MPC5553AZQ80R2 [FREESCALE]

Microcontroller; 微控制器
MPC5553AZQ80R2
型号: MPC5553AZQ80R2
厂家: Freescale    Freescale
描述:

Microcontroller
微控制器

微控制器
文件: 总60页 (文件大小:1585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC5553  
Rev. 0, 06/2006  
Freescale Semiconductor  
Data Sheet: Product Preview  
MPC5553 Microcontroller  
Data Sheet  
by: Microcontroller Division  
Contents  
This document provides electrical specifications, pin  
assignments, and package diagrams for the MPC5553  
microcontroller device. For functional characteristics,  
refer to the MPC5553/MPC5554 Microcontroller  
Reference Manual.  
1
2
3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . 5  
3.3 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4 EMI (Electromagnetic Interference) Characteristics 9  
3.5 ESD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.6 VRC/POR Electrical Specifications . . . . . . . . . . . . 10  
3.7 Power Up/Down Sequencing. . . . . . . . . . . . . . . . . 11  
3.8 DC Electrical Specifications. . . . . . . . . . . . . . . . . . 13  
3.9 Oscillator & FMPLL Electrical Characteristics . . . . 19  
3.10 eQADC Electrical Characteristics . . . . . . . . . . . . . 20  
3.11 H7Fa Flash Memory Electrical Characteristics . . . 21  
3.12 AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.13 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.14 Fast Ethernet AC Timing Specifications . . . . . . . . 45  
1
Overview  
The MPC5553 microcontroller (MCU) is a member of  
the MPC5500 family of microcontrollers based on the  
PowerPC™ Book E architecture. This family of parts  
contains many new features coupled with high  
performance CMOS technology to provide substantial  
reduction of cost per feature and significant performance  
improvement over the MPC500 family.  
4
5
Mechanicals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.1 Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.2 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . 55  
The host processor core of this device is compatible with  
the PowerPC Book E architecture. It is 100% user mode  
compatible (with floating point library) with the classic  
PowerPC instruction set. The Book E architecture has  
enhancements that improve the PowerPC architecture’s  
fit in embedded applications. This core also has  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
additional instructions, including digital signal  
processing (DSP) instructions, beyond the classic  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
Preliminary—Subject to Change Without Notice  
Overview  
PowerPC instruction set. This family of parts contains many new features coupled with high performance  
CMOS technology to provide significant performance improvement over the MPC565.  
The MPC5553 of the MPC5500 family has two levels of memory hierarchy. The fastest accesses are to the  
8-kilobyte unified cache. The next level in the hierarchy contains the 64-kilobyte on-chip internal SRAM  
and 1.5 Mbyte internal Flash memory. Both the internal SRAM and the Flash memory can hold  
instructions and data. The external bus interface has been designed to support most of the standard  
memories used with the MPC5xx family.  
The complex I/O timer functions of the MPC5500 family are performed by an enhanced time processor  
unit engine (eTPU). The eTPU engine controls 32 hardware channels. The eTPU has been enhanced over  
the TPU by providing 24-bit timers, double action hardware channels, variable number of parameters per  
channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU can be  
programmed using a high-level programming language.  
The less complex timer functions of the MPC5500 family are performed by the enhanced modular  
input/output system (eMIOS). The eMIOS’ 24 hardware channels are capable of single action, double  
action, pulse width modulation (PWM), and modulus counter operation. Motor control capabilities include  
edge-aligned and center-aligned PWM.  
Off-chip communication is performed by a suite of serial protocols including controller area networks  
(FlexCANs), enhanced deserial/serial peripheral interfaces (DSPI), and enhanced serial communications  
interfaces (eSCIs). The DSPIs support pin reduction through hardware serialization and deserialization of  
timer channels and general-purpose input/output (GPIO) signals.  
The MCU of the MPC5553 has an on-chip 40-channel enhanced queued dual analog-to-digital converter  
(eQADC).  
The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration  
and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset  
control are also found in the SIU. The internal multiplexer submodule (SIU_DISR) provides multiplexing  
of eQADC trigger sources, daisy chaining the DSPIs and external interrupt signal multiplexing.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
2
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Ordering Information  
2
Ordering Information  
5553  
M PC  
M
80 R2  
ZP  
Qualification Status  
Core Code  
Device Number  
Temperature Range  
Package Identifier  
Operating Frequency (MHz)  
Tape and Reel Status  
Temperature Range  
M = -40° C to 125° C  
A = -55° C to 125° C  
Package Identifier  
Operating Frequency  
80 = 80MHz  
112 = 112MHz  
132 = 132MHz  
Tape and Reel Status  
R2 = Tape and Reel  
(blank) = Trays  
ZP = 416PBGA SnPb  
VR = 416PBGA Pb-free  
VF = 208MAPBGA SnPb  
VM = 208MAPBGA Pb-free  
ZQ = 324PBGA SnPb  
VZ = 324PBGA Pb-free  
Qualification Status  
P = Pre Qualification  
M = Full Spec Qualified  
Note: Not all options are available on all devices. Refer to Table 1.  
Figure 1. MPC5500 Family Part Number Example  
Table 1. Orderable Part Numbers  
Speed  
Freescale Part  
Number  
Max Speed1  
(MHz) (fMAX)  
Description  
Temperature  
(MHz)  
MPC5553MVR132  
MPC5553MZP132  
MPC5553MVZ132  
MPC5553MZQ132  
MPC5553MVF132  
MPC5553MVM132  
MPC5553MVR112  
MPC5553MZP112  
MPC5553MVZ112  
MPC5553MZQ112  
MPC5553MVF112  
MPC5553MVM112  
MPC5553MVR80  
MPC5553MZP80  
MPC5553MVZ80  
MPC5553MZQ80  
MPC5553 Lead free 416 package  
MPC5553 Lead 416 package  
MPC5553 Lead free 324 package  
MPC5553 Lead 324 package  
MPC5553 Lead 208 package  
MPC5553 Lead free 208 package  
MPC5553 Lead free 416 package  
MPC5553 Lead 416 package  
MPC5553 Lead free 324 package  
MPC5553 Lead 324 package  
MPC5553 Lead 208 package  
MPC5553 Lead free 208 package  
MPC5553 Lead free 416 package  
MPC5553 Lead 416 package  
MPC5553 Lead free 324 package  
MPC5553 Lead 324 package  
132  
132  
132  
132  
132  
132  
112  
112  
112  
112  
112  
112  
80  
132  
132  
132  
132  
132  
132  
114  
114  
114  
114  
114  
114  
82  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
-40° C to 125° C  
80  
82  
80  
82  
80  
82  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
3
Electrical Characteristics  
Table 1. Orderable Part Numbers (continued)  
MPC5553MVF80  
MPC5553 Lead 208 package  
80  
80  
82  
82  
-40° C to 125° C  
-40° C to 125° C  
MPC5553MVM80  
MPC5553 Lead free 208 package  
1
Speed is the nominal maximum frequency. Max Speed is the maximum speed allowed including any frequency  
modulation. 80-MHz parts allow for 80 MHz + 2% modulation. However, 132-MHz allows only 128 MHz + 2% FM.  
3
Electrical Characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and  
AC timing specifications for the MCU.  
