361,2  
°C/W  
Junction to board  
θJB  
θJC  
Ψjt  
Tj  
203  
104  
21,5  
105  
253  
104  
21,5  
105  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
19  
Preliminary Electrical Characteristics  
N1 OTES:  
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware that  
device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in the  
customer’s system using the Ψjt parameter, the device power dissipation, and the method described in  
EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
4
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
T
= Ambient Temperature, °C  
= Package Thermal Resistance, Junction-to-Ambient, ×C/W  
= P + P  
A
Q
JMA  
P
D
INT  
I/O  
P
= I × IV , Watts - Chip Internal Power  
DD DD  
INT  
P
= Power Dissipation on Input and Output Pins — User Determined  
I/O  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if  
I/O  
INT  
D
J
P
is neglected) is:  
I/O  
K
--------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
5.3 ESD Protection  
1, 2  
Table 6. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
HBM  
2000  
V
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
20  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
N1 OTES:  
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4 DC Electrical Specifications  
Table 7. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
PLL Supply Voltage  
IVDD  
PLLVDD  
EVDD  
1.4  
1.4  
1.6  
1.6  
V
V
V
V
V
V
V
V
V
CMOS Pad Supply Voltage  
3.0  
3.6  
Mobile DDR/Bus Pad Supply Voltage  
DDR/Bus Pad Supply Voltage  
SDR/Bus Pad Supply Voltage  
CMOS Input High Voltage  
SDVDD  
SDVDD  
SDVDD  
EVIH  
1.65  
2.25  
3.0  
1.95  
2.75  
3.6  
2
EVDD + 0.05  
0.8  
CMOS Input Low Voltage  
EVIL  
-0.05  
TBD  
Mobile DDR/Bus Input High Voltage  
SDVIH  
SDVDD + 0.  
05  
Mobile DDR/Bus Input Low Voltage  
DDR/Bus Input High Voltage  
SDVIL  
SDVIH  
-0.05  
2
TBD  
V
V
SDVDD + 0.  
05  
DDR/Bus Input Low Voltage  
SDVIL  
Iin  
-0.05  
–1.0  
0.8  
1.0  
V
Input Leakage Current  
µA  
Vin = IVDD or VSS, Input-only pins  
CMOS Output High Voltage  
IOH = –5.0 mA  
EVOH  
EVOL  
EVDD - 0.4  
0.4  
V
V
CMOS Output Low Voltage  
IOL = 5.0 mA  
SDVDD - 0.4  
DDR/Bus Output High Voltage  
IOH = –5.0 mA  
SDVOH  
SDVOL  
IAPU  
V
DDR/Bus Output Low Voltage  
IOL = 5.0 mA  
0.4  
V
Weak Internal Pull Up Device Current, tested at VIL Max.1  
-10  
- 130  
µA  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
21  
Preliminary Electrical Characteristics  
Table 7. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Input Capacitance 2  
Cin  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
Core Operating Supply Current 3  
Master Mode  
IDD  
170  
TBD  
1
mA  
mA  
mA  
mA  
LIMP mode  
STOP mode  
Low Power mode  
TBD  
NOTES:  
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
Current measured at maximum system clock frequency, all modules active, and default drive strength with  
matching load.  
2
3
5.4.1 PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins.  
DD  
The filter shown in Figure 11 should be connected between the board V and the PLLV pins. The  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board VDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 11. System PLL V Power Filter  
DD  
5.4.2 Supply Voltage Sequencing and Separation Cautions  
Figure 12 shows situations in sequencing the I/O V (EV ), SDRAM V (SDV ), PLL V  
DD  
DD  
DD  
DD  
DD  
(PLLV ), and Core V (IV ).  
DD  
DD  
DD  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
22  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
EVDD, SDVDD  
3.3V  
Supplies Stable  
2.5V  
SDVDD (2.5V/1.8V)  
IVDD, PLLVDD  
1.5V  
1
2
0
Time  
Notes:  
1. IVDD should not exceed EVDD, SDVDD or PLLVDD by more than  
0.4 V at any time, including power-up.  
2. Recommended that IVDD/PLLVDD should track EVDD/SDVDD up to  
0.9 V, then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (EVDD, SDVDD  
,
IVDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.  
4. Use 1 µs or slower rise time for all supplies.  
Figure 12. Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences.  
DD  
DD  
Both SDV (2.5V or 3.3V) and EV are specified relative to IV .  
DD  
DD  
DD  
5.4.2.1 Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, then the sense circuits in the I/O pads will cause all  
