MKL15Z128VLK4 [FREESCALE]

KL15 Sub-Family Data Sheet; KL15子系列数据手册
MKL15Z128VLK4
型号: MKL15Z128VLK4
厂家: Freescale    Freescale
描述:

KL15 Sub-Family Data Sheet
KL15子系列数据手册

文件: 总52页 (文件大小:1773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: KL15P80M48SF0  
Rev. 3, 9/19/2012  
Freescale Semiconductor  
Data Sheet: Technical Data  
KL15P80M48SF0  
KL15 Sub-Family Data Sheet  
Supports the following:  
MKL15Z32VFM4, MKL15Z64VFM4,  
MKL15Z128VFM4, MKL15Z32VFT4,  
MKL15Z64VFT4, MKL15Z128VFT4,  
MKL15Z32VLH4, MKL15Z64VLH4,  
MKL15Z128VLH4, MKL15Z32VLK4,  
MKL15Z64VLK4 and MKL15Z128VLK4  
Features  
Security and integrity modules  
– 80-bit unique identification (ID) number per chip  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
Human-machine interface  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
Performance  
– Up to 48 MHz ARM® Cortex-M0+ core  
Analog modules  
– 16-bit SAR ADC  
– 12-bit DAC  
– Analog comparator (CMP) containing a 6-bit DAC  
and programmable reference input  
Memories and memory interfaces  
– Up to 128 KB program flash memory  
– Up to 16 KB RAM  
Clocks  
Timers  
– 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal  
oscillator  
– Multi-purpose clock source  
– Six channel Timer/PWM (TPM)  
– Two 2-channel Timer/PWM (TPM)  
– Periodic interrupt timers  
– 16-bit low-power timer (LPTMR)  
– Real-time clock  
System peripherals  
– Nine low-power modes to provide power  
optimization based on application requirements  
– 4-channel DMA controller, supporting up to 63  
request sources  
Communication interfaces  
– Two 8-bit SPI modules  
– Two I2C modules  
– COP Software watchdog  
– Low-leakage wakeup unit  
– One low power UART module  
– Two UART modules  
– SWD interface and Micro Trace buffer  
– Bit Manipulation Engine (BME)  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2012 Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts...........................................................................3  
5.3 Switching specifications.....................................................21  
5.3.1 Device clock specifications...................................21  
5.3.2 General Switching Specifications..........................22  
5.4 Thermal specifications.......................................................22  
5.4.1 Thermal operating requirements...........................22  
5.4.2 Thermal attributes.................................................22  
6 Peripheral operating requirements and behaviors....................23  
6.1 Core modules....................................................................23  
6.1.1 SWD Electricals ...................................................23  
6.2 System modules................................................................25  
6.3 Clock modules...................................................................25  
6.3.1 MCG specifications...............................................25  
6.3.2 Oscillator electrical specifications.........................27  
6.4 Memories and memory interfaces.....................................29  
6.4.1 Flash electrical specifications................................29  
6.5 Security and integrity modules..........................................30  
6.6 Analog...............................................................................31  
6.6.1 ADC electrical specifications.................................31  
6.6.2 CMP and 6-bit DAC electrical specifications.........35  
6.6.3 12-bit DAC electrical characteristics.....................36  
6.7 Timers................................................................................39  
6.8 Communication interfaces.................................................39  
6.8.1 SPI switching specifications..................................39  
6.8.2 I2C.........................................................................43  
6.8.3 UART....................................................................43  
6.9 Human-machine interfaces (HMI)......................................44  
6.9.1 TSI electrical specifications...................................44  
7 Dimensions...............................................................................44  
7.1 Obtaining package dimensions.........................................44  
8 Pinout........................................................................................44  
8.1 KL15 Signal Multiplexing and Pin Assignments................44  
8.2 KL15 Pinouts.....................................................................47  
9 Revision History........................................................................51  
1.1 Determining valid orderable parts......................................3  
2 Part identification......................................................................3  
2.1 Description.........................................................................3  
2.2 Format...............................................................................3  
2.3 Fields.................................................................................3  
2.4 Example............................................................................4  
3 Terminology and guidelines......................................................4  
3.1 Definition: Operating requirement......................................4  
3.2 Definition: Operating behavior...........................................4  
3.3 Definition: Attribute............................................................5  
3.4 Definition: Rating...............................................................5  
3.5 Result of exceeding a rating..............................................6  