3.1  
Maximum Ratings  
1
Table 2. Absolute Maximum Ratings  
Num  
Characteristic  
1.5V Core Supply Voltage 3  
Symbol  
Min  
Max2  
Unit  
1
2
3
4
5
6
7
8
9
VDD  
VPP  
– 0.3  
– 0.3  
– 0.3  
– 0.3  
– 0.3  
– 0.3  
–0.3  
1.7  
6.5  
1.7  
4.6  
1.7  
4.6  
4.6  
4.6  
5.5  
4.6  
6.5  
V
V
V
V
V
V
V
V
V
V
V
Flash Program/Erase Voltage  
Flash Core Voltage  
VDDF  
Flash Read Voltage  
VFLASH  
VSTBY  
VDDSYN  
VDD33  
VRC33  
VDDA  
SRAM Standby Voltage  
Clock Synthesizer Voltage  
3.3V I/O Buffer Voltage  
Voltage Regulator Control Input Voltage  
Analog Supply Voltage (reference to VSSA  
–0.3  
)
– 0.3  
– 0.3  
– 0.3  
10 I/O Supply Voltage (Fast I/O Pads) 4  
11 I/O Supply Voltage (Slow/Medium I/O Pads) 4  
12 DC Input Voltage5  
VDDE  
VDDEH  
VIN  
VDDEH powered I/O Pads, except eTPUB15 and  
SINB (DSPI_B_SIN)  
VDDEH powered I/O Pads (eTPUB15 and SINB)  
VDDE powered I/O Pads  
–1.06  
6.58  
V
–0.37  
–1.06  
6.58  
4.69  
13 Analog Reference High Voltage (reference to VRL)  
14 VSS Differential Voltage  
VRH  
– 0.3  
– 0.1  
5.5  
0.1  
V
V
V
V
V
V
V
V
VSS – VSSA  
DD – VDDA  
15 VDD Differential Voltage  
V
– VDDA  
– 0.3  
VDD  
5.5  
16  
VREF Differential Voltage  
VRH – VRL  
VRH – VDDA  
VRL – VSSA  
VDDEH – VDDA  
VDDF – VDD  
17 VRH to VDDA Differential Voltage  
– 5.5  
5.5  
18  
19  
V
RL to VSSA Differential Voltage  
DDEH to VDDA Differential Voltage  
– 0.3  
0.3  
V
–VDDA  
–0.3  
VDDEH  
0.3  
20 VDDF to VDD Differential Voltage  
21 This spec has been moved to Table 9, spec 43a.  
22 VSSSYN to VSS Differential Voltage  
V
SSSYN – VSS  
–0.1  
0.1  
V
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
4
Freescale Semiconductor  
Electrical Characteristics  
1
Table 2. Absolute Maximum Ratings (continued)  
Num  
Characteristic  
Symbol  
Min  
Max2  
Unit  
23 VRCVSS to VSS Differential Voltage  
24 Maximum DC Digital Input Current 10 (per pin, applies to all  
digital pins)5  
VRCVSS – VSS  
IMAXD  
–0.1  
–2  
0.1  
2
V
mA  
25 Maximum DC Analog Input Current 11 (per pin, applies to all  
analog pins)  
26 Maximum Operating Temperature Range 12 — Die Junction  
Temperature  
IMAXA  
TJ  
–3  
3
mA  
oC  
– 40.0  
150.0  
27 Storage Temperature Range  
28 Maximum Solder Temperature 13  
29 Moisture Sensitivity Level 14  
TSTG  
TSDR  
MSL  
– 55.0  
150.0  
260.0  
3
oC  
oC  
1
2
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,  
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or  
cause permanent damage to the device.  
Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have  
not yet been determined.  
3
4
5
1.5V +/– 10% for proper operation. This parameter is specified at a maximum junction temperature of 150C.  
All functional non-supply I/O pins are clamped to VSS and VDDE or VDDEH.  
AC signal over and undershoot of the input voltages of up to +/– 2.0 volts is permitted for a cumulative duration of 60 hours  
over the complete lifetime of the device (injection current does not need to be limited for this duration).  
6
7
Internal structures will hold the voltage above –1.0 volt if the injection current limit of 1 mA is met.  
Internal structures will not clamp to a safe voltage. External protection must be used to ensure that voltage on the pin stays  
above –0.3 volts.  
8
9
Internal structures hold the input voltage below this maximum voltage on all pads powered by VDDEH supplies, if the maximum  
injection current specification is met (1 mA for all pins) and VDDEH is within Operating Voltage specifications.  
Internal structures hold the input voltage below this maximum voltage on all pads powered by VDDE supplies, if the maximum  
injection current specification is met (1 mA for all pins) and VDDE is within Operating Voltage specifications.  
10 Total injection current for all pins (including both digital and analog) must not exceed 25mA.  
11 Total injection current for all analog input pins must not exceed 15mA.  
12 Lifetime operation at these specification limits is not guaranteed.  
13 Solder profile per CDF-AEC-Q100.  
14 Moisture sensitivity per JEDEC test method A112.  
3.2  
Thermal Characteristics  
Table 3. Thermal Characteristics  
Value  
Num  
Characteristic  
Junction to Ambient 1, 2  
Natural Convection  
(Single layer board)  
Junction to Ambient 1, 3  
Natural Convection  
Symbol  
Unit  
208 MAPBGA 324 PBGA 416 PBGA  
1
RθJA  
°C/W  
41  
30  
21  
29  
2
RθJA  
°C/W  
25  
21  
(Four layer board 2s2p)  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
5
Electrical Characteristics  
Table 3. Thermal Characteristics (continued)  
Value  
Num  
Characteristic  
Symbol  
Unit  
208 MAPBGA 324 PBGA 416 PBGA  
3
4
5
Junction to Ambient 1, 3  
(@200 ft./min.,  
Single layer board)  
Junction to Ambient 1, 3  
(@200 ft./min.,  
Four layer board 2s2p)  
Junction to Board 4  
RθJMA  
°C/W  
33  
22  
15  
24  
17  
12  
23  
18  
13  
RθJMA  
°C/W  
°C/W  
RθJB  
(Four layer board 2s2p)  
6
7
Junction to Case 5  
Junction to Package Top 6  
Natural Convection  
RθJC  
°C/W  
°C/W  
7
2
8
2
9
2
ΨJT  
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
3
4
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5
6
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
3.2.1  
General Notes for Specifications at Maximum Junction Temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction to ambient thermal resistance ( C/W)  
θJA  
P = power dissipation in the package (W)  
D
The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide  
consistent values for estimations and comparisons. The difference between the values determined on the  
single-layer (1s) board and on the four-layer board with two signal layers and a power and a ground plane  
(2s2p) clearly demonstrate that the effective thermal resistance of the component is not a constant. It  
depends on the construction of the application board (number of planes), the effective size of the board  
which cools the component, how well the component is thermally and electrically connected to the planes,  
and the power being dissipated by adjacent components.  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to  
connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal  
MPC5553 Microcontroller Data Sheet, Rev. 0  
6
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
performance. When the clearance between through vias leave the planes virtually disconnected, the  
thermal performance is also greatly reduced.  
As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed  
circuit board. The value obtained on the board with the internal planes is usually appropriate if the  
application board has one oz (35 micron nominal thickness) internal planes, the components are well  
2
separated, and the overall power dissipation on the board is less than 0.02 W/cm .  
The thermal performance of any component depends strongly on the power dissipation of surrounding  
components. In addition, the ambient temperature varies widely within the application. For many natural  
convection and especially closed box applications, the board temperature at the perimeter (edge) of the  
package is approximately the same as the local air temperature near the device. Specifying the local  
ambient conditions explicitly as the board temperature provides a more precise description of the local  
ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
o
T = junction temperature ( C)  
J
o
T = board temperature at the package perimeter ( C/W)  
B
o
R
= junction to board thermal resistance ( C/W) per JESD51-8  
θJB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition, with the  
component soldered to a board with internal planes.  
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal  
resistance and a case to ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
o
R
R
R
= junction to ambient thermal resistance ( C/W)  
θJA  
θJC  
θCA  
o
= junction to case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case to ambient thermal resistance, R  
. For instance, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on printed circuit board, or change the  
thermal dissipation on the printed circuit board surrounding the device. This description is most useful for  
packages with heat sinks where some 90% of the heat flow is through the case to the heat sink to ambient.  