DD  
DD  
DD  
pad output drivers connected to the EV /SDV to be in a high impedance state. There is no limit on  
DD  
DD  
how long after EV /SDV powers up before IV must powered up. IV should not lead the EV ,  
DD  
DD  
DD  
DD  
DD  
SDV or PLLV by more than 0.4 V during power ramp-up, or there will be high current in the internal  
DD  
DD  
ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning  
on the internal ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
1. Use 1 µs or slower rise time for all supplies.  
2. IV /PLLV and EV /SDV should track up to 0.9 V, then separate for the completion of  
DD  
DD  
DD  
DD  
ramps with EV /SD V going to the higher external voltages. One way to accomplish this is to  
DD  
DD  
use a low drop-out voltage regulator.  
5.4.2.2 Power Down Sequence  
If IV /PLLV are powered down first, then sense circuits in the I/O pads will cause all output drivers  
DD  
DD  
to be in a high impedance state. There is no limit on how long after IV and PLLV power down before  
DD  
DD  
EV or SDV must power down. IV should not lag EV , SDV , or PLLV going low by more  
DD  
DD  
DD  
DD  
DD  
DD  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
23  
Preliminary Electrical Characteristics  
than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There  
are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
5.5 Oscillator and PLL Electrical Characteristics  
Table 8. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
1
PLL Reference Frequency Range  
Crystal reference  
fref_crystal  
fref_ext  
TBD  
TBD  
16  
16  
MHz  
MHz  
External reference  
2
Core frequency  
fsys  
fsys/2  
TBD  
TBD  
166.67  
83.33  
MHz  
MHZ  
CLKOUT Frequency 1  
t
3
4
Crystal Start-up Time 2, 3  
10  
ms  
cst  
EXTAL Input High Voltage  
Crystal Mode4  
All other modes (External, Limp)  
VIHEXT  
VIHEXT  
TBD  
TBD  
TBD  
TBD  
V
V
5
EXTAL Input Low Voltage  
Crystal Mode4  
VILEXT  
VILEXT  
TBD  
TBD  
TBD  
TBD  
V
V
All other modes (External, Limp)  
6
XTAL Load Capacitance2  
PLL Lock Time 2,5  
5
30  
1
pF  
ms  
%
11  
tlpll  
tdc  
40  
14  
Duty Cycle of reference2  
60  
N1 OTES:  
All internal registers retain data at 0 Hz.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
2
3
4
This parameter is guaranteed by design rather than 100% tested.  
5.6 External Interface Timing Characteristics  
Table 9 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and  
output delay with respect to the rising edge of a reference clock. The  
reference clock is the FB_CLK output.  
All other timing relationships can be derived from these values.Timings  
listed in Table 9 are shown in Figure 14 & Figure 15.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
24  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
FB_CLK(75MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
Input Rise Time  
trise  
Vh = VIH  
V = V  
l
IL  
tfall  
Vh = VIH  
Vl = VIL  
Input Fall Time  
FB4  
FB_CLK  
Inputs  
FB5  
Figure 13. General Input Timing Requirements  
5.6.1 FlexBus  
A multi-function external bus interface called FlexBus is provided to interface to slave-only devices up to  
a maximum bus frequency of 83.33 MHz. It can be directly connected to asynchronous or synchronous  
devices such as external boot ROMs, Flash memories, gate-array logic, or other simple target (slave)  
devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface  
can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) which can be  
configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select FB_CS[0]  
can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or  
longword (32 bits) wide. Control signal timing is compatible with common ROM/Flash memories.  
5.6.1.1 FlexBus AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the system clock.  
Table 9. FlexBus AC Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Clock Period (FB_CLK)  
Symbol  
Min  
Max  
Unit  
Notes  
83.33  
12  
Mhz  
ns  
fsys/2  
tcyc  
FB1  
tFBCK  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
25  
Preliminary Electrical Characteristics  
Table 9. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
1
FB2  
Data, and Control Output Valid (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)  
tFBCHDCV  
7.0  
ns  
1, 2  
FB3  
