MMA7455L_09 [FREESCALE]

±2g/±4g/±8g Three Axis Low-g Digital Output Accelerometer; 【 2G / 【 4G / 【 8克三轴低g数字输出加速计
MMA7455L_09
型号: MMA7455L_09
厂家: Freescale    Freescale
描述:

±2g/±4g/±8g Three Axis Low-g Digital Output Accelerometer
【 2G / 【 4G / 【 8克三轴低g数字输出加速计

文件: 总35页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MMA7455L  
Rev 10, 12/2009  
Freescale Semiconductor  
Technical Data  
±2g/±4g/±8g Three Axis Low-g  
Digital Output Accelerometer  
MMA7455L  
The MMA7455L is a Digital Output (I2C/SPI), low power, low profile  
capacitive micromachined accelerometer featuring signal conditioning, a low  
pass filter, temperature compensation, self-test, configurable to detect 0g  
through interrupt pins (INT1 or INT2), and pulse detect for quick motion  
detection. 0g offset and sensitivity are factory set and require no external  
devices. The 0g offset can be customer calibrated using assigned 0g registers  
and g-Select which allows for command selection for 3 acceleration ranges  
(2g/4g/8g). The MMA7455L includes a Standby Mode that makes it ideal for  
handheld battery powered electronics.  
MMA7455L: XYZ-AXIS  
ACCELEROMETER  
±2g/±4g/±8g  
Features  
Digital Output (I2C/SPI)  
Bottom View  
3mm x 5mm x 1mm LGA-14 Package  
Self-Test for Z-Axis  
Low Voltage Operation: 2.4 V – 3.6 V  
User Assigned Registers for Offset Calibration  
Programmable Threshold Interrupt Output  
Level Detection for Motion Recognition (Shock, Vibration, Freefall)  
Pulse Detection for Single or Double Pulse Recognition  
Sensitivity (64 LSB/g @ 2g and @ 8g in 10-Bit Mode)  
Selectable Sensitivity (±2g, ±4g, ±8g) for 8-bit Mode  
Robust Design, High Shocks Survivability (5,000g)  
RoHS Compliant  
14 LEAD  
LGA  
CASE 1977-01  
Environmentally Preferred Product  
Low Cost  
Top View  
Typical Applications  
Cell Phone/PMP/PDA: Image Stability, Text Scroll, Motion Dialing,  
Tap to Mute  
HDD: Freefall Detection  
Laptop PC: Freefall Detection, Anti-Theft  
Pedometer  
DVDD_IO  
SDA/SDI/SDO  
SDO  
GND  
N/C  
Motion Sensing, Event Recorder  
N/C  
IADDR0  
N/C  
ORDERING INFORMATION  
INT2  
GND  
Part Number  
MMA7455LT  
MMA7455LR1  
MMA7455LR2  
Temperature Range  
–40 to +85°C  
Package  
LGA-14  
LGA-14  
LGA-14  
Shipping  
Tray  
AVDD  
INT1/DRDY  
–40 to +85°C  
7” Tape & Reel  
13” Tape & Reel  
–40 to +85°C  
Figure 1. Pin Connections  
This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2007-2009. All rights reserved.  
Contents  
ELECTRO STATIC DISCHARGE (ESD) ......................................................................................................................................6  
PRINCIPLE OF OPERATION ......................................................................................................................................................8  
FEATURES ..................................................................................................................................................................................9  
Self-Test .........................................................................................................................................................................9  
g-Select ..........................................................................................................................................................................9  
Standby Mode ................................................................................................................................................................9  
Measurement Mode .......................................................................................................................................................9  
LEVEL DETECTION ...................................................................................................................................................................10  
$18: Control 1 (Read/Write) Setting the Detection Axes for X, Y and Z .......................................................................10  
$19: Control 2 (Read/Write) Motion Detection (OR Condition) or Freefall Detection (AND Condition) ........................10  
$18: Control 1 (Read/Write): Setting the threshold to be an integer value or an absolute value .................................10  
$1A: Level Detection Threshold Limit Value (Read/Write) ...........................................................................................10  
THRESHOLD DETECTION FOR MOTION AND FREEFALL CONDITIONS ............................................................................11  
CASE 1: Motion Detection ...........................................................................................................................................11  
CASE 2: Motion Detection ...........................................................................................................................................11  
CASE 3: Freefall Detection ..........................................................................................................................................11  
CASE 4: Freefall Detection ..........................................................................................................................................11  
PULSE DETECTION ..................................................................................................................................................................12  
$18: Control 1 (Read/Write): Disable X, Y or Z for Pulse Detection .............................................................................12  
$19: Control 2 (Read/Write): Motion Detection (OR condition) or Freefall Detection (AND condition) ........................12  
CASE 1: Single Pulse Motion Detection: X or Y or Z > Pulse Threshold for Time < Pulse Duration ..........................12  
CASE 2: Freefall Detection: X and Y and Z < Pulse Threshold for Time > Latency Time ...........................................13  
CASE 3: Double Pulse Detection: X OR Y OR Z > Threshold for Pulse Duration1 < PDTime1, Latency Time, .........14  
ASSIGNING, CLEARING & DETECTING INTERRUPTS ..........................................................................................................15  
Clearing the Interrupt Pins: Register $17 .....................................................................................................................15  
Detecting Interrupts ......................................................................................................................................................16  
DIGITAL INTERFACE ................................................................................................................................................................16  
I2C Slave Interface .......................................................................................................................................................16  
SPI Slave Interface ......................................................................................................................................................18  
BASIC CONNECTIONS .............................................................................................................................................................19  
Pin Descriptions ...........................................................................................................................................................19  
Recommended PCB Layout for Interfacing Accelerometer to Microcontroller .............................................................19  
REGISTER DEFINITIONS .........................................................................................................................................................21  
SOLDERING AND MOUNTING GUIDELINES FOR THE LGA ACCELEROMETER SENSOR TO A PC BOARD ...................29  
MMA7455L  
Sensors  
Freescale Semiconductor  
2
List of Figures  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Accelerometer Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Simplified Transducer Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Single Pulse Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Freefall Detection in Pulse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Double Pulse Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Single Byte Read - The Master is reading one address from the MMA7455L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Multiple Bytes Read - The Master is reading multiple sequential registers from the MMA7455L . . . . . . . . . . . . . . . . . . . . . . . 17  
Single Byte Write - The Master (MCU) is writing to a single register of the MMA7455L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Multiple Byte Writes - The Master (MCU) is writing to multiple sequential registers of the MMA7455L . . . . . . . . . . . . . . . . . . . 17  
SPI Timing Diagram for 8-Bit Register Read (4 Wire Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI Timing Diagram for 8-Bit Register Read (3 Wire Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI Timing Diagram for 8-Bit Register Write (3 Wire Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pinout Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
I2C Connection to MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI Connection to MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Sensing Direction and Output Response at 2g Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Recommended PCB Land Pattern for the 5 x 3 mm LGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Incorrect PCB Top Metal Pattern Under Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Correct PCB Top Metal Pattern Under Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Recommended PCB Land Pad, Solder Mask, and Signal Trace Near Package Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Stencil Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Temperature Coefficient of Offset (TCO) and Temperature Coefficient of Sensitivity (TCS) Distribution Charts . . . . . . . . . . . 32  