For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction to board thermal  
resistance and the junction to case thermal resistance. The junction to case covers the situation where a  
heat sink will be used or where a substantial amount of heat is dissipated from the top of the package. The  
junction to board thermal resistance describes the thermal performance when most of the heat is conducted  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
7
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
to the printed circuit board. This model can be used for either hand estimations or for a computational fluid  
dynamics (CFD) thermal model.  
To determine the junction temperature of the device in the application after prototypes are available, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
Ψ
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd  
Mountain View, CA 94043  
(415) 964-5111  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at  
800-854-7179 or 303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an  
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled  
Applications,” Electronic Packaging and Production, pp. 53–58, March 1998.  
3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal  
Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego,  
1999, pp. 212–220.  
3.3  
Package  
The MPC5553 is available in packaged form. Package options are listed in Section 2, “Ordering  
Information.”  
Refer to Section 4, “Mechanicals,” for pinouts and package drawings.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
8
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
3.4  
EMI (Electromagnetic Interference) Characteristics  
1
Table 4. EMI Testing Specifications  
Num  
Characteristic  
Min. Value  
Typ. Value  
Max. Value  
Unit  
1
2
3
4
5
6
Scan Range  
0.15  
1000  
132  
MHz  
MHz  
V
Operating Frequency  
VDD Operating Voltages  
1.5  
3.3  
5.0  
VDDSYN, VRC33, VDD33, VFLASH, VDDE Operating Voltages  
VPP, VDDEH, VDDA Operating Voltages  
Maximum Amplitude  
V
142  
323  
V
dBuV  
7
Operating Temperature  
25  
oC  
1
EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Qualification testing is performed on the MPC5554 and  
applied to MPC5500 family as generic EMI performance data.  
2
3
As measured with “single-chip” EMI program.  
As measured with “expanded” EMI program.  
3.5  
ESD Characteristics  
1, 2  
Table 5. ESD Ratings  
Characteristic  
Symbol  
Value  
Unit  
ESD for Human Body Model (HBM)  
HBM Circuit Description  
2000  
1500  
V
R1  
C
Ohm  
pF  
100  
ESD for Field Induced Charge Model (FDCM)  
500 (all pins)  
750 (corner pins)  
V
Number of Pulses per pin:  
Positive Pulses (HBM)  
Negative Pulses (HBM)  
1
1
Interval of Pulses  
1
second  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room  
temperature followed by hot temperature, unless specified otherwise in the device specification  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
9
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
3.6  
VRC/POR Electrical Specifications  
Table 6. VRC/POR Electrical Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Units  
1
2
3
4
5
6
7
1.5V (VDD) POR Negated (Ramp Up)  
1.5V (VDD) POR Asserted (Ramp Down)  
V_POR15  
V_POR33  
V_POR5  
1.1  
1.1  
1.35  
1.35  
V
3.3V (VDDSYN) POR Negated (Ramp Up)  
3.3V (VDDSYN) POR Asserted (Ramp Down)  
2.0  
2.0  
2.85  
2.85  
V
V
V
V
V
RESET Pin Supply (VDDEH6) POR Negated (Ramp Up)  
RESET Pin Supply (VDDEH6) POR Asserted (Ramp Down)  
2.0  
2.0  
2.85  
2.85  
VRC33 voltage before regulator controller allows the pass transistor  
to start turning on  
V_TRANS_  
START  
1.0  
2.0  
3.0  
2.0  
2.85  
VRC33 voltage when regulator controller allows the pass transistor  
to completely turn on1, 2  
V_TRANS_ON  
V_VRC33REG  
I_VRCCTL5  
VRC33 voltage above which the regulator controller will keep the  
1.5V supply in regulation3, 4  
Current which can be sourced by VRCCTL  
mA  
mA  
mA  
mA  
V
– 40C  
25C  
11.0  
9.0  
7.5  
150C (Tj)  
8
Voltage differential during power up that VDD33 can lag VDDSYN or  
VDDEH6 before VDDSYN and VDDEH6 reach V_POR33 and  
V_POR5 minimums respectively  
VDD33_LAG  
BETA7  
1.0  
9
Absolute value of Slew Rate on power supply pins  
50  
V/ms  
10  
Required Gain:  
Idd / I_VRCCTL (@vdd = 1.35v, fsys = 132MHz)4, 6  
– 40C  
25C  
55.08  
58.08  
70.08  
150C (Tj)  
500  
1
2
3
4
User must be able to supply full operating current for the 1.5V supply when the 3.3V supply reaches this range.  
Current limit may be reached during ramp up and should not be treated as short circuit current.  
At peak current for device.  
Assumes that the Freescale recommended board requirements and transistor recommendations are met. Board signal  
traces/routing from the VRCCTL package signal to the base of the external pass transistor and between the emitter of the pass  
transistor to the VDD package signals should have a maximum of 100 nH inductance and minimal resistance (<1 ohm).  
VRCCTL should have a nominal 1µF phase compensation capacitor to ground. VDD should have a 20 µF (nominal) bulk  
capacitor (> 4 µF over all conditions, including lifetime). High frequency bypass capacitors consisting of eight 0.01 µF, two 0.1  
µF, and one 1 µF capacitors should be place around the package on the VDD supply signals.  
5
6
7
I_VRCCTL measured at the following conditions: VDD=1.35V, VRC33=3.1V, V_VRCCTL=2.2V.  
Values are based on IDD from high use applications as explained in the IDD Electrical Specification.  
BETA is measured on a per part basis and is calculated as IDD / I_VRCCTL and represents the worst case external transistor  
BETA.  
8
Preliminary value. Final specification pending characterization.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
10  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
3.7  
Power Up/Down Sequencing  
Power sequencing between the 1.5-V power supply and VDDSYN or the RESET power supplies is  
required if the user provides an external 1.5-V power supply and ties VRC33 to ground. To avoid this  
power sequencing requirement, power up VRC33 within the specified operating range, even if not using  
the on-chip voltage regulator controller. Refer to Section 3.7.1, “Power Up Sequence (If VRC33  
Grounded)” and Section 3.7.2, “Power Down Sequence (If VRC33 Grounded).”  
Another power sequencing requirement is that VDD33 must be of sufficient voltage before POR negates,  
so that the values on certain pins are treated as 1s when POR does negate. Refer to Section 3.7.3, “Input  
Value of Pins During POR Dependent on VDD33.”  
Although there is no power sequencing required between VRC33 and VDDSYN during power up, for the  
VRC stage turn-on to operate within specification, VRC33 must not lead VDDSYN by more than 600 mV  
or lag by more than 100 mV. Higher spikes in the emitter current of the pass transistor will occur if VRC33  
leads or lags VDDSYN by more than these amounts. The value of that higher spike in current depends on  
the board power supply circuitry and the amount of board level capacitance.  
Furthermore, when all of the PORs negate, the system clock will start to toggle, adding another large  
increase of the current consumption from VRC33. If VRC33 lags VDDSYN by more than 100 mV, this  
increased current consumption can drop VDD low enough to assert the 1.5-V POR again. Oscillations are  
even possible because when the 1.5-V POR asserts, the system clock stops, causing the voltage on VDD  
to rise until the 1.5-V POR negates again. Any oscillations stop when VRC33 is powered sufficiently.  
When powering down, VRC33 and VDDSYN do not have a delta requirement to each other, because the  
bypass capacitors internal and external to the device are already charged.  
When not powering up or down, VRC33 and VDDSYN do not have a delta requirement to each other for  
the VRC to operate within specification.  
Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive  
current spikes, etc., the state of the I/O pins during power up/down varies depending on power. Table 7  
gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type), and Table 8 for all  
pins with pad type pad_mh (medium type) and pad_sh (slow type).  
