MCF5372 [FREESCALE]

Microprocessor Data Sheet; 微处理器数据表
MCF5372
型号: MCF5372
厂家: Freescale    Freescale
描述:

Microprocessor Data Sheet
微处理器数据表

微处理器
文件: 总42页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF5373DS  
Rev. 0.3, 04/2006  
Freescale Semiconductor  
Data Sheet: Advance Information  
MCF5373 ColdFire®  
Microprocessor Data Sheet  
Supports MCF5372L, MCF5372, MCF5373L, & MCF5373  
by: Microcontroller Division  
Table of Contents  
The MCF537x devices are a family of highly-integrated  
32-bit microprocessors based on the Version 3 ColdFire  
microarchitecture. All MCF537x devices contain a  
32-Kbyte internal SRAM, a Fast Ethernet controller, a  
2-bank SDR/DDR SDRAM controller, a 16-channel  
DMA controller, up to three UARTs, a queued SPI, as  
well as other peripherals that enable the MCF537x  
family for use in general purpose industrial control  
applications. Optional peripherals include USB host and  
On-the-Go controllers and cryptography hardware  
accelerators.  
1
2
3
4
5
6
MCF537x Family Configurations .........................2  
Ordering Information ...........................................3  
Signal Descriptions..............................................3  
Mechanicals and Pinouts ....................................8  
Preliminary Electrical Characteristics................14  
Revision History ................................................40  
This document provides an overview of the MCF537x  
microprocessor family, focusing on its highly diverse  
feature set. It was written from the perspective of the  
MCF5373L device. However, it also pertains to the  
MCF5372L, MCF5372, and MCF5373. See the  
following section for a summary of differences between  
the various devices of the MCF537x family.  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
• Preliminary  
MCF537x Family Configurations  
1 MCF537x Family Configurations  
The following table compares the various device derivatives available within the MCF537x family.  
Table 1. MCF537x Family Configurations  
Module  
MCF5372 MCF5372L MCF5373 MCF5373L  
ColdFire Version 3 Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
x
x
x
x
Core (System) Clock  
up to  
up to  
up to  
up to  
180 MHz  
240 MHz  
180 MHz  
240 MHz  
Peripheral and External Bus Clock  
up to  
up to  
up to  
up to  
(Core clock ÷ 3)  
60 MHz  
80 MHz  
60 MHz  
80 MHz  
Performance (Dhrystone/2.1 MIPS)  
Instruction/Data Cache  
Static RAM (SRAM)  
up to 158 up to 211 up to 158 up to 211  
16 Kbytes  
32 Kbytes  
SDR/DDR SDRAM Controller  
USB 2.0 Host  
x
x
x
x
x
x
USB 2.0 On-the-Go  
x
x
Synchronous Serial Interface (SSI)  
Fast Ethernet Controller (FEC)  
Cryptography Hardware Accelerators  
UARTs  
x
x
x
x
x
x
x
x
x
x
3
3
3
3
I2C  
x
x
x
x
QSPI  
x
x
x
x
PWM Module  
x
x
Real Time Clock  
x
x
x
x
32-bit DMA Timers  
4
4
4
4
Watchdog Timer (WDT)  
Periodic Interrupt Timers (PIT)  
Edge Port Module (EPORT)  
Interrupt Controllers (INTC)  
16-channel Direct Memory Access (DMA)  
FlexBus External Interface  
General Purpose I/O (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
x
x
x
x
4
4
4
4
x
x
x
x
2
2
2
2
x
x
x
x
x
x
up to 62  
x
x
x
up to 62  
x
up to 46  
x
up to 46  
x
160 QFP  
196  
160 QFP  
196  
MAPBGA  
MAPBGA  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
2
Freescale Semiconductor  
Ordering Information  
2 Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part  
Number  
Description  
Speed  
Temperature  
MCF5372CAB180  
MCF5372LCVM240  
MCF5373CAB180  
MCF5373LCVM240  
MCF5372 RISC Microprocessor, 160 QFP  
MCF5372 RISC Microprocessor, 196 MAPBGA  
MCF5373 RISC Microprocessor, 160 QFP  
MCF5373 RISC Microprocessor, 256 MAPBGA  
180 MHz  
240 MHz  
180 MHz  
240 MHz  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
3 Signal Descriptions  
The following table lists all the MCF537x pins grouped by function. The “Dir” column is the direction for  
the primary function of the pin only. Refer to Section 4, “Mechanicals and Pinouts,” for package diagrams.  
For a more detailed discussion of the MCF537x signals, consult the MCF5373 Reference Manual  
(MCF5373RM).  
NOTE  
In this table and throughout this document a single signal within a group is  
designated without square brackets (i.e., A23), while designations for  
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to  
include all signals within the two bracketed numbers when these numbers  
are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality.  
Pins that are muxed with GPIO will default to their GPIO functionality.  
Table 3. MCF5372/3 Signal Information and Muxing  
MCF5372  
MCF5373  
160 QFP  
MCF5372L  
MCF5373L  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
Reset  
RESET2  
RSTOUT  
I
95  
86  
K13  
L12  
O
Clock  
EXTAL  
XTAL2  
I
91  
93  
L14  
K14  
P13  
N13  
O
I
EXTAL32K  
XTAL32K  
O
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
3
Signal Descriptions  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF5373L  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
MCF5373  
160 QFP  
FB_CLK  
O
40  
N1  
Mode Selection  
RCON2  
I
I
72  
92  
P8  
DRAMSEL  
J11  
FlexBus  
A[23:22]  
A[21:16]  
FB_CS[5:4]  
O
O
134, 133  
132–127  
A9, B9  
C9, D9, A10,  
B10, C10, D10  
A[15:14]  
A[13:11]  
A10  
SD_BA[1:0]  
SD_A[13:11]  
O
O
O
O
126, 123  
120–118  
11  
A11, B11  
C11, A12, B12  
A13  
A[9:0]  
SD_A[9:0]  
116–107  
A14, B14, B13,  
C12, D11, C14,  
C13, D14–D12  
D[31:16]  
D[15:1]  
SD_D[31:16]3  
FB_D[31:17]3  
O
O
27–34, 46–53  
16–23, 57–63  
J2, J1, K4–K1,  
L4, L3, N2, P1,  
P2, N3, L5, P3,  
N4, P4  
F2, F1, G4–G1,  
H4, H3, L6, M6,  
N6, P6, L7, M7,  
N7  
D02  
BE/BWE[3:0]  
OE  
FB_D[16]3  
O
O
O
I
64  
P7  
PBE[3:0]  
SD_DQM[3:0]  
26, 54, 24, 56  
J3, M5, H2, P5  
PBUSCTL3  
PBUSCTL2  
PBUSCTL1  
PBUSCTL0  
66  
106  
65  
M8  
E14  