Data, and Control Output Hold ((A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)  
tFBCHDCI  
1
ns  
FB4  
FB5  
FB6  
FB7  
FB8  
FB9  
Data Input Setup  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
tFBCHAV  
tFBCHAI  
3.5  
0
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
Data Input Hold  
Transfer Acknowledge (TA) Input Setup  
Transfer Acknowledge (TA) Input Hold  
Address Output Valid (A[23:0])  
Address Output Hold (A[23:0])  
4
0
3
1.0  
NOTES:  
1
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7, "SDRAM BUS” for SD_CS[1:0]  
timing.  
2
3
The FlexBus supports programming an extension of the address hold. Please consult the device reference manual for  
more information.  
These specs are used when the A[23:0] signals are configured as 23-bit, non-muxed FlexBus address signals.  
FB_CLK  
FB1  
FB9  
A[23:0]  
D[31:0]  
R/W  
A[23:0]  
FB8  
FB5  
DATA  
FB2  
FB4  
TS  
FB_CSn, BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 14. FlexBus Read Timing  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
26  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
FB_CLK  
FB1  
FB9  
FB3  
A[23:0]  
FB8  
D[31:0]  
FB2  
R/W  
TS  
FB_CSn, BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 15. Flexbus Write Timing  
5.7 SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports  
either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.  
The SDRAM controller uses SSTL2 and SSTL3 I/O drivers. Both SSTL drive modes are programmable  
for either Class I or Class II drive strength.  
5.7.1 SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read  
cycles. The SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to  
support DDR, a DQS pulse must still be supplied to the device for each data beat of an SDR read. The  
ColdFire processor accomplishes this by asserting a signal called SD_DQS during read cycles. Care must  
be taken during board design to adhere to the following guidelines and specs with regard to the SDR_DQS  
signal and its usage.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Freescale Semiconductor  
27  
Preliminary  
Preliminary Electrical Characteristics  
Table 10. SDR Timing Specifications  
Symbol  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
1
Frequency of Operation  
Clock Period (tCK  
Clock Skew (tSK  
Pulse Width High (tCKH  
Pulse Width Low (tCKL  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
7.52  
83.33  
12  
MHz  
ns  
2
SD1  
SD2  
SD3  
SD4  
SD5  
)
tSDCK  
tSDSK  
)
TBD  
0.55  
0.55  
3
3
)
tSDCKH  
tSDCKL  
tSDCHACV  
0.45  
0.45  
SD_CLK  
SD_CLK  
ns  
)
0.5 × SD_CLK  
SD_BA, SD_CS[1:0] - Output Valid (tCMV  
)
+ 1.0  
SD6  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
tSDCHACI  
2.0  
ns  
SD_BA, SD_CS[1:0] - Output Hold (tCMH  
SD_SDR_DQS Output Valid (tDQSOV  
)
4
5
6
7
SD7  
SD8  
)
tDQSOV  
Self timed  
ns  
ns  
SD_DQS[3:0] input setup relative to SD_CLK (tDQSIS) tDQVSDCH 0.25 × SD_CLK 0.40 × SD_CLK  
SD9  
SD_DQS[3:2] input hold relative to SD_CLK (tDQSIH  
)
tDQISDCH Does not apply. 0.5 SD_CLK fixed width.  
SD10  
Data (D[31:0]) Input Setup relative to SD_CLK  
tDVSDCH 0.25 × SD_CLK  
ns  
ns  
ns  
ns  
(reference only) (tDIS  
)
SD11  
SD12  
Data Input Hold relative to SD_CLK (reference only)  
tDISDCH  
1.0  
(tDIH  
)
Data (D[31:0]) and Data Mask(SD_DQM[3:0])  
tSDCHDMV  
0.75 × SD_CLK  
Output Valid (tDV  
)
+ 0.5  
SD13  
Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output tSDCHDMI  
1.5  
Hold (tDH  
)
N1 OTES:  
The device supports the same frequency of operation for both FlexBus and SDRAM as that of the internal bus clock. Please see  
the PLL chapter of the MCF5208 Reference Manual for more information on setting the SDRAM clock rate.  
2
3
4
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from  
this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat.  
5
6
7
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data beat.  
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does  
not affect the memory controller.  
Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be centered  
1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup spec is just  
provided as guidance.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
28  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
SD1  
SD3  
SD2  
SD_CLK0  
SD_CLK1  
SD2  