Table 7. Power Sequence Pin States (Fast Pads)  
pad_fc (Fast)  
VDDE  
VDD33  
VDD  
Output Driver  
State  
Comment  
LOW  
VDDE  
VDDE  
VDDE  
X
X
Low  
High  
Functional I/O pins are clamped to VSS and VDDE  
LOW  
X
VDD33  
VDD33  
LOW  
VDD  
High Impedance  
Functional  
POR asserted.  
No POR asserted  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
11  
Electrical Characteristics  
Table 8. Power Sequence Pin States (Medium and Slow Pads)  
pad_mh/pad_sh  
VDDEH  
VDD  
(Medium and Slow)  
Output Driver  
Comment  
LOW  
X
Low  
Functional I/O pins are clamped to VSS and VDDEH  
POR asserted  
VDDEH  
VDDEH  
LOW  
VDD  
High Impedance  
Functional  
No POR asserted  
3.7.1  
Power Up Sequence (If VRC33 Grounded)  
In this case, the 1.5-V VDD supply must rise to 1.35-V before the 3.3-V VDDSYN and the RESET power  
supplies rises above 2.0 V. This ensures that digital logic in the PLL on the 1.5-V supply will not begin to  
operate below the specified operation range lower limit of 1.35 V. Since the internal 1.5-V POR is disabled,  
the internal 3.3-V POR or the RESET power POR must be depended on to hold the device in reset. Since  
they may negate as low as 2.0 V, it is necessary for VDD to be within spec before the 3.3-V POR and the  
RESET POR negate.  
VDDSYN and RESET Power  
VDD  
2.0V  
1.35V  
VDD must reach 1.35V before VDDSYN and the RESET power reach 2.0V  
Figure 2. Power Up Sequence if VRC33 Grounded  
3.7.2  
Power Down Sequence (If VRC33 Grounded)  
In this case, the only requirement is that if VDD falls below its operating range, VDDSYN or the RESET  
power must fall below 2.0 V before VDD is allowed to rise back into its operating range. This ensures that  
digital 1.5-V logic that is only reset by ORed_POR, which may have been affected by the 1.5V supply  
falling below spec, is reset properly.  
3.7.3  
Input Value of Pins During POR Dependent on VDD33  
In order to avoid accidentally selecting the bypass clock because PLLCFG[0:1] and RSTCFG are not  
treated as 1s when POR negates, VDD33 must not lag VDDSYN and the RESET pin power (VDDEH6)  
when powering the device by more than the VDD33 lag specification in Table 6. VDD33 individually can  
lag either VDDSYN or the RESET pin power (VDDEH6) by more than the VDD33 lag specification.  
VDD33 can lag one of the VDDSYN or VDDEH6 supplies, but cannot lag both by more than the VDD33  
lag specification. This VDD33 lag specification only applies during power up. VDD33 has no lead or lag  
requirements when powering down.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
12  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
3.8  
DC Electrical Specifications  
Table 9. DC Electrical Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
8
9
Core Supply Voltage (average DC RMS voltage)  
I/O Supply Voltage (Fast I/O)  
I/O Supply Voltage (Slow/Medium I/O)  
3.3V I/O Buffer Voltage  
VDD  
VDDE  
1.35  
1.62  
3.0  
3.0  
3.0  
4.5  
4.5  
3.0  
0.8  
3.0  
1.65  
3.6  
V
V
V
V
V
V
V
V
V
V
V
VDDEH  
VDD33  
VRC33  
VDDA  
5.25  
3.6  
Voltage Regulator Control Input Voltage  
Analog Supply Voltage1  
3.6  
5.25  
5.25  
3.6  
Flash Programming Voltage2  
Flash Read Voltage  
VPP  
VFLASH  
VSTBY  
VDDSYN  
VIH_F  
10 SRAM Standby Voltage3  
1.2  
11 Clock Synthesizer Operating Voltage  
12 Fast I/O Input High Voltage  
3.6  
0.65 *  
VDDE  
VDDE + 0.3  
13 Fast I/O Input Low Voltage  
VIL_F  
VIH_S  
VIL_S  
VSS – 0.3  
0.35 *  
VDDE  
V
V
V
14 Medium/Slow I/O Input High Voltage  
15 Medium/Slow I/O Input Low Voltage  
0.65 *  
VDDEH  
VDDEH  
0.3  
+
VSS – 0.3  
0.35 *  
VDDEH  
0.1 * VDDE  
0.1 * VDDEH  
16 Fast I/O Input Hysteresis  
17 Medium/Slow I/O Input Hysteresis  
18 Analog Input Voltage  
VHYS_F  
VHYS_S  
VINDC  
V
V
V
VSSA –  
VDDA +  
0.3  
0.3  
19 Fast I/O Output High Voltage (IOH_F = –2.0mA)  
VOH_F  
VOH_S  
0.8 * VDDE  
V
V
20 Slow/Medium I/O Output High Voltage (IOH_S = –2.0mA)  
0.8 *  
VDDEH  
21 Fast I/O Output Low Voltage (IOL_F = 2.0mA)  
VOL_F  
VOL_S  
0.2 * VDDE  
V
V
22 Slow/Medium I/O Output Low Voltage (IOL_S = 2.0mA)  
0.2 *  
VDDEH  
23 Load Capacitance (Fast I/O)4  
DSC(SIU_PCR[8:9]) = 0b00  
DSC(SIU_PCR[8:9]) = 0b01  
DSC(SIU_PCR[8:9]) = 0b10  
DSC(SIU_PCR[8:9]) = 0b11  
CL  
10  
20  
30  
50  
pF  
pF  
pF  
pF  
24 Input Capacitance (Digital Pins)  
25 Input Capacitance (Analog Pins)  
CIN  
7
pF  
pF  
CIN_A  
10  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
13  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
Num  
Table 9. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
26 Input Capacitance (Shared digital and analog pins AN12_MA0_SDS,  
AN12_MA1_SDO, AN14_MA2_SDI, and AN15_FCK)  
CIN_M  
12  
pF  
27a Operating Current5 1.5V Supplies @ 132MHz:  
VDD (including VDDF max current)6, 7 @1.65V Typical Use  
VDD (including VDDF max current)6, 7 @1.35V Typical Use  
VDD (including VDDF max current) 7, 8 @1.65V High Use  
VDD (including VDDF max current)7, 8@1.35V High Use  
IDD  
IDD  
IDD  
IDD  
5509  
4509  
6009  
4909  
mA  
mA  
mA  
mA  
27b Operating Current 51.5V Supplies @ 114MHz:  
VDD (including VDDF max current)6, 7@1.65V Typical Use  
VDD (including VDDF max current)6, 7@1.35V Typical Use  
VDD (including VDDF max current)7, 8 @1.65V High Use  
VDD (including VDDF max current)7, 8 @1.35V High Use  
IDD  
IDD  
IDD  
IDD  
4609  
3809  
5209  
4209  
mA  
mA  
mA  
mA  
27c Operating Current5 1.5V Supplies @ 82MHz:  
VDD (including VDDF max current)6, 7 @1.65V Typical Use  
VDD (including VDDF max current)6, 7 @1.35V Typical Use  
VDD (including VDDF max current)7, 8 @1.65V High Use  
VDD (including VDDF max current)7, 8 @1.35V High Use  
IDD  
IDD  
IDD  
IDD  
3509  
2909  
4009  
3309  
mA  
mA  
mA  
mA  
27d  
IDDSTBY @ 25C  
VSTBY @ 0.8V  
VSTBY @ 1.0V  
VSTBY @ 1.2V  
IDDSTBY  
IDDSTBY  
IDDSTBY  
20  
30  
50  
µA  
µA  
µA  
IDDSTBY @ 60C  
VSTBY @ 0.8V  
VSTBY @ 1.0V  
VSTBY @ 1.2V  
IDDSTBY  
IDDSTBY  
IDDSTBY  
70  
100  
200  
µA  
µA  
µA  
IDDSTBY @ 150C (Tj)  
VSTBY @ 0.8V  
VSTBY @ 1.0V  
VSTBY @ 1.2V  
IDDSTBY  
IDDSTBY  
IDDSTBY  
1200  
1500  
2000  
µA  
µA  
µA  
28 Operating Current 3.3V Supplies @ 132MHz:  
VDD3310  
IDD33  
2 + values mA  
derived  
from  
procedure  
ofFootnote  
10  
VFLASH  
VDDSYN  
IVFLASH  
IDDSYN  
10  
15  
mA  
