MCF5213 [FREESCALE]

Microcontroller Family Hardware Specification; 单片机系列硬件规格
MCF5213
型号: MCF5213
厂家: Freescale    Freescale
描述:

Microcontroller Family Hardware Specification
单片机系列硬件规格

微控制器
文件: 总56页 (文件大小:865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF5213EC  
Rev. 1.2, 01/2006  
Freescale Semiconductor  
Data Sheet: Advance Information  
MCF5213 Microcontroller Family  
Hardware Specification  
®
Table of Contents  
MCF5213 Family Configurations.........................2  
The MCF5213 is a member of the ColdFire family of  
1
reduced  
instruction  
set  
computing  
(RISC)  
1.1 Block Diagram ...................................................3  
1.2 Features.............................................................4  
1.3 Part Numbers and Packaging..........................14  
1.4 Package Pinouts..............................................15  
1.5 Reset Signals ..................................................22  
1.6 PLL and Clock Signals ....................................22  
1.7 Mode Selection................................................22  
1.8 External Interrupt Signals................................23  
1.9 Queued Serial Peripheral Interface (QSPI) .....23  
1.10 I2C I/O Signals.................................................24  
1.11 UART Module Signals .....................................24  
1.12 DMA Timer Signals..........................................24  
1.15 Pulse Width Modulator Signals........................25  
1.16 Debug Support Signals....................................25  
1.17 EzPort Signal Descriptions..............................27  
1.18 Power and Ground Pins...................................27  
microprocessors. This document provides an overview  
of the 32-bit MCF5213 microcontroller, focusing on its  
highly integrated and diverse feature set. Freescale  
reserves the right to change or discontinue this product  
without notice. Specifications and information herein are  
subject to change without notice.  
This 32-bit device is based on the Version 2 ColdFire  
core operating at a frequency up to 80 MHz, offering  
high performance and low power consumption. On-chip  
memories connected tightly to the processor core include  
256 Kbytes of Flash and 32 Kbytes of static random  
access memory (SRAM). On-chip modules include the  
following:  
2
3
Preliminary Electrical Characteristics................27  
Mechanical Outline Drawings............................44  
V2 ColdFire core delivering 76 MIPS  
(Dhrystone 2.1) at 80 MHz running from  
internal Flash with Multiply Accumulate (MAC)  
Unit and hardware divider  
FlexCAN controller area network (CAN)  
module  
Three universal asynchronous/synchronous  
receiver/transmitters (UARTs)  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
• Preliminary  
MCF5213 Family Configurations  
Inter-integrated circuit (I2C™) bus controller  
Queued serial peripheral interface (QSPI) module  
Eight-channel 12-bit fast analog-to-digital converter (ADC)  
Four-channel direct memory access (DMA) controller  
Four 32-bit input capture/output compare timers with DMA support (DTIM)  
Four-channel general-purpose timer (GPT) capable of input capture/output compare, pulse width  
modulation (PWM), and pulse accumulation  
Eight-channel/Four-channel, 8-bit/16-bit pulse width modulation timer  
Two 16-bit periodic interrupt timers (PITs)  
Programmable software watchdog timer  
Interrupt controller capable of handling 57 sources  
Clock module with 8 MHz on-chip relaxation oscillator and integrated phase locked loop (PLL)  
Test access/debug port (JTAG, BDM)  
1 MCF5213 Family Configurations  
Table 1. MCF5213 Family Configurations  
Module  
5211  
5212  
5213  
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)  
System Clock  
x
x
x
66 MHz  
66, 80 MHz  
up to 76  
Performance (Dhrystone 2.1 MIPS)  
Flash / Static RAM (SRAM)  
Interrupt Controller (INTC)  
Fast Analog-to-Digital Converter (ADC)  
FlexCAN 2.0B Module  
63  
128/16 Kbytes  
256/32 Kbytes  
x
x
x
x
x
x
x
x
x
2
x
4
x
3
x
x
x
x
x
Four-channel Direct-Memory Access (DMA)  
Software Watchdog Timer (WDT)  
Programmable Interrupt Timer  
Four-Channel General Purpose Timer  
32-bit DMA Timers  
x
x
2
x
2
x
4
x
4
x
QSPI  
UART(s)  
3
x
3
x
I2C  
Eight/Four-channel 8/16-bit PWM Timer  
General Purpose I/O Module (GPIO)  
x
x
x
x
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
2
Freescale Semiconductor  
MCF5213 Family Configurations  
Table 1. MCF5213 Family Configurations (continued)  
Module  
5211  
5212  
5213  
Chip Configuration and Reset Controller Module  
Background Debug Mode (BDM)  
JTAG - IEEE 1149.1 Test Access Port1  
Package  
x
x
x
x
x
x
x
x
x
64 LQFP  
64 QFN  
64 LQFP  
81 MAPBGA  
81 MAPBGA  
100 LQFP  
81 MAPBGA  
NOTES:  
1
The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is bonded on  
smaller packages.  
1.1 Block Diagram  
Figure 1 shows a top-level block diagram of the MCF5213. Package options for this family are described  
later in this document.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
3
Preliminary  
MCF5213 Family Configurations  
EzPCK  
EzPCS  
EzPD  
EzPQ  
EzPort  
Arbiter  
GPTn  
QSPI_DIN,  
QSPI_DOUT  
Interrupt  
Controller  
QSPI_SCK,  
QSPI_PCSn  
UnTXD  
UART  
0
UART  
1
UART  
2
UnRXD  
I2C  
4 CH DMA  
QSPI  
UnRTS  
UnCTS  
DTINn/DTOUTn  
CANRX  
CANTX  
DTIM  
0
DTIM  
1
DTIM  
2
DTIM  
3
SWT  
To/From PADI  
PWMn  
JTAG_EN  
MUX  
V2 ColdFire CPU  
OEP MAC  
IFP  
PMM  
CIM  
JTAG  
TAP  
32 Kbytes  
SRAM  
256 Kbytes  
RSTI  
PORTS  
(GPIO)  
AN[7:0]  
ADC  
Flash  
RSTO  
(4Kx16)x4  
(32Kx16)x4  
VRH VRL  
VSTBY  
Edge  
Port  
PLL OCO  
CLKGEN  
FlexCAN  
PIT0  
PIT1  
GPT  
PWM  
EXTAL XTAL CLKOUT  
CLKMOD0 CLKMOD1  
To/From Interrupt Controller  
Figure 1. MCF5213 Block Diagram  
1.2 Features  
The MCF5213 family includes the following features:  
Version 2 ColdFire variable-length RISC processor core  
— Static operation  
— 32-bit address and data paths on-chip  
— Up to 80 MHz processor core frequency  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
4
Freescale Semiconductor  
MCF5213 Family Configurations  
— Sixteen general-purpose, 32-bit data and address registers  
— Implements ColdFire ISA_A with extensions to support the user stack pointer register and  
four new instructions for improved bit processing (ISA_A+)  
— Multiply-Accumulate (MAC) unit with 32-bit accumulator to support 16 × 16 32 or  
32 × 32 32 operations  
— Illegal instruction decode that allows for 68K emulation support  
System debug support  
— Real time trace for determining dynamic execution path  
— Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)  
— Real time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) that can  
be configured into a 1- or 2-level trigger  
On-chip memories  
— 32-Kbyte dual-ported SRAM on CPU internal bus, supporting core and DMA access with  
standby power supply support  
— 256 Kbytes of interleaved Flash memory supporting 2-1-1-1 accesses  
Power management  
— Fully static operation with processor sleep and whole chip stop modes  
Very rapid response to interrupts from the low-power sleep mode (wake-up feature)  
— Clock enable/disable for each peripheral when not used  
FlexCAN 2.0B module  
— Based on and includes all existing features of the Freescale TouCAN module  
— Full implementation of the CAN protocol specification version 2.0B  
– Standard Data and Remote Frames (up to 109 bits long)  
– Extended Data and Remote Frames (up to 127 bits long)  
– 0–8 bytes data length  
– Programmable bit rate up to 1 Mbit/sec  
— Flexible Message Buffers (MBs), totalling up to 16 message buffers of 0–8 byte data length  
each, configurable as Rx or Tx, all supporting standard and extended messages  
— Unused MB space can be used as general purpose RAM space  
— Listen only mode capability  
— Content-related addressing  
— No read/write semaphores  
— Three programmable mask registers: global for MBs 0-13, special for MB14, and special for  
MB15  
— Programmable transmit-first scheme: lowest ID or lowest buffer number  
— “Time stamp” based on 16-bit free-running timer  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
5
Preliminary  
MCF5213 Family Configurations  
— Global network time, synchronized by a specific message  
— Maskable interrupts  
Three universal asynchronous/synchronous receiver transmitters (UARTs)  
— 16-bit divider for clock generation  
— Interrupt control logic with maskable interrupts  
— DMA support  
— Data formats can be 5, 6, 7 or 8 bits with even, odd or no parity  
— Up to 2 stop bits in 1/16 increments  
— Error-detection capabilities  
— Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs  
— Transmit and receive FIFO buffers  
I2C module  
— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads  
— Fully compatible with industry-standard I2C bus  