MMA7455L Current Distribution Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MMA7455L  
Sensors  
Freescale Semiconductor  
3
List of Tables  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
$16: Mode Control Register (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Configuring the Mode using Register $16 with MODE[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
THOPT = 0 Absolute; THOPT = 1 Positive Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
$1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
$1C: Pulse Duration Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
$1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
$1D: Latency Time Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
$1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
$1C: Pulse Duration Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
$1D: Latency Time Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
$1E: Time Window for 2nd Pulse Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
$18 Control 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
$17: Interrupt Latch Reset (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
$0A: Detection Source Register (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
User Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
$00: 10bits Output Value X LSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
$01: 10bits Output Value X MSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
$02: 10bits Output Value Y LSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
$03: 10bits Output Value Y MSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
$05: 10bits Output Value X MSB (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
$06: 8bits Output Value X (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
$07: 8bits Output Value Y (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
$08: 8bits Output Value Z (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
$09: Status Register (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
$0A: Detection Source Register (Read only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
$0D: I2C Device Address (Bit 6-0: Read only, Bit 7: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
$0E: User Information (Read Only: Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
$0F: “Who Am I” Value (Read only: Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
$10: Offset Drift X LSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
$11: Offset Drift X MSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
$12: Offset Drift Y LSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
$13: Offset Drift Y MSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
$14: Offset Drift Z LSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
$15: Offset Drift Z MSB (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
$16: Mode Control Register (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Configuring the Mode using Register $16 with MODE[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
$17: Interrupt Latch Reset (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
$18 Control 1 (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
$1B: Pulse Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
$1C: Pulse Duration Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
$1D: Latency Time Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
$1E: Time Window for 2nd Pulse Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
$1A: Level Detection Threshold Limit Value (Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Acceleration vs. Output (8-bit data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MMA7455L  
Sensors  
Freescale Semiconductor  
4
Table 1. Pin Descriptions  
Pin #  
1
Pin Name  
DVDD_IO  
GND  
Description  
Pin Status  
Digital Power for I/O pads  
Ground  
Input  
2
Input  
No internal connection. Leave unconnected or connect to Ground.  
3
N/C  
Input  
I2C Address Bit 0 (optional)*  
Ground  
4
IADDR0  
GND  
Input  
5
Input  
Analog Power  
6
AVDD  
Input  
SPI Enable (0), I2C Enable (1)  
Interrupt 1/ Data Ready  
7
CS  
Input  
8
INT1/DRDY  
INT2  
Output  
Interrupt 2  
9
Output  
No internal connection. Leave unconnected or connect to Ground.  
Leave unconnected or connect to Ground.  
SPI Serial Data Output  
10  
11  
12  
13  
14  
N/C  
Input  
N/C  
Input  
Output  
SDO  
2
SDA/SDI/SDO  
SCL/SPC  
Open Drain/Input/Output  
Input  
I C Serial Data (SDA), SPI Serial Data Input (SDI), 3-wire interface Serial Data Output (SDO)  
I2C Serial Clock (SCL), SPI Serial Clock (SPC)  
*This address selection capability is not enabled at the default state. If the user wants to use it, factory programming is required. If activated (pin4  
on the device is active).  
<$1D= 0001 1101> bit 0 is VDD on pin 4  
<$1C=0001 1100> bit 0 is GND on pin 4. If the pin is programmed it cannot be left NC.  
Figure 2. Simplified Accelerometer Functional Block Diagram  
MMA7455L  
Sensors  
Freescale Semiconductor  
5
Table 2. Maximum Ratings  
(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)  
Rating  
Maximum Acceleration (all axes)  
Analog Supply Voltage  
Symbol  
gmax  
Value  
5000  
Unit  
g
AVDD  
DVDD_IO  
Ddrop  
-0.3 to +3.6  
-0.3 to +3.6  
1.8  
V
Digital I/O pins Supply Voltage  
Drop Test  
V
m
Storage Temperature Range  
Tstg  
-40 to +125  
°C  
ELECTRO STATIC DISCHARGE (ESD)  
WARNING: This device is sensitive to electrostatic discharge.  
Although the Freescale accelerometer contains internal 2000V ESD protection circuitry, extra precaution must be taken by the  
user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment.  
A charge of this magnitude can alter the performance or cause failure of the chip. When handling the accelerometer, proper ESD  
precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.  
MMA7455L  
Sensors  
6
Freescale Semiconductor  
Table 3. Operating Characteristics  
Unless otherwise noted: –40°C < TA < 85°C, 2.4 V < AVDD < 3.6 V, Acceleration = 0g, Loaded output.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Analog Supply Voltage  
Standby/Operation Mode  
Enable Bus Mode  
AVDD  
AVDD  
2.4  
2.8  
0
3.6  
V
V
Digital I/O Pins Supply Voltage(1)  
Standby/Operation Mode  
Enable Bus Mode  
DVDD_IO  
DVDD_IO  
2.4  
2.8  
0
3.6  
V
V
Supply Current Drain  
Operation Mode  
IDD  
IDD  
IDD  
400  
400  
2.5  
490  
490  
10  
μA  
μA  
μA  
Pulse Detect Function Mode  
Standby Mode (except data loading and I2C/SPI communication period)  
Operating Temperature Range  
TA  
-40  
25  
85  
°C  
0g Output Signal (TA=25°C, AVDD = 2.8 V)  
-18  
-10  
-5  
0
0
0
0
18  
10  
5
count  
count  
count  
count  
±2g range (25°C) 8-bit  
±4g range (25°C) 8-bit  
±8g range (25°C) 8-bit  
±8g range (25°C) 10-bit  
GLVL[1:0]= 0 1  
GLVL[1:0]= 1 0  
GLVL[1:0]= 0 0  
-18  
18  
Sensitivity (TA=25°C, AVDD = 2.8 V)  
58  
29  
64  
32  
16  
64  
70  
35  
count/g  
count/g  
count/g  
count/g  
±2g range (25°C) 8-bit  
±4g range (25°C) 8-bit  
±8g range (25°C) 8-bit  
±8g range (25°C) 10-bit  
14.5  
58  
17.5  
70  
Self-Test Output Response  
Zout  
ΔSTZ  
TCO  
TCS  
32  
64  
83  
count  
mg/°C  
mg/°C  
Temperature Compensation for Offset  
Temperature Sensitivity for Offset  
±3.5  
±0.5  
±0.01  
+3.5  
±0.026  
+0.026  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
0.7 x DVDD  
V
V
0.35 x DVDD  
Internal Clock Frequency (TA = 25°C, AVDD = 2.8 V)  
tCLK  
140  
150  
160  
kHz  
SPI Frequency  
DVDD_IO < 2.4 V  
DVDD_IO > 2.4 V  
4
8
MHz  
MHz  
Bandwidth for Data Measurement (User Selectable)  
DFBW 0  
DFBW 1  
62.5  
125  
Hz  
Hz  
Output Data Rate  
Output Data Rate is 125 Hz when 62.5 bandwidth is selected.  
Output Data rate is 250 Hz when 125 Hz bandwidth is selected.  
125  
250  
Hz  
Hz  
Control Timing  
Wait Time for I2C/SPI ready after power on  
Turn On Response Time (Standby to Normal Mode)  
Turn Off Response Time (Normal to Standby Mode)  
Self-Test Response Time  
tsu  
tru  
trd  
tst  
1
20  
20  
20  
ms  
ms  
ms  
ms  
Sensing Element Resonant Frequency  
XY  
fGCELLXY  
fGCELLZ  
6.0  
3.4  
kHz  
kHz  
Z
Nonlinearity (2 g range)  
Cross Axis Sensitivity  
-1  
-5  
+1  
+5  
%FS  
%
1. It is recommended to tie the analog and digital supply voltages together.  
MMA7455L  
Sensors  
Freescale Semiconductor  
7
Table 4. Function Parameters for Detection  
–40°C < TA < 85°C, 2.4 V < AVDD < 3.6 V, unless otherwise specified  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Level Detection  
Detection Threshold Range  
0
FS  
g
Pulse Detection  
Pulse detection range (Adjustable range)  
Time step for pulse detection  
Threshold range for pulses  
0.5  
0
0.5  
127  
ms  
ms  
FS  
g
Detection levels for threshold  
Latency timer (Adjustable range)  
Time Window (Adjustable range)  
Bandwidth for detecting interrupt*  
Time step for latency timer and time window  
1
127  
Counts  
ms  
150  
250  
1
ms  
600  
1
Hz  
ms  
Note: The response time is between 10% of full scale VDD input voltage and 90% of the final operating output voltage.  
*The bandwidth for detecting interrupts in level and pulse is 600Hz which is changed from measurement mode.  
PRINCIPLE OF OPERATION  
The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer. The device consists of a surface mi-  
cromachined capacitive sensing cell (g-cell) and a signal conditioning ASIC contained in a single package. The sensing element  
is sealed hermetically at the wafer level using a bulk micromachined cap wafer. The g-cell is a mechanical structure formed from  
semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of  
beams attached to a movable central mass that move between fixed beams. The movable beams can be deflected from their  
rest position by subjecting the system to an acceleration (Figure 3).  
As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the  
same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of accel-  