L8  
TA2  
R/W  
O
O
TS  
DACK0  
12  
E2  
Chip Selects  
FB_CS[5:4]  
FB_CS[3:2]  
FB_CS1  
PCS[5:4]  
PCS[3:2]  
PCS1  
O
O
O
O
D8, C8  
B8, A8  
D7  
135  
136  
FB_CS0  
C7  
SDRAM Controller  
SD_A10  
SD_CKE  
O
O
43  
14  
M2  
F4  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
4
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF5373L  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
MCF5373  
160 QFP  
SD_CLK  
SD_CLK  
O
O
O
O
O
O
O
O
O
37  
38  
15  
25  
55  
44  
45  
35  
13  
L1  
M1  
F3  
H1  
N5  
M3  
M4  
L2  
SD_CS0  
SD_DQS3  
SD_DQS2  
SD_SCAS  
SD_SRAS  
SD_SDR_DQS  
SD_WE  
E1  
External Interrupts Port4  
IRQ72  
IRQ62  
PIRQ72  
PIRQ62  
I
I
102  
F13  
F12  
USBHOST_  
VBUS_EN2  
IRQ52  
PIRQ52  
USBHOST_  
VBUS_OC2  
I
F11  
IRQ42  
IRQ32  
IRQ22  
IRQ12  
PIRQ42  
PIRQ32  
PIRQ22  
PIRQ12  
SSI_MCLK2  
I
I
I
I
101  
G14  
G13  
G12  
G11  
USB_CLKIN2  
DREQ12  
SSI_CLKIN  
100  
FEC  
FEC_MDC  
FEC_MDIO  
FEC_COL  
PFECI2C3  
PFECI2C2  
PFECH7  
PFECH6  
PFECH5  
PFECH4  
PFECH[3:0]  
PFECL7  
I2C_SCL2  
O
I/O  
I
4
3
B1  
I2C_SDA2  
A1  
144  
B6  
FEC_CRS  
I
145  
A6  
FEC_RXCLK  
FEC_RXDV  
FEC_RXD[3:0]  
FEC_RXER  
FEC_TXCLK  
FEC_TXEN  
FEC_TXER  
FEC_TXD[3:0]  
I
146  
A5  
I
147  
B5  
I
148–151  
152  
C5, D5, A4, B4  
I
C4  
PFECL6  
I
153  
A3  
PFECL5  
O
O
O
154  
B3  
A2  
PFECL4  
155  
PFECL[3:0]  
157, 158, 1, 2  
D4, C3, B2, C2  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
5
Signal Descriptions  
Signal Name  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF5373L  
196 MAPBGA  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
MCF5373  
160 QFP  
USB Host & USB On-the-Go  
USBOTG_M  
USBOTG_P  
USBHOST_M  
USBHOST_P  
I/O  
I/O  
I/O  
I/O  
H14  
H13  
J13  
J12  
PWM  
PWM7  
PWM5  
PWM3  
PWM1  
PPWM7  
PPWM5  
PPWM3  
PPWM1  
I/O  
I/O  
I/O  
I/O  
E13  
E12  
E11  
F14  
DT3OUT  
DT2OUT  
DT3IN  
DT2IN  
SSI  
The SSI signals do not have dedicated bond pads. Please refer to the following pins for muxing: IRQ4 for SSI_MCLK,  
IRQ1 for SSI_CLKIN, U1CTS for SSI_BCLK, U1RTS for SSI_FS, U1RXD for SSI_RXD, and U1TXD for SSI_TXD  
I2C  
I2C_SCL2  
I2C_SDA2  
PFECI2C1  
PFECI2C0  
U2TXD  
U2RXD  
I/O  
I/O  
E3  
E4  
DMA  
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:  
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.  
QSPI  
QSPI_CS2  
QSPI_CS1  
PQSPI5  
PQSPI4  
U2RTS  
PWM7  
O
O
78  
N12  
M12  
USBOTG_  
PU_EN  
QSPI_CS0  
QSPI_CLK  
QSPI_DIN  
PQSPI3  
PQSPI2  
PQSPI1  
PQSPI0  
PWM5  
I2C_SCL2  
U2CTS  
O
O
I
77  
75  
76  
M11  
P12  
P11  
N11  
QSPI_DOUT  
I2C_SDA2  
O
UARTs  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
PUARTL7  
PUARTL6  
PUARTL5  
PUARTL4  
PUARTL3  
SSI_BCLK  
SSI_FS  
SSI_TXD2  
SSI_RXD2  
I
O
O
I
143  
142  
141  
140  
85  
C6  
D6  
A7  
B7  
I
M14  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
6
Freescale Semiconductor  
Signal Descriptions  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF5373L  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
MCF5373  
160 QFP  
U0RTS  
U0TXD  
U0RXD  
PUARTL2  
PUARTL1  
PUARTL0  
O
O
I
84  
83  
80  
M13  
N14  
P14  
Note: The UART2 signals are multiplexed on the QSPI, DMA Timers, and I2C pins.  
DMA Timers  
DT3IN  
DT2IN  
DT1IN  
DT0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
U2RXD  
U2TXD  
DACK1  
DREQ02  
I
I
I
I
8
7
6
5
D1  
C1  
D2  
D3  
BDM/JTAG5  
JTAG_EN6  
DSCLK  
PSTCLK  
BKPT  
TRST2  
TCLK2  
TMS2  
TDI2  
TDO  
I
I
96  
88  
70  
87  
90  
74  
G10  
K11  
O
I
N8  
L13  
DSI  
I
K12  
DSO  
O
O
O
L11  
DDATA[3:0]  
PST[3:0]  
L9, M9, N9, P9  
L10, M10, N10,  
P10  
ALLPST  
TEST6  
EVDD  
IVDD  
O
I
73  
Test  
124  
E10  
Power Supplies  
9, 69, 71, 81, 94, E6, E7, F5–F7,  
103, 139, 160  
G5, H10, J8,  
K8–K9  
36, 79, 97, 125, E5, J9, K5, K10  
156  
PLL_VDD  
SD_VDD  
99  
J10  
11, 39, 41, 67, E8–E9, F8–F10,  
105, 121, 137  
J4–J7, H5, K6,  
K7  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
7
Mechanicals and Pinouts  
Signal Name  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF5373L  
196 MAPBGA  
GPIO  
Alternate 1  
Alternate 2 Dir.1  
MCF5373  
160 QFP  
USBOTG_VDD  
VSS  
H12  
10, 42, 68, 82, G6–G9, H6–H9  
89, 104, 122,  
138, 159  
PLL_VSS  
98  
H11  
J14  
USBHOST_VSS  
NOTES:  
1
Refers to pin’s primary function.  
Pull-up enabled internally on this signal for this mode.  
2
3
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by  
negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.  
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the  
alternate functions.  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for  
assigning these pins.  
4
5
6
Pull-down enabled internally on this signal for this mode.  
4 Mechanicals and Pinouts  
This section contains drawings showing the pinout and the packaging and mechanical characteristics of  
the MCF537x devices.  
NOTE  
The mechanical drawings are the latest revisions at the time of publication  
of this document. The most up-to-date mechanical drawings can be found at  
the product summary page located at http://www.freescale.com/coldfire.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
8
Freescale Semiconductor  
Preliminary  
Mechanicals and Pinouts  
4.1 Pinout—196 MAPBGA  
The pinout for the MCF5373LCVM240 and MCF5372LCVM240 packages are shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
FEC_  
MDIO  
FEC_  
TXER  
FEC_  
TXCLK  
FEC_  
RXD1  
FEC_  
RXCLK  
FEC_  
CRS  
A
B
C
D
E
F
U1TXD FB_CS2  
U1RXD FB_CS3  
A23  
A19  
A15  
A12  
A10  
A9  
A
B
C
D
E
F
FEC_  
MDC  
FEC_  
TXD1  
FEC_  
TXEN  
FEC_  
RXD0  
FEC_  
RXDV  
FEC_  
COL  
A22/  
A21  
A20  
A18  
A17  
A14  
A13  
A11  
A6  
A7  
A3  
A8  
A4  
FEC_  
TXD0  
FEC_  
TXD2  
FEC_  
RXER  
FEC_  
RXD3  
DT2IN  
DT3IN  
SD_WE  
D14  
U1CTS FB_CS0 FB_CS4  