— Master and slave modes support multiple masters  
— Automatic interrupt generation with programmable level  
Queued serial peripheral interface (QSPI)  
— Full-duplex, three-wire synchronous transfers  
— Up to four chip selects available  
— Master mode operation only  
— Programmable bit rates up to half the CPU clock frequency  
— Up to 16 pre-programmed transfers  
Fast analog-to-digital converter (ADC)  
— Eight analog input channels  
— 12-bit resolution  
— Minimum 1.125 µs conversion time  
— Simultaneous sampling of two channels for motor control applications  
— Single-scan or continuous operation  
— Optional interrupts on conversion complete, zero crossing (sign change), or under/over  
low/high limit  
— Unused analog channels can be used as digital I/O  
Four 32-bit DMA timers  
— 12.5-ns resolution at 80 MHz  
— Programmable sources for clock input, including an external clock option  
— Programmable prescaler  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
6
Freescale Semiconductor  
Preliminary  
MCF5213 Family Configurations  
— Input capture capability with programmable trigger edge on input pin  
— Output compare with programmable mode for the output pin  
— Free run and restart modes  
— Maskable interrupts on input capture or output compare  
— DMA trigger capability on input capture or output compare  
Four-channel general purpose timer  
— 16-bit architecture  
— Programmable prescaler  
— Output pulse widths variable from microseconds to seconds  
— Single 16-bit input pulse accumulator  
— Toggle-on-overflow feature for pulse-width modulator (PWM) generation  
— One dual-mode pulse accumulation channel  
Pulse-width modulation timer  
— Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution  
— Programmable period and duty cycle  
— Programmable enable/disable for each channel  
— Software selectable polarity for each channel  
— Period and duty cycle are double buffered. Change takes effect when the end of the current  
period is reached (PWM counter reaches zero) or when the channel is disabled.  
— Programmable center or left aligned outputs on individual channels  
— Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies  
— Emergency shutdown  
Two periodic interrupt timers (PITs)  
— 16-bit counter  
— Selectable as free running or count down  
Software watchdog timer  
— 32-bit counter  
— Low power mode support  
Clock generation features  
— 1 to 16 MHz crystal, 8 MHz on-chip relaxation oscillator, or external oscillator reference  
options  
— Trimmed relaxation oscillator  
— 2 to 10 MHz reference frequency for normal PLL mode  
— System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator  
— Low power modes supported  
n
— 2 (n 0 15) low-power divider for extremely low frequency operation  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
7
Preliminary  
MCF5213 Family Configurations  
Interrupt controller  
— Uniquely programmable vectors for all interrupt sources  
— Fully programmable level and priority for all peripheral interrupt sources  
— Seven external interrupt signals with fixed level and priority  
— Unique vector number for each interrupt source  
— Ability to mask any individual interrupt source or all interrupt sources (global mask-all)  
— Support for hardware and software interrupt acknowledge (IACK) cycles  
— Combinatorial path to provide wake-up from low power modes  
DMA controller  
— Four fully programmable channels  
— Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for  
16-byte (4 x 32-bit) burst transfers  
— Source/destination address pointers that can increment or remain constant  
— 24-bit byte transfer counter per channel  
— Auto-alignment transfers supported for efficient block movement  
— Bursting and cycle steal support  
— Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)  
Reset  
— Separate reset in and reset out signals  
— Seven sources of reset:  
– Power-on reset (POR)  
– External  
– Software  
– Watchdog  
– Loss of clock  
– Loss of lock  
– Low-voltage detection (LVD)  
— Status flag indication of source of last reset  
Chip integration module (CIM)  
— System configuration during reset  
— Selects one of six clock modes  
— Configures output pad drive strength  
— Unique part identification number and part revision number  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
8
Freescale Semiconductor  
Preliminary  
MCF5213 Family Configurations  
General purpose I/O interface  
— Up to 56 bits of general purpose I/O  
— Bit manipulation supported via set/clear functions  
— Programmable drive strengths  
— Unused peripheral pins may be used as extra GPIO  
JTAG support for system level board testing  
1.2.1 V2 Core Overview  
The version 2 ColdFire processor core is comprised of two separate pipelines that are decoupled by an  
instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address  
generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds  
prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes  
two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage  
(AGEX) performs instruction execution and calculates operand effective addresses, if needed.  
The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a  
separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the  
MCF5213 core includes the multiply-accumulate (MAC) unit for improved signal processing capabilities.  
The MAC implements a three-stage arithmetic pipeline, optimized for 16 x 16 bit operations, with support  
for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned integers,  
signed fractional operands, and a complete set of instructions to process these data types. The MAC  
provides support for execution of DSP operations within the context of a single processor at a minimal  
hardware cost.  
1.2.2 Integrated Debug Module  
The ColdFire processor core debug interface is provided to support system debugging in conjunction with  
low-cost debug and emulator development tools. Through a standard debug interface, users can access  
debug information and real-time tracing capability is provided on 100-lead packages. This allows the  
processor and system to be debugged at full speed without the need for costly in-circuit emulators.  
The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an  
address mask register, a data and a data mask register, four PC registers, and one PC mask register. These  
registers can be accessed through the dedicated debug serial communication channel or from the  
processor’s supervisor mode programming model. The breakpoint registers can be configured to generate  
triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions.  
The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception.  
The MCF5213 implements revision B+ of the coldfire Debug Architecture.  
The MCF5213’s interrupt servicing options during emulator mode allow real-time critical interrupt service  
routines to be serviced while processing a debug interrupt event, thereby ensuring that the system  
continues to operate even during debugging.  
To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data  
(DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
9
Preliminary  
MCF5213 Family Configurations  
data, and branch target addresses defining processor activity at the CPU’s clock rate. The MCF5213  
includes a new debug signal, ALLPST. This signal is the logical ‘AND’ of the processor status (PST[3:0])  
signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).  
The full debug/trace interface is available only on the 100-pin packages. However, every product features  
the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.  
1.2.3 JTAG  
The MCF5213 supports circuit board test strategies based on the Test Technology Committee of IEEE and  
the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state  
controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit boundary-scan  
register, and a 32-bit ID register). The boundary scan register links the device’s pins into one shift register.  
Test logic, implemented using static logic design, is independent of the device system logic.  
The MCF5213 implementation can do the following:  
Perform boundary-scan operations to test circuit board electrical continuity  
Sample MCF5213 system pins during operation and transparently shift out the result in the  
boundary scan register  
Bypass the MCF5213 for a given circuit board test by effectively reducing the boundary-scan  
register to a single bit  
Disable the output drive to pins during circuit-board testing  
Drive output pins to stable levels  
1.2.4 On-Chip Memories  
1.2.4.1 SRAM  
The SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access  
in a single cycle. The location of the memory block can be set to any 32-Kbyte boundary within the  
4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the  