eration. The g-cell beams form two back-to-back capacitors (Figure 3). As the center beam moves with acceleration, the distance  
between the beams changes and each capacitor's value will change, (C = Aε/D). Where A is the area of the beam, ε is the di-  
electric constant, and D is the distance between the beams.  
The ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the differ-  
ence between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a digital  
output that is proportional to acceleration.  
Acceleration  
Figure 3. Simplified Transducer Physical Model  
MMA7455L  
Sensors  
8
Freescale Semiconductor  
FEATURES  
Self-Test  
The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer  
at any time before or after installation. This feature is critical in applications such as hard disk drive protection where system in-  
tegrity must be ensured over the life of the product. When the self-test function is initiated through the mode control register ($16),  
accessing the “self-test” bit, an electrostatic force is applied to each axis to cause it to deflect. The Z-axis is trimmed to deflect  
1g. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.  
g-Select  
The g-Select feature enables the selection between 3 acceleration ranges for measurement. Depending on the values in the  
Mode control register ($16), the MMA7455L’s internal gain will be changed allowing it to function with a 2g, 4g or 8g measurement  
sensitivity. This feature is ideal when a product has applications requiring two or more acceleration ranges for optimum perfor-  
mance and for enabling multiple functions. The sensitivity can be changed during the operation by modifying the two GLVL bits  
located in the mode control register.  
$16: Mode Control Register (Read/Write)  
D7  
--  
D6  
DRPD  
0
D5  
SPI3W  
0
D4  
STON  
0
D3  
GLVL[1]  
0
D2  
GLVL[0]  
0
D1  
MODE[1]  
0
D0  
MODE[0]  
0
Bit  
Function  
Default  
0
Table 5. Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits  
GLVL [1:0]  
g-Range  
Sensitivity  
16 LSB/g  
64 LSB/g  
32 LSB/g  
00  
01  
10  
8g  
2g  
4g  
Standby Mode  
This digital output 3-axis accelerometer provides a standby mode that is ideal for battery operated products. When standby mode  
is active, the device outputs are turned off, providing significant reduction of operating current. When the device is in standby  
mode the current will be reduced to 2.5 µA typical. In standby mode the device can read and write to the registers with the I2C/  
SPI available, but no new measurements can be taken in this mode as all current consuming parts are off. The mode of the device  
is controlled through the mode control register by accessing the two mode bits as shown in Table 6.  
Table 6. Configuring the Mode using Register $16 with MODE[1:0] bits  
MODE [1:0]  
Function  
00  
01  
10  
11  
Standby Mode  
Measurement Mode  
Level Detection Mode  
Pulse Detection Mode  
Measurement Mode  
The device can read XYZ measurements in this mode. The pulse and threshold interrupts are not active. During measurement  
mode, continuous measurements on all three axes enabled. The g-range for 2g, 4g, or 8g are selectable with 8-bit data and the  
g-range of 8g is selectable with 10-bit data. The sample rate during measurement mode is 125 Hz with 62.5 BW filter selected.  
The sample rate is 250 Hz with the 125 Hz filter selected. Therefore, when a conversion is complete (signaled by the DRDY flag),  
the next measurement will be ready.  
When measurements on all three axes are completed, a logic high level is output to the DRDY pin, indicating “measurement data  
is ready.” The DRDY status can be monitored by the DRDY bit in Status Register (Address: $09). The DRDY pin is kept high until  
one of the three Output Value Registers are read. If the next measurement data is written before the previous data is read, the  
DOVR bit in the Status Register will be set. Also note that in measurement mode, level detection mode and pulse detection mode  
are not available.  
By default all three axes are enabled. X and/or Y and/or Z can be disabled. There is a choice between detecting an absolute  
signal or a positive or negative only signal on the enabled axes. There is also a choice between doing a detection for motion  
where X or Y or Z > Threshold vs. doing a detection for freefall where X & Y & Z < Threshold.  
MMA7455L  
Sensors  
Freescale Semiconductor  
9
LEVEL DETECTION  
The user can access XYZ measurements and can use the level interrupt only. The level detection mechanism has no timers as-  
sociated with it. Once a set acceleration level is reached the interrupt pin will go high and remain high until the interrupt pin is  
cleared (See Assigning, Clearing & Detecting Interrupts).  
By default all three axes are enabled and the detection range is 8g only. X and/or Y and/or Z can be disabled. There is a choice  
between detecting an Absolute signal or a Positive or Negative only signal on the enabled axes. There is also a choice between  
doing a detection for Motion where X or Y or Z > Threshold vs. doing a detection for Freefall where X & Y & Z < Threshold.  
$18: Control 1 (Read/Write) Setting the Detection Axes for X, Y and Z  
This allows the user to define how many axes to use for detection. All axes are enabled by default. To disable write 1.  
XDA: Disable X  
YDA: Disable Y  
ZDA: Disable Z  
D7  
DFBW  
0
D6  
THOPT  
0
D5  
ZDA  
0
D4  
YDA  
0
D3  
XDA  
0
D2  
INTREG[1]  
0
D1  
INTREG[0]  
0
D0  
INTPIN  
0
Reg $18  
Function  
Default  
$19: Control 2 (Read/Write) Motion Detection (OR Condition) or Freefall Detection (AND Condition)  
LDPL = 0: Level detection polarity is positive and detecting condition is OR for all 3 axes.  
X or Y or Z > Threshold  
||X|| or ||Y|| or ||Z|| > Threshold  
LDPL = 1: Level detection polarity is negative detecting condition is AND for all 3 axes.  
X and Y and Z < Threshold  
||X|| and ||Y|| and ||Z|| < Threshold  
D7  
--  
0
D6  
--  
0
D5  
--  
0
D4  
--  
0
D3  
--  
0
D2  
DRVO  
0
D1  
PDPL  
0
D0  
LDPL  
0
Reg $19  
Function  
Default  
$18: Control 1 (Read/Write): Setting the threshold to be an integer value or an absolute value  
This allows the user to set the threshold to be absolute, or to be based on the threshold value as positive or negative.  
THOPT = 0 Absolute; THOPT = 1 Positive Negative  
D7  
DFBW  
0
D6  
THOPT  
0
D5  
ZDA  
0
D4  
YDA  
0
D3  
XDA  
0
D2  
INTREG[1]  
0
D1  
INTREG[0]  
0
D0  
INTPIN  
0
Reg $18  
Function  
Default  
$1A: Level Detection Threshold Limit Value (Read/Write)  
When an event is detected the interrupt pin (either INT1 or INT2) will go high. The interrupt pin assignment is set up in Register  
$18, discussed in the Assigning, Clearing & Detecting Interrupts section. The detection status is monitored by the Detection  
Source Register $0A.  
D7  
LDTH[7]  
0
D6  
LDTH[6]  
0
D5  
LDTH[5]  
0
D4  
LDTH[4]  
0
D3  
LDTH[3]  
0
D2  
LDTH[2]  
0
D1  
LDTH[1]  
0
D0  
LDTH[0]  
0
Reg $1A  
Function  
Default  
LDTH[7:0]: Level detection threshold value. If THOPT bit in Detection Control Register is “0”, it is unsigned 7 bits value and  
LDTH[7] should be “0”. If THOPT bit is “1”, it is signed 8 bits value.  
MMA7455L  
Sensors  
Freescale Semiconductor  
10  
THRESHOLD DETECTION FOR MOTION AND FREEFALL CONDITIONS  
CASE 1: Motion Detection  
Integer Value: X >Threshold OR Y >Threshold OR Z > Threshold  
Reg $18 THOPT=1; Reg 19 LDPL=0, Set Threshold to 3g, which is 47 counts (16 counts/g). Set register $1A LDTH = $2F.  
TH = $2F  
CASE 2: Motion Detection  
Absolute: ||X|| > Threshold OR ||Y|| >Threshold OR ||Z|| > Threshold  
Reg $18 THOPT=0; Reg 19 LDPL=0, Set Threshold to 3g, which is 47 counts (16 counts/g). Set register $1A LDTH = $2F.  
TH = $2F  
TH = $D1  
CASE 3: Freefall Detection  
Integer Value: X < Threshold AND Y < Threshold AND Z <Threshold  
Reg $18 THOPT=1; Reg 19 LDPL=1, Set Threshold to 0.5g, which is 7 counts (16 counts/g). Set register $1A LDTH = $07  
TH = $07  
CASE 4: Freefall Detection  
Absolute: ||X|| <Threshold AND ||Y|| < Threshold AND ||Z||< Threshold  
Reg $18 THOPT=0; Reg 19 LDPL=1, Set Threshold to +/-0.5g, which is 7 counts (16 counts/g). Set register $1A LDTH = $07.  
TH = $07  
TH = $F9  
MMA7455L  
Sensors  
Freescale Semiconductor  
11  
PULSE DETECTION  
In Pulse Mode, all functions can be active including measurements, level detections and pulse detection. There are two interrupt  
pins available for detection of level and pulse conditions. The pulse detection has several timing windows associated with it. A  
single pulse and a double pulse can be detected. Also freefall can be detected. The interrupt pins can be assigned to detect the  
first pulse on one interrupt and the second pulse on the other interrupt. This is explained on Page 15, under the Assigning, Clear-  
ing & Detecting Interrupts section.  
By default all three axes are enabled and the detection range is 8g only. X and/or Y and/or Z can be disabled. There is a choice  
between doing a detection for Motion detection vs. doing a detection for Freefall.  
$18: Control 1 (Read/Write): Disable X, Y or Z for Pulse Detection  
This allows the user to define how many axes to use for detection. All axes are enabled by default. To disable write 1  
XDA: Disable X  
YDA: Disable Y  
ZDA: Disable Z.  
D7  
DFBW  
0
D6  
THOPT  
0
D5  
ZDA  
0
D4  
YDA  
0
D3  
XDA  
0
D2  
INTREG[1]  
0
D1  
INTREG[0]  
0
D0  
INTPIN  
0
Reg $18  
Function  
Default  
$19: Control 2 (Read/Write): Motion Detection (OR condition) or Freefall Detection (AND condition)  
PDPL  
0: Pulse detection polarity is positive and detecting condition is OR 3 axes.  
1: Pulse detection polarity is negative and detecting condition is AND 3 axes.  
D7  
--  
0
D6  
--  
0
D5  
--  
0
D4  
--  
0
D3  
--  
0
D2  
DRVO  
0
D1  
PDPL  
0
D0  
LDPL  
0
Reg $19  
Function  
Default  
CASE 1: Single Pulse Motion Detection: X or Y or Z > Pulse Threshold for Time < Pulse Duration  
For motion detection with single pulse the device must be in pulse mode. PDPL in Register $19 =0 for “OR” motion condition.  