U1RTS FB_CS1 FB_CS5  
FEC_  
TXD3  
FEC_  
RXD2  
DT1IN  
TS  
DT0IN  
A16  
A5  
A0  
A1  
A2  
I2C_SCL I2C_SDA IVDD  
SD_CS0 SD_CKE EVDD  
EVDD  
EVDD  
VSS  
EVDD SD_VDD SD_VDD  
TEST  
PWM3  
PWM5  
IRQ6  
IRQ2  
PWM7  
IRQ7  
IRQ3  
TA  
D15  
D11  
EVDD SD_VDD SD_VDD SD_VDD IRQ5  
JTAG_  
PWM1  
IRQ4  
G
H
J
D10  
D12  
D8  
D13  
D9  
EVDD  
VSS  
VSS  
VSS  
IRQ1  
G
H
J
EN  
SD_  
DQS3  
BE/  
BWE1  
PLL_ USBOTG  
VSS  
USB  
OTG_P  
USB  
OTG_M  
SD_VDD  
VSS  
VSS  
VSS  
VSS  
EVDD  
_VDD  
BE/  
BWE3  
PLL_  
VDD  
DRAM  
SEL  
USB  
USB  
USBHOST  
_VSS  
D30  
D26  
D31  
D27  
SD_VDD SD_VDD SD_VDD SD_VDD EVDD  
IVDD  
HOST_P HOST_M  
TRST/  
DSCLK  
K
L
D28  
D24  
D29  
D25  
IVDD SD_VDD SD_VDD EVDD  
EVDD  
IVDD  
PST3  
PST2  
PST1  
TDI/DSI RESET  
XTAL  
EXTAL  
U0CTS  
U0TXD  
K
L
SD_DR_  
DQS  
TDO/  
DSO  
TMS/  
RSTOUT  
SD_CLK  
D19  
D7  
D6  
D5  
D3  
D2  
D1  
R/W  
OE  
DDATA3  
DDATA2  
DDATA1  
BKPT  
BE/  
BWE2  
QSPI_  
CS0  
QSPI_  
U0RTS  
CS1  
M
N
P
SD_CLK SD_A10 SD_CAS SD_RAS  
M
N
P
SD_  
DQS2  
TCLK/  
PSTCLK  
QSPI_  
DOUT  
QSPI_  
CS2  
XTAL  
32K  
FB_CLK  
D23  
D20  
D17  
BE/  
BWE0  
QSPI_  
DIN  
QSPI_  
CLK  
EXTAL  
32K  
D22  
1
D21  
2
D18  
3
D16  
4
D4  
6
D0  
7
RCON DDATA0  
PST0  
10  
U0RXD  
14  
5
8
9
11  
12  
13  
Figure 1. MCF5373LCVM240 Pinout Top View (196 MAPBGA)  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
9
Mechanicals and Pinouts  
4.2 Package Dimensions—196 MAPBGA  
Figure 2 shows the MCF5373LCVM240 and MCF5372LCVM240 package dimensions.  
NOTES:  
D
X
Y
1. Dimensions are in millimeters.  
2. Interpretdimensionsandtolerances  
per ASME Y14.5M, 1994.  
Laser mark for pin 1  
identification in  
this area  
3. Dimension B is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
4. Datum Z (seating plane) is defined  
bythesphericalcrownsofthesolder  
balls.  
M
K
5. Parallelism measurement shall  
exclude any effect of mark on top  
surface of package.  
Millimeters  
DIM Min Max  
A 1.32 1.75  
A1 0.27 0.47  
A2 1.18 REF  
E
b
D
E
e
0.35 0.65  
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
M
Top View  
0.20  
13X e  
S
Metalized mark for  
pin 1 identification  
in this area  
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
13X e  
A2  
A
G
H
J
A1  
0.15 Z  
4
Z
K
L
Detail K  
Rotated 90 Clockwise  
°
M
N
P
3
196X  
b
Bottom View  
0.30 Z X Y  
0.10 Z  
View M-M  
Figure 2. 196 MAPBGA Package Dimensions (Case No. 1128A-01)  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
10  
Freescale Semiconductor  
Mechanicals and Pinouts  
4.3 Pinout—160 QFP  
The pinout for the MCF5372CAB180 and MCF5373CAB180 packages is shown below.  
FEC_TXD1  
FEC_TXD0  
FEC_MDIO  
FEC_MDC  
DT0IN  
DT1IN  
DT2IN  
DT3IN  
EVDD  
VSS 10  
SD_VDD 11  
TS 12  
1
2
3
4
5
6
7
8
9
120 A13  
119 A12  
118 A11  
117 A10  
116 A9  
115 A8  
114 A7  
113 A6  
112 A5  
111 A4  
110 A3  
109 A2  
108 A1  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SD_WE  
SD_CKE  
SD_CS0  
D15  
107 A0  
106 TA  
105 SD_VDD  
104 VSS  
D14  
103 EVDD  
102 IRQ7  
101 IRQ4  
100 IRQ1  
99 PLL_VDD  
98 PLL_VSS  
97 IVDD  
D13  
D12  
D11  
D10  
D9  
D8  
BE/BWE1  
SD_DQS1/3  
BE/BWE3  
D31  
96 JTAG_EN  
95 RESET  
94 EVDD  
93 XTAL  
D30  
92 DRAMSEL  
91 EXTAL  
90 TDI/DSI  
89 VSS  
D29  
D28  
D27  
D26  
88 TRST/DSCLK  
87 TMS/BKPT  
86 RSTOUT  
85 U0CTS  
84 U0RTS  
83 U0TXD  
82 VSS  
D25  
D24  
SD_DR_DQS  
IVDD  
SD_CLK  
SD_CLK  
SD_VDD  
FB_CLK  
81 EVDD  
Figure 3. MCF5372CAB180 and MCF5373CAB180 Pinout Top View (160 QFP)  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
11  
Mechanicals and Pinouts  
4.4 Package Dimensions—160 QFP  
Figure 4 and Figure 5 show the MCF5372CAB180 and MCF5373CAB180 package dimensions.  
Top View  
Figure 4. 160QFP Package Dimensions (Sheet 1 of 2)  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
12  
Freescale Semiconductor  
Mechanicals and Pinouts  
Figure 5. 160QFP Package Dimensions (Sheet 2 of 2)  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
13  
Preliminary Electrical Characteristics  
5 Preliminary Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5373  
microcontroller unit. This section contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications of MCF5373.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however  
for production silicon these specifications will be met. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this MCU document supersede any values  
found in the module specifications.  
5.1 Maximum Ratings  
1, 2  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
IVDD  
EVDD  
SDVDD  
PLLVDD  
VIN  
– 0.5 to +2.0  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to +2.0  
– 0.3 to +3.6  
25  
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
PLL Supply Voltage  
V
V
Digital Input Voltage 3  
V
Instantaneous Maximum Current  
ID  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
TA  
(TL - TH)  
– 40 to +85  
°C  
°C  
Storage Temperature Range  
N1 OTES:  
Tstg  
– 55 to +150  
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is  
not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application of  
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,  
either VSS or EVDD).  
2
3
4
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
then use the larger of the two values.  
All functional non-supply pins are internally clamped to VSS and EVDD  
.
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
14  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Power supply must maintain regulation within operating EVDD range during instantaneous  
5
and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater  
than IDD, the injection current may flow out of EVDD and could result in external power supply  
going out of regulation. Insure external EVDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power (ex; no  