system stack. Because the SRAM module is physically connected to the processor's high-speed local bus,  
it can quickly service core-initiated accesses or memory-referencing commands from the debug module.  
The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal  
for implementing applications with double-buffer schemes, where the processor and a DMA device  
operate in alternate regions of the SRAM to maximize system performance.  
1.2.4.2 Flash  
The ColdFire Flash module (CFM) is a non-volatile memory (NVM) module that connects to the  
processor’s high-speed local bus. The CFM is constructed with four banks of 32K x 16-bit Flash arrays to  
generate 256 Kbytes of 32-bit Flash memory. These arrays serve as electrically erasable and  
programmable, non-volatile program and data memory. The Flash memory is ideal for program and data  
storage for single-chip applications, allowing for field reprogramming without requiring an external high  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
10  
Freescale Semiconductor  
Preliminary  
MCF5213 Family Configurations  
voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory  
controller which supports interleaved accesses from the 2-cycle Flash arrays. A backdoor mapping of the  
Flash memory is used for all program, erase, and verify operations, as well as providing a read datapath  
for the DMA. Flash memory may also be programmed via the EzPort, which is a serial Flash programming  
interface that allows the Flash to be read, erased and programmed by an external controller in a format  
compatible with most SPI bus Flash memory chips.  
1.2.5 Power Management  
The MCF5213 incorporates several low power modes of operation which are entered under program  
control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors  
the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD)  
monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the  
LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip  
falls below the standby battery voltage.  
1.2.6 FlexCAN  
The FlexCAN module is a communication controller implementing version 2.0 of the CAN protocol parts  
A and B. The CAN protocol can be used as an industrial control serial data bus, meeting the specific  
requirements of reliable operation in a harsh EMI environment with high bandwidth. This instantiation of  
FlexCAN has 16 message buffers.  
1.2.7 UARTs  
The MCF5213 has three full-duplex UARTs that function independently. The three UARTs can be clocked  
by the system bus clock, eliminating the need for an external clock source. On smaller packages, the third  
UART is multiplexed with other digital I/O functions.  
2
1.2.8 I C Bus  
The I2C bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange  
and minimizes the interconnection between devices. This bus is suitable for applications requiring  
occasional communications over a short distance between many devices.  
1.2.9 QSPI  
The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with  
queued transfer capability. It allows up to 16 transfers to be queued at once, minimizing the need for CPU  
intervention between transfers.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
11  
Preliminary  
MCF5213 Family Configurations  
1.2.10 Fast ADC  
The Fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold  
(S/H) circuits feeding separate 12-bit ADCs. The two separate converters store their results in accessible  
buffers for further processing.  
The ADC can be configured to perform a single scan and halt, perform a scan whenever triggered, or  
perform a programmed scan sequence repeatedly until manually stopped.  
The ADC can be configured for either sequential or simultaneous conversion. When configured for  
sequential conversions, up to eight channels can be sampled and stored in any order specified by the  
channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.  
During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same  
time. This configuration requires that a single channel may not be sampled by both S/H circuits  
simultaneously.  
Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures  
below the low threshold limit or above the high threshold limit set in the limit registers) or at several  
different zero crossing conditions.  
1.2.11 DMA Timers (DTIM0–DTIM3)  
There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3)  
on the MCF5213. Each module incorporates a 32-bit timer with a separate register set for configuration  
and control. The timers can be configured to operate from the system clock or from an external clock  
source using one of the DTINx signals. If the system clock is selected, it can be divided by 16 or 1. The  
input clock is further divided by a user-programmable 8-bit prescaler which clocks the actual timer counter  
register (TCRn). Each of these timers can be configured for input capture or reference (output) compare  
mode. Timer events may optionally cause interrupt requests or DMA transfers.  
1.2.12 General Purpose Timer (GPT)  
The general purpose timer (GPT) is a 4-channel timer module consisting of a 16-bit programmable counter  
driven by a 7-stage programmable prescaler. Each of the four channels can be configured for input capture  
or output compare. Additionally, one of the channels, channel 3, can be configured as a pulse accumulator.  
A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit  
range of the counter. The input capture and output compare functions allow simultaneous input waveform  
measurements and output waveform generation. The input capture function can capture the time of a  
selected transition edge. The output compare function can generate output waveforms and timer software  
delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.  
1.2.13 Periodic Interrupt Timers (PIT0 and PIT1)  
The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular  
intervals with minimal processor intervention. Each timer can either count down from the value written in  
its PIT modulus register, or it can be a free-running down-counter.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
12  
Freescale Semiconductor  
Preliminary  
MCF5213 Family Configurations  
1.2.14 Pulse Width Modulation Timers  
The MCF5213 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty  
cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms  
with software-selectable duty rates from 0% to 100%. The PWM outputs have programmable polarity, and  
can be programmed as left aligned outputs or center aligned outputs. For higher period and duty cycle  
resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a  
single 16-bit channel. The module can thus be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit  
channels.  
1.2.15 Software Watchdog Timer  
The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter  
is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must  
periodically restart the countdown.  
1.2.16 Phase Locked Loop (PLL)  
The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked  
loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control  
logic. In order to improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their  
own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply  
pins, VDD and VSS.  
1.2.17 Interrupt Controller (INTC)  
The MCF5213 has a single interrupt controller that supports up to 63 interrupt sources. There are 56  
programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining 7  
sources are unassigned and may be used for software interrupt requests.  
1.2.18 DMA Controller  
The direct memory access (DMA) controller provides an efficient way to move blocks of data with  
minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line  
transfers. These transfers are triggered by software explicitly setting a DCRn[START] bit or by the  
occurrence of certain UART or DMA timer events.  
1.2.19 Reset  
The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and  
keeps track of what caused the last reset. There are seven sources of reset:  
External reset input  
Power-on reset (POR)  
Watchdog timer  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
13  
MCF5213 Family Configurations  
Phase locked-loop (PLL) loss of lock  
PLL loss of clock  
Software  
Low-voltage detector (LVD)  
Control of the LVD and its associated reset and interrupt are handled by the reset controller. Other registers  
provide status flags indicating the last source of reset and a control bit for software assertion of the RSTO  
pin.  
1.2.20 GPIO  
Nearly all pins on the MCF5213 have general purpose I/O capability and are grouped into 8-bit ports.  
Some ports do not use all 8 bits. Each port has registers that configure, monitor, and control the port pins.  
1.3 Part Numbers and Packaging  
This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office  