3.6 Relationship between ratings and operating  
requirements......................................................................6  
3.7 Guidelines for ratings and operating requirements............7  
3.8 Definition: Typical value.....................................................7  
3.9 Typical Value Conditions...................................................8  
4 Ratings......................................................................................8  
4.1 Thermal handling ratings...................................................8  
4.2 Moisture handling ratings..................................................9  
4.3 ESD handling ratings.........................................................9  
4.4 Voltage and current operating ratings...............................9  
5 General.....................................................................................9  
5.1 AC electrical characteristics..............................................9  
5.2 Nonswitching electrical specifications...............................10  
5.2.1 Voltage and current operating requirements.........10  
5.2.2 LVD and POR operating requirements.................11  
5.2.3 Voltage and current operating behaviors..............12  
5.2.4 Power mode transition operating behaviors..........13  
5.2.5 Power consumption operating behaviors..............13  
5.2.6 EMC radiated emissions operating behaviors.......20  
5.2.7 Designing with radiated emissions in mind...........21  
5.2.8 Capacitance attributes..........................................21  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
2
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to www.freescale.com and perform a part number search for  
the following device numbers: PKL15 and MKL15  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL15  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
3
Terminology and guidelines  
Field  
Description  
Values  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MKL15Z32VFT4  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
4
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
7
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical Value Conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
8
Freescale Semiconductor, Inc.  
General  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
1
2
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
120  
mA  
V
VDIO  
VAIO  
ID  
Digital pin input voltage (except RESET)  
Analog pins1and RESET pin input voltage  
–0.3  
–0.3  
–25  
3.6  
VDD + 0.3  
25  
V
Instantaneous maximum current single pin limit (applies to all  
port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
9
General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assumes:  
1. output pins  
• have CL=30pF loads,  
• are slew rate disabled, and  
• are normal drive strength  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
Input hysteresis  
0.06 × VDD  
V
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
10  
Freescale Semiconductor, Inc.  
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IICDIO  
Digital pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
-5  
mA  
IICAIO  
Analog2 pin DC injection current — single pin  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
3
mA  
-5  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
V
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD voltage required to retain RAM  
1.2  
1. All digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If  
VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor  
is calculated as R=(VDIO_MIN-VIN)/|IIC|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN  
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting  
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC  
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is  
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.  
5.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
11  
General  
Table 2. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
40  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
5.2.3 Voltage and current operating behaviors  
Table 3. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -1.5 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -18 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -6 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
2
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
65  
μA  
μA  
2
2
Input leakage current (total all pins) for full temperature  
range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
1
μA  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
12  
Freescale Semiconductor, Inc.  
General  
Table 3. Voltage and current operating behaviors (continued)  
Symbol  
RPU  
Description  
Min.  
20  
Max.  
50  
Unit  
kΩ  
Notes  
Internal pullup resistors  
Internal pulldown resistors  
3
4
RPD  
20  
50  
kΩ  
1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated  
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
4. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
Table 4. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the point  
300  
μs  
VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS3 RUN  
• LLS RUN  
95  
93  
42  
4
115  
115  
53  
μs  
μs  
μs  
μs  
μs  
μs  
4.6  
4.4  
4.4  
• VLPS RUN  
• STOP RUN  
4
4
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
13  
General  
5.2.5 Power consumption operating behaviors  
Table 5. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO_ Run mode current in compute operation - 48  
MHz core / 24 MHz flash/ bus disabled, LPTMR  
CM  
running using 4MHz internal reference clock,  