mA  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
14  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. DC Electrical Specifications (continued)  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
29 Operating Current 5.0V Supplies @ 132MHz (12MHz ADCLK):  
VDDA (VDDA0 + VDDA1)  
Analog Reference Supply Current (VRH, VRL)  
VPP  
IDDA  
IREF  
IPP  
20.0  
1.0  
25  
mA  
mA  
mA  
30 Operating Current VDDE11 Supplies:  
VDDEH1  
VDDE2  
VDDE3  
VDDEH4  
VDDE5  
VDDEH6  
VDDE7  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
IDD8  
IDD9  
See  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Footnote  
11  
VDDEH8  
VDDEH9  
31 Fast I/O Weak Pull Up Current12  
1.62V – 1.98V  
IACT_F  
10  
20  
20  
110  
130  
170  
µA  
µA  
µA  
2.25V – 2.75V  
3.0V – 3.6V  
Fast I/O Weak Pull Down Current12  
1.62V – 1.98V  
10  
20  
20  
100  
130  
170  
µA  
µA  
µA  
2.25V – 2.75V  
3.0V – 3.6V  
32 Slow/Medium I/O Weak Pull Up/Down Current13  
IACT_S  
3.0V – 3.6V  
4.5V – 5.5V  
10  
20  
150  
170  
µA  
µA  
33 I/O Input Leakage Current14  
34 DC Injection Current (per pin)  
35 Analog Input Current, Channel Off15  
IINACT_D  
IIC  
IINACT_A  
IINACT_AD  
– 2.5  
– 2.0  
–150  
– 2.5  
2.5  
2.0  
150  
2.5  
µA  
mA  
nA  
µA  
35a Analog Input Current, Shared Analog/Digital pins  
(AN12, AN13, AN14, AN15)  
36 VSS Differential Voltage16  
VSS – VSSA  
VRL  
– 100  
100  
mV  
V
37 Analog Reference Low Voltage  
VSSA –  
0.1  
VSSA +  
0.1  
38 VRL Differential Voltage  
VRL – VSSA  
VRH  
–100  
100  
mV  
V
39 Analog Reference High Voltage  
VDDA –  
0.1  
VDDA +  
0.1  
40 VREF Differential Voltage  
VRH – VRL  
VSSSYN – VSS  
VRCVSS – VSS  
VDDF – VDD  
4.5  
–50  
5.25  
50  
V
41 VSSSYN to VSS Differential Voltage  
42 VRCVSS to VSS Differential Voltage  
43 VDDF to VDD Differential Voltage2  
mV  
mV  
mV  
–50  
50  
–100  
100  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
15  
Electrical Characteristics  
Num  
Table 9. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
43a VRC33 to VDDSYN Differential Voltage  
VRC33 – VDDSYN  
VIDIFF  
–0.1  
– 2.5  
0.117  
2.5  
V
V
44 Analog Input Differential Signal Range (with common mode 2.5V)  
45 Operating Temperature Range — Ambient (Packaged)  
TA  
– 40.0  
125.0  
οC  
(TL to TH)  
46 Slew rate on power supply pins  
50  
V/ms  
1
2
3
4
5
6
7
8
| VDDA0–VDDA1 | must be < 0.1V  
VPP can drop to 3.0 volts during read operations.  
During standby operation. If standby operation is not required, VSTBY can be connected to ground.  
Applies to CLKOUT, external bus pins, and Nexus pins.  
Maximum average RMS DC current.  
Average current measured on Automotive benchmark.  
Peak currents may be higher on specialized code.  
High use current measured while running optimized SPE assembly code with all code and data 100% locked in cache (0%  
miss rate) with all channels of the eMIOS and eTPU running autonomously, plus the eDMA transferring data continuously from  
SRAM to SRAM. Higher currents could be seen if an “idle” loop that crosses cache lines is run from cache. Code should be  
written to avoid this condition.  
9
Preliminary. Final specification pending characterization.  
10 Power requirements for the VDD33 supply are dependent on the frequency of operation and load of all I/O pins, and the  
voltages on the I/O segments. See Table 11 for values to calculate power dissipation for specific operation.  
11 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular  
I/O segment, and the voltage of the I/O segment. See Table 10 for values to calculate power dissipation for specific operation.  
The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.  
12 Absolute value of current, measured at VIL and VIH.  
13 Absolute value of current, measured at VIL and VIH.  
14 Weak pull up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types: pad_fc, pad_sh, and  
pad_mh.  
15 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each  
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: pad_a and pad_ae.  
16 VSSA refers to both VSSA0 and VSSA1. | VSSA0–VSSA1 | must be < 0.1V  
17 Up to 0.6 volts during power up and power down.  
3.8.1  
I/O Pad Current Specifications  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The  
power consumption is the sum of all output pin currents for a particular segment. The output pin current  
can be calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to  
calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in  
Table 10.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
16  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
1
Table 10. I/O Pad Average DC Current  
Drive Select /  
Slew Rate  
Control  
Frequency  
(MHz)  
Load2  
(pF)  
Num  
Pad Type  
Symbol  
Voltage (V)  
Current (mA)  
1
Slow  
IDRV_SH  
25  
10  
2
50  
50  
50  
200  
50  
50  
50  
200  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
11  
01  
00  
00  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
8.0  
3.2  
0.7  
2.4  
17.3  
6.5  
1.1  
3.9  
2.8  
5.2  
8.5  
11.0  
1.6  
2.9  
4.2  
6.7  
2.4  
4.4  
7.2  
9.3  
1.3  
2.5  
3.5  
5.7  
1.7  
3.1  
5.1  
6.6  
1.0  
1.8  
2.5  
4.0  
2
3
4
2
5
Medium  
Fast  
IDRV_MH  
50  
20  
3.33  
3.33  
66  
66  
66  
66  
66  
66  
66  
66  
56  
56  
56  
56  
56  
56  
56  
56  
40  
40  
40  
40  
40  
40  
40  
40  
6
7
8
9
IDRV_FC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
1
2
These values are estimated from simulation and are not tested. Currents apply to output pins only.  
All loads are lumped.  
3.8.2  
I/O Pad VDD33 Current Specifications  
The power consumption of the VDD33 supply dependents on the usage of the pins on all I/O segments.  
The power consumption is the sum of all input and output pin VDD33 currents for all I/O segments. The  
output pin VDD33 current can be calculated from Table 11 based on the voltage, frequency, and load on  
all fast (pad_fc) pins. The input pin VDD33 current can be calculated from Table 11 based on the voltage,  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
17  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
frequency, and load on all pad_sh and pad_sh pins. Use linear scaling to calculate pin currents for voltage,  
frequency, and load parameters that fall outside the values given in Table 11.  