for up-to-date RoHS information.  
Table 2. Part Number Summary  
Part Number  
Flash / SRAM  
Key Features  
Package  
Speed  
MCF5211  
128 Kbytes / 16 Kbytes  
3 UARTs, I2C, QSPI, A/D  
16-/32-bit/PWM Timers  
64 LQFP  
81 MAPBGA  
64 QFN  
66 MHz  
66, 80 MHz  
66 MHz  
MCF5212  
MCF5213  
256 Kbytes / 32 Kbytes  
256 Kbytes / 32 Kbytes  
3 UARTs, I2C, QSPI, A/D  
16-/32-bit/PWM Timers  
64 LQFP  
81 MAPBGA  
66 MHz  
66, 80 MHz  
3 UARTs, I2C, QSPI, A/D  
16-/32-bit/PWM Timers, CAN  
81 MAPBGA  
100 LQFP  
66, 80 MHz  
66, 80 MHz  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
14  
Freescale Semiconductor  
MCF5213 Family Configurations  
1.4 Package Pinouts  
Figure 2 shows the pinout configuration for the 100 LQFP.  
V
V
V
V
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DD  
SS  
DD  
DDPLL  
V
EXTAL  
XTAL  
V
SS  
URTS1  
TEST  
SSPLL  
UCTS0  
URXD0  
UTXD0  
URTS0  
SCL  
PST3  
PST2  
V
V
DD  
9
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PST1  
PST0  
SDA  
QSPI_CS3  
QSPI_CS2  
PSTCLK  
PWM7  
GPT3  
GPT2  
PWM5  
GPT1  
GPT0  
100 LQFP  
V
DD  
V
SS  
QSPI-DIN  
QSPI_DOUT  
QSPI_CLK  
QSPI_CS1  
QSPI_CS0  
RCON  
V
DD  
V
V
SS  
STBY  
V
DD  
AN4  
AN5  
AN6  
AN7  
V
DD  
V
SS  
V
SS  
Figure 2. 100 LQFP Pin Assignments  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
15  
MCF5213 Family Configurations  
Figure 3 shows the pinout configuration for the 81 MAPBGA.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSS  
UTXD1  
RSTI  
IRQ5  
IRQ3  
ALLPST  
TDO  
TMS  
VSS  
URTS1  
UCTS0  
URXD0  
SCL  
URXD1  
TEST  
RSTO  
UCTS1  
URTS0  
VDD  
IRQ6  
IRQ7  
VSS  
IRQ2  
IRQ4  
TRST  
IRQ1  
VSS  
VDD  
VSS  
AN2  
AN1  
AN0  
TDI  
TCLK  
PWM7  
VDD  
VDDPLL  
VSSPLL  
GPT3  
EXTAL  
XTAL  
GPT2  
GPT1  
AN4  
UTXD0  
SDA  
VDD  
VDD  
VDD  
PWM5  
VSTBY  
AN5  
QSPI_CS3  
QSPI_CS2  
QSPI_DIN  
RCON  
DTIN3  
VSS  
VDD  
GPT0  
AN3  
G
H
J
QSPI_DOUT QSPI_CLK  
DTIN1  
DTIN0  
PWM3  
CLKMOD0  
CLKMOD1  
PWM1  
AN6  
QSPI_CS0  
VSS  
QSPI_CS1  
JTAG_EN  
VSSA  
VRL  
VDDA  
VRH  
AN7  
DTIN2  
VSSA  
Figure 3. 81 MAPBGA Pin Assignments  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
16  
Freescale Semiconductor  
MCF5213 Family Configurations  
Figure 4 shows the pinout configuration for the 64 LQFP and 64 QFN.  
V
V
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DD  
DDPLL  
URTS1  
TEST  
EXTAL  
XTAL  
V
PSTCLK  
GPT3  
GPT2  
GPT1  
GPT0  
UCTS0  
URXD0  
UTXD0  
URTS0  
SCL  
SSPLL  
SDA  
9
64-Pin Packages  
V
10  
11  
12  
13  
14  
15  
16  
V
V
V
AN4  
AN5  
AN6  
AN7  
DD  
DD  
V
SS  
SS  
QSPI_DIN  
QSPI_DOUT  
QSPI_CLK  
QSPI_CS0  
RCON  
STBY  
Figure 4. 64 LQFP and 64 QFN Pin Assignments  
Table 3 shows the pin functions by primary and alternate purpose, and illustrates which packages contain  
each pin.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
17  
Preliminary  
Table 3. Pin Functions by Primary and Alternate Purpose  
Drive  
Pin  
Group  
Primary  
Function  
Secondary Tertiary Quaternary  
Function Function Function  
Slew Rate /  
Pull-up /  
Pin on  
Pin on 81 Pin on 64  
Strength/  
Notes  
Control1 Pull-down2 100 LQFP MAPBGA LQFP/QFN  
Control1  
ADC  
AN7  
AN6  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Low  
Low  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
N/A  
51  
H9  
G9  
G8  
F9  
G7  
G6  
H6  
J6  
33  
34  
35  
36  
28  
27  
26  
25  
32  
29  
31  
30  
47  
46  
48  
45  
55  
8
52  
AN5  
Low  
53  
AN4  
Low  
54  
AN3  
Low  
46  
AN2  
Low  
45  
AN1  
Low  
44  
AN0  
Low  
43  
SYNCA  
SYNCB  
VDDA  
VSSA  
VRH  
N/A  
No Primary  
No Primary  
N/A  
N/A  
N/A  
N/A  
50  
H8  
H7  
J8  
N/A  
N/A  
47  
N/A  
N/A  
49  
VRL  
N/A  
N/A  
48  
J7  
Clock  
Generation  
EXTAL  
XTAL  
N/A  
N/A  
73  
B9  
C9  
B8  
C8  
A6  
N/A  
N/A  
72  
VDDPLL  
VSSPLL  
ALLPST  
DDATA[3:0]  
PST[3:0]  
SCL  
N/A  
N/A  
74  
N/A  
N/A  
71  
Debug  
Data  
High  
High  
High  
PDSR[0]  
PDSR[0]  
FAST  
FAST  
FAST  
PSRR[0]  
PSRR[0]  
86  
84,83,78,77  
70,69,66,65  
10  
GPIO  
GPIO  
GPIO  
GPIO  
I2C  
CANTX3  
CANRX3  
UTXD2  
URXD2  
pull-up4  
pull-up4  
E1  
E2  
SDA  
11  
9
Table 3. Pin Functions by Primary and Alternate Purpose  
Drive  
Pin  
Group  
Primary  
Function  
Secondary Tertiary Quaternary  
Function Function Function  
Slew Rate /  
Pull-up /  
Pin on  
Pin on 81 Pin on 64  
Strength/  
Notes  
Control1 Pull-down2 100 LQFP MAPBGA LQFP/QFN  
Control1  
Interrupts  
IRQ7  
IRQ6  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Low  
Low  
Low  
Low  
Low  
Low  
High  
N/A  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
N/A  
95  
94  
91  
90  
89  
88  
87  
26  
64  
C4  
B4  
A4  
C5  
A5  
B5  
C6  
J2  
58  
57  
56  
17  
44  
IRQ5  
IRQ4  
IRQ3  
IRQ2  
IRQ1  
SYNCA  
PWM1  
pull-up4  
pull-down  
pull-up5  
JTAG/BDM  
JTAG_EN  
TCLK/  
CLKOUT  
High  
FAST  
C7  
PSTCLK  
TDI/DSI  
N/A  
High  
N/A  
N/A  
FAST  
N/A  
pull-up5  
79  
80  
76  
B7  
A7  
A8  
50  
51  
49  
TDO/DSO  
TMS  
pull-up5  
/BKPT  
TRST  
N/A  
N/A  
pull-up5  
85  
B6  
54  
/DSCLK  
Mode  
CLKMOD0  
CLKMOD1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
pull-down6  
pull-down6  
pull-up  
40  
39  
21  
G5  
H5  
G3  
24  
16  
Selection6  
RCON/  
EZPCS  
PWM  
PWM7  
PWM5  
PWM3  
PWM1  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[31] PSRR[31]  
PDSR[30] PSRR[30]  
PDSR[29] PSRR[29]  
PDSR[28] PSRR[28]  
63  
60  
33  
38  
D7  
E8  
J4  
J5  
Table 3. Pin Functions by Primary and Alternate Purpose  
Drive  
Pin  
Group  
Primary  
Function  
Secondary Tertiary Quaternary  
Function Function Function  
Slew Rate /  
Pull-up /  
Pin on  
Pin on 81 Pin on 64  
Strength/  
Notes  
Control1 Pull-down2 100 LQFP MAPBGA LQFP/QFN  
Control1  
QSPI  
QSPI_DIN/  
EZPD  
CANRX3  
CANTX3  
SCL  
RXD1  
TXD1  
RTS1  
GPIO  
GPIO  
GPIO  
PDSR[2]  
PDSR[1]  
PDSR[3]  
PSRR[2]  
PSRR[1]  
PSRR[3]  
16  
17  
18  
F3  
G1  
G2  
12  
13  
14  
QSPI_DOUT  
/EZPQ  
QSPI_CLK/  
EZPCK  
pull-up7  
QSPI_CS3  
QSPI_CS2  
QSPI_CS1  
QSPI_CS0  
RSTI  
SYNCA  
SYNCB  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[7]  
PDSR[6]  
PDSR[5]  
PDSR[4]  
N/A  
PSRR[7]  
PSRR[6]  
PSRR[5]  
PSRR[4]  
N/A  
12  
13  
19  
20  
96  
97  
5
F1  
F2  
H2  
H1  
A3  
B3  
C2  
D8  
D9  
E9  
F7  
H3  
J3  
15  
59  
60  
3
SDA  
CTS1  
pull-up7  
pull-up8  
Reset8  
Test  
RSTO  
high  
FAST  
TEST  
N/A  
N/A  
pull-down  
pull-up9  
pull-up9  
pull-up9  
pull-up9  
Timers,  
16-bit  
GPT3  
PWM7  
PWM5  
PWM3  
PWM1  
PWM6  
PWM4  
PWM2  
PWM0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[23] PSRR[23]  
PDSR[22] PSRR[22]  
PDSR[21] PSRR[21]  
PDSR[20] PSRR[20]  
PDSR[19] PSRR[19]  
PDSR[18] PSRR[18]  
PDSR[17] PSRR[17]  
PDSR[16] PSRR[16]  
PDSR[11] PSRR[11]  
PDSR[10] PSRR[10]  
62  
61  
59  
58  
32  
31  
37  
36  
6
43  
42  
41  
40  
19  
18  
23  
22  
4
GPT2  
GPT1  
GPT0  
Timers,  
32-bit  
DTIN3  
DTOUT3  
DTOUT2  
DTOUT1  
DTOUT0  
CANRX  
CANTX  
DTIN2  
DTIN1  
G4  
H4  
C1  
D3  
D1  
D2  
DTIN0  
UART 0  
UCTS0  
URTS0  
URXD0  
UTXD0  
9
7
PDSR[9]  
PDSR[8]  
PSRR[9]  
PSRR[8]  
7
5
8
6
Table 3. Pin Functions by Primary and Alternate Purpose  
Drive  
Pin  
Group  
Primary  
Function  
Secondary Tertiary Quaternary  
Function Function Function  
Slew Rate /  
Pull-up /  
Pin on  
Pin on 81 Pin on 64  
Strength/  
Notes  
Control1 Pull-down2 100 LQFP MAPBGA LQFP/QFN  
Control1  
UART 1  
UART 2  
FlexCAN  
UCTS1  
URTS1  
URXD1  
UTXD1  
UCTS2  
URTS2  
URXD2  
UTXD2  
CANRX  
CANTX  
VSTBY  
VDD  
SYNCA  
URXD2  
UTXD2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[15] PSRR[15]  
PDSR[14] PSRR[14]  
PDSR[13] PSRR[13]  
PDSR[12] PSRR[12]  
PDSR[27] PSRR[27]  
PDSR[26] PSRR[26]  
PDSR[25] PSRR[25]  
PDSR[24] PSRR[24]  
98  
4
C3  
B1  
B2  
A2  
61  
2
SYNCB  
100  
99  
27  
30  
28  
29  
63  
62  
37  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
See Note3,10  
See Note3,10  
VSTBY  
VDD  
55  
F8  
1,2,14,22, D5,E3–E7, 1,10,20,39,  
23,34,41,  
F5  
52  
57,68,81,93  
VSS  
VSS  
N/A  
N/A  
3,15,24,25, A1,A9,D4, 11,21,38,  
35,42,56,  
67,75,82,92  
D6,F4,F6,  
J1  
53,64  
NOTES:  
1
The PDSR and PSSR registers are described in the Ports/GPIO chapter of the MCF5213 Reference Manual. All programmable signals default to 2mA drive  
and FAST slew rate in normal (single-chip) mode.  
All signals have a pull-up in GPIO mode.  
The multiplexed CANTX and CANRX signals are not available on the MCF5211 or MCF5212  
For primary and GPIO functions only.  
Only when JTAG mode is enabled.  
CLKMOD0 and CLKMOD1 have internal pull-down resistors, however the use of external resistors is very strongly recommended  
For secondary and GPIO functions only.  
RSTI has an internal pull-up resistor, however the use of an external resistor is very strongly recommended  