CoreMark® benchmark code executing from  
flash  
6.4  
mA  
• at 3.0 V  
IDD_RUNCO Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus clock disabled,  
code of while(1) loop executing from flash  
3
3
4.1  
5.1  
5.2  
6.3  
mA  
mA  
• at 3.0 V  
IDD_RUN Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks disabled, code of  
while(1) loop executing from flash  
• at 3.0 V  
IDD_RUN Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks enabled, code of  
while(1) loop executing from flash  
3, 4,  
• at 3.0 V  
• at 25 °C  
• at 125 °C  
6.4  
6.8  
7.8  
8.3  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 48 MHz  
system / 24 MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks disabled  
• at 3.0 V  
3
3
3
5
3.7  
2.9  
2.5  
188  
5.0  
4.2  
3.7  
570  
mA  
mA  
mA  
μA  
IDD_WAIT Wait mode current - core disabled / 24 MHz  
system / 24 MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks disabled  
• at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking  
option - core and system disabled / 10.5 MHz  
bus  
• at 3.0 V  
IDD_VLPRCO Very low power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
clock disabled, code of while(1) loop executing  
from flash  
• at 3.0 V  
IDD_VLPR Very low power run mode current - 4 MHz core /  
5
224  
613  
μA  
0.8 MHz bus and flash, all peripheral clocks  
disabled, code of while(1) loop executing from  
flash  
• at 3.0 V  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
14  
Freescale Semiconductor, Inc.  
General  
Table 5. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very low power run mode current - 4 MHz core /  
5, 4  
300  
745  
μA  
0.8 MHz bus and flash, all peripheral clocks  
enabled, code of while(1) loop executing from  
flash  
• at 3.0 V  
IDD_VLPW Very low power wait mode current - core  
disabled / 4 MHz system / 0.8 MHz bus / flash  
disabled (flash doze enabled), all peripheral  
clocks disabled  
135  
496  
μA  
5
• at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
345  
357  
392  
438  
551  
490  
827  
at 50 °C  
μA  
at 70 °C  
869  
at 85 °C  
927  
at 105 °C  
1065  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
at 25 °C  
4.4  
10  
20  
37  
81  
16  
35  
at 50 °C  
μA  
μA  
at 70 °C  
50  
at 85 °C  
112  
201  
at 105 °C  
IDD_LLS Low leakage stop mode current at 3.0 V  
at 25 °C  
1.9  
3.6  
6.5  
13  
3.7  
39  
43  
49  
69  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
30  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
μA  
at 25 °C  
1.4  
2.5  
5.1  
9.2  
21  
3.2  
19  
21  
26  
38  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0V  
at 25°C  
at 50°C  
at 70°C  
at 85°C  
at 105°C  
0.7  
1.3  
2.3  
5.1  
13  
1.4  
13  
14  
17  
25  
μA  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
15  
General  
Table 5. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS0 Very low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
nA  
381  
956  
943  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
11760  
13260  
15700  
23480  
2370  
4800  
12410  
IDD_VLLS0 Very low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
6
176  
760  
860  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
3577  
nA  
2120  
4500  
12130  
11660  
18450  
22441  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for  
time.  
3. MCG configured for FEI mode.  
4. Incremental current consumption from peripheral activity is not included.  
5. MCG configured for BLPI mode.  
6. No brownout  
Table 6. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KHz  
32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP  
mode with the 32 kHz IRC enabled.  
52  
52  
52  
52  
52  
52  
µA  
uA  
IEREFSTEN4MHz  
External 4MHz crystal clock adder.  
Measured by entering STOP or VLPS  
mode with the crystal enabled.  
206  
228  
237  
245  
251  
258  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
16  
Freescale Semiconductor, Inc.  
General  
Unit  
Table 6. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
-40  
25  
50  
70  
85  
105  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN  
and EREFSTEN] bits. Measured by  
entering all modes with the crystal  
enabled.  
440  
440  
490  
510  
510  
490  
490  
490  
560  
560  
540  
540  
540  
560  
560  
560  
560  
560  
560  
560  
570  
570  
570  
610  
610  
580  
580  
680  
680  
680  
VLLS1  
VLLS3  
LLS  
nA  
VLPS  
STOP  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare.  
22  
22  
22  
22  
22  
22  
µA  
nA  
Includes 6-bit DAC power consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by  
means of the RTC_CR[OSCE] bit and  
the RTC ALARM set for 1 minute.  
Includes ERCLK32K (32 kHz external  
crystal) power consumption.  
432  
357  
388  
475  
532  
810  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source waiting  
for RX data at 115200 baud rate.  
Includes selected clock source power  
consumption.  
66  
66  
66  
66  
66  
66  
µA  
MCGIRCLK (4MHz internal reference  
clock)  
214  
237  
246  
254  
260  
268  
OSCERCLK (4MHz external crystal)  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
configured for output compare  
generating 100Hz clock signal. No load  
is placed on the I/O generating the clock  
signal. Includes selected clock source  
and I/O switching currents.  
µA  
µA  
MCGIRCLK (4MHz internal reference  
clock)  
86  
86  
86  
86  
86  
86  
OSCERCLK (4MHz external crystal)  
235  
45  
256  
45  
265  
45  
274  
45  
280  
45  
287  
45  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPx, LLS, or  
VLLSx mode.  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
17  
General  