SD4  
SD6  
SD_CSn,  
SD_RAS,  
SD_CAS  
SD_WE,  
CMD  
SD5  
A[23:0],  
SD_BA[1:0]  
ROW  
COL  
SD12  
SDDM  
D[31:0]  
SD13  
WD1  
WD2  
WD3  
WD4  
Figure 16. SDR Write Timing  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
SD1  
SD2  
SD_CLK0  
SD_CLK1  
SD2  
SD6  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
CMD  
3/4 MCLK  
Reference  
SD5  
A[23:0],  
SD_BA[1:0]  
ROW  
COL  
tDQS  
SDDM  
SD7  
SD_DQS (Measured at Output Pin)  
SD_DDQS (Measured at Input Pin)  
Board Delay  
Board Delay  
SD9  
SD8  
Delayed  
SD_CLK  
SD10  
D[31:0]  
form  
Memories  
WD1  
WD2  
WD3  
WD4  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD11  
Figure 17. SDR Read Timing  
5.7.2 DDR SDRAM AC Timing Characteristics  
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to  
properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte  
lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early  
board design. Please contact your local Freescale representative if questions develop.  
Table 11. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
83.33  
TBD  
0.45  
0.45  
TBD  
12  
Mhz  
ns  
2
3
3
4
DD1  
DD2  
DD3  
DD4  
Clock Period (SD_CLK)  
Pulse Width High  
tDDCK  
tDDCKH  
tDDCKL  
0.55  
0.55  
SD_CLK  
SD_CLK  
ns  
Pulse Width Low  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Valid  
tSDCHACV  
0.5 × SD_CLK  
+ 1.0  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 11. DDR Timing Specifications (continued)  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
DD5  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
DD6  
DD7  
Write Command to first DQS Latching Transition  
tCMDVDQ  
tDQDMV  
1.25  
SD_CLK  
ns  
5
6
Data and Data Mask Output Setup (DQ-->DQS)  
Relative to DQS (DDR Write Mode)  
1.5  
1.0  
7
DD8  
Data and Data Mask Output Hold (DQS-->DQ)  
Relative to DQS (DDR Write Mode)  
tDQDMI  
ns  
8
9
DD9  
Input Data Skew Relative to DQS (Input Setup)  
tDVDQ  
tDIDQ  
1
ns  
ns  
DD10 Input Data Hold Relative to DQS.  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH  
0.5  
0.9  
1.1  
0.6  
ns  
DD12 DQS input read preamble width (tRPRE  
DD13 DQS input read postamble width (tRPST  
DD14 DQS output write preamble width (tWPRE  
DD15 DQS output write postamble width (tWPST  
)
tDQRPRE  
tDQRPST  
tDQWPRE  
tDQWPST  
SD_CLK  
SD_CLK  
SD_CLK  
SD_CLK  
)
0.4  
)
0.25  
0.4  
)
0.6  
NOTES:  
1
The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the same  
frequency as the internal bus clock.  
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and  
voltage variations.  
2
3
4
5
This specification relates to the required input setup time of today’s DDR memories. The device’s output setup should be larger  
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation.  
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to  
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].  
The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats will  
be valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],  
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative  
MEM_DQS[0].  
6
7
8
9
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes  
valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).  
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes  
invalid.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Freescale Semiconductor  
31  
Preliminary  
Preliminary Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn, SD_WE,  
SD_RAS, SD_CAS  
CMD  
DD4  
DD6  
A[13:0]  
ROW  
COL  
DD7  
DM3/DM2  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 18. DDR Write Timing  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn, SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 19. DDR Read Timing  
Figure 20 shows the DDR clock crossover specifications.  
SD_CLK  
VIX  
VID  
VMP  
VIX  
SD_CLK  
Figure 20. DDR Clock Crossover Timing  
5.8 General Purpose I/O Timing  
1
Table 12. GPIO Timing  
Num  
Characteristic  
FB_CLK High to GPIO Output Valid  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
8
8
ns  
ns  
ns  
ns  
FB_CLK High to GPIO Output Invalid  
GPIO Input Valid to FB_CLK High  
FB_CLK High to GPIO Input Invalid  
1.5  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
N1 OTES:  
GPIO spec cover: IRQn, UART and Timer pins.  