For GPIO function. Primary Function has pull-up control within the GPT module  
CANTX and CANRX are secondary functions only.  
2
3
4
5
6
7
8
9
10  
MCF5213 Family Configurations  
1.5 Reset Signals  
Table 4 describes signals that are used to either reset the chip or as a reset indication.  
Table 4. Reset Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Reset In  
RSTI  
Primary reset input to the device. Asserting RSTI immediately resets  
the CPU and peripherals.  
I
Reset Out  
RSTO  
Driven low for 512 CPU clocks after the reset source has deasserted.  
O
1.6 PLL and Clock Signals  
Table 5 describes signals that are used to support the on-chip clock generation circuitry.  
Table 5. PLL and Clock Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Clock In  
EXTAL  
Crystal oscillator or external clock input except when the on-chip  
relaxation oscillator is used.  
I
Crystal  
XTAL  
Crystal oscillator output except when CLKMOD1=1, then sampled as  
part of the clockmode selection mechanism.  
O
O
Clock Out  
CLKOUT  
This output signal reflects the internal system clock.  
1.7 Mode Selection  
Table 6 describes signals used in mode selection, Table 7 describes particular clocking modes.  
Table 6. Mode Selection Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Clock Mode Selection CLKMOD[1:0] Selects the clock boot mode.  
I
Reset Configuration  
Test  
RCON  
TEST  
The Serial Flash Programming mode is entered by asserting the  
RCON pin (with the TEST pin negated) as the chip comes out of  
reset. During this mode, the EzPort has access to the Flash memory  
which can be programmed from an external device.  
Reserved for factory testing only and in normal modes of operation  
should be connected to VSS to prevent unintentional activation of  
test functions.  
I
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
22  
Freescale Semiconductor  
MCF5213 Family Configurations  
Table 7. Clocking Modes  
CLKMOD[1:0]  
XTAL  
0
Configure the clock mode.  
00  
00  
01  
10  
10  
11  
PLL disabled, clock driven by external oscillator  
PLL disabled, clock driven by on-chip oscillator  
PLL disabled, clock driven by crystal  
1
N/A  
0
PLL in normal mode, clock driven by external oscillator  
PLL in normal mode, clock driven by on-chip oscillator  
PLL in normal mode, clock driven by crystal  
1
N/A  
1.8 External Interrupt Signals  
Table 8 describes the external interrupt signals.  
Table 8. External Interrupt Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Interrupts  
IRQ[7:1]  
External interrupt sources.  
I
1.9 Queued Serial Peripheral Interface (QSPI)  
Table 9 describes QSPI signals.  
Table 9. Queued Serial Peripheral Interface (QSPI) Signals  
Signal Name  
Abbreviation  
Function  
I/O  
QSPI Synchronous  
Serial Output  
QSPI_DOUT Provides the serial data from the QSPI and can be programmed to be  
driven on the rising or falling edge of QSPI_CLK.  
O
QSPI Synchronous  
Serial Data Input  
QSPI_DIN Provides the serial data to the QSPI and can be programmed to be  
sampled on the rising or falling edge of QSPI_CLK.  
I
QSPI Serial Clock  
QSPI_CLK Provides the serial clock from the QSPI. The polarity and phase of  
QSPI_CLK are programmable.  
O
O
SynchronousPeripheral QSPI_CS[3:0] QSPI peripheral chip selects that can be programmed to be active  
Chip Selects  
high or low.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
23  
MCF5213 Family Configurations  
1.10 I2C I/O Signals  
2
Table 10 describes the I C serial interface module signals.  
2
Table 10. I C I/O Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Serial Clock  
SCL  
Open-drain clock signal for the for the I2C interface. Either it is driven  
by the I2C module when the bus is in master mode or it becomes the  
clock input when the I2C is in slave mode.  
I/O  
Serial Data  
SDA  
Open-drain signal that serves as the data input/output for the I2C  
interface.  
I/O  
1.11 UART Module Signals  
Table 11 describes the UART module signals.  
Table 11. UART Module Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Transmit Serial Data  
Output  
UTXDn  
Transmitter serial data outputs for the UART modules. The output is  
held high (mark condition) when the transmitter is disabled, idle, or in  
the local loopback mode. Data is shifted out, LSB first, on this pin at  
the falling edge of the serial clock source.  
O
Receive Serial Data  
Input  
URXDn  
Receiver serial data inputs for the UART modules. Data is received on  
this pin LSB first. When the UART clock is stopped for power-down  
mode, any transition on this pin restarts it.  
I
Clear-to-Send  
UCTSn  
URTSn  
Indicate to the UART modules that they can begin data transmission.  
I
Request-to-Send  
Automatic request-to-send outputs from the UART modules. This  
signal can also be configured to be asserted and negated as a  
function of the RxFIFO level.  
O
1.12 DMA Timer Signals  
Table 12 describes the signals of the four DMA timer modules.  
Table 12. DMA Timer Signals  
Signal Name  
Abbreviation  
Function  
I/O  
DMA Timer Input  
DTIN  
Event input to the DMA timer modules.  
I
DMA Timer Output  
DTOUT  
Programmable output from the DMA timer modules.  
O
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
24  
Freescale Semiconductor  
MCF5213 Family Configurations  
1.13 ADC Signals  
Table 13 describes the signals of the Analog-to-Digital Converter.  
Table 13. ADC Signals  
Signal Name  
Analog Inputs  
Abbreviation  
Function  
Inputs to the A-to-D converter.  
Reference voltage high and low inputs.  
I/O  
AN[7:0]  
VRH  
I
I
I
Analog Reference  
VRL  
Analog Supply  
VDDA  
VSSA  
Isolate the ADC circuitry from power supply noise  
1.14 General Purpose Timer Signals  
Table 14 describes the General Purpose Timer Signals.  
Table 14. GPT Signals  
Signal Name  
Abbreviation  
Function  
I/O  
General Purpose Timer  
Input/Output  
GPT[3:0]  
Inputs to or outputs from the general purpose timer module  
I/O  
1.15 Pulse Width Modulator Signals  
Table 15 describes the PWM signals.  
Table 15. PWM Signals  
Signal Name  
Abbreviation  
Function  
I/O  
PWM Output Channels  
PWM[7:0]  
Pulse width modulated output for PWM channels  
O
1.16 Debug Support Signals  
These signals are used as the interface to the on-chip JTAG controller and also to interface to the BDM  
logic.  
Table 16. Debug Support Signals  
Signal Name  
Abbreviation  
Function  
I/O  
JTAG Enable  
Test Reset  
JTAG_EN  
TRST  
Select between debug module and JTAG signals at reset  
I
I
This active-low signal is used to initialize the JTAG logic  
asynchronously.  
Test Clock  
TCLK  
TMS  
Used to synchronize the JTAG logic.  
I
I
Test Mode Select  
Used to sequence the JTAG state machine. TMS is sampled on the  
rising edge of TCLK.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
25  
MCF5213 Family Configurations  
Table 16. Debug Support Signals (continued)  
Function  
Signal Name  
Abbreviation  
TDI  
I/O  
Test Data Input  
Serial input for test instructions and data. TDI is sampled on the rising  
edge of TCLK.  
I
Test Data Output  
TDO  
Serial output for test instructions and data. TDO is tri-stateable and is  
actively driven in the shift-IR and shift-DR controller states. TDO  
changes on the falling edge of TCLK.  
O
I
Development Serial  
Clock  
DSCLK  
Development Serial Clock-Internally synchronized input. (The logic  
level on DSCLK is validated if it has the same value on two  
consecutive rising bus clock edges.) Clocks the serial communication  
port to the debug module during packet transfers. Maximum frequency  
is PSTCLK/5. At the synchronized rising edge of DSCLK, the data  
input on DSI is sampled and DSO changes state.  
Breakpoint  
BKPT  
Breakpoint - Input used to request a manual breakpoint. Assertion of  
BKPT puts the processor into a halted state after the current  
instruction completes. Halt status is reflected on processor  
status/debug data signals (PST[3:0]PSTDDATA[7:0]) as the value 0xF.  
If CSR[BKD] is set (disabling normal BKPT functionality), asserting  
BKPT generates a debug interrupt exception in the processor.  
I
Development Serial  
Input  
DSI  
Development Serial Input -Internally synchronized input that provides  
data input for the serial communication port to the debug module,  
once the DSCLK has been seen as high (logic 1).  
I
Development Serial  
Output  
DSO  
Development Serial Output -Provides serial output communication for  
debug module responses. DSO is registered internally. The output is  
delayed from the validation of DSCLK high.  
O
O
O
Debug Data  
DDATA[3:0] Display captured processor data and breakpoint status. The CLKOUT  
signal can be used by the development system to know when to  
sample DDATA[3:0].  
Processor Status Clock  
PSTCLK  
Processor Status Clock - Delayed version of the processor clock. Its  