clock). Power supply must maintain regulation within operating EVDD range during  
instantaneous and operating maximum current conditions.  
5.2 Thermal Characteristics  
Table 5. Thermal Characteristics  
Characteristic  
Symbol  
256MBGA 196MBGA  
160QFP  
Unit  
Junction to ambient, natural convection  
Four layer board  
(2s2p)  
θJMA  
261,2  
321,2  
401,2  
°C/W  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
θJMA  
231,2  
291,2  
361,2  
°C/W  
Junction to board  
θJB  
θJC  
Ψjt  
Tj  
153  
104  
21,5  
105  
203  
104  
21,5  
105  
253  
104  
21,5  
105  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
N1 OTES:  
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction  
temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device  
junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt  
parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
2
3
4
5
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
T
= Ambient Temperature, °C  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= P + P  
A
Q
JMA  
P
D
INT  
I/O  
P
= I × IV , Watts - Chip Internal Power  
DD DD  
INT  
P
= Power Dissipation on Input and Output Pins — User Determined  
I/O  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
15  
Preliminary  
Preliminary Electrical Characteristics  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if  
I/O  
INT  
D
J
P
is neglected) is:  
I/O  
K
--------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
5.3 ESD Protection  
1, 2  
Table 6. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
N1 OTES:  
HBM  
2000  
V
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4 DC Electrical Specifications  
Table 7. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
PLL Supply Voltage  
IVDD  
PLLVDD  
EVDD  
1.4  
1.4  
1.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
1.6  
CMOS Pad Supply Voltage  
3.0  
3.6  
1.95  
Mobile DDR/Bus Pad Supply Voltage  
DDR/Bus Pad Supply Voltage  
SDR/Bus Pad Supply Voltage  
USB Supply Voltage  
SDVDD  
SDVDD  
SDVDD  
USBVDD  
EVIH  
1.65  
2.25  
3.0  
2.75  
3.6  
3.0  
3.6  
CMOS Input High Voltage  
2
EVDD + 0.05  
0.8  
CMOS Input Low Voltage  
EVIL  
-0.05  
TBD  
-0.05  
2
Mobile DDR/Bus Input High Voltage  
Mobile DDR/Bus Input Low Voltage  
DDR/Bus Input High Voltage  
DDR/Bus Input Low Voltage  
SDVIH  
SDVIL  
SDVIH  
SDVIL  
SDVDD + 0.05  
TBD  
SDVDD + 0.05  
0.8  
-0.05  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
16  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 7. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Input Leakage Current  
Iin  
-1.0  
1.0  
µA  
Vin = VDD or VSS, Input-only pins  
CMOS Output High Voltage  
EVOH  
EVOL  
EVDD - 0.4  
0.4  
V
V
V
V
IOH = –5.0 mA  
CMOS Output Low Voltage  
SDVDD - 0.4  
IOL = 5.0 mA  
DDR/Bus Output High Voltage  
IOH = –5.0 mA  
SDVOH  
SDVOL  
DDR/Bus Output Low Voltage  
0.4  
-130  
IOL = 5.0 mA  
Weak Internal Pull-Up Device Current, tested at VIL Max.1  
IAPU  
Cin  
-10  
µA  
Input Capacitance 2  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
NOTES:  
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
5.4.1 PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins.  
DD  
The filter shown in Figure 6 should be connected between the board V and the PLLV pins. The  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board VDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 6. System PLL V Power Filter  
DD  
5.4.2 USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in  
Figure 7 should be connected between the board EV or IV and each of the USBV pins. The  
DD  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated USBV pin as possible.  
DD  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
17  
Preliminary  
Preliminary Electrical Characteristics  
0 Ω  
Board EVDD/IVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 7. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also  
recommended in parallel with those shown.  
5.4.3 Supply Voltage Sequencing and Separation Cautions  
Figure 8 shows situations in sequencing the I/O V (EV ), SDRAM V (SDV ), PLL V  
DD  
DD  
DD  
DD  
DD  
(PLLV ), and Core V (IV ).  
DD  
DD  
DD  
EVDD, SDVDD, USBVDD  
SDVDD (2.5V/1.8V)  
3.3V  
2.5V  
Supplies Stable  
IVDD, PLLVDD  
1.5V  
1
2
0
Time  
Notes:  
1. IVDD should not exceed EVDD, SDVDD or PLLVDD by more than  
0.4 V at any time, including power-up.  
2. Recommended that IVDD/PLLVDD should track EVDD/SDVDD up to  
0.9 V, then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (EVDD, SDVDD,  
IVDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.  
4. Use 1 ms or slower rise time for all supplies.  
Figure 8. Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences.  
DD  
DD  
Both SDV (2.5V or 3.3V) and EV are specified relative to IV .  
DD  
DD  
DD  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
18  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.4.3.1 Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, then the sense circuits in the I/O pads will cause all  
DD  
DD  
DD  
pad output drivers connected to the EV /SDV to be in a high impedance state. There is no limit on  
DD  
DD  
how long after EV /SDV powers up before IV must powered up. IV should not lead the EV ,  
DD  
DD  
DD  
DD  
DD  
SDV or PLLV by more than 0.4 V during power ramp-up, or there will be high current in the internal  
DD  
DD  
ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning  
on the internal ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
1. Use 1 µs or slower rise time for all supplies.  
2. IV /PLLV and EV /SDV should track up to 0.9 V, then separate for the completion of  
DD  
DD  
DD  
DD  
ramps with EV /SD V going to the higher external voltages. One way to accomplish this is to  
DD  
DD  