Table 6. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
366  
366  
366  
366  
366  
366  
µA  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE for run mode, and BLPE for VLPR mode  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
18  
Freescale Semiconductor, Inc.  
General  
Run Mode Current Vs Core Frequency  
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE  
All Peripheral CLK Gates  
All On  
CLK Ratio  
Flash-Core  
Core Freq (MHz)  
Figure 2. Run mode supply current vs. core frequency  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
19  
General  
All Off  
All On  
CLK Ratio  
Flash-Core  
Core Freq (MHz)  
Figure 3. VLPR mode current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors for 64-pin LQFP  
package  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
13  
15  
12  
7
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
M
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
20  
Freescale Semiconductor, Inc.  
General  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS = 48 MHz, fBUS = 48 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
1
LPTMR clock  
24  
16  
24  
16  
External reference clock  
fLPTMR_pin LPTMR clock  
fLPTMR_ERCL LPTMR external reference clock  
K
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
21  
General  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
16  
MHz  
frequency mode (high range) (MCG_C2[RANGE]=1x)  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fUART0  
UART0 asynchronous clock  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General Switching Specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and I2C signals.  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
16  
ns  
2
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
ns  
3
36  
ns  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 9. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature  
–40  
–40  
TA  
105  
°C  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
22  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
5.4.2 Thermal attributes  
Table 10. Thermal attributes  
Board type  
Symbol  
Description  
80  
64  
48 QFN 32 QFN  
Unit  
Notes  
LQFP  
LQFP  
Single-layer (1S)  
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
70  
53  
71  
52  
59  
46  
84  
28  
69  
22  
92  
33  
75  
27  
°C/W  
1
Four-layer (2s2p)  
Single-layer (1S)  
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
°C/W  
°C/W  
°C/W  
RθJMA Thermal resistance, junction  
to ambient (200 ft./min. air  
speed)  
RθJMA Thermal resistance, junction  
to ambient (200 ft./min. air  
speed)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction  
to board  
34  
15  
34  
20  
5
10  
2.0  
5.0  
12  
1.8  
8
°C/W  
°C/W  
°C/W  
2
3
4
Thermal resistance, junction  
to case  
Thermal characterization  
parameter, junction to  
package top outside center  
(natural convection)  
0.6  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions  
—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions  
—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions  
—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 SWD Electricals  
Table 11. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
Table 11. SWD full voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 4. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 5. Serial wire data timing  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
6.3.1 MCG specifications  
Table 12. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.4  
3
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0 - 70 °C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage ---  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS = 00)  
640 × ffll_ref  
20.97  
MHz  
3, 4  
frequency range  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
48  
MHz  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
Table 12. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS = 00)  
732 × ffll_ref  
23.99  
MHz  
5, 6  
Mid range (DRS = 01)  
1464 × ffll_ref  
47.97  
180  
1
MHz  
ps  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
PLL  
fvco  
Ipll  
VCO operating frequency  
PLL operating current  
48.0  
100  
MHz  
µA  
9
9
1060  
• PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2  
MHz, VDIV multiplier = 48)  
Ipll  
PLL operating current  
600  
µA  
• PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2  
MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
10  
10  
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
11  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC electrical specifications  
Table 13. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
1
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
Table 13. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RS Series resistor — low-frequency, low-power  
kΩ  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all  
other cases external capacitors must be used..  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.3.2.2 Oscillator frequency specifications  
Table 14. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
48  
60  
MHz  
%
1, 2  
40  
50  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 14. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tcst Crystal startup time — 32 kHz low-frequency,  
750  
ms  
3, 4  
low-power mode (HGO=0)  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it  
remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.4 Memories and memory interfaces  
6.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 15. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
113  
452  
ms  
ms  
1
1
thversall  