rising edge appears in the center of valid PST and DDATA output.  
PSTCLK indicates when the development system should sample PST  
and DDATA values.  
If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and  
PST and DDATA outputs from toggling without disabling triggers.  
Non-quiescent operation can be reenabled by clearing CSR[PCD],  
although the external development systems must resynchronize with  
the PST and DDATA outputs.  
PSTCLK starts clocking only when the first non-zero PST value (0xC,  
0xD, or 0xF) occurs during system reset exception processing.  
Processor Status  
Outputs  
PST[3:0]  
ALLPST  
Indicate core status. Debug mode timing is synchronous with the  
processor clock; status is unrelated to the current bus transfer. The  
CLKOUT signal can be used by the development system to know  
when to sample PST[3:0].  
O
O
All Processor Status  
Outputs  
Logical “AND” of PST[3.0]  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
26  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
1.17 EzPort Signal Descriptions  
Table 17 contains a list of EzPort external signals  
Table 17. EzPort Signal Descriptions  
Abbreviation Function  
EZPCK  
Signal Name  
I/O  
EzPort Clock  
Shift clock for EzPort transfers  
I
I
EzPort Chip Select  
EZPCS  
EZPD  
EZPQ  
Chip select for signalling the start and end  
of serial transfers  
EzPort Serial Data In  
EzPort Serial Data Out  
EZPD is sampled on the rising edge of  
EZPCK  
I
EZPQ transitions on the falling edge of  
EZPCK  
O
1.18 Power and Ground Pins  
The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided  
for adequate current capability. All power supply pins must have adequate bypass capacitance for  
high-frequency noise suppression.  
Table 18. Power and Ground Pins  
Signal Name  
Abbreviation  
Function  
I/O  
PLL Analog Supply  
VDDPLL,  
VSSPLL  
Dedicated power supply signals to isolate the sensitive PLL analog  
circuitry from the normal levels of noise present on the digital power  
supply.  
I
Positive Supply  
Ground  
VDD  
VSS  
These pins supply positive power to the core logic.  
This pin is the negative supply (ground) to the chip.  
I
2 Preliminary Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the MCF5213  
microcontroller unit. This section contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications of MCF5213.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however  
for production silicon these specifications will be met. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this appendix supersede any values found in the  
module specifications.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
27  
Preliminary  
Preliminary Electrical Characteristics  
2.1 Maximum Ratings  
1, 2  
Table 19. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
VDD  
VDDPLL  
VSTBY  
VIN  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to + 4.0  
– 0.3 to + 4.0  
0 to 3.3  
V
V
V
V
V
V
Clock Synthesizer Supply Voltage  
RAM Memory Standby Supply Voltage  
Digital Input Voltage 3  
EXTAL pin voltage  
VEXTAL  
VXTAL  
XTAL pin voltage  
0 to 3.3  
Instantaneous Maximum Current  
IDD  
25  
mA  
Single pin limit (applies to all pins) 4, 5  
Operating Temperature Range (Packaged)  
TA  
– 40 to 85  
°C  
(TL - TH)  
Storage Temperature Range  
N1 OTES:  
Tstg  
– 65 to 150  
°C  
Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum  
Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress  
beyond those listed may affect device reliability or cause permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is  
enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or VDD).  
Input must be current limited to the IDD value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then  
use the larger of the two values.  
2
3
4
5
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > VDD) is greater than IDD  
the injection current may flow out of VDD and could result in external power supply going out of  
regulation. Insure external VDD load will shunt current greater than maximum injection current. This  
will be the greatest risk when the MCU is not consuming power (ex; no clock).Power supply must  
maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions.  
,
2.2 Current Consumption  
1,2  
Table 20. Current Consumption in Low-Power Mode  
Mode  
8MHz (Typ)3 16MHz (Typ)2 64MHz (Typ)2 80MHz (Typ)2 80MHz (Peak)4  
Units  
Stop Mode 3 (Stop 11)5  
Stop Mode 2 (Stop 10)5  
Stop Mode 1 (Stop 01)5,6  
Stop Mode 0 (Stop 00)5  
Wait / Doze  
0.13  
2.29  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
2.80  
2.80  
3.08  
3.08  
4.76  
4.76  
5.38  
5.39  
11.12  
12.40  
20.23  
22.74  
30.17  
39.92  
33.36  
45.47  
Run  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
28  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
NOTES:  
1
All values are measured with a 3.30V power supply  
2
3
Refer to the Power Management chapter in the MCF5213 Reference Manual for more information on low-power modes.  
CLKOUT and all peripheral clocks except UART0 and CFM off before entering low power mode. CLKOUT is disabled. All  
code executed from FLASH. Code run from SRAM reduces power consumption further. Tests performed at room  
temperature.  
CLKOUT and all peripheral clocks on before entering low power mode. All code is executed from FLASH. All code is  
executed at 80MHz clock.  
See the description of the Low-Power Control Register (LCPR) in the MCF5213 Reference Manual for more information  
on Stop modes 0–3.  
Results are identical to STOP 00 for typical values since they only differ by CLKOUT power consumption. CLKOUT is  
already disabled in this instance prior to entering low power mode.  
4
5
6
50.00  
45.00  
40.00  
35.00  
30.00  
25.00  
20.00  
15.00  
10.00  
5.00  
Stop 0 - Flash  
Stop 1 - Flash  
Stop 2 - Flash  
Stop 3 - Flash  
Wait/Doze - Flash  
Run - Flash  
0.00  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
System Clock (MHz)  
Typical Current Consumption in Low-Power Modes  
Table 21. Typical Active Current Consumption Specifications  
Typical1  
Active  
Typical1  
Active  
Characteristic  
Symbol  
Peak2  
Unit  
(SRAM)  
(Flash)  
• 1 MHz core & I/O  
• 8 MHz core & I/O  
• 16 MHz core & I/O  
• 64 MHz core & I/O  
• 80 MHz core & I/O  
IDD  
TBD  
7.28  
3.48  
TBD  
19.02  
35.66  
85.01  
100.03  
mA  
13.37  
25.08  
54.62  
64.09  
12.08  
40.14  
49.2  
RAM Memory Standby Supply Current  
ISTBY  
Normal Operation: VDD > VSTBY - 0.3 V  
Transient Condition: VSTBY - 0.3 V > VDD > VSS + 0.5 V  
Standby Operation: VDD < VSS + 0.5 V  
0
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
mA  
µA  
Analog Supply Current  
Normal Operation  
Low-Power Stop  
IDDA  
TBD  
TBD  
mA  
µA  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
N1 OTES:  
Tested at room temperature with CPU polling a status register. All clocks were off except the UART and CFM (when  
running from Flash).  
2
Peak current measured with all modules active, and default drive strength with matching load.  
2.3 Thermal Characteristics  
Table 22 lists thermal resistance values.  
Table 22. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
100 LQFP  
Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient, (@200 ft/min)  
Junction to ambient, (@200 ft/min)  
Junction to board  
Single Layer board (1s)  
Four layer board (2s2p)  
Single Layer board (1s)  
Four layer board (2s2p)  
θJA  
θJA  
θJMA  
θJMA  
θJB  
θJC  
Ψjt  
531,2  
391,3  
421,3  
331,3  
254  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
95  
Junction to top of package  
Natural convection  
26  
Maximum operating junction temperature  
Tj  
105  
611,2  
352,3  
502,3  
312,3  
204  
81 MAPBGA Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient, (@200 ft/min)  
Junction to ambient, (@200 ft/min)  
Junction to board  
Single Layer board (1s)  
Four layer board (2s2p)  
Single Layer board (1s)  
Four layer board (2s2p)  
θJA  
θJA  
θJMA  
θJMA  
θJB  
θJC  
Ψjt  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
125  
Junction to top of package  
Natural convection  
26  
Maximum operating junction temperature  
Tj  
105  
621,2  
431,3  
501,3  
361,3  
264  
64 LQFP  
Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Junction to ambient (@200 ft/min)  
Junction to board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
θJA  
θJA  
θJMA  
θJMA  
θJB  
θJC  
Ψjt  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
95  
Junction to top of package  
Natural convection  
26  
Maximum operating junction temperature  
Tj  
105  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 22. Thermal Characteristics (continued)  
Characteristic  
Symbol  
Value  
Unit  
64 QFN  
Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Junction to ambient (@200 ft/min)  
Junction to board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
θJA  
θJA  
θJMA  