use a low drop-out voltage regulator.  
5.4.3.2 Power Down Sequence  
If IV /PLLV are powered down first, then sense circuits in the I/O pads will cause all output drivers  
DD  
DD  
to be in a high impedance state. There is no limit on how long after IV and PLLV power down before  
DD  
DD  
EV or SDV must power down. IV should not lag EV , SDV , or PLLV going low by more  
DD  
DD  
DD  
DD  
DD  
DD  
than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There  
are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
5.5 Power Consumption Specifications  
Estimated maximum RUN mode power consumption measurements are shown in the below figure.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
19  
Preliminary  
Preliminary Electrical Characteristics  
Estimated Power Consumption vs. Core Frequency  
300  
250  
200  
150  
100  
50  
0
0
40  
80  
120  
160  
200  
240  
Core Frequency (MHz)  
Figure 9. Estimated Maximum RUN Mode Power Consumption  
Table 8 lists estimated maximum power and current consumption for the device in various operating  
modes.  
Table 8. Estimated Maximum Power Consumption Specifications  
Characteristic  
Symbol Typical  
Max  
Unit  
Run Mode - Total Power Dissipation  
250  
5.74  
244  
mW  
mW  
mW  
Static  
Dynamic  
Core Operating Supply Current 1  
Run Mode  
IDD  
EIDD  
TBD  
mA  
Pad Operating Supply Current  
Run Mode (application dependent)  
Wait Mode  
144  
96  
1
mA  
mA  
mA  
Stop Mode  
NOTES:  
1
Current measured at maximum system clock frequency, all modules active, and default drive  
strength with matching load.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
20  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
5.6 Oscillator and PLL Electrical Characteristics  
Table 9. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
1
PLL Reference Frequency Range  
Crystal reference  
fref_crystal  
fref_ext  
TBD  
TBD  
16  
16  
MHz  
MHz  
External reference  
2
Core frequency  
fsys  
fsys/3  
TBD  
TBD  
240  
80  
MHz  
MHz  
CLKOUT Frequency1  
3
4
Crystal Start-up Time2, 3  
tcst  
10  
ms  
EXTAL Input High Voltage  
Crystal Mode4  
All other modes (External, Limp)  
VIHEXT  
VIHEXT  
TBD  
TBD  
TBD  
TBD  
V
V
5
EXTAL Input Low Voltage  
Crystal Mode4  
VILEXT  
VILEXT  
TBD  
TBD  
TBD  
TBD  
V
V
All other modes (External, Limp)  
6
XTAL Load Capacitance2  
PLL Lock Time 2, 5  
5
30  
1
pF  
ms  
%
7
8
tlpll  
tdc  
40  
Duty Cycle of reference 2  
60  
N1 OTES:  
All internal registers retain data at 0 Hz.  
2
3
4
5
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in  
the synthesizer control register (SYNCR).  
5.7 External Interface Timing Characteristics  
Table 10 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and  
output delay with respect to the rising edge of a reference clock. The  
reference clock is the FB_CLK output.  
All other timing relationships can be derived from these values. Timings  
listed in Table 10 are shown in Figure 11 and Figure 12.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
21  
Preliminary  
Preliminary Electrical Characteristics  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
FB_CLK (80MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
Input Rise Time  
Input Fall Time  
t
t
rise  
V
= V  
IH  
h
V = V  
l
IL  
fall  
V
= V  
IH  
h
V = V  
l
IL  
FB_CLK  
B4  
B5  
Inputs  
Figure 10. General Input Timing Requirements  
5.7.1 FlexBus  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to  
slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to  
asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or  
other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple  
chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects  
(FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory  
interfaces. Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte  
(8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common  
ROM/flash memories.  
5.7.1.1 FlexBus AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the system clock.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
22  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
Table 10. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit Notes  
Frequency of Operation  
FB1 Clock Period (FB_CLK)  
80  
12.5  
7.0  
Mhz  
ns  
fsys/3  
tFBCK  
tcyc  
1
FB2 Address, Data, and Control Output Valid (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)  
tFBCHDCV  
ns  
1, 2  
FB3 Address, Data, and Control Output Hold (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)  
tFBCHDCI  
1
ns  
FB4 Data Input Setup  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
tFBCHAV  
tFBCHAI  
3.5  
0
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
FB5 Data Input Hold  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
FB8 Address Output Valid (A[23:0])  
FB9 Address Output Hold (A[23:0])  
4
0
3
1
N1 OTES:  
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.8.2, “DDR SDRAM AC Timing  
Characteristics” for SD_CS[3:0] timing.  
2
3
The FlexBus supports programming an extension of the address hold. Please consult the MCF5373 Reference  
Manual for more information.  
These specs are used when the A[23:0] signals are configured as 23-bit, non-muxed FlexBus address signals.  
FB_CLK  
FB1  
FB3  
A[23:0]  
D[31:0]  
R/W  
A[23:0]  
FB2  
FB5  
DATA  
FB4  
TS  
FB_CSn  
BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 11. FlexBus Read Timing.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
23  
Preliminary Electrical Characteristics  
FB_CLK  
FB1  
FB3  
FB3  
A[23:0]  
D[31:0]  
R/W  
FB2  
TS  
FB_CSn  
BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 12. Flexbus Write Timing  
5.8 SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports  
either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.  