Erase All high-voltage time  
52  
1. Maximum time based on expectations at cycling end-of-life.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
29  
Peripheral operating requirements and behaviors  
6.4.1.2 Flash timing specifications — commands  
Table 16. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
65  
14  
145  
114  
1.8  
25  
μs  
tersscr  
trd1all  
ms  
ms  
μs  
2
1
trdonce  
tpgmonce Program Once execution time  
65  
62  
μs  
tersall  
Erase All Blocks execution time  
500  
30  
ms  
μs  
2
1
tvfykey  
Verify Backdoor Access Key execution time  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
6.4.1.3 Flash high voltage current behaviors  
Table 17. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 18. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 19 and Table 20 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 19. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
Delta to VDD (VDD-VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
3
Delta to VSS (VSS - VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
3
VADIN  
CADIN  
Input voltage  
VREFL  
8
VREFH  
10  
V
Input capacitance  
• 16-bit mode  
pF  
• 8-/10-/12-bit modes  
4
5
RADIN  
RAS  
Input resistance  
2
5
kΩ  
kΩ  
Analog source  
resistance  
13-/12-bit modes  
fADCK < 4 MHz  
4
5
fADCK  
fADCK  
Crate  
ADC conversion ≤ 1312-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 1312 bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
31  
Peripheral operating requirements and behaviors  
Table 19. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Crate  
ADC conversion 16-bit mode  
rate  
6
No ADC hardware averaging  
37.037  
461.467  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best  
results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1ns.  
5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 6. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 20. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
IDDA_ADC Supply current  
0.215  
1.7  
mA  
3
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 20. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
1.2  
2.4  
3.0  
4.4  
Typ.2  
Max.  
3.9  
Unit  
Notes  
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
4.0  
6.1  
clock source  
fADACK  
5.2  
7.3  
6.2  
9.5  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
0.7  
-1.1 to +1.9  
-0.3 to 0.5  
• <12-bit modes  
• 12-bit modes  
0.2  
1.0  
INL  
EFS  
Integral non-  
linearity  
-2.7 to +1.9  
-0.7 to +0.5  
LSB4  
5
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.5  
-4  
Full-scale error  
-5.4  
-1.8  
LSB4  
LSB4  
VADIN =  
VDDA  
-1.4  
5
EQ  
Quantization  
error  
• 16-bit modes  
-1 to 0  
• ≤1312-bit modes  
0.5  
ENOB  
Effective number 16-bit differential mode  
6
of bits  
• Avg = 32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
–94  
-85  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
90  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
Table 20. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
IIn  
leakage  
current  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
=
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.715  
719  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
25 °C  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock  
speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 21. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
Supply current, high-speed mode (EN = 1, PMODE =  
1)  
200  
μA  
IDDLS  
VAIN  
VAIO  
VH  
Supply current, low-speed mode (EN = 1, PMODE = 0)  
Analog input voltage  
VSS  
20  
VDD  
20  
μA  
V
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN = 1, PMODE  
= 1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN = 1, PMODE  
= 0)  
80  
250  
600  
ns  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
35  
Peripheral operating requirements and behaviors  
Table 21. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
40  
Unit  
μs  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
IDAC6b  
INL  
7
μA  
LSB3  
–0.5  
–0.3  
0.5  
0.3  
DNL  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
HYSTCTR  
Setting  
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
HYSTCTR  
Setting  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.6.3 12-bit DAC electrical characteristics  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
36  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.6.3.1 12-bit DAC operating requirements  
Table 22. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
TA  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Temperature  
V
1
Operating temperature  
range of the device  
°C  
CL  
IL  
Output load capacitance  
Output load current  
100  
1
pF  
2
mA  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
6.6.3.2 12-bit DAC operating behaviors  
Table 23. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
900  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance load = 3 kΩ  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
37  
Peripheral operating requirements and behaviors  
Table 23. 12-bit DAC operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
SR  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
Figure 11. Typical INL error vs. digital code  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
38  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 12. Offset at half scale vs. temperature  
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
6.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the  
chip's Reference Manual for information about the modified transfer formats used for  