The Pulse threshold must be set in Register $1B and the pulse duration time window must also be set using Register $1C. The  
pulse must be detected before the time window closes for the interrupt to trigger.  
$1B: Pulse Detection Threshold Limit Value (Read/Write)  
D7  
PDTH[7]  
0
D6  
PDTH[6]  
0
D5  
PDTH[5]  
0
D4  
PDTH[4]  
0
D3  
PDTH[3]  
0
D2  
PDTH[2]  
0
D1  
PDTH[1]  
0
D0  
PDTH[0]  
0
Reg $1B  
Function  
Default  
$1C: Pulse Duration Value (Read/Write)  
D7  
PD[7]  
0
D6  
PD[6]  
0
D5  
PD[5]  
0
D4  
PD[4]  
0
D3  
PD[3]  
0
D2  
PD[2]  
0
D1  
PD[1]  
0
D0  
PD[0]  
1
Reg $1C  
Function  
Default  
MMA7455L  
Sensors  
Freescale Semiconductor  
12  
G
Pulse Detection  
Time duration  
Gth  
Time  
INT pin  
*Note there is up to  
1.6ms delay on the  
interrupt signal  
Time  
Single Pulse Detection ($19 PDPL=0 indicating motion detection)  
Time Window for 2nd pulse $1E TW=0 indicating single pulse  
Figure 4. Single Pulse Detection  
CASE 2: Freefall Detection: X and Y and Z < Pulse Threshold for Time > Latency Time  
For freefall detection, set in pulse mode. PDPL in Register $19 =1 for “AND” freefall condition. The Pulse threshold must be set  
in Register $1B and the pulse latency time window must also be set using Register $1D. All three axes must remain below the  
threshold longer than the time window for the interrupt to trigger.  
$1B: Pulse Detection Threshold Limit Value (Read/Write)  
D7  
PDTH[7]  
0
D6  
PDTH[6]  
0
D5  
PDTH[5]  
0
D4  
PDTH[4]  
0
D3  
PDTH[3]  
0
D2  
PDTH[2]  
0
D1  
PDTH[1]  
0
D0  
PDTH[0]  
0
Reg $1B  
Function  
Default  
$1D: Latency Time Value (Read/Write)  
D7  
LT[7]  
0
D6  
LT[6]  
0
D5  
LT[5]  
0
D4  
LT[4]  
0
D3  
LT[3]  
0
D2  
LT[2]  
0
D1  
LT[1]  
0
D0  
LT[0]  
1
Reg $1D  
Function  
Default  
Figure 5. Freefall Detection in Pulse Mode  
MMA7455L  
Sensors  
Freescale Semiconductor  
13  
CASE 3: Double Pulse Detection: X OR Y OR Z > Threshold for Pulse Duration1 < PDTime1, Latency Time, AND  
X OR Y OR Z > Threshold for Pulse Duration2 < PDTime2  
For motion detection with double pulse the device must be in pulse mode. PDPL in Register $19 =0 for “OR” motion condition.  
The Pulse Threshold must be set in Register $1B and the Pulse Duration Time Window must also be set using Register $1C.  
Then the Latency Time (time between pulses) must be set in Register $1D and then the Second Time Window must be set in  
Register $1E for the time window of the second pulse. The pulse must be detected before the time window closes for the interrupt  
to trigger.  
$1B: Pulse Detection Threshold Limit Value (Read/Write)  
D7  
PDTH[7]  
0
D6  
PDTH[6]  
0
D5  
PDTH[5]  
0
D4  
PDTH[4]  
0
D3  
PDTH[3]  
0
D2  
PDTH[2]  
0
D1  
PDTH[1]  
0
D0  
PDTH[0]  
0
Reg $1B  
Function  
Default  
$1C: Pulse Duration Value (Read/Write)  
D7  
PD[7]  
0
D6  
PD[6]  
0
D5  
PD[5]  
0
D4  
PD[4]  
0
D3  
PD[3]  
0
D2  
PD[2]  
0
D1  
PD[1]  
0
D0  
PD[0]  
1
Reg $1C  
Function  
Default  
$1D: Latency Time Value (Read/Write)  
D7  
LT[7]  
0
D6  
LT[6]  
0
D5  
LT[5]  
0
D4  
LT[4]  
0
D3  
LT[3]  
0
D2  
LT[2]  
0
D1  
LT[1]  
0
D0  
LT[0]  
1
Reg $1D  
Function  
Default  
$1E: Time Window for 2nd Pulse Value (Read/Write)  
D7  
TW[7]  
0
D6  
TW[6]  
0
D5  
TW[5]  
0
D4  
TW[4]  
0
D3  
TW[3]  
0
D2  
TW[2]  
0
D1  
TW[1]  
0
D0  
TW[0]  
0
Reg $1E  
Function  
Default  
When any of the events are detected, the interrupt pin (either INT1 or INT2) will go high. The interrupt pin assignment is set  
up in Register $18, discussed in the Assigning, Clearing & Detecting Interrupts section on Page 15. The detection status is  
monitored by the detection source register $0A.  
G
Pulse Detection  
Time Window  
Pulse Detection Time Window for  
2nd pulse  
Gth  
Latency Time Window  
(2nd pulse ignored here)  
Time  
Detection Source  
Register  
PDX or PDY or PDZ bit in Detection  
source register is set.  
*Note there is up to 1.6ms  
delay on the interrupt signal  
Time  
INT  
Time Window >0 for 2 pulse detect  
*Note there is up to 1.6ms  
delay on the interrupt signal  
Time  
Double Pulse Detection ($19 PDPL=0 indicating motion detection)  
Time Window for 2nd pulse $1E TW>0 indicating double pulse  
Figure 6. Double Pulse Detection  
MMA7455L  
14  
Sensors  
Freescale Semiconductor  
ASSIGNING, CLEARING & DETECTING INTERRUPTS  
Assigning the interrupt pins is done in Register $18. There are 3 combinations for the interrupt pins to be assigned which are  
outlined below in the table for INTREG[1:0].  
$18 Control 1 Register  
D7  
DFBW  
0
D6  
THOPT  
0
D5  
ZDA  
0
D4  
YDA  
0
D3  
XDA  
0
D2  
INTREG[1]  
0
D1  
INTREG[0]  
0
D0  
INTPIN  
0
Reg $18  
Function  
Default  
Table 7. Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits  
INTREG[1:0]  
“INT1” Register Bit  
Level detection  
Pulse Detection  
“INT2” Register Bit  
Pulse Detection  
Level Detection  
00  
01  
10  
Single Pulse detection  
Single or Double Pulse Detection  
00: INT1 Register is detecting Level while INT2 is detecting Pulse.  
01: INT1 Register is detecting Pulse while INT2 is detecting Level.  
10: INT1 Register is detecting a Single Pulse and INT2 is detecting Single Pulse (if 2nd Time Window = 0) or if there is a latency  
time window and second time window > 0 then INT2 will detect the double pulse only.  
INTPIN: INT1 pin is routed to INT1 bit in Detection Source Register ($0A) and INT2 pin is routed to INT2 bit in Detection Source  
Register ($0A).  
INTPIN: INT2 pin is routed to INT1 bit in Detection Source Register ($0A) and INT1 pin is routed to INT2 bit in Detection Source  
Register ($0A).  
Note: When INTREG[1:0] =10 for the condition to detect single pulse on INT1 and either single or double pulse on INT2, INT1  
register bit can no longer be cleared by setting CLR_INT1 bit. It is cleared by setting CLR_INT2 bit. In this case, setting CLR_INT2  
clears both INT1 and INT2 register bits and resets the detection operation. Follow the example given for clearing the interrupts.  
Clearing the Interrupt Pins: Register $17  
$17: Interrupt Latch Reset (Read/Write)  
D7  
--  
0
D6  
--  
0
D5  
--  
0
D4  
--  
0
D3  
--  
0
D2  
--  
0
D1  
CLR_INT2  
0
D0  
CLR_INT1  
0
Reg $17  
Function  
Default  
CLR_INT1  
1: Clear “INT1”  
0: Do not clear “INT1”  
CLR_INT2  
1: Clear “INT2”  
0: Do not clear “INT2”  
After interrupt has triggered due to a detection, the interrupt pin (INT1 or INT2) need to be cleared by writing a logic 1. Then the  
interrupt pin should be enabled to trigger the next detection by setting it to a logic 0.  
This example is to show how to reset the interrupt flags  
void ClearIntLatch(void)  
{
IIC_ByteWrite(INTRST, 0x03);  
IIC_ByteWrite(INTRST, 0x00);  
}
MMA7455L  
Sensors  
Freescale Semiconductor  
15  
Detecting Interrupts  
$0A: Detection Source Register (Read only)  
D7  
LDX  
0
D6  
LDY  
0
D5  
LDZ  
0
D4  
PDX  
0
D3  
PDY  
0
D2  
PDZ  
0
D1  
INT2  
0
D0  
INT1  
0
Reg $0A  
Function  
Default  
LDX  
1: Level detection event is detected on X-axis  
PDZ  
1: 1st pulse is detected on Z-axis  
0: 1st pulse is detected on Z-axis  
INT1  
0: Level detection event is not detected on X-axis  
LDY  
1: Level detection event is detected on Y-axis  
0: Level detection event is not detected on Y-axis  
LDZ  
1: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is detected  
0: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is not detected  
1: Level detection event is detected on Z-axis  
0: Level detection event is not detected on Z-axis  
PDX  
1: 1st pulse is detected on X-axis  
0: 1st pulse is detected on X-axis  
PDY  
INT2  
1: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is detected  
0: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is not detected  
1: 1st pulse is detected on Y-axis  
0: 1st pulse is detected on Y-axis  
DIGITAL INTERFACE  
The MMA7455L has both an I2C and SPI digital output available for a communication interface. CS pin is used for selecting the  
mode of communication. When CS is low, SPI communication is selected. When CS is high, I2C communication is selected.  
Note: It is recommended to disable I2C during SPI communication to avoid communication errors between devices using a dif-  
ferent SPI communication protocol. To disable I2C, set the I2CDIS bit in I2C Device Address register using SPI.  
I2C Slave Interface  
I2C is a synchronous serial communication between a master device and one or more slave devices. The master is typically a  
microcontroller, which provides the serial clock signal and addresses the slave device(s) on the bus. The MMA7455L communi-  
cates only in slave operation where the device address is $1D. Multiple read and write modes are available. The protocol supports  
slave only operation. It does not support Hs mode, “10-bit addressing”, “general call” and: ”START byte”.  
SINGLE BYTE READ  
The MMA7455L has an 10-bit ADC that can sample, convert and return sensor data on request. The transmission of an 8-bit  
command begins on the falling edge of SCL. After the eight clock cycles are used to send the command, note that the data re-  
turned is sent with the MSB first once the data is received. Figure 7 shows the timing diagram for the accelerometer 8-bit I2C  
read operation. The Master (or MCU) transmits a start condition (ST) to the MMA7455L, slave address ($1D), with the R/W bit  
set to “0” for a write, and the MMA7455L sends an acknowledgement. Then the Master (or MCU) transmits the 8-bit address of  
the register to read and the MMA7455L sends an acknowledgement. The Master (or MCU) transmits a repeated start condition  
(SR) and then addresses the MMA7455L ($1D) with the R/W bit set to “1” for a read from the previously selected register. The  
Slave then acknowledges and transmits the data from the requested register. The Master does not acknowledge (NAK) it re-  
ceived the transmitted data, but transmits a stop condition to end the data transfer.  
MULTIPLE BYTES READ  
The MMA7455L automatically increments the received register address commands after a read command is received. Therefore,  