θJMA  
θJB  
θJC  
Ψjt  
681,2  
241,3  
551,3  
191,3  
84  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
Junction to case (bottom)  
0.65  
36  
Junction to top of package  
Natural convection  
Maximum operating junction temperature  
Tj  
105  
NOTES:  
1
θ
JA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of θJA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction  
temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device  
junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt  
parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.  
Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.  
Per JEDEC JESD51-6 with the board JESD51-7) horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written in conformance with Psi-JT.  
2
3
4
5
6
The average chip-junction temperature (TJ) in °C can be obtained from:  
(1)  
TJ = TA + (PD × ΘJMA  
)
Where:  
TA  
= Ambient Temperature, °C  
ΘJA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × VDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:  
PD = K ÷ (TJ + 273°C)  
(2)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA + 273 °C) + ΘJMA × PD  
2
(3)  
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium)  
for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for  
any value of TA.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
31  
Preliminary  
Preliminary Electrical Characteristics  
2.4 Flash Memory Characteristics  
The Flash memory characteristics are shown in Table 23 and Table 24.  
Table 23. SGFM Flash Program and Erase Characteristics  
(VDDF = 2.7 to 3.6 V)  
Parameter  
System clock (read only)  
Symbol  
Min  
Typ  
Max  
Unit  
fsys(R)  
0
80  
80  
MHz  
MHz  
System clock (program/erase)1  
NOTES:  
fsys(P/E)  
0.15  
1
Refer to the Flash section for more information  
Table 24. SGFM Flash Module Life Characteristics  
(VDDF = 2.7 to 3.6 V)  
Parameter  
Symbol  
Value  
Unit  
Maximum number of guaranteed program/erase cycles1 before failure  
Data retention at average operating temperature of 85°C  
NOTES:  
P/E  
10,0002  
10  
Cycles  
Years  
Retention  
1
A program/erase cycle is defined as switching the bits from 1 0 1.  
2
Reprogramming of a Flash array block prior to erase is not required.  
2.5 ESD Protection  
1, 2  
Table 25. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
ESD Target for Machine Model  
HBM Circuit Description  
HBM  
MM  
2000  
200  
1500  
100  
0
V
V
Rseries  
C
ohms  
pF  
MM Circuit Description  
Rseries  
C
ohms  
pF  
200  
Number of pulses per pin (HBM)  
positive pulses  
negative pulses  
1
1
Number of pulses per pin (MM)  
positive pulses  
negative pulses  
3
3
Interval of Pulses  
N1 OTES:  
1
sec  
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
32  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
2.6 DC Electrical Specifications  
1
Table 26. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply Voltage  
VDD  
VIH  
3.0  
3.6  
4.0  
V
V
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
0.7 x VDD  
VSS – 0.3  
0.06 x VDD  
–1.0  
VIL  
0.35 x VDD  
V
VHYS  
Iin  
mV  
µA  
Input Leakage Current  
1.0  
Vin = VDD or VSS, digital pins  
Output High Voltage (All input/output and all output pins)  
IOH = –2.0 mA  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
OVDD - 0.5  
__  
__  
0.5  
__  
V
V
V
V
V
V
Output Low Voltage (All input/output and all output pins)  
IOL = 2.0mA  
Output High Voltage (High Drive)  
IOH = TBD  
OVDD - 0.5  
__  
Output Low Voltage (High Drive)  
IOL = TBD  
0.5  
__  
Output High Voltage (Low Drive)  
IOH = TBD  
OVDD - 0.5  
__  
Output Low Voltage (Low Drive)  
IOL = TBD  
Weak Internal Pull Up Device Current, tested at VIL Max.2  
0.5  
- 130  
IAPU  
Cin  
-10  
µA  
Input Capacitance 3  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
N1 OTES:  
Refer to Table 27 for additional PLL specifications.  
Refer to the MCF5213 signals chapter for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
3
2.7 Clock Source Electrical Specifications  
Table 27. PLL Electrical Specifications  
(VDD and VDDPLL = 2.7 to 3.6 V, VSS = VSSPLL = 0 V)  
Characteristic  
Symbol  
Min  
Max  
Unit  
PLL Reference Frequency Range  
Crystal reference  
MHz  
fref_crystal  
fref_ext  
2
2
10.0  
10.0  
External reference  
System Frequency 1  
External Clock Mode  
On-Chip PLL Frequency  
fsys  
MHz  
0
80  
80  
fref / 32  
Loss of Reference Frequency 2, 4  
Self Clocked Mode Frequency 3, 4  
Crystal Start-up Time 4, 5  
fLOR  
fSCM  
tcst  
100  
1
1000  
5
kHz  
MHz  
ms  
10  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
Table 27. PLL Electrical Specifications (continued)  
(VDD and VDDPLL = 2.7 to 3.6 V, VSS = VSSPLL = 0 V)  
Characteristic  
Symbol  
Min  
Max  
Unit  
EXTAL Input High Voltage  
External reference  
VIHEXT  
V
2.0  
VDD  
EXTAL Input Low Voltage  
External reference  
VILEXT  
V
VSS  
0.8  
500  
60  
PLL Lock Time4,6  
tlpll  
tdc  
µs  
Duty Cycle of reference 4  
Frequency un-LOCK Range  
Frequency LOCK Range  
40  
% fref  
% fref  
% fref  
fUL  
- 1.5  
- 0.75  
1.5  
fLCK  
Cjitter  
0.75  
CLKOUT Period Jitter 4, 5, 7, 7,8, Measured at fSYS Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
Long Term Jitter (Averaged over 2 ms interval)  
10  
.01  
% fsys  
MHz  
On-chip oscillator frequency  
foco  
7.84  
8.16  
NOTES:  
1
All internal registers retain data at 0 Hz.  
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self  
clocked mode.  
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below  
fLOR with default MFD/RFD settings.  
This parameter is characterized before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fsys. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the Cjitter percentage for a given interval  
2
3
4
5
6
7
8
Based on slow system clock of 40 MHz measured at fsys max.  
2.8 General Purpose I/O Timing  
GPIO can be configured for certain pins of the QSPI, DDR Control, TIMERS, UARTS, FEC0, FEC1,  
Interrupts and USB interfaces. When in GPIO mode, the timing specification for these pins is given in  
Table 28 and Figure 5.  
Table 28. GPIO Timing  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
CLKOUT High to GPIO Output Valid  
CLKOUT High to GPIO Output Invalid  
GPIO Input Valid to CLKOUT High  
CLKOUT High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
-
10  
-
ns  
ns  
ns  
ns  
1.5  
9
-
1.5  
-
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
CLKOUT  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 5. GPIO Timing  
2.9 Reset Timing  
Table 29. Reset and Configuration Override Timing  
(VDD = 2.7 to 3.6 V, VSS = 0 V, TA = TL to TH)1  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RSTI Input valid to CLKOUT High  
R2 CLKOUT High to RSTI Input invalid  
R3 RSTI Input valid Time 2  
tRVCH  
tCHRI  
9
1.5  
5
-
-
ns  
ns  
tRIVT  
-
tCYC  
ns  
R4 CLKOUT High to RSTO Valid  
tCHROV  
-
10  
N1 OTES:  
All AC timing is shown with respect to 50% O VDD levels unless otherwise noted.  
During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to  
the system. Thus, RSTI must be held a minimum of 100 ns.  
2
CLKOUT  
1R1  
R2  
R3  
RSTI  
R4  
R4  
RSTO  
Figure 6. RSTI and Configuration Override Timing  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
35  
Preliminary Electrical Characteristics  
2.10 I2C Input/Output Timing Specifications  
2
Table 30 lists specifications for the I C input timing parameters shown in Figure 7.  
2
Table 30. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
11  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2 x tCYC  
8 x tCYC  
1
ns  
ns  
Clock low period  
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
mS  
ns  
0
1
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
mS  
ns  
4 x tCYC  
0
Data setup time  
ns  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2 x tCYC  
2 x tCYC  
ns  
ns  
2
Table 31 lists specifications for the I C output timing parameters shown in Figure 7.  
2
Table 31. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
111  
I21  
I32  
6 x tCYC  
10 x tCYC  
ns  
ns  
µS  
Clock low period  
I2C_SCL/I2C_SDA rise time  
(VIL = 0.5 V to VIH = 2.4 V)  
I41  
I53  
Data hold time  
7 x tCYC  
3
ns  
ns  
I2C_SCL/I2C_SDA fall time  
(VIH = 2.4 V to VIL = 0.5 V)  
I61  
I71  
I81  
Clock high time  
Data setup time  
10 x tCYC  
2 x tCYC  
ns  
ns  
ns  
Start condition setup time (for repeated start  
condition only)  
20 x tCYC  
I91  
Stop condition setup time  
10 x tCYC  
ns  
N1 OTES:  
Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with  
the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 31. The  
I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL  
low period. The actual position is affected by the prescale and division values programmed into the  
IFDR; however, the numbers given in Table 31 are minimum values.  
Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time SCL or SDA take to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
Figure 7 shows timing for the values in Table 30 and Table 31.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
36  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
I2  
I6  
I5  
SCL  
SDA  
I3  
I1  
I4  
I8  
I9  
I7  
2
Figure 7. I C Input/Output Timings  
2.11 Analog-to-Digital Converter (ADC) Parameters  
Table 32 lists specifications for the analog-to-digital converter.  
1
Table 32. ADC Parameters  
Name  
Characteristic  
Low reference voltage  
Min  
Typical  
Max  
Unit  
VREFL  
VREFH  
VDDA  
VADIN  
RES  
VSS  
VREFL  
3.0  
VREFH  
VDDA  
3.6  
V
V
High reference voltage  
ADC analog supply voltage  
Input voltages  
3.3  
V
VREFL  
12  
VREFH  
12  
V
Resolution  
2.5  
Bits  
LSB3  
LSB  
LSB  
INL  
Integral Non-Linearity (Full input signal range)2  
Integral Non-Linearity (10% to 90% input signal range)4  
Differential Non-Linearity  
Monotonicity  
3
INL  
2.5  
3
DNL  
-1 < DNL < +1  
<+1  
GUARANTEED  
fADIC  
RAD  
ADC internal clock  
0.1  
VREFL  
5.0  
VREFH  
13  
MHz  
Conversion Range  
V
tADPU  
tREC  
tADC  
tADS  
CADI  
XIN  
ADC power-up time5  
Recovery from auto standby  
Conversion time  
6
tAIC cycles6  
0
1
tAIC cycles  
6
tAIC cycles  
Sample time  
1
tAIC cycles  
Input capacitance  
See Figure 8  
pF  
Input impedance  
See Figure 8  
IADI  
Input injection current7, per pin  
3
mA  
µ
IVREFH  
VREFH current  
0
VOFFSET Offset voltage internal reference  
EGAIN Gain Error (transfer path)  
VOFFSET Offset voltage external reference  
8
15  
mV  
.99  
1
3
1.01  
TBD  
mV  
dB  
SNR  
Signal-to-Noise ratio  
TBD  
62 to 66  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
37  
Preliminary Electrical Characteristics  
1
Table 32. ADC Parameters (continued)  
Name  
Characteristic  
Total Harmonic Distortion  
Min  
Typical  
Max  
Unit  
THD  
SFDR  
SINAD  
ENOB  
TBD  
-75  
dB  
dB  
Spurious Free Dynamic Range  
Signal-to-Noise plus Distortion  
Effective Number OF Bits  
TBD  
TBD  
9.1  
67 to 70.3  
61 to 63.9  
10.6  
dB  
Bits  
NOTES:  
1
All measurements are preliminary pending full characterization, and were made at VDD = 3.3V, VREFH = 3.3V, and VREFL  
=
ground  
2
3
4
5
6
7
INL measured from VIN = VREFL to VIN = VREFH  
LSB = Least Significant Bit  
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH  
Includes power-up of ADC and VREF  
ADC clock cycles  
The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the  
ADC  
2.11.1 Equivalent Circuit for ADC Inputs  
Figure 10-17 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at  
the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and  
hold circuit moves to (VREFH-VREFL)/2, while the other charges to the analog input voltage. When the  
switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about (VREFH-VREFL)/2. The switches switch on  
every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there are  
additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the  
S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is  
that there is an on-going input current, which is a function of the analog input voltage, VREF and the ADC  
clock frequency.  
125ESD Resistor  
8pF noise damping capacitor  
3
4
Analog Input  
S1  
C1  
C2  
S/H  
S3  
S2  
(VREFH- VREFL )/ 2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF  
3. Equivalent resistance for the channel select mux; 100 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1.4pF  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
38  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
1
5. Equivalent input impedance, when the input is selected =  
(ADC Clock Rate) x 1.4 x 10-12  
Figure 8. Equivalent Circuit for A/D Loading  
2.12 DMA Timers Timing Specifications  
Table 33 lists timer module AC timings.  
Table 33. Timer Module AC Timing Specifications  
Name  
Characteristic1  
Min  
Max  
Unit  
T1  
T2  
DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time  
DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width  
3 x tCYC  
1 x tCYC  
ns  
ns  
N1 OTES:  
All timing references to CLKOUT are given to its rising edge.  
2.13 QSPI Electrical Specifications  
Table 34 lists QSPI timings.  
Table 34. QSPI Modules AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
The values in Table 34 correspond to Figure 9.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
39  
Preliminary Electrical Characteristics  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QS3  
QS4  
QS5  
QSPI_DIN  
Figure 9. QSPI Timing  
2.14 JTAG and Boundary Scan Timing  
Table 35. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
fJCYC  
tJCYC  
DC  
1/4  
-
fsys/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK Cycle Period  
4 x tCYC  
J3  
TCLK Clock Pulse Width  
tJCW  
26  
0
-
J4  
TCLK Rise and Fall Times  
tJCRF  
3
-
J5  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
TMS, TDI Input Data Hold Time after TCLK Rise  
TCLK Low to TDO Data Valid  
tBSDST  
tBSDHT  
tBSDV  
4
J6  
26  
0
-
J7  
33  
33  
-
J8  
tBSDZ  
0
J9  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
J10  
J11  
J12  
J13  
10  
0
-
26  
8
-
TCLK Low to TDO High Z  
0
TRST Assert Time  
100  
10  
J14  
TRST Setup Time (Negation) to TCLK High  
-
N1 OTES:  
JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
40  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 10. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 11. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 12. Test Access Port Timing  
TCLK  
TRST  
14  
13  
Figure 13. TRST Timing  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
41  
Preliminary Electrical Characteristics  
2.15 Debug AC Timing Specifications  
Table 36 lists specifications for the debug AC timing parameters shown in Figure 15.  
Table 36. Debug AC Timing Specification  
166 MHz  
Num  
Characteristic  
Units  
Min  
Max  
D0  
D1  
PSTCLK cycle time  
0.5  
tCYC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PST, DDATA to CLKOUT setup  
CLKOUT to PST, DDATA hold  
DSI-to-DSCLK setup  
4
1.5  
D2  
D3  
1 x tCYC  
4 x tCYC  
5 x tCYC  
4
D41  
DSCLK-to-DSO hold  
D5  
DSCLK cycle time  
D6  
BKPT input data setup time to CLKOUT Rise  
BKPT input data hold time to CLKOUT Rise  
CLKOUT high to BKPT high Z  
D7  
1.5  
D8  
0.0  
10.0  
N1 OTES:  
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative  
to the rising edge of CLKOUT.  
Figure 14 shows real-time trace timing for the values in Table 36.  
CLKOUT  
D1  
D2  
PST[3:0]  
DDATA[3:0]  
Figure 14. Real-Time Trace AC Timing  
Figure 15 shows BDM serial port AC timing for the values in Table 36.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
42  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
CLKOUT  
DSCLK  
DSI  
D5  
D3  
Current  
Past  
Next  
D4  
DSO  
Current  
Figure 15. BDM Serial Port AC Timing  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
43  
Mechanical Outline Drawings  
3 Mechanical Outline Drawings  
This section describes the physical properties of the MCF5213 and its derivatives.  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
44  
Freescale Semiconductor  
Preliminary  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
45  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
46  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
47  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
48  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
49  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
50  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
51  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
52  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
53  
Mechanical Outline Drawings  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
54  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY LEFT BLANK  
MCF5213 Microcontroller Family Hardware Specification, Rev. 1.2  
Preliminary  
Freescale Semiconductor  
55  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
support.asia@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MCF5213EC  
Rev. 1.2, 01/2006  

相关型号:

MCF5213CAF66

ColdFire Microcontroller
FREESCALE

MCF5213CAF66

MCF5213 KIRIN
NXP

MCF5213CAF66R

RISC Microcontroller
NXP

MCF5213CAF80

ColdFire Microcontroller
FREESCALE

MCF5213CAF80

32-BIT, FLASH, 80MHz, RISC MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, 0.50 PITCH, ROHS COMPLIANT, LQFP-100
NXP

MCF5213LCVM66

ColdFire Microcontroller
FREESCALE

MCF5213LCVM66

MCF5213 KIRIN
NXP

MCF5213LCVM66J

IC,MICROCONTROLLER,32-BIT,COLDFIRE CPU,CMOS,BGA,81PIN,PLASTIC
NXP

MCF5213LCVM80

ColdFire Microcontroller
FREESCALE

MCF5213LCVM80

MCF5213 KIRIN
NXP

MCF5213LCVM80J

IC,MICROCONTROLLER,32-BIT,COLDFIRE CPU,CMOS,BGA,81PIN,PLASTIC
NXP

MCF5213_07

ColdFire Microcontroller
FREESCALE