communicating with slower peripheral devices.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
39  
Peripheral operating requirements and behaviors  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 24. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
16  
0
ns  
ns  
ns  
ns  
ns  
10  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 25. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
5
=
(CPOL 0)  
(OUTPUT)  
5
SPSCK  
(CPOL 1)  
=
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
LSB OUT  
MSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 13. SPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL 0)  
=
(OUTPUT)  
5
5
SPSCK  
(CPOL 1)  
=
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
MSB IN  
BIT 6 . . . 1  
LSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER LSB OUT  
PORT DATA  
MASTER MSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI master mode timing (CPHA = 1)  
Table 26. SPI slave mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
1
2
3
4
5
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
1
1
tperiph  
tperiph  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
Table continues on the next page...  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
41  
Peripheral operating requirements and behaviors  
Table 26. SPI slave mode timing on slew rate disabled pads (continued)  
Num.  
6
Symbol Description  
Min.  
2
Max.  
Unit  
ns  
Note  
3
tSU  
tHI  
ta  
Data setup time (inputs)  
7
Data hold time (inputs)  
Slave access time  
7
ns  
8
0
tperiph  
tperiph  
22  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Table 27. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL 0)  
=
(INPUT)  
5
5
3
SPSCK  
=
(CPOL 1)  
(INPUT)  
9
8
10  
11  
11  
MISO  
(OUTPUT)  
see  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
SLAVE MSB  
7
note  
NOTE  
6
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE: Not defined!  
Figure 15. SPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
=
(CPOL 0)  
(INPUT)  
5
5
SPSCK  
=
(CPOL 1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
MISO  
(OUTPUT)  
see  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
note  
8
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined!  
Figure 16. SPI slave mode timing (CPHA = 1)  
6.8.2 I2C  
See General switching specifications.  
6.8.3 UART  
See General switching specifications.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
43  
Dimensions  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 28. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Type  
100  
Max  
Unit  
µA  
Fixed power consumption in run mode  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to www.freescale.com and perform a keyword search for  
the drawing’s document number:  
If you want the drawing for this package  
32-pin QFN  
Then use this document number  
98ASA00473D  
48-pin QFN  
64-pin LQFP  
80-pin LQFP  
98ASA00466D  
98ASS23234W  
98ASS23174W  
8 Pinout  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
44  
Freescale Semiconductor, Inc.  
Pinout  
8.1 KL15 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
80  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
QFN  
QFN  
1
2
3
4
5
6
7
8
9
1
2
1
1
PTE0  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
VDD  
PTE0  
UART1_TX  
UART1_RX  
RTC_CLKOUT CMP0_OUT  
SPI1_MISO  
I2C1_SDA  
I2C1_SCL  
2
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
VDD  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
SPI1_MOSI  
SPI1_SCK  
SPI1_MISO  
SPI1_PCS0  
3
3
SPI1_MOSI  
VDD  
VSS  
4
2
VSS  
VSS  
5
3
PTE16  
ADC0_DP1/  
ADC0_SE1  
ADC0_DP1/  
ADC0_SE1  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
SPI0_PCS0  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
UART2_TX  
UART2_RX  
TPM_CLKIN0  
TPM_CLKIN1  
10  
11  
12  
13  
14  
15  
16  
6
7
4
5
4
5
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
ADC0_DM1/  
ADC0_SE5a  
ADC0_DM1/  
ADC0_SE5a  
LPTMR0_  
ALT3  
ADC0_DP2/  
ADC0_SE2  
ADC0_DP2/  
ADC0_SE2  
I2C0_SDA  
I2C0_SCL  
UART0_TX  
UART0_RX  
UART2_TX  
UART2_RX  
SPI0_MISO  
SPI0_MOSI  
8
6
6
ADC0_DM2/  
ADC0_SE6a  
ADC0_DM2/  
ADC0_SE6a  
9
7
ADC0_DP0/  
ADC0_SE0  
ADC0_DP0/  
ADC0_SE0  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
10  
11  
12  
8
ADC0_DM0/  
ADC0_SE4a  
ADC0_DM0/  
ADC0_SE4a  
ADC0_DP3/  
ADC0_SE3  
ADC0_DP3/  
ADC0_SE3  
ADC0_DM3/  
ADC0_SE7a  
ADC0_DM3/  
ADC0_SE7a  
17  
18  
19  
20  
21  
13  
14  
15  
16  
17  
9
7
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
10  
11  
12  
13  
8
PTE29  
CMP0_IN5/  
ADC0_SE4b  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
PTE30  
TPM0_CH2  
TPM0_CH3  
TPM_CLKIN0  
TPM_CLKIN1  
22  
18  
14  
9
PTE30  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
23  
24  
25  
26  
27  
28  
19  
20  
21  
22  
23  
24  
15  
16  
17  
18  
19  
10  
11  
12  
PTE31  
PTE24  
PTE25  
PTA0  
DISABLED  
DISABLED  
DISABLED  
SWD_CLK  
DISABLED  
DISABLED  
PTE31  
PTE24  
PTE25  
PTA0  
TPM0_CH4  
TPM0_CH0  
TPM0_CH1  
TPM0_CH5  
TPM2_CH0  
TPM2_CH1  
I2C0_SCL  
I2C0_SDA  
TSI0_CH1  
TSI0_CH2  
TSI0_CH3  
SWD_CLK  
PTA1  
PTA1  
UART0_RX  
UART0_TX  
PTA2  
PTA2  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
45  
Pinout  
80  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
QFN  
QFN  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
25  
26  
27  
28  
29  
30  
31  
32  
33  
20  
21  
22  
23  
24  
25  
13  
14  
15  
16  
17  
18  
PTA3  
SWD_DIO  
NMI_b  
TSI0_CH4  
TSI0_CH5  
PTA3  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
UART0_TX  
UART0_RX  
SWD_DIO  
NMI_b  
PTA4  
PTA4  
PTA5  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