1
Table 11. VDD33 Pad Average DC Current  
Frequency  
(MHz)  
Load2  
(pF)  
Drive  
Select  
Num  
Pad Type  
Symbol  
VDD33 (V)  
VDDE (V)  
Current (mA)  
Inputs  
1
2
Slow  
I33_SH  
I33_MH  
66  
66  
0.5  
0.5  
3.6  
3.6  
5.5  
5.5  
NA  
NA  
0.003  
0.003  
Medium  
Outputs  
3
Fast  
I33_FC  
66  
66  
66  
66  
66  
66  
66  
66  
56  
56  
56  
56  
56  
56  
56  
56  
40  
40  
40  
40  
40  
40  
40  
40  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0.35  
0.53  
0.62  
0.79  
0.35  
0.44  
0.53  
0.7  
4
5
3.6  
6
3.6  
7
1.98  
1.98  
1.98  
1.98  
3.6  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
0.30  
0.45  
0.52  
0.67  
0.30  
0.37  
0.45  
0.60  
0.21  
0.31  
0.37  
0.48  
0.21  
0.27  
0.32  
0.42  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
1
2
These values are estimated from simulation and not tested. Currents apply to output pins only for the fast pads and to input  
pins only for the slow and medium pads.  
All loads are lumped.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
18  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
3.9  
Oscillator & FMPLL Electrical Characteristics  
Table 12. HiP7 FMPLL Electrical Specifications  
(VDDSYN = 3.0V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Min.  
Value  
Max.  
Unit  
Num  
Characteristic  
Symbol  
Value  
1
PLL Reference Frequency Range:  
Crystal reference  
MHz  
fref_crystal  
fref_ext  
8
8
20  
20  
External reference  
Dual Controller (1:1 mode)  
fref_1:1  
24  
fsys/2  
2
2
3
4
5
6
System Frequency 1  
fsys  
tCYC  
fLOR  
fSCM  
fico(min) ÷ 2RFD  
fMAX  
MHz  
ns  
System Clock Period  
100  
7.4  
1 / fsys  
1000  
17.5  
Loss of Reference Frequency 3  
Self Clocked Mode (SCM) Frequency 4  
kHz  
MHz  
EXTAL Input High Voltage  
Crystal Mode 5  
VIHEXT  
VIHEXT  
Vxtal + 0.4v  
V
V
All other modes (Dual Controller (1:1),  
Bypass, External Reference)  
((VDDE5/2) + 0.4v)  
7
EXTAL Input Low Voltage  
Crystal Mode 6  
VILEXT  
VILEXT  
Vxtal – 0.4v  
V
V
All other modes (Dual Controller (1:1),  
Bypass, External Reference)  
((VDDE5/2) – 0.4v)  
8
9
XTAL Current 7  
IXTAL  
CS_XTAL  
CS_EXTAL  
CL  
0.8  
3
mA  
pF  
pF  
pF  
Total On-chip stray capacitance on XTAL  
Total On-chip stray capacitance on EXTAL  
1.5  
1.5  
10  
11  
Crystal manufacturer’s recommended  
capacitive load  
See crystal  
specification  
See crystal  
specification  
12  
13  
Discrete load capacitance to be connected  
to EXTAL  
CL_EXTAL  
CL_XTAL  
2*CL – CS_EXTAL  
pF  
pF  
8
CPCB_EXTAL  
Discrete load capacitance to be connected  
to XTAL  
2*CL – CS_XTAL  
8
CPCB_XTAL  
14  
15  
PLL Lock Time9  
tlpll  
750  
2
µs  
Dual Controller (1:1) Clock Skew (between  
CLKOUT and EXTAL) 10, 11  
tskew  
–2  
ns  
16  
17  
18  
19  
Duty Cycle of reference  
Frequency un-LOCK Range  
Frequency LOCK Range  
CLKOUT Period Jitter,12, 13  
Measured at fSYS Max  
Peak-to-peak Jitter  
tdc  
fUL  
fLCK  
Cjitter  
40  
60  
4.0  
2.0  
%
– 4.0  
– 2.0  
% fsys  
% fsys  
% fclkout  
5.0  
.01  
(Clock edge to clock edge)  
Long Term Jitter  
(Averaged over 2 ms interval)  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
19  
Electrical Characteristics  
Table 12. HiP7 FMPLL Electrical Specifications (continued)  
(VDDSYN = 3.0V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Min.  
Max.  
Value  
Num  
Characteristic  
Symbol  
Value  
Unit  
20  
Frequency Modulation Range Limit 14  
(fsysMax must not be exceeded)  
Cmod  
0.8  
48  
4
2.4  
%fsys  
21  
ICO Frequency.  
fico  
fsys  
MHz  
f
ico=[fref*(MFD+4)]/(PREDIV+1)15  
22  
Predivider Output Frequency (to PLL)  
fPREDIV  
fMAX  
MHz  
1
2
3
4
All internal registers retain data at 0 Hz.  
Up to the maximum frequency rating of the device (see Table 1).  
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode.  
Self clocked mode (SCM) frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR  
This frequency is measured on the CLKOUT pin with the divider set to divide-by-2 of the system clock. NOTE: In SCM, the  
MFD and PREDIV have no effect and the RFD is bypassed.  
.
5
6
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,  
Vextal – Vxtal >= 400mV criteria has to be met for oscillator’s comparator to produce output clock.  
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,  
Vxtal – Vextal >= 400mV criteria has to be met for oscillator’s comparator to produce output clock.  
7
8
9
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.  
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively  
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR). From power up with crystal oscillator reference, the lock time will also include the crystal  
startup time.  
10 PLL is operating in 1:1 PLL mode.  
11 VDDE = 3.0 to 3.6V  
12 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the jitter percentage  
for a given interval. CLKOUT divider set to divide-by-2.  
.
13 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of jitter + Cmod.  
14 Modulation depth selected must not result in fsys value greater than the fsys maximum specified value.  
15  
f
= fico / (2RFD  
)
sys  
3.10 eQADC Electrical Characteristics  
Table 13. eQADC Conversion Specifications (Operating)  
Num  
Characteristic  
ADC Clock (ADCLK) Frequency1  
Symbol  
Min  
Max  
Unit  
1
2
FADCLK  
CC  
1
12  
MHz  
Conversion Cycles  
Differential  
ADCLK  
cycles  
13+2 (or 15) 13+128 (or 141)  
14+2 (or 16) 14+128 (or 142)  
Single Ended  
3
4
5
6
Stop Mode Recovery Time2  
Resolution3  
TSR  
10  
1.25  
–4  
4
µs  
mV  
Counts3  
INL: 6 MHz ADC Clock  
INL: 12 MHz ADC Clock  
INL6  
INL12  
–8  
8
Counts  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
20  
Freescale Semiconductor  
Electrical Characteristics  
Table 13. eQADC Conversion Specifications (Operating) (continued)  
Num  
Characteristic  
DNL: 6 MHz ADC Clock  
Symbol  
Min  
Max  
Unit  
7
8
9
DNL6  
DNL12  
OFFWC  
GAINWC  
IINJ  
–3 4  
–6 4  
–4 5  
–8 6  
–1  
3 4  
64  
4 5  
8 6  
1
Counts  
Counts  
Counts  
Counts  
mA  
DNL: 12 MHz ADC Clock  
Offset Error with Calibration  
10 Full Scale Gain Error with Calibration  
11 Disruptive Input Injection Current 7, 8, 9, 10  
12 Incremental Error due to injection current. All channels have  
same 10k< Rs <100kΩ  
EINJ  
–4  
4
Counts  
Channel under test has Rs=10k,  
IINJ=IINJMAX INJMIN  
,I  
13 Total Unadjusted Error for single ended conversions with  
calibration11, 12, 13, 14, 15  
TUE  
–4  
4
Counts  
1
2
Conversion characteristics vary with FADCLK rate. Reduced conversion accuracy occurs at maximum FADCLK rate. The  
maximum value is based on 800KS/s and the minimum value is based on 20MHz oscillator clock frequency divided by a  
maximum 16 factor.  
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that  
the ADC is ready to perform conversions.  
3
4
5
6
7
At VRH – VRL = 5.12 V, one lsb = 1.25 mV = one count  
Guaranteed 10-bit monotonicity  
The absolute value of the offset error without calibration 100 counts.  