FB_CLK  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 21. GPIO Timing  
5.9 Reset and Configuration Override Timing  
Table 13. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
FB_CLK High to RESET Input invalid  
RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
RSTOUT valid to Config. Overrides valid  
Configuration Override Setup Time to RSTOUT invalid  
Configuration Override Hold Time after RSTOUT invalid  
RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
R8  
tROICZ  
tCYC  
N1 OTES:  
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins)  
Figure 22. RESET and Configuration Override Timing  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
NOTE  
Refer to the MCF5208 Reference Manual for more information.  
5.10 I2C Input/Output Timing Specifications  
2
Table 14 and Table 15 list specifications for the I C input and output timing parameters.  
2
Table 14. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 15. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I11  
6
3
tcyc  
tcyc  
µs  
1.  
I2  
Clock low period  
10  
7
I3 2  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
1.  
I4  
tcyc  
ns  
I5 3  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
10  
2
1.  
I6  
tcyc  
tcyc  
tcyc  
tcyc  
1.  
I7  
Data setup time  
1.  
I8  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
20  
10  
1.  
I9  
N1 OTES:  
Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the  
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table A-16. The I2C  
interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low  
period. The actual position is affected by the prescale and division values programmed into the IFDR;  
however, the numbers given in Table A-16 are minimum values.  
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively  
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal  
capacitance and pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Freescale Semiconductor  
35  
Preliminary  
Preliminary Electrical Characteristics  
I2  
I6  
I5  
I2C_SCL  
I1  
I3  
I4  
I8  
I9  
I7  
I2C_SDA  
2
Figure 23. I C Input/Output Timings  
5.11 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
5.11.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV,  
FEC_RXER, and FEC_RXCLK)  
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
FEC_RXCLK frequency.  
Table 16 lists MII receive channel timings.  
Table 16. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK  
setup  
5
ns  
M2  
M3  
M4  
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold  
FEC_RXCLK pulse width high  
5
ns  
35%  
35%  
65% FEC_RXCLK period  
65% FEC_RXCLK period  
FEC_RXCLK pulse width low  
Figure 24 shows MII receive signal timings listed in Table 16.  
M3  
FEC_RXCLK (input)  
M4  
FEC_RXD[3:0] (inputs)  
FEC_RXDV  
FEC_RXER  
M1  
M2  
Figure 24. MII Receive Signal Timing Diagram  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
36  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.11.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN,  
FEC_TXER, FEC_TXCLK)  
Table 17 lists MII transmit channel timings.  
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. There is  
no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
FEC_TXCLK frequency.  
The transmit outputs (FEC_TXD[3:0], FEC_TXEN, FEC_TXER) can be programmed to transition from  
either the rising or falling edge of FEC_TXCLK, and the timing is the same in either case. This options  
allows the use of non-compliant MII PHYs.  
Refer to the Ethernet chapter for details of this option and how to enable it.  
Table 17. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER  
invalid  
5
ns  
M6  
M7  
M8  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid  
FEC_TXCLK pulse width high  
25  
ns  
35%  
35%  
65%  
65%  
FEC_TXCLK period  
FEC_TXCLK period  
FEC_TXCLK pulse width low  
Figure 25 shows MII transmit signal timings listed in Table 17.  
M7  
FEC_TXCLK (input)  
M5  
M8  
FEC_TXD[3:0] (outputs)  
FEC_TXEN  
FEC_TXER  
M6  
Figure 25. MII Transmit Signal Timing Diagram  
5.11.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)  
Table 18 lists MII asynchronous inputs signal timing.  
Table 18. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
FEC_CRS, FEC_COL minimum pulse width  
1.5  
FEC_TXCLK period  