after following the steps of a single byte read, multiple bytes of data can be read from sequential registers after each MMA7455L  
acknowledgment (AK) is received until a NACK is received from the Master followed by a stop condition (SP) signalling an end  
of transmission. See Figure 8.  
MMA7455L  
Sensors  
16  
Freescale Semiconductor  
SINGLE BYTE WRITE  
To start a write command, the Master transmits a start condition (ST) to the MMA7455L, slave address ($1D) with the R/W bit set  
to “0” for a write, the MMA7455L sends an acknowledgement. Then the Master (MCU) transmits the 8-bit address of the register  
to write to, and the MMA7455L sends an acknowledgement. Then the Master (or MCU) transmits the 8-bit data to write to the  
designated register and the MMA7455L sends an acknowledgement that it has received the data. Since this transmission is com-  
plete, the Master transmits a stop condition (SP) to the data transfer. The data sent to the MMA7455L is now stored in the ap-  
propriate register. See Figure 9.  
Figure 7. Single Byte Read - The Master is reading one address from the MMA7455L  
Figure 8. Multiple Bytes Read - The Master is reading multiple sequential registers from the MMA7455L  
Figure 9. Single Byte Write - The Master (MCU) is writing to a single register of the MMA7455L  
MULTIPLE BYTES WRITE  
The MMA7455L automatically increments the received register address commands after a write command is received. Therefore,  
after following the steps of a single byte write, multiple bytes of data can be written to sequential registers after each MMA7455L  
acknowledgment (ACK) is received. See Figure 10.  
Figure 10. Multiple Byte Writes - The Master (MCU) is writing to multiple sequential registers of the MMA7455L  
MMA7455L  
Sensors  
Freescale Semiconductor  
17  
SPI Slave Interface  
The MMA7455L also uses serial peripheral interface communication as a digital communication. The SPI communication is pri-  
marily used for synchronous serial communication between a master device and one or more slave devices. See Figure 16 for  
an example of how to configure one master with one MMA745xL device. The MMA7455L is always operated as a slave device.  
Typically, the master device would be a microcontroller which would drive the clock (SPC) and chip select (CS) signals.  
The SPI interface consists of two control lines and two data lines: CS, SPC, SDI, and SDO. The CS, also known as Chip Select,  
is the slave device enable which is controlled by the SPI master. CS is driven low at the start of a transmission. CS is then driven  
high at the end of a transmission. SPC is the Serial Port Clock which is also controlled by the SPI master. SDI and SDO are the  
Serial Port Data Input and the Serial Port Data Output. The SDI and SDO data lines are driven at the falling edge of the SPC and  
should be captured at the rising edge of the SPC.  
Read and write register commands are completed in 16 clock pulses or in multiples of 8, in the case of a multiple byte read/write.  
SPI Read Operation  
A SPI read transfer consists of a 1-bit Read/Write signal, a 6-bit address, and 1-bit don’t care bit. (1-bit R/W=0 + 6-bits address  
+ 1-bit don’t care). The data to read is sent by the SPI interface during the next transfer. See Figure 11 and Figure 12 for the  
timing diagram for an 8-bit read in 4 wire and 3 wire modes, respectively.  
SPI Write Operation  
In order to write to one of the 8-bit registers, an 8-bit write command must be sent to the MMA7455L. The write command consists  
of an MSB (0=read, 1=write) to indicate writing to the MMA7455L register, followed by a 6-bit address and 1 don’t care bit.  
The command should then be followed the 8-bit data transfer. See Figure 13 for the timing diagram for an 8-bit data write.  
Figure 11. SPI Timing Diagram for 8-Bit Register Read (4 Wire Mode)  
Figure 12. SPI Timing Diagram for 8-Bit Register Read (3 Wire Mode)  
Figure 13. SPI Timing Diagram for 8-Bit Register Write (3 Wire Mode)  
MMA7455L  
Sensors  
18  
Freescale Semiconductor  
BASIC CONNECTIONS  
Pin Descriptions  
Table 8. Pin Descriptions  
Pin # Pin Name  
Top View  
Pin  
Status  
Input  
Description  
1
2
3
DVDD_IO  
GND  
Digital Power for I/O pads  
Ground  
Input  
Input  
N/C  
No internal connection. Leave  
unconnected or connect to Ground.  
I2C Address Bit 0  
4
5
6
IADDR0  
GND  
Input  
Input  
DVDD_IO  
GND  
SDA/SDI/SDO  
SDO  
Ground  
AVDD  
Analog Power  
Input  
N/C  
N/C  
Input  
SPI Enable (0), I2C Enable (1)  
7
8
CS  
INT1/DRDY Interrupt 1/ Data Ready  
Output  
Output  
Input  
IADDR0  
N/C  
9
INT2  
N/C  
Interrupt 2  
INT2  
GND  
10  
No internal connection. Leave  
unconnected or connect to Ground.  
No internal connection. Leave  
AVDD  
INT1/DRDY  
11  
12  
N/C  
Input  
unconnected or connect to Ground.  
SPI Serial Data Output  
SDO  
Output  
I2C Serial Data (SDA), SPI Serial  
Data Input (SDI), 3-wire interface  
Serial Data Output (SDO)  
13 SDA/SDI/SDO  
Open  
Drain/  
Input/  
Figure 14. Pinout Description  
Output  
Input  
I2C Serial Clock (SCL), SPI Serial  
Clock (SPC)  
14  
SCL/SPC  
Recommended PCB Layout for Interfacing Accelerometer to Microcontroller  
Figure 15. I2C Connection to MCU  
MMA7455L  
Sensors  
Freescale Semiconductor  
19  
Figure 16. SPI Connection to MCU  
NOTES:  
1. Use a 0.1 μF and a 10 μF capacitor on AVDD to and DVDD to decouple the power source.  
2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.  
3. PCB layout of power and ground should not couple power supply noise.  
4. Accelerometer and microcontroller should not be a high current path.  
5. Any external power supply switching frequency should be selected such that they do not interfere with the internal  
accelerometer sampling frequency (sampling frequency). This will prevent aliasing errors.  
6. Physical distance of the two GND pins (Pin 2 and Pin 5) tied together should be at the shortest distance.  
MMA7455L  
Sensors  
Freescale Semiconductor  
20  
Table 9. User Register Summary  
Address  
$00  
$01  
$02  
$03  
$04  
$05  
$06  
$07  
$08  
$09  
$0A  
$0B  
$0C  
$0D  
$0E  
$0F  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
Name  
XOUTL  
XOUTH  
YOUTL  
YOUTH  
ZOUTL  
ZOUTH  
XOUT8  
YOUT8  
ZOUT8  
STATUS  
DETSRC  
TOUT  
Definition  
10 bits output value X LSB  
10 bits output value X MSB  
10 bits output value Y LSB  
10 bits output value Y MSB  
10 bits output value Z LSB  
10 bits output value Z MSB  
8 bits output value X  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XOUT[7] XOUT[6] XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0]  
-- -- -- -- -- -- XOUT[9] XOUT[8]  
YOUT[7] YOUT[6] YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0]  
-- -- -- -- -- -- YOUT[9] YOUT[8]  
ZOUT[7] ZOUT[6] ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0]  
-- -- -- -- -- -- ZOUT[9] ZOUT[8]  
XOUT[7] XOUT[6] XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0]  
YOUT[7] YOUT[6] YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0]  
ZOUT[7] ZOUT[6] ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0]  
8 bits output value Y  
8 bits output value Z  
Status registers  
--  
--  
--  
--  
--  
PERR  
PDZ  
DOVR  
INT2  
TMP[1]  
--  
DRDY  
INT1  
TMP[0]  
--  
Detection source registers  
“Temperature output value” (Optional)  
(Reserved)  
LDX  
LDY  
LDZ  
PDX  
TMP[4]  
--  
PDY  
TMP[3]  
--  
TMP[7]  
--  
TMP[6]  
--  
TMP[5]  
--  
TMP[2]  
--  
2
I2CAD  
USRINF  
WHOAMI  
XOFFL  
XOFFH  
YOFFL  
YOFFH  
ZOFFL  
ZOFFH  
MCTL  
INTRST  
CTL1  
I C device address  
I2CDIS  
UI[7]  
ID[7]  
DAD[6]  
UI[6]  
ID[6]  
DAD[5]  
UI[5]  
ID[5]  
DAD[4]  
UI[4]  
ID[4]  
DAD[3]  
UI[3]  
ID[3]  
DAD[2]  
UI[2]  
DAD[1]  
UI[1]  
DAD[0]  
UI[0]  
User information (Optional)  
“Who am I” value (Optional)  
Offset drift X value (LSB)  
Offset drift X value (MSB)  
Offset drift Y value (LSB)  
Offset drift Y value (MSB)  
Offset drift Z value (LSB)  
Offset drift Z value (MSB)  
Mode control  
ID[2]  
ID[1]  
ID[0]  
XOFF[7] XOFF[6] XOFF[5] XOFF[4] XOFF[3] XOFF[2] XOFF[1] XOFF[0]  
-- -- -- -- -- XOFF[10] XOFF[9] XOFF[8]  
YOFF[7] YOFF[6] YOFF[5] YOFF[4] YOFF[3] YOFF[2] YOFF[1] YOFF[0]  
-- -- -- -- -- YOFF[10] YOFF[9] YOFF[8]  
ZOFF[7] ZOFF[6] ZOFF[5] ZOFF[4] ZOFF[3] ZOFF[2] ZOFF[1] ZOFF[0]  
--  
--  
DRPD  
--  
--  
SPI3W  
--  
--  
STON  
--  
--  
ZOFF[10] ZOFF[9] ZOFF[8]  
MOD[1] MOD[0]  
CLRINT2 CLRINT1  
INTRG[1] INTRG[0] INTPIN  
DRVO PDPL LDPL  
--  
--  
GLVL[1] GLVL[0]  
Interrupt latch reset  
--  
XDA  
--  
--  
Control 1  
DFBW  
--  
THOPT  
--  
ZDA  
--  
YDA  
--  
CTL2  
Control 2  
LDTH  
Level detection threshold limit value  
Pulse detection threshold limit value  
Pulse duration value  
LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0]  
PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0]  
PDTH  
PW  
PD[7]  
LT[7]  
TW[7]  
--  
PD[6]  
LT[6]  
TW[6]  
--  
PD[5]  
LT[5]  
TW[5]  
--  
PD[4]  
LT[4]  
TW[4]  
--  
PD[3]  
LT[3]  
TW[3]  
--  
PD[2]  
LT[2]  
TW[2]  
--  
PD[1]  
LT[1]  
TW[1]  
--  
PD[0]  
LT[0]  
TW[0]  
--  
LT  
Latency time value  
nd  
TW  
Time window for 2 pulse value  
(Reserved)  
REGISTER DEFINITIONS  
$00: 10bits Output Value X LSB (Read only)  
D7  
XOUT [7]  
0
D6  
XOUT [6]  
0
D5  
XOUT [5]  
0
D4  
XOUT [4]  
0
D3  
D2  
XOUT [2]  
0
D1  
D0  
Bit  
XOUT [3]  
0
XOUT [1]  
0
XOUT[0]  
0
Function  
Default  
Signed byte data (2’s complement): 0g = 10’h000  
Reading low byte XOUTL latches high byte XOUTH to allow 10-bit reads.  
XOUTH should be read directly following XOUTL read.  
MMA7455L  
Sensors  
Freescale Semiconductor  
21  
$01: 10bits Output Value X MSB (Read only)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
--  
D1  
XOUT [9]  
0
D0  
XOUT[8]  
0
Bit  
Function  
Default  
0
0
0
0
0
0
Signed byte data (2’s complement): 0g = 10’h000  
Reading low byte XOUTL latches high byte XOUTH to allow 10-bit reads.  
XOUTH should be read directly following XOUTL read.  
$02: 10bits Output Value Y LSB (Read only)  