The absolute value of the full scale gain error without calibration 120 counts.  
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater than  
VRH and 0x000 for values less than VRL. This assumes that VRH VDDA and VRL VSSA due to the presence of the sample  
amplifier. Other channels are not affected by non-disruptive conditions.  
8
9
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do  
not affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values using VPOSCLAMP = VDDA + 0.5V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values.  
10 Condition applies to two adjacent pads on the internal pad.  
11 The TUE specification will always be better than the sum of the INL, DNL, offset, and gain errors due to canceling errors.  
12 TUE does not apply to differential conversions.  
13 Measured at 6 MHz ADC clock. TUE with a 12 MHz ADC clock is: –16 counts < TUE < 16 counts.  
14 TUE includes all internal device error such as internal reference variation (75% Ref, 25% Ref)  
15 Depending on the customer input impedance, the Analog Input Leakage current (DC Electrical specification 35a) may affect  
the actual TUE measured on analog channels AN12, AN13, AN14, AN15.  
3.11 H7Fa Flash Memory Electrical Characteristics  
1
Table 14. Flash Program and Erase Specifications  
Initial  
Num  
Characteristic  
Symbol  
Min  
Typ  
Max3 Unit  
Max2  
3
4
7
9
Double Word (64 bits) Program Time4  
Page Program Time4  
Tdwprogram  
Tpprogram  
T16kpperase  
T48kpperase  
10  
22  
500  
500  
µs  
µs  
445  
400  
400  
16 Kbyte Block Pre-program and Erase Time  
48 Kbyte Block Pre-program and Erase Time  
265  
340  
5000  
5000  
ms  
ms  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
21  
Electrical Characteristics  
Num  
1
Table 14. Flash Program and Erase Specifications (continued)  
Initial  
Max2  
Characteristic  
Symbol  
Min  
Typ  
Max3 Unit  
10  
8
64 Kbyte Block Pre-program and Erase Time  
128 Kbyte Block Pre-program and Erase Time  
T64kpperase  
T128kpperase  
25  
400  
500  
500  
1250  
5000  
15,000 ms  
MHz  
ms  
11  
Minimum operating frequency for program and erase  
operations6  
1
2
3
Typical program and erase times assume nominal supply values and operation at 25 oC.  
Initial factory condition: 100 program/erase cycles, 25 oC, typical supply voltage, 80MHz minimum system frequency.  
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized  
but not guaranteed.  
4
5
6
Actual hardware programming times. This does not include software overhead.  
Page size is 256 bits (8 words).  
Read frequency of the flash can be up to the maximum operating frequency of the device. There is no minimum read frequency  
condition.  
Table 15. Flash EEPROM Module Life (Full Temperature Range)  
Num  
Characteristic  
Symbol  
Min  
Typical1 Unit  
cycles  
1a  
Number of Program/Erase cycles per block for 16 Kbyte, 48 Kbyte, and 64  
Kbyte blocks over the operating temperature range (TJ)  
P/E  
100,000  
1b  
2
Number of Program/Erase cycles per block for 128 Kbyte blocks over the  
operating temperature range (TJ)  
P/E  
10,000 100,000 cycles  
Data retention  
Retention  
years  
Blocks with 0 – 1,000 P/E cycles  
Blocks with 1,001 – 100,000 P/E cycles  
20  
5
1
Typical endurance is evaluated at 25C. Product qualification is performed to the minimum specification. For additional  
information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619 “Typical Endurance  
for Nonvolatile Memory.”  
Table 16 shows the FLASH_BIU settings versus frequency of operation. Refer to the device Reference  
Manual for definitions of these bit-fields.  
Table 16. FLASH_BIU Settings vs. Frequency of Operation  
Maximum Frequency (MHz)  
APC  
RWSC  
WWSC  
DPFEN  
IPFEN  
PFLIM  
BFEN  
up to and including 82 MHz1  
0b001  
0b001  
0b01  
0b00,  
0b01, or  
0b112  
0b00,  
0b01, or  
0b112  
0b000- 0b0, 0b14  
0b1103  
up to and including 102 MHz5  
up to and including132 MHz6  
Default Setting after Reset  
0b001  
0b010  
0b111  
0b010  
0b011  
0b111  
0b01  
0b01  
0b11  
0b00,  
0b01, or  
0b112  
0b00,  
0b01, or  
0b112  
0b000- 0b0, 0b14  
0b1103  
0b00,  
0b01, or  
0b112  
0b00,  
0b01, or  
0b112  
0b000- 0b0, 0b14  
0b1103  
0b00  
0b00  
0b000  
0b0  
1
This setting allows for 80 MHz system clock with 2% frequency modulation.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
22  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
2
3
4
5
6
For maximum flash performance, this should be set to 0b11.  
For maximum flash performance, this should be set to 0b110.  
For maximum flash performance, this should be set to 0b1.  
This setting allows for 100 MHz system clock with 2% frequency modulation.  
This setting allows for 128 MHz system clock with 2% frequency modulation.  
3.12 AC Specifications  
3.12.1 Pad AC Specifications  
1
Table 17. Pad AC Specifications (VDDEH = 5.0V, VDDE = 1.8V)  
Out Delay2, 3, 4  
(ns)  
Rise/Fall4, 5  
(ns)  
Load Drive  
(pF)  
Num  
Pad  
SRC/DSC  
1
Slow High Voltage (SH)  
11  
26  
82  
15  
60  
50  
200  
50  
01  
00  
11  
01  
00  
75  
40  
137  
377  
476  
16  
80  
200  
50  
200  
260  
8
200  
50  
2
Medium High Voltage (MH)  
43  
30  
200  
50  
34  
15  
61  
35  
200  
50  
192  
239  
3.1  
100  
125  
2.7  
2.5  
2.4  
2.3  
7500  
9000  
200  
10  
3
Fast  
00  
01  
10  
11  
20  
30  
50  
4
5
Pull Up/Down (3.6V max)  
Pull Up/Down (5.5V max)  
50  
50  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
FSYS = 132MHz, VDD = 1.35V to 1.65V, VDDE = 1.62V to 1.98V, VDDEH = 4.5V to 5.5V, VDD33 and VDDSYN = 3.0V to 3.6V,  
TA = TL to TH.  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Out delay is shown in Figure 3. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
23  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
Table 18. De-rated Pad AC Specifications (VDDEH = 3.3V, VDDE = 3.3V)  
1
Out Delay2, 3, 4  
(ns)  
Rise/Fall3, 5  
(ns)  
Load Drive  
(pF)  
Num  
Pad  
SRC/DSC  
1
2
3
Slow High Voltage (SH)  
Medium High Voltage (MH)  
Fast  
11  
39  
120  
101  
188  
507  
597  
23  
23  
87  
50  
200  
50  
01  
00  
11  
01  
00  
52  
111  
248  
312  
12  
200  
50  
200  
50  
64  
44  
200  
50  
50  
22  
90  
50  
200  
50  
261  
305  
3.2  
123  
156  
2.4  
2.2  
2.1  
2.1  
7500  
9500  
200  
10  
00  
01  
10  
11  
20  
30  
50  
4
5
Pull Up/Down (3.6V max)  
Pull Up/Down (5.5V max)  
50  
50  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
FSYS = 132MHz, VDD = 1.35V to 1.65V, VDDE = 3.0V to 3.6V, VDDEH = 3.0V to 3.6V, VDD33 and VDDSYN = 3.0V to 3.6V,  