Figure 26 shows MII asynchronous input timings listed in Table 18.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
37  
Preliminary Electrical Characteristics  
FEC_CRS  
FEC_COL  
M9  
Figure 26. MII Async Inputs Timing Diagram  
5.11.4 MII Serial Management Channel Timing (FEC_MDIO and  
FEC_MDC)  
Table 19 lists MII serial management channel timings. The FEC functions correctly with a maximum  
MDC frequency of 2.5 MHz.  
Table 19. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)  
M12 FEC_MDIO (input) to FEC_MDC rising edge setup  
M13 FEC_MDIO (input) to FEC_MDC rising edge hold  
M14 FEC_MDC pulse width high  
10  
0
25  
ns  
ns  
ns  
40% 60% FEC_MDC period  
40% 60% FEC_MDC period  
M15 FEC_MDC pulse width low  
Figure 27 shows MII serial management channel timings listed in Table 19.  
M14  
M15  
FEC_MDC (output)  
FEC_MDIO (output)  
M10  
M11  
FEC_MDIO (input)  
M12  
M13  
Figure 27. MII Serial Management Channel Timing Diagram  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.12 32-Bit Timer Module AC Timing Specifications  
Table 20 lists timer module AC timings.  
Table 20. Timer Module AC Timing Specifications  
Name  
Characteristic  
Unit  
Min  
Max  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.13 QSPI Electrical Specifications  
Table 21 lists QSPI timings.  
Table 21. QSPI Modules AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
1.5  
9
510  
10  
tcyc  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
ns  
9
ns  
The values in Table 21 correspond to Figure 28.  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QS3  
QS4  
QS5  
QSPI_DIN  
Figure 28. QSPI Timing  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
39  
Preliminary Electrical Characteristics  
5.14 JTAG and Boundary Scan Timing  
Table 22. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
3
fsys/2  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
TCLK Rise and Fall Times  
tJCRF  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
ns  
26  
0
ns  
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10  
0
ns  
ns  
J12 TCLK Low to TDO High Z  
0
ns  
J13 TRST Assert Time  
100  
10  
ns  
J14 TRST Setup Time (Negation) to TCLK High  
ns  
N1 OTES:  
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
J2  
J3  
J3  
V
IH  
TCLK  
(input)  
V
IL  
J4  
J4  
Figure 29. Test Clock Input Timing  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
40  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
TCLK  
V
V
IL  
IH  
J5  
Input Data Valid  
J6  
Data Inputs  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 30. Boundary Scan (JTAG) Timing  
TCLK  
V
V
IL  
IH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 31. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 32. TRST Timing  
5.15 Debug AC Timing Specifications  
Table 23 lists specifications for the debug AC timing parameters shown in Figure 33 & Figure 34.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Freescale Semiconductor  
41  
Preliminary  
Preliminary Electrical Characteristics  
Table 23. Debug AC Timing Specification  
Num  
Characteristic  
Units  
Min  
Max  
DE0  
DE1  
DE2  
DE3  
DE4  
DE5 1  
DE6  
PSTCLK cycle time  
2
1
5
1
4
4
0
0.5  
tcyc  
ns  
PST valid to PSTCLK high  
PSTCLK high to PST invalid  
DSCLK cycle time  
ns  
tcyc  
tcyc  
tcyc  
ns  
DSI valid to DSCLK high  
DSCLK high to DSO invalid  
BKPT input data setup time to FB_CLK high  
FB_CLK high to BKPT invalid  
DE7  
ns  
N1 OTES:  
DSCLK and DSI are synchronized internally. DE4 is measured from the synchronized DSCLK input  
relative to the rising edge of FB_CLK.  
Figure 33 shows real-time trace timing for the values in Table 23.  
PSTCLK  
DE0  
DE1  
DE2  
PST[3:0]  
DDATA[3:0]  
Figure 33. Real-Time Trace AC Timing  
Figure 34 shows BDM serial port AC timing and BKPT pin timing for the values in Table 23.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
42  
Freescale Semiconductor  
Preliminary  
Revision History  
FB_CLK  
BKPT  
DE6  
DE7  
DE5  
DSCLK  
DE3  
DSI  
Current  
Past  
Next  
DE4  
DSO  
Current  
Figure 34. BDM Serial Port AC Timing  
6 Revision History  
Table 24. Revision History  
Revision  
Number  
Date  
Substantive Changes  
0
5/23/2005  
6/16/2005  
• Initial Release  
0.1  
• Corrected 144QFP pinout in Figure 1. Pins 139-142 incorrectly showed  