5.8.1 SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read  
cycles. The device’s SDRAM controller is a DDR controller that has an SDR mode. Because it is designed  
to support DDR, a DQS pulse must still be supplied to device for each data beat of an SDR read. Te  
processor accomplishes this by asserting a signal named SD_DQS during read cycles. Care must be taken  
during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal  
and its usage.  
Table 11. SDR Timing Specifications  
Symbol  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
TBD  
12.5  
80  
Mhz  
ns  
2
3
SD1 Clock Period  
SD2 Clock Skew  
tSDCK  
tSDSK  
TBD  
TBD  
0.55  
SD3 Pulse Width High  
tSDCKH  
0.45  
SD_CLK  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
24  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 11. SDR Timing Specifications (continued)  
Symbol  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
4
SD4 Pulse Width Low  
tSDCKH  
0.45  
0.55  
SD_CLK  
ns  
SD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Valid  
tSDCHACV  
0.5 × SD_CLK  
+ 1.0  
SD6 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
5
6
SD7 SD_SDR_DQS Output Valid  
tDQSOV  
Self timed  
ns  
ns  
SD8 SD_DQS[3:0] input setup relative to SD_CLK  
tDQVSDCH  
0.25 ×  
0.40 × SD_CLK  
SD_CLK  
7
8
SD9 SD_DQS[3:2] input hold relative to SD_CLK  
tDQISDCH  
tDVSDCH  
tDISDCH  
Does not apply. 0.5×SD_CLK fixed  
width.  
SD10 Data (D[31:0]) Input Setup relative to SD_CLK (reference  
only)  
0.25 ×  
ns  
SD_CLK  
SD11 Data Input Hold relative to SD_CLK (reference only)  
1.0  
ns  
ns  
SD12 Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid tSDCHDMV  
0.75 × SD_CLK  
+ 0.5  
SD13 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold tSDCHDMI  
1.5  
ns  
NOTES:  
1
The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock.  
Please see the PLL chapter of the MCF5373 Reference Manual for more information on setting the SDRAM clock rate.  
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation  
from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat.  
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data  
beat.  
2
3
4
5
6
7
8
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does  
not affect the memory controller.  
Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be  
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup  
spec is just provided as guidance.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
25  
Preliminary  
Preliminary Electrical Characteristics  
SD1  
SD3  
SD2  
SD_CLK0  
SD2  
SD4  
SD_CLK1  
SD6  
SD_CSn  
SD_RAS  
SD_CAS  
SD_WE  
CMD  
SD5  
A[23:0]  
SD_BA[1:0]  
ROW  
COL  
SD12  
SDDM  
D[31:0]  
SD13  
WD1  
WD2  
WD3  
WD4  
Figure 13. SDR Write Timing  
SD1  
SD2  
SD2  
SD_CLK0  
SD_CLK1  
SD6  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
CMD  
3/4 MCLK  
Reference  
SD5  
A[23:0],  
SD_BA[1:0]  
ROW  
COL  
tDQS  
SDDM  
SD7  
SD_DQS (Measured at Output Pin)  
SD_DDQS (Measured at Input Pin)  
Board Delay  
SD9  
Board Delay  
SD8  
Delayed  
SD_CLK  
SD10  
D[31:0]  
from  
WD1  
WD2  
WD3  
WD4  
Memories  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD11  
Figure 14. SDR Read Timing  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
26  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
5.8.2 DDR SDRAM AC Timing Characteristics  
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to  
properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte  
lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early  
board design. Please contact your local Freescale representative if questions develop.  
Table 12. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
tDDCK  
tDDSK  
80  
TBD  
0.45  
0.45  
TBD  
12.5  
0.55  
0.55  
Mhz  
ns  
2
3
3
4
DD1 Clock Period  
DD2 Pulse Width High  
DD3 Pulse Width Low  
tDDCKH  
tDDCKL  
tSDCHACV  
SD_CLK  
SD_CLK  
ns  
DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Valid  
0.5 × SD_CLK  
+ 1.0  
DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
2.0  
ns  
DD6 Write Command to first DQS Latching Transition  
tCMDVDQ  
tDQDMV  
1.25  
SD_CLK  
ns  
5
6
DD7 Data and Data Mask Output Setup (DQ-->DQS)  
Relative to DQS (DDR Write Mode)  
1.5  
7
DD8 Data and Data Mask Output Hold (DQS-->DQ)  
Relative to DQS (DDR Write Mode)  
tDQDMI  
1.0  
ns  
8
9
DD9 Input Data Skew Relative to DQS (Input Setup)  
DD10 Input Data Hold Relative to DQS.  
tDVDQ  
tDIDQ  
1
ns  
ns  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH  
0.5  
0.9  
ns  
DD12 DQS input read preamble width  
DD13 DQS input read postamble width  
DD14 DQS output write preamble width  
DD15 DQS output write postamble width  
N1 OTES:  
tDQRPRE  
tDQRPST  
tDQWPRE  
tDQWPST  
1.1  
0.6  
SD_CLK  
SD_CLK  
SD_CLK  
SD_CLK  
0.4  
0.25  
0.4  
0.6  
The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the  
same frequency as the internal bus clock.  
2
3
4
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process,  
temperature, and voltage variations.  
This specification relates to the required input setup time of today’s DDR memories. Rigoletto’s output setup should be larger  
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation.  
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to  
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].  
The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data  
beats will be valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],  
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative  
MEM_DQS[0].  
5
6
7
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
27  
Preliminary  
Preliminary Electrical Characteristics  
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other  
factors).  
9Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line  
becomes invalid.  
SD_CLK  
VIX  
VID  
VMP  
VIX  
SD_CLK  