D7  
YOUT [7]  
0
D6  
YOUT [6]  
0
D5  
YOUT [5]  
0
D4  
YOUT [4]  
0
D3  
YOUT [3]  
0
D2  
YOUT [2]  
0
D1  
YOUT [1]  
0
D0  
YOUT[0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): 0g = 10’h000  
Reading low byte YOUTL latches high byte YOUTH to allow coherent 10-bit reads.  
YOUTH should be read directly following YOUTL.  
$03: 10bits Output Value Y MSB (Read only)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
--  
D1  
YOUT [9]  
0
D0  
YOUT[8]  
0
Bit  
Function  
Default  
0
0
0
0
0
0
Signed byte data (2’s complement): 0g = 10’h000  
Reading low byte ZOUTL latches high byte ZOUTH to allow coherent 10-bit reads.  
ZOUTH should be read directly following ZOUTL.  
$04: 10bits Output Value Z LSB (Read only)  
D7  
ZOUT [7]  
0
D6  
ZOUT [6]  
0
D5  
ZOUT [5]  
0
D4  
ZOUT [4]  
0
D3  
ZOUT [3]  
0
D2  
ZOUT [2]  
0
D1  
ZOUT [1]  
0
D0  
ZOUT[0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): 0g = 10’h000  
Reading low byte ZOUTL latches high byte ZOUTH to allow coherent 10-bit reads.  
ZOUTH should be read directly following ZOUTL.  
$05: 10bits Output Value Z MSB (Read only)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
--  
D1  
ZOUT [9]  
0
D0  
ZOUT[8]  
0
Bit  
Function  
Default  
0
0
0
0
0
0
$06: 8bits Output Value X (Read only)  
D7  
XOUT[7]  
0
D6  
XOUT [6]  
0
D5  
XOUT [5]  
0
D4  
XOUT [4]  
0
D3  
XOUT [3]  
0
D2  
XOUT [2]  
0
D1  
XOUT [1]  
0
D0  
XOUT [0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): 0g = 8’h00  
$07: 8bits Output Value Y (Read only)  
D7  
YOUT[7]  
0
D6  
YOUT [6]  
0
D5  
YOUT [5]  
0
D4  
YOUT [4]  
0
D3  
YOUT [3]  
0
D2  
YOUT [2]  
0
D1  
YOUT [1]  
0
D0  
YOUT [0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): 0g = 8’h00  
MMA7455L  
Sensors  
Freescale Semiconductor  
22  
$08: 8bits Output Value Z (Read only)  
D7  
ZOUT[7]  
0
D6  
ZOUT [6]  
0
D5  
ZOUT [5]  
0
D4  
ZOUT [4]  
0
D3  
ZOUT [3]  
0
D2  
ZOUT [2]  
0
D1  
ZOUT [1]  
0
D0  
ZOUT [0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): 0g = 8’h00  
$09: Status Register (Read only)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
PERR  
0
D1  
DOVR  
0
D0  
DRDY  
0
Bit  
Function  
Default  
0
0
0
0
0
DRDY  
PERR  
1: Data is ready  
0: Data is not ready  
DOVR  
1: Parity error is detected in trim data. Then, self-test is dis-  
abled  
0: Parity error is not detected in trim data  
1: Data is over written  
0: Data is not over written  
$0A: Detection Source Register (Read only)  
D7  
LDX  
0
D6  
LDY  
0
D5  
LDZ  
0
D4  
PDX  
0
D3  
PDY  
0
D2  
PDZ  
0
D1  
INT2  
0
D0  
INT1  
0
Bit  
Function  
Default  
LDX  
PDZ *Note  
1: Level detection detected on X-axis  
0: Level detection not detected on X-axis  
LDY  
1: Pulse is detected on Z-axis at single pulse detection  
0: Pulse is not detected on Z-axis at single pulse detection  
Note: This bit value is not valid at double pulse detection  
INT1  
1: Level detection detected on Y-axis  
0: Level detection not detected on Y-axis  
LDZ  
1: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is detected  
0: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is not detected  
1: Level detection detected on Z-axis  
0: Level detection not detected on Z-axis  
PDX *Note  
INT2  
1: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is detected  
1: Pulse is detected on X-axis at single pulse detection  
0: Pulse is not detected on X-axis at single pulse detection  
PDY *Note  
0: Interrupt assigned by INTRG[1:0] bits in Control 1  
Register ($18) and is not detected  
1: Pulse is detected on Y-axis at single pulse detection  
0: Pulse is not detected on Y-axis at single pulse detection  
*Note: Must define DRDY to be an output to either INT1 or  
not. This is done through bit DRPD located in Register $16.  
$0D: I2C Device Address (Bit 6-0: Read only, Bit 7: Read/Write)  
D7  
I2CDIS  
0
D6  
DVAD[6]  
0
D5  
DVAD[5]  
0
D4  
DVAD[4]  
1
D3  
DVAD[3]  
1
D2  
DVAD[2]  
1
D1  
DVAD[1]  
0
D0  
DVAD[0]  
1
Bit  
Function  
Default  
I2CDIS  
0: I2C and SPI are available.  
1: I2C is disabled.  
DVAD[6:0]: I2C device address  
$0E: User Information (Read Only: Optional)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
UI[7]  
UI[6]  
UI[5]  
UI[4]  
UI[3]  
UI[2]  
UI[1]  
UI[0]  
Function  
Default  
0/OTP  
0/OTP  
0/OTP  
0/OTP  
0/OTP  
0/OTP  
0/OTP  
0/OTP  
UI2[7:0]: User information  
MMA7455L  
Sensors  
Freescale Semiconductor  
23  
$0F: “Who Am I” Value (Read only: Optional)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
ID[7]  
ID [6]  
0/OTP  
ID [5]  
0/OTP  
ID [4]  
0/OTP  
ID [3]  
0/OTP  
ID [2]  
0/OTP  
ID [1]  
0/OTP  
ID [0]  
0/OTP  
Function  
Default  
0/OTP  
$10: Offset Drift X LSB (Read/Write)  
The following Offset Drift Registers are used for setting and storing the offset calibrations to eliminate the 0g offset. Please refer  
to Freescale application note AN3745 for detailed instructions on the process to set and store the calibration values.  
D7  
XOFF[7]  
0
D6  
XOFF [6]  
0
D5  
XOFF [5]  
0
D4  
XOFF [4]  
0
D3  
XOFF [3]  
0
D2  
XOFF [2]  
0
D1  
XOFF [1]  
0
D0  
XOFF [0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): User level offset trim value for X-axis  
Bit  
XOFF[7]  
64 LSB  
XOFF[6]  
32 LSB  
XOFF[5]  
16 LSB  
XOFF[4]  
8 LSB  
XOFF[3]  
4 LSB  
XOFF[2]  
2 LSB  
XOFF[1]  
1 LSB  
XOFF[0]  
0.5 LSB  
Weight*  
*Bit weight is for 8g 10-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section.  
$11: Offset Drift X MSB (Read/Write)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
XOFF [10]  
0
D1  
XOFF [9]  
0
D0  
XOFF [8]  
0
Bit  
Function  
Default  
0
0
0
0
0
Signed byte data (2’s complement): User level offset trim value for X-axis  
$12: Offset Drift Y LSB (Read/Write)  
D7  
YOFF[7]  
0
D6  
YOFF [6]  
0
D5  
YOFF [5]  
0
D4  
YOFF [4]  
0
D3  
YOFF [3]  
0
D2  
YOFF [2]  
0
D1  
YOFF [1]  
0
D0  
YOFF [0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): User level offset trim value for Y-axis  
Bit  
YOFF[7]  
64 LSB  
YOFF[6]  
32 LSB  
YOFF[5]  
16 LSB  
YOFF[4]  
8 LSB  
YOFF[3]  
4 LSB  
YOFF[2]  
2 LSB  
YOFF[1]  
1 LSB  
YOFF[0]  
0.5 LSB  
Weight*  
*Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section.  
$13: Offset Drift Y MSB (Read/Write)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
YOFF [10]  
0
D1  
YOFF [9]  
0
D0  
YOFF [8]  
0
Bit  
Function  
Default  
0
0
0
0
0
Signed byte data (2’s complement): User level offset trim value for Y-axis  
Bit  
YOFF[10]  
Polarity  
YOFF[9]  
256 LSB  
YOFF[8]  
128 LSB  
Weight*  
*Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section.  
MMA7455L  
Sensors  
Freescale Semiconductor  
24  
$14: Offset Drift Z LSB (Read/Write)  
D7  
ZOFF[7]  
0
D6  
ZOFF[6]  
0
D5  
ZOFF[5]  
0
D4  
ZOFF[4]  
0
D3  
ZOFF[3]  
0
D2  
ZOFF[2]  
0
D1  
ZOFF[1]  
0
D0  
ZOFF[0]  
0
Bit  
Function  
Default  
Signed byte data (2’s complement): User level offset trim value for Z-axis  
Bit  
ZOFF[7]  
64 LSB  
ZOFF[6]  
32 LSB  
ZOFF[5]  
16 LSB  
ZOFF[4]  
8 LSB  
ZOFF[3]  
4 LSB  
ZOFF[2]  
2 LSB  
ZOFF[1]  
1 LSB  
ZOFF[0]  
0.5 LSB  
Weight*  
*Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section.  
$15: Offset Drift Z MSB (Read/Write)  
D7  
--  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
ZOFF[10]  
0
D1  
ZOFF[9]  
0
D0  
ZOFF[8]  
0
Bit  
Function  
Default  
0
0
0
0
0
Signed byte data (2’s complement): User level offset trim value for Z-axis  
Bit  
ZOFF[10]  
Polarity  
ZOFF[9]  
256 LSB  
ZOFF[8]  
128 LSB  
Weight*  
*Bit weight is for 2g 8-bit data output. Typical value for reference only. Variation is specified in “Electrical Characteristics” section.  
$16: Mode Control Register (Read/Write)  
D7  
--  
D6  
DRPD  
0
D5  
SPI3W  
0
D4  
STON  
0
D3  
GLVL[1]  
0
D2  
GLVL[0]  
0
D1  
MODE[1]  
0
D0  
MODE[0]  
0
Bit  
Function  
Default  
0
Table 10. Configuring the g-Select for 8-bit output using Register $16 with GLVL[1:0] bits  
GLVL [1:0]  
g-Range  
Sensitivity  
16 LSB/g  
64 LSB/g  
32 LSB/g  
00  
01  
10  
8g  
2g  
4g  
GLVL [1:0]  
01: Measurement Mode  
00: 8g is selected for measurement range.  
10: 4g is selected for measurement range.  
01: 2g is selected for measurement range.  
STON  
0: Self-test is not enabled  
1: Self-test is enabled  
10: Level Detection Mode  
11: Pulse Detection Mode  
SPI3W  
0: SPI is 4 wire mode  
1: SPI is 3 wire mode  
DRPD  
MODE [1:0]  
0: Data ready status is output to INT1/DRDY PIN  
1: Data ready status is not output to INT1/DRDY PIN  
00: Standby Mode  
Table 11. Configuring the Mode using Register $16 with MODE[1:0] bits  
MODE [1:0]  
Function  
00  
01  
10  
11  
Standby Mode  
Measurement Mode  
Level Detection Mode  
Pulse Detection Mode  
MMA7455L  
Sensors  
Freescale Semiconductor  
25  
$17: Interrupt Latch Reset (Read/Write)  
D7  
D6  
--  
D5  
--  
D4  
--  
D3  
--  
D2  
--  
D1  
CLR_INT2  
0
D0  
CLR_INT1  
0
Bit  
--  
0
Function  
Default  
0
0
0
0
0
CLR_INT1  
1: Clear “INT1” and LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A) depending on  
Control1($18) INTREG[1:0] setting.  
0: Do not clear “INT1” LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A)  
CLR_INT2  
1: Clear “INT2” and LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A) depending on  
Control1($18) INTREG[1:0] setting.  
0: Do not clear “INT2” and LDX/LDY/LDZ or PDX/PDY/PDZ bits in Detection Source Register ($0A).  
$18 Control 1 (Read/Write)  
D7  
DFBW  
0
D6  
THOPT  
0
D5  
ZDA  
0
D4  
YDA  
0
D3  
XDA  
0
D2  
INTREG[1]  
0
D1  
INTREG[0]  
0
D0  
INTPIN  
0
Bit  
Function  
Default  
Table 12. Configuring the Interrupt settings using Register $18 with INTREG[1:0] bits  
INTREG[1:0]  
“INT1” Register Bit  
Level detection  
Pulse Detection  
Single Pulse detection  
“INT2” Register Bit  
Pulse Detection  
Level Detection  
00  
01  
10  
Single or Double Pulse Detection  
00: INT1 Register is detecting Level while INT2 is detecting Pulse.  
01: INT1 Register is detecting Pulse while INT2 is detecting Level.  