FEC functionality, which are actually UART 0/1 clear-to-send and  
request-to-send signals.  
• Changed maximum core frequency in Table 8, spec #2, from 240MHz to  
166.67MHz. Also, changed symbols in table: fcore -> fsys and fsys -> fsys/2  
for consistency throughout document and reference manual.  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
43  
Revision History  
Table 24. Revision History (continued)  
Substantive Changes  
Revision  
Number  
Date  
0.2  
8/26/2005  
• Changed ball M9 from SD_VDD to EVDD in Figure 9.  
Table 3: Pin 33 for 144 LQFP package should be EVDD instead of  
SD_VDD. BE/BWE[3:0] for 144 LQFP should be “20, 48, 18, 50“ instead  
of “18, 20, 48, 50”  
Cleaned up various electrical specifications:  
Table 4: Added DDR/Memory pad supply voltage spec, changed “clock  
synthesizer supply voltage” to “PLL supply voltage”, changed min PLLVDD  
from -0.5 to -0.3, changed max VIN from 4.0 to 3.6, changed minimum Tstg  
from -65 to -55,  
Table 5: Changed TBD values in Tj entry to 105°C.  
Table 7: Changed minimum core supply voltage from 1.35 to 1.4 and  
maximum from 1.65 to 1.6, added PLL supply voltage entry, added pad  
supply entries for mobile-DDR, DDR, and SDR, changed minimum input  
high voltage from 0.7xEVDD to 2 and maximum from 3.65 to EVDD+0.05,  
changed minimum input low voltage from VSS-0.3 to -0.05 and maximum  
from 0.35xEVDDto 0.8, added input high/low voltage entries for DDR and  
mobile-DDR, removed high impedance leakage current entry, changed  
minimum output high voltage from EVDD-0.5 to EVDD-0.4, added DDR/bus  
output high/low voltage entries, removed load capacitance and DC  
injection current entries.  
• Added filtering circuits and voltage sequencing sections: Section 5.4.1,  
“PLL Power Filtering,and Section 5.4.2, “Supply Voltage Sequencing and  
Separation Cautions.”  
• Removed “Operating Conditions” table from Section 5.5, “Oscillator and  
PLL Electrical Characteristics,since it is redundant with Table 7.  
Table 9: Changed minimum core frequency to TBD, removed external  
reference and on-chip PLL frequency specs to have only a CLKOUT  
frequency spec of TBD to 83.33MHz, removed loss of reference frequency  
and self-clocked mode frequency entries, in EXTAL input high/low voltage  
entries changed “All other modes (Dual controller (1:1), Bypass, External)”  
to “All other modes (External, Limp)”, removed XTAL output high/low  
voltage entries, removed power-up to lock time entry, removed last 5  
entries (frequency un-lock range, frequency lock range, CLKOUT period  
jitter, frequency modulation range limit, and ICO frequency)  
0.3  
0.4  
0.5  
9/07/2005  
10/10/2005  
3/29/2006  
• Corrected DRAMSEL footnote #3 in Table 3.  
• Updated Table 3 with 144MAPBGA pin locations.  
• Added 144MAPBGA ballmap to Section 4.3, “Pinout—144 MAPBGA.”  
• Changed J12 from PLL_VDD to IVDD in Figure 9.  
Figure 1 and Table 3: Changed pin 33 from EVDD to SD_VDD  
Figure 4 and Table 3: Changed ball D10 from TEST to VSS  
Figure 6 and Table 3: Changed pin 39 from EVDD to SD_VDD and pin 117  
from TEST to VSS  
• Added “top view” and “bottom view” labels where appropriate to  
mechanical drawings and pinouts.  
• Updated mechanical drawings to latest available, and added note to  
Section 4, “Mechanicals and Pinouts.”  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
44  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY LEFT BLANK  
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 0.5  
Preliminary  
Freescale Semiconductor  
45  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners.© Freescale Semiconductor, Inc. 2006. All rights  
reserved.  
MCF5208EC  
Rev. 0.5  
3/2006  

相关型号:

MCF5208EC

ColdFire㈢ Microprocessor
FREESCALE

MCF5208EC_08

MCF5208 ColdFire? Microprocessor Data Sheet
FREESCALE

MCF5208_07

Microprocessor Data Sheet
FREESCALE

MCF52100

RISC MICROCONTROLLER
NXP

MCF52100CAE66

MCF521XX 32-bit MCU, ColdFire V2 core, 64KB Flash, 66MHz, QFP 64
NXP

MCF52100CAE80

MCF521XX 32-bit MCU, ColdFire V2 core, 64KB Flash, 80MHz, QFP 64
NXP

MCF52100CEP66

RISC MICROCONTROLLER
ROCHESTER

MCF52100CEP66

RISC MICROCONTROLLER
NXP

MCF52100CVM66

RISC MICROCONTROLLER
NXP

MCF52100CVM66J

RISC MICROCONTROLLER
NXP

MCF52100CVM80J

RISC MICROCONTROLLER
NXP

MCF5211

Microcontroller Family Hardware Specification
FREESCALE