Figure 15. SD_CLK and SD_CLK crossover timing  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
A[13:0]  
COL  
DD7  
DM3/DM2  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 16. DDR Write Timing  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
28  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 17. DDR Read Timing  
5.9 General Purpose I/O Timing  
1
Table 13. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1 FB_CLK High to GPIO Output Valid  
G2 FB_CLK High to GPIO Output Invalid  
G3 GPIO Input Valid to FB_CLK High  
G4 FB_CLK High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
N1 OTES:  
GPIO pins include: IRQn, PWM, UART, and Timer pins.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
FB_CLK  
G2  
G1  
GPIO Outputs  
GPIO Inputs  
G3  
G4  
Figure 18. GPIO Timing  
5.10 Reset and Configuration Override Timing  
Table 14. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 FB_CLK High to RESET Input invalid  
R3 RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
R4 FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
N1 OTES:  
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins])  
Figure 19. RESET and Configuration Override Timing  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
NOTE  
Refer to the CCM chapter of the MCF5373 Reference Manual for more  
information.  
5.11 USB On-The-Go  
The MCF5373 device is compliant with industry standard USB 2.0 specification.  
5.12 SSI Timing Specifications  
The following figure and table lists the specifications for the SSI module.  
S1  
S2  
S3  
SSI_BCLK  
S4  
S5  
SSI_MCLK  
STFS  
S6  
S7  
SSI_TXD (Output)  
STFS  
S6  
SSI_RXD (Input)  
Note: SSI External. Continous clock Synchronous mode only  
Figure 20. SSI External Continous Clock Timing Diagram  
Table 15. SSI Timing  
1.8 +/- 0.10V  
Num  
Description  
Unit  
Minimum  
Maximum  
S1  
S2  
S3  
SSI_BCLK clock period  
SSI_BCK high-level time  
SSI_BCK low-level time  
1/(64fs)1  
35  
49  
ns  
ns  
ns  
35  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
31  
Preliminary Electrical Characteristics  
Table 15. SSI Timing (continued)  
Description  
1.8 +/- 0.10V  
Num  
Unit  
Minimum  
Maximum  
S4  
S5  
SSI_BCK rising edge to SSI_MCLK edge  
SSI_MCLK edge to SSI_BCLK rising edge  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
S6  
SSI_TXD/SSI_RXD data set-up time  
SSI_TXD/SSI_RXD data hold time  
S7  
NOTES:  
1fs is the sampling frequency. SSI_BCLK can be operated upto 512 times the sampling frequency to a max frequency of 49.152MHz  
5.13 I2C Input/Output Timing Specifications  
2
Table 16 lists specifications for the I C input timing parameters shown in Figure 21.  
2
Table 16. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 17 lists specifications for the I C output timing parameters shown in Figure 21.  
2
Table 17. I C Output Timing Specifications between SCL and SDA  
Num  
I11 Start condition hold time  
I2 1 Clock low period  
Characteristic  
Min  
Max  
Units  
6
3
tcyc  
tcyc  
µs  
10  
7
I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
I4 1 Data hold time  
tcyc  
ns  
I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
I6 1 Clock high time  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
I7 1 Data setup time  
I8 1 Start condition setup time (for repeated start condition only)  
I9 1 Stop condition setup time  
20  
10  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
N1 OTES:  
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR; however, the numbers  
given in Table 17 are minimum values.  
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively  
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance  
and pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
Figure 21 shows timing for the values in Table 17 and Table 16.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 21. I C Input/Output Timings  
5.14 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
5.14.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV,  
FEC_RXER, and FEC_RXCLK)  
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
FEC_RXCLK frequency.  
Table 18 lists MII receive channel timings.  
Table 18. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup  
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold  
FEC_RXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
FEC_RXCLK period  
FEC_RXCLK period  
FEC_RXCLK pulse width low  
Figure 22 shows MII receive signal timings listed in Table 18.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
M3  
FEC_RXCLK (input)  
M4  
FEC_RXD[3:0] (inputs)  
FEC_RXDV  
FEC_RXER  
M1  
M2  
Figure 22. MII Receive Signal Timing Diagram  
5.14.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN,  
FEC_TXER, FEC_TXCLK)  
Table 19 lists MII transmit channel timings.  
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. There is  
no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
FEC_TXCLK frequency.  
The transmit outputs (FEC_TXD[3:0], FEC_TXEN, FEC_TXER) can be programmed to transition from  
either the rising or falling edge of FEC_TXCLK, and the timing is the same in either case. This options  
allows the use of non-compliant MII PHYs.  
Refer to the Ethernet chapter for details of this option and how to enable it.  
Table 19. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid  
FEC_TXCLK pulse width high  
5
25  
ns  
ns  
35%  
35%  
65%  
65%  
FEC_TXCLK period  
FEC_TXCLK period  
FEC_TXCLK pulse width low  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Figure 23 shows MII transmit signal timings listed in Table 19.  
M7  
FEC_TXCLK (input)  
M5  
M8  
FEC_TXD[3:0] (outputs)  
FEC_TXEN  
FEC_TXER  
M6  
Figure 23. MII Transmit Signal Timing Diagram  
5.14.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)  
Table 20 lists MII asynchronous inputs signal timing.  