VDD  
PTA5  
PTA12  
PTA13  
PTA14  
PTA15  
PTA16  
PTA17  
VDD  
PTA12  
PTA13  
PTA14  
PTA15  
PTA16  
PTA17  
SPI0_PCS0  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI0_MISO  
SPI0_MOSI  
VDD  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
UART1_RX  
UART1_TX  
TPM_CLKIN0  
TPM_CLKIN1  
LPTMR0_  
ALT1  
42  
43  
34  
35  
26  
27  
19  
20  
RESET_b  
RESET_b  
PTA20  
PTB0/  
LLWU_P5  
ADC0_SE8/  
TSI0_CH0  
ADC0_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
EXTRG_IN  
44  
45  
46  
36  
37  
38  
28  
29  
30  
21  
PTB1  
PTB2  
PTB3  
ADC0_SE9/  
TSI0_CH6  
ADC0_SE9/  
TSI0_CH6  
PTB1  
PTB2  
PTB3  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
47  
48  
49  
50  
51  
52  
53  
54  
55  
39  
40  
41  
42  
43  
31  
32  
33  
PTB8  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
TSI0_CH12  
PTB8  
PTB9  
PTB9  
PTB10  
PTB11  
PTB16  
PTB17  
PTB18  
PTB19  
PTC0  
PTB10  
PTB11  
PTB16  
PTB17  
PTB18  
PTB19  
PTC0  
SPI1_PCS0  
SPI1_SCK  
SPI1_MOSI  
SPI1_MISO  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
TSI0_CH12  
UART0_RX  
UART0_TX  
TPM2_CH0  
TPM2_CH1  
EXTRG_IN  
TPM_CLKIN0  
TPM_CLKIN1  
SPI1_MISO  
SPI1_MOSI  
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
CMP0_OUT  
56  
44  
34  
22  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
57  
58  
45  
46  
35  
36  
23  
24  
PTC2  
ADC0_SE11/  
TSI0_CH15  
ADC0_SE11/  
TSI0_CH15  
PTC2  
TPM0_CH1  
TPM0_CH2  
PTC3/  
LLWU_P7  
DISABLED  
PTC3/  
LLWU_P7  
UART1_RX  
UART1_TX  
CLKOUT  
59  
60  
61  
47  
48  
49  
37  
25  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
PTC4/  
DISABLED  
PTC4/  
SPI0_PCS0  
TPM0_CH3  
LLWU_P8  
LLWU_P8  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
46  
Freescale Semiconductor, Inc.  
Pinout  
80  
64  
48  
QFN  
32  
QFN  
Pin Name  
Default  
DISABLED  
CMP0_IN0  
ALT0  
ALT1  
ALT2  
SPI0_SCK  
SPI0_MOSI  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP  
62  
63  
50  
51  
38  
39  
26  
27  
PTC5/  
LLWU_P9  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2  
CMP0_OUT  
PTC6/  
LLWU_P10  
CMP0_IN0  
PTC6/  
LLWU_P10  
EXTRG_IN  
SPI0_MISO  
SPI0_MOSI  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
40  
41  
42  
43  
44  
45  
28  
29  
PTC7  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE5b  
DISABLED  
DISABLED  
DISABLED  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
PTC7  
SPI0_MISO  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
PTC8  
PTC8  
TPM0_CH4  
TPM0_CH5  
PTC9  
PTC9  
PTC10  
PTC11  
PTC12  
PTC13  
PTC16  
PTC17  
PTD0  
PTC10  
PTC11  
PTC12  
PTC13  
PTC16  
PTC17  
PTD0  
TPM_CLKIN0  
TPM_CLKIN1  
SPI0_PCS0  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI1_PCS0  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
TPM0_CH3  
TPM0_CH4  
PTD1  
ADC0_SE5b  
PTD1  
PTD2  
PTD2  
UART2_RX  
UART2_TX  
UART2_RX  
SPI0_MISO  
SPI0_MOSI  
PTD3  
PTD3  
PTD4/  
PTD4/  
LLWU_P14  
LLWU_P14  
78  
79  
62  
63  
46  
47  
30  
31  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
SPI1_SCK  
UART2_TX  
UART0_RX  
TPM0_CH5  
PTD6/  
LLWU_P15  
PTD6/  
LLWU_P15  
SPI1_MOSI  
SPI1_MISO  
SPI1_MOSI  
80  
64  
48  
32  
PTD7  
DISABLED  
PTD7  
SPI1_MISO  
UART0_TX  
8.2 KL15 Pinouts  
The below figures show the pinout diagrams for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
47  
Pinout  
1
PTE0  
PTE1  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDD  
2
VSS  
3
PTE2  
PTC3/LLWU_P7  
PTC2  
4
PTE3  
5
PTE4  
PTC1/LLWU_P6/RTC_CL  
PTC0  
6
PTE5  
7
VDD  
PTB19  
8
VSS  
PTB18  
9
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
VREFH  
VREFL  
VSSA  
PTB17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTB16  
PTB11  
PTB10  
PTB9  
PTB8  
PTB3  
PTB2  
PTB1  
PTB0/LLWU_P5  
RESET_b  
PTA19  
Figure 17. KL15 80-pin LQFP pinout diagram  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
48  
Freescale Semiconductor, Inc.  
Pinout  
PTE0  
PTE1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
VSS  
VDD  
3
PTC3/LLWU_P7  
PTC2  
VSS  
4
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
VREFH  
VREFL  
VSSA  
5
PTC1/LLWU_P6/RTC_CLKIN  
6
PTC0  
7
PTB19  
8
PTB18  
9
PTB17  
10  
11  
12  
13  
14  
15  
16  
PTB16  
PTB3  
PTB2  
PTB1  
PTB0/LLWU_P5  
RESET_b  
PTA19  
Figure 18. KL15 64-pin LQFP pinout diagram  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
49  
Pinout  
PTC3/LLWU_P7  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
1
2
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
VDDA  
VREFH  
VREFL  
VSSA  
3
PTC0  
4
PTB17  
5
PTB16  
6
PTB3  
7
PTB2  
8
PTB1  
9
PTB0/LLWU_P5  
RESET_b  
PTA19  
10  
11  
12  
Figure 19. KL15 48-pin QFN pinout diagram  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
50  
Freescale Semiconductor, Inc.  
Revision History  
PTC3/LLWU_P7  
PTC2  
PTE0  
PTE1  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
PTE17  
PTE18  
PTE19  
VDDA  
VSSA  
PTB1  
PTB0/LLWU_P5  
RESET_b  
PTA19  
18  
17  
PTA18  
Figure 20. KL15 32-pin QFN pinout diagram  
9 Revision History  
The following table provides a revision history for this document.  
Table 29. Revision History  
Rev. No.  
Date  
7/2012  
9/2012  
9/2012  
Substantial Changes  
1
2
3
Initial NDA release.  
Completed all the TBDs, initial public release.  
Updated Signal Multiplexing and Pin Assignments table to add UART2  
signals.  
KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.  
Freescale Semiconductor, Inc.  
51  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2012 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Document Number: KL15P80M48SF0  
Rev. 3, 9/19/2012  