10: INT1 Register is detecting a Single Pulse and INT2 is detecting Single Pulse (if 2nd Time Window = 0) or if there is a latency  
time window and second time window > 0 then INT2 will detect the double pulse only.  
INTPIN: INT1 pin is routed to INT1 bit in Detection Source Register ($0A) and INT2 pin is routed to INT2 bit in Detection Source  
Register ($0A).  
INTPIN: INT2 pin is routed to INT1 bit in Detection Source Register ($0A) and INT1 pin is routed to INT2 bit in Detection Source  
Register ($0A).  
XDA  
THOPT (This bit is valid for level detection only, not valid  
for pulse detection)  
0: Threshold value is absolute only  
1: Integer value is available.  
DFBW  
1: X-axis is disabled for detection.  
0: X-axis is enabled for detection.  
YDA  
1: Y-axis is disabled for detection.  
0: Y-axis is enabled for detection.  
ZDA  
0: Digital filter band width is 62.5 Hz  
1: Digital filter band width is 125 Hz  
1: Z-axis is disabled for detection.  
0: Z-axis is enabled for detection.  
$19: Control 2 (Read/Write)  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
DRVO  
0
D1  
PDPL  
0
D0  
LDPL  
0
Bit  
Function  
Default  
0
0
LDPL  
PDPL  
0: Level detection polarity is positive and detecting condition  
is OR 3 axes.  
0: Pulse detection polarity is positive and detecting condition  
is OR 3 axes.  
1: Level detection polarity is negative detecting condition is  
AND 3 axes.  
1: Pulse detection polarity is negative and detecting condition  
is AND 3 axes.  
DRVO  
0: Standard drive strength on SDA/SDO pin  
1: Strong drive strength on SDA/SDO pin  
MMA7455L  
Sensors  
26  
Freescale Semiconductor  
$1A: Level Detection Threshold Limit Value (Read/Write)  
D7  
LDTH[7]  
0
D6  
LDTH[6]  
0
D5  
LDTH[5]  
0
D4  
LDTH[4]  
0
D3  
LDTH[3]  
0
D2  
LDTH[2]  
0
D1  
LDTH[1]  
0
D0  
LDTH[0]  
0
Bit  
Function  
Default  
LDTH[7:0]: Level detection threshold value. If THOPT bit in Detection Control Register is “0”, it is unsigned 7 bits value and  
LDTH[7] should be “0”. If THOPT bit is “1”, it is signed 8 bits value.  
$1B: Pulse Detection Threshold Limit Value (Read/Write)  
D7  
XPDTH  
0
D6  
PDTH[6]  
0
D5  
PDTH[5]  
0
D4  
PDTH[4]  
0
D3  
PDTH[3]  
0
D2  
PDTH[2]  
0
D1  
PDTH[1]  
0
D0  
PDTH[0]  
0
Bit  
Function  
Default  
PDTH[6:0]: Pulse detection threshold value (unsigned 7 bits).  
XPDTH: This bit should be “0”.  
$1C: Pulse Duration Value (Read/Write)  
D7  
PD[7]  
0
D6  
PD[6]  
0
D5  
PD[5]  
0
D4  
PD[4]  
0
D3  
PD[3]  
0
D2  
PD[2]  
0
D1  
PD[1]  
0
D0  
PD[0]  
0
Bit  
Function  
Default  
Min: PD[7:0] = 4’h01 = 0.5 ms  
Max: PD[7:0] = 4’hFF = 127 ms  
1 LSB = 0.5 ms  
$1D: Latency Time Value (Read/Write)  
D7  
LT[7]  
0
D6  
LT[6]  
0
D5  
LT[5]  
0
D4  
LT[4]  
0
D3  
LT[3]  
0
D2  
LT[2]  
0
D1  
LT[1]  
0
D0  
LT[0]  
0
Bit  
Function  
Default  
Min: LT[7:0] = 8’h01 = 1 ms  
Max: LT[7:0] = 8’hFF = 255 ms  
1 LSB = 1 ms  
$1E: Time Window for 2nd Pulse Value (Read/Write)  
D7  
TW[7]  
0
D6  
TW[6]  
0
D5  
TW[5]  
0
D4  
TW[4]  
0
D3  
TW[3]  
0
D2  
TW[2]  
0
D1  
TW[1]  
0
D0  
TW[0]  
0
Bit  
Function  
Default  
Min: TW[7:0] = 8’h01 = 1 ms (Single pulse detection)  
Max: TW[7:0] = 8’hFF = 255 ms  
1 LSB = 1 ms  
MMA7455L  
Sensors  
Freescale Semiconductor  
27  
SENSING DIRECTION AND OUTPUT RESPONSE  
The following figure shows sensing direction and the output response for 2g mode.  
Direction of Earth's gravity field.*  
Top View  
6
8
5
9
4
3
2
1
7
14  
Side View  
Top  
10 11 12 13  
X
Y
Z
@ 0g = $00  
@ +1g = $3F  
@ 0g = $00  
OUT  
OUT  
Bottom  
X
Y
Z
@ 0g = $00  
OUT  
OUT  
@ 0g = $00  
OUT  
@ +1g = $3F  
OUT  
Bottom  
Top  
13 12 11 10  
9
5
8
6
X
Y
Z
@ +1g = $3F  
@ 0g = $00  
@ 0g = $00  
X
Y
Z
@ -1g = $C1  
@ 0g = $00  
@ 0g = $00  
OUT  
OUT  
OUT  
OUT  
X
@ 0g = $00  
@ 0g = $00  
@ -1g = $C1  
OUT  
OUT  
Y
Z
14  
7
OUT  
OUT  
OUT  
1
2
3
4
X
Y
Z
@ 0g = $00  
OUT  
OUT  
@ -1g = $C1  
@ 0g = $00  
OUT  
* When positioned as shown, the Earth’s gravity will result in a positive 1g output.  
Figure 17. Sensing Direction and Output Response at 2g Mode  
Table 13. Acceleration vs. Output (8-bit data)  
FS Mode  
2g Mode  
Acceleration  
-2g  
Output  
$80  
$C1  
$00  
$3F  
$7F  
$80  
$E1  
$00  
$1F  
$7F  
$80  
$F1  
$00  
$0F  
$7F  
-1g  
0g  
+1g  
+2g  
-4g  
4g Mode  
-1g  
0g  
+1g  
+4g  
-8g  
8g Mode  
-1g  
0g  
+1g  
+8g  
MMA7455L  
Sensors  
Freescale Semiconductor  
28  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the  
correct size to ensure proper solder connection interface between the board and the package.  
With the correct footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to  
design boards with a solder mask layer to avoid bridging and shorting between solder pads.  
SOLDERING AND MOUNTING GUIDELINES FOR THE LGA ACCELEROMETER SENSOR TO A PC BOARD  
These guideline are for soldering and mounting the LGA package inertial sensors to printed circuit boards (PCBs). The purpose  
is to minimize the stress on the package after board mounting. The MMA7455L digital output accelerometer uses the Land Grid  
Array (LGA) package platform. This section describes suggested methods of soldering these devices to the PC board for con-  
sumer applications. Figure 18 shows the recommended PCB land pattern for the package.  
Figure 18. Recommended PCB Land Pattern for the 5 x 3 mm LGA Package  
MMA7455L  
Sensors  
Freescale Semiconductor  
29  
OVERVIEW OF SOLDERING CONSIDERATIONS  
Information provided here is based on experiments executed on LGA devices. They do not represent exact conditions present  
at a customer site. Hence, information herein should be used as a guidance only and process and design optimizations are  
recommended to develop an application specific solution. It should be noted that with the proper PCB footprint and solder stencil  
designs the package will self-align during the solder reflow process.  
The following are the recommended guidelines to follow for mounting LGA sensors for consumer applications.  
PCB MOUNTING RECOMMENDATIONS  
1. The PCB land should be designed with Non Solder Mask Defined (NSMD) as shown in Figure 21.  
2. No additional metal pattern underneath package as shown in Figure 20.  
3. PCB land pad is 0.9 mm x 0.6 mm which is the size of the package pad plus 0.1 mm as shown in Figure 21.  
4. The solder mask opening is equal to the size of the PCB land pad plus an extra 0.1 mm as shown in Figure 21.  
5. The stencil aperture size is equal to the PCB land pad – 0.025mm.  
LGA package w/ solder  
PCB top metal layer  
Example of 2 layer PCB  
Top metal pattern  
under package area  
Via structure under  
package area  
Figure 20. Correct PCB Top Metal Pattern Under Package  
Figure 19. Incorrect PCB Top Metal Pattern Under  
Package  
Signal trace near  
PCB land pattern - NSMD  
package: 0.1mm width  
and min. 0.5mm length  
are recommended.  
Pad Dimension by Package  
Wider trace can be  
continued after these.  
0.5 mm  
0.8 mm  
Wider trace  
Cu: 0.9 x 0.6 mm sq.  
SM opening = PCB land pad + 0.1mm  
= 1.0 x 0.7mm sq.  
Figure 21. Recommended PCB Land Pad, Solder Mask, and Signal Trace Near Package Design  
MMA7455L  
Sensors  
Freescale Semiconductor  
30  
Signal trace near  
package  
Package  
footprint  
Stencil opening = PCB landing  
pad -0.025mm  
= 0.575mmx0,875mm  
10x0.8mm  
14x0.575mm  
14x0.875mm  
Figure 22. Stencil Design Guidelines  
6. Do not place any components or vias at a distance less than 2 mm from the package land area. This may cause additional  
package stress if it is too close to the package land area.  
7. Signal traces connected to pads should be as symmetric as possible. Put dummy traces on NC pads in order to have same  
length of exposed trace for all pads. Signal traces with 0.1 mm width and min. 0.5 mm length for all PCB land pads near the  
package are recommended as shown in Figure 21 and Figure 22. Wider trace can be continued after the 0.5 mm zone.  
8. Use a standard pick and place process and equipment. Do not us a hand soldering process.  
9. It is recommended to use a cleanable solder paste with an additional cleaning step after SMT mount.  
10. Do not use a screw down or stacking to fix the PCB into an enclosure because this could bend the PCB putting stress on  
the package.  
11. The PCB should be rated for the multiple lead-free reflow condition with max 260°C temperature.  
Please cross reference with the device data sheet for mounting guidelines specific to the exact device used.  
Freescale LGA sensors are compliant with Restrictions on Hazardous Substances (RoHS), having halide free molding compound  
(green) and lead-free terminations. These terminations are compatible with tin-lead (Sn-Pb) as well as tin-silver-copper  
(Sn-Ag-Cu) solder paste soldering processes. Reflow profiles applicable to those processes can be used successfully for solder-  
ing the devices.  
MMA7455L  
Sensors  
Freescale Semiconductor  
31  
Xsens_%/DegreeC_-40to85  
Xoff_mg/degreeC_-40to85  
LSL  
Target  
USL  
LSL  
Target  
USL  
-0.02 -0.01  
0
0.01  
0.02  
-3  
-2  
-1  
0
1
2
3
Ysens_%/DegreeC_-40to85  
Yoff_mg/degreeC_-40to85  
LSL  
Target  
USL  
LSL  
Target  
USL  
-3  
-2  
-1  
0
1
2
3
-0.02 -0.01  
0
0.01  
0.02  
Zsens_%/DegreeC_-40to85  
Zoff_mg/degreeC_-40to85  
LSL  
Target  
USL  
LSL  
Target  
USL  
-0.03 -0.02 -0.01  
0
0.01 0.02 0.03  
-3  
-2  
-1  
0
1
2
3
Figure 23. MMA7455L Temperature Coefficient of Offset (TCO) and  
Temperature Coefficient of Sensitivity (TCS) Distribution Charts  
Figure 24. MMA7455L Current Distribution Charts  
MMA7455L  
Sensors  
32  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
CASE 1977-01  
ISSUE A  
14-LEAD LGA  
MMA7455L  
Sensors  
Freescale Semiconductor  
33  
PACKAGE DIMENSIONS  
CASE 1977-01  
ISSUE A  
14-LEAD LGA  
MMA7455L  
Sensors  
34  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 010 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http:/www.freescale.com or contact your Freescale sales representative.  
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.  
MMA7455L  
Rev. 10  
12/2009  