Table 20. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
FEC_CRS, FEC_COL minimum pulse width  
1.5  
FEC_TXCLK period  
Figure 24 shows MII asynchronous input timings listed in Table 20.  
FEC_CRS  
FEC_COL  
M9  
Figure 24. MII Async Inputs Timing Diagram  
5.14.4 MII Serial Management Channel Timing (FEC_MDIO and  
FEC_MDC)  
Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum  
MDC frequency of 2.5 MHz.  
Table 21. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)  
M12 FEC_MDIO (input) to FEC_MDC rising edge setup  
M13 FEC_MDIO (input) to FEC_MDC rising edge hold  
10  
0
25  
ns  
ns  
ns  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
35  
Preliminary Electrical Characteristics  
Table 21. MII Serial Management Channel Timing (continued)  
Characteristic Min Max  
Num  
Unit  
M14 FEC_MDC pulse width high  
M15 FEC_MDC pulse width low  
40% 60% FEC_MDC period  
40% 60% FEC_MDC period  
Figure 25 shows MII serial management channel timings listed in Table 21.  
M14  
M15  
FEC_MDC (output)  
FEC_MDIO (output)  
M10  
M11  
FEC_MDIO (input)  
M12  
M13  
Figure 25. MII Serial Management Channel Timing Diagram  
5.15 32-Bit Timer Module Timing Specifications  
Table 22 lists timer module AC timings.  
Table 22. Timer Module AC Timing Specifications  
Name  
Characteristic  
Unit  
Min  
Max  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.16 QSPI Electrical Specifications  
Table 23 lists QSPI timings.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
36  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 23. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
The values in Table 23 correspond to Figure 26.  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QS3  
QS4  
QS5  
QSPI_DIN  
Figure 26. QSPI Timing  
5.17 JTAG and Boundary Scan Timing  
Table 24. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
3
fsys/3  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
TCLK Rise and Fall Times  
tJCRF  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
ns  
26  
0
ns  
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
10  
ns  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
37  
Preliminary Electrical Characteristics  
Table 24. JTAG and Boundary Scan Timing (continued)  
Num  
Characteristics1  
Symbol  
Min  
Max  
Unit  
J11 TCLK Low to TDO Data Valid  
J12 TCLK Low to TDO High Z  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
0
0
26  
8
ns  
ns  
ns  
ns  
J13 TRST Assert Time  
100  
10  
J14 TRST Setup Time (Negation) to TCLK High  
NOTES:  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 27. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 28. Boundary Scan (JTAG) Timing  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 29. Test Access Port Timing  
TCLK  
J14  
TRST  
J13  
Figure 30. TRST Timing  
5.18 Debug AC Timing Specifications  
Table 25 lists specifications for the debug AC timing parameters shown in Figure 32.  
Table 25. Debug AC Timing Specification  
Num  
Characteristic  
Units  
Min  
Max  
DE0  
DE1  
DE2  
DE3  
DE4  
PSTCLK cycle time  
4
0.3  
tcyc  
ns  
PST valid to PSTCLK high  
PSTCLK high to PST invalid  
DSCLK cycle time  
1.5  
5
ns  
tcyc  
tcyc  
tcyc  
ns  
DSI valid to DSCLK high  
1
DE51 DSCLK high to DSO invalid  
4
DE6  
DE7  
BKPT input data setup time to FB_CLK high  
FB_CLK high to BKPT invalid  
4
0
ns  
N1 OTES:  
DSCLK and DSI are synchronized internally. DE4 is measured from the synchronized DSCLK input  
relative to the rising edge of FB_CLK.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Freescale Semiconductor  
39  
Preliminary  
Revision History  
Figure 31 shows real-time trace timing for the values in Table 25.  
PSTCLK  
DE0  
DE1  
DE2  
PST[3:0]  
DDATA[3:0]  
Figure 31. Real-Time Trace AC Timing  
Figure 32 shows BDM serial port AC timing and BKPT pin timing for the values in Table 25.  
FB_CLK  
DE6  
BKPT  
DE7  
DE5  
DSCLK  
DSI  
DE3  
Current  
Past  
Next  
DE4  
DSO  
Current  
Figure 32. BDM Serial Port AC Timing  
6 Revision History  
Table 26. MCF5373DS Document Revision History  
Rev. No.  
Substantive Changes  
Date of Release  
0
• Initial release.  
11/2005  
12/2005  
0.1  
• Swapped pin locations PLL_VSS (J11->H11) and DRAMSEL  
(H11->J11) in Table 3. Figure 1 is correct.  
0.2  
0.3  
• Added not to Section 4, “Mechanicals and Pinouts.”  
• Added “top view” and “bottom view” where appropriate in mechanical  
drawings and pinout figures.  
3/2006  
Figure 10: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)”  
• Changed 160QFP pinouts in Figure 3 and Table 3: Removed IRQ3  
pin, shifted pins 89–99 up one pin to 90–100. Pin 89 is now VSS.  
Table 3: Rearranged GPIO signal names for FEC pins.  
4/2006  
• Removed ULPI specifications as the device does not support ULPI.  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
40  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY LEFT BLANK  
MCF5373 ColdFire® Microprocessor Data Sheet, Rev. 0.3  
Preliminary  
Freescale Semiconductor  
41  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners.© Freescale Semiconductor, Inc. 2006. All rights  
reserved.  
MCF5373DS  
Rev. 0.3  
04/2006  

相关型号:

MCF53721

ColdFire㈢ Microprocessor
FREESCALE

MCF53721

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF53721CVM240

MCF5329 DRAGONFIRE
NXP

MCF5372CAB180

Microprocessor Data Sheet
FREESCALE

MCF5372CAB180

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF5372L

Microprocessor Data Sheet
FREESCALE

MCF5372L

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF5372LCVM240

Microprocessor Data Sheet
FREESCALE

MCF5372LCVM240

MCF5329 V3CORE
NXP

MCF5372LCVM240J

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,196PIN,PLASTIC
NXP

MCF5373

Microprocessor Data Sheet
FREESCALE

MCF5373

MCF537x ColdFire® Microprocessor Data Sheet
NXP