相关型号:

MKL15Z128xxx4

Kinetis KL1x Family Ultra-low-power entry-level MCUs
FREESCALE

MKL15Z324

Ultra-low-power, entry-level MCUs
FREESCALE

MKL15Z32VFM4

KL15 Sub-Family Data Sheet
FREESCALE

MKL15Z32VFM4

Kinetis L 32-bit MCU, ARM Cortex-M0+ core, 32KB Flash, 48MHz, QFN 32
NXP

MKL15Z32VFM4R

RISC MICROCONTROLLER
NXP

MKL15Z32VFT4

KL15 Sub-Family Data Sheet
FREESCALE

MKL15Z32VFT4

Kinetis L 32-bit MCU, ARM Cortex-M0+ core, 32KB Flash, 48MHz, QFN 48
NXP

MKL15Z32VLH4

KL15 Sub-Family Data Sheet
FREESCALE

MKL15Z32VLK4

KL15 Sub-Family Data Sheet
FREESCALE

MKL15Z32VLK4

Kinetis L 32-bit MCU, ARM Cortex-M0+ core, 32KB Flash, 48MHz, QFP 80
NXP

MKL15Z32xxx4

Kinetis KL1x Family Ultra-low-power entry-level MCUs
FREESCALE

MKL15Z644

Ultra-low-power, entry-level MCUs
FREESCALE