TA = TL to TH.  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
Out delay is shown in Figure 3. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
24  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
VDD/2  
Pad  
Internal Data Input Signal  
Rising  
Edge  
Out  
Falling  
Edge  
Out  
Delay  
Delay  
VOH  
Pad  
Output  
VOL  
Figure 3. Pad Output Delay  
3.13 AC Timing  
3.13.1 Reset and Configuration Pin Timing  
1
Table 19. Reset and Configuration Pin Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
RESET Pulse Width  
tRPW  
tGPW  
tRCSU  
tRCH  
10  
2
tCYC  
tCYC  
tCYC  
tCYC  
RESET Glitch Detect Pulse Width  
PLLCFG, BOOTCFG, WKPCFG, RSTCFG Setup Time to RSTOUT Valid  
PLLCFG, BOOTCFG, WKPCFG, RSTCFG Hold Time from RSTOUT Valid  
10  
0
1
Reset timing specified at FSYS = 132MHz, VDDEH = 3.0V to 5.25V, VDD = 1.35V to 1.65V, TA = TL to TH.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
25  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
2
RESET  
1
RSTOUT  
3
PLLCFG  
BOOTCFG  
RSTCFG  
WKPCFG  
4
Figure 4. Reset and Configuration Pin Timing  
3.13.2 IEEE 1149.1 Interface Timing  
1
Table 20. JTAG Pin AC Electrical Characteristics  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
7
8
9
TCK Cycle Time  
tJCYC  
tJDC  
tTCKRISE  
TMSS, tTDIS  
tTMSH, TDIH  
tTDOV  
tTDOI  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Clock Pulse Width (Measured at VDDE/2)  
TCK Rise and Fall Times (40% – 70%)  
TMS, TDI Data Setup Time  
t
20  
20  
50  
50  
50  
TMS, TDI Data Hold Time  
t
25  
0
TCK Low to TDO Data Valid  
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
50  
50  
10 JCOMP Setup Time to TCK Low  
11 TCK Falling Edge to Output Valid  
12 TCK Falling Edge to Output Valid out of High Impedance  
13 TCK Falling Edge to Output High Impedance  
14 Boundary Scan Input Valid to TCK Rising Edge  
15 TCK Rising Edge to Boundary Scan Input Invalid  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
1
These specifications apply to JTAG boundary scan only. JTAG timing specified at VDD = 1.35V to 1.65V, VDDE = 3.0V to 3.6V,  
VDD33 and VDDSYN = 3.0V to 3.6V, TA = TL to TH, and CL = 30pF with DSC = 0b10, SRC = 0b11. See Table 21 for functional  
specifications.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
26  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
TCK  
2
3
3
2
1
Figure 5. JTAG Test Clock Input Timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 6. JTAG Test Access Port Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
27  
Electrical Characteristics  
TCK  
10  
JCOMP  
9
Figure 7. JTAG JCOMP Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
28  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 8. JTAG Boundary Scan Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
29  
Electrical Characteristics  
3.13.3 Nexus Timing  
1
Table 21. Nexus Debug Port Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
7
8
9
MCKO Cycle Time  
tMCYC  
tMDC  
12  
40  
8
tCYC  
%
MCKO Duty Cycle  
60  
3.0  
3.0  
3.0  
MCKO Low to MDO Data Valid3  
MCKO Low to MSEO Data Valid3  
MCKO Low to EVTO Data Valid3  
EVTI Pulse Width  
tMDOV  
–1.5  
–1.5  
–1.5  
4.0  
1
ns  
tMSEOV  
tEVTOV  
ns  
ns  
tEVTIPW  
tEVTOPW  
tTCYC  
tTCYC  
tMCYC  
tCYC  
%
EVTO Pulse Width  
TCK Cycle Time  
44  
60  
TCK Duty Cycle  
tTDC  
40  
10 TDI, TMS Data Setup Time  
11 TDI, TMS Data Hold Time  
12 TCK Low to TDO Data Valid  
VDDE = 2.25 to 3.0 volts  
t
NTDIS, tNTMSS  
8
ns  
t
NTDIH, tNTMSH  
5
ns  
tJOV  
0
0
12  
9
ns  
ns  
VDDE = 3.0 to 3.6 volts  
13 RDY Valid to MCKO5  
1
2
JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from  
50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 1.35V to 1.65V, VDDE = 2.25V to 3.6V,  
VDD33 and VDDSYN = 3.0V to 3.6V, TA = TL to TH, and CL = 30pF with DSC = 0b10.  
The Nexus AUX port can only run up to 82MHz. The NPC_PCR[MCKO_DIV] must be set to divide by 2 if the system frequency  
is above 82MHz  
3
4
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
The maximum frequency must be limited to approximately 16 MHz (VDDE= 2.25 to 3.0 volts) or 22 MHz (VDDE= 3.0 to 3.6  
volts) to meet the timing specification for tJOV of 0.2 x tJCYC as outlined in the IEEE-ISTO 5001-2003 specification.  
5
The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.  
1
2
MCKO  
4
5
3
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 9. Nexus Output Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
30  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Figure 10. Nexus TDI, TMS, TDO Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
31  
Electrical Characteristics  
3.13.4 External Bus Interface (EBI) Timing  
1
Table 22. Bus Operation Timing  
40 MHz  
56 MHz  
66 MHz  
(ext. bus)2  
(ext. bus)2  
(ext. bus)2  
#
Characteristic/Description Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
1
CLKOUT Period  
TC  
25.0  
17.9  
15.2  
ns Signals are  
measured at 50%  
VDDE.  
2
3
4
5
CLKOUT duty cycle  
CLKOUT rise time  
CLKOUT fall time  
tCDC  
tCRT  
tCFT  
tCOH  
45%  
55%  
45%  
55%  
45%  
55%  
TC  
ns  
ns  
3
3
3
3
3
3
1.06/  
1.5  
1.06/  
1.5  
1.06/  
1.5  
CLKOUT Positive Edge to  
Output Signal Invalid or High  
Z (Hold Time)  
ns Hold time  
selectable via  
SIU_ECCR[EBTS]  
bit:  
ADDR[8:31]  
BDIP  
EBTS=0/EBTS=1  
BG4  
BR5  
CS[0:3]  
DATA[0:31]  
OE  
RD_WR  
TA  
TEA  
TS  
TSIZ[0:1]  
WE[0:3]/BE[0:3]  
6
CLKOUT Posedge to Output  
Signal Valid (Output Delay)  
tCOV  
10.06/  
11.0  
7.56/  
8.5  
6.06/  
7.0  
ns Output valid time  
selectable via  
SIU_ECCR[EBTS]  
bit:  
ADDR[8:31]  
BDIP  
EBTS=0/EBTS=1  
BG4  
BR5  
CS[0:3]  
DATA[0:31]  
OE  
RD_WR  
TA  
TEA  
TS  
TSIZ[0:1]  
WE[0:3]/BE[0:3]  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
32  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 22. Bus Operation Timing (continued)  
40 MHz  
56 MHz  
66 MHz  
(ext. bus)2  
(ext. bus)2  
(ext. bus)2  
#
Characteristic/Description Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
7
Input Signal Valid to CLKOUT  
Posedge (Setup Time)  
tCIS  
10.0  
7.0  
5.0  
ns  
ADDR[8:31]  
BB  
BG5  
BR5  
DATA[0:31]  
RD_WR  
TA  
TEA  
TS  
TSIZ[0:1]  
8
CLKOUT Posedge to Input  
Signal Invalid  
tCIH  
1.0  
1.0  
1.0  
ns  
(Hold Time)  
ADDR[8:31]  
BB  
BG5  
BR5  
DATA[0:31]  
RD_WR  
TA  
TEA  
TS  
TSIZ[0:1]  
1
EBI timing specified at VDD = 1.35V to 1.65V, VDDE = 1.6V to 3.6V (unless stated otherwise), VDD33 and VDDSYN = 3.0V  
to 3.6V, TA = TL to TH, and CL = 30pF with DSC = 0b10.  
2
3
4
5
6
The external bus is limited to half the speed of the internal bus.  