相关型号:

MMA7456L

【2g/【4g/【8g Three Axis Low-g Digital Output Accelerometer
FREESCALE

MMA7456LR1

【2g/【4g/【8g Three Axis Low-g Digital Output Accelerometer
FREESCALE

MMA7456LR2

【2g/【4g/【8g Three Axis Low-g Digital Output Accelerometer
FREESCALE

MMA7456LT

【2g/【4g/【8g Three Axis Low-g Digital Output Accelerometer
FREESCALE

MMA7456L_08

±2g/±4g/±8g Three Axis Low-g Digital Output Accelerometer
FREESCALE

MMA7456L_09

±2g/±4g/±8g Three Axis Low-g Digital Output Accelerometer
FREESCALE

MMA7660FC

3-Axis Orientation/Motion Detection Sensor
FREESCALE

MMA7660FCR1

3-Axis Orientation/Motion Detection Sensor
FREESCALE

MMA7660FCT

3-Axis Orientation/Motion Detection Sensor
FREESCALE

MMA7660FC_12

3-Axis Orientation/Motion Detection Sensor
FREESCALE

MMA8104EG

Digital X-Axis or Z-Axis Accelerometer
FREESCALE

MMA8104EG

SPECIALTY ANALOG CIRCUIT, DSO16, ROHS COMPLIANT, SOIC-16
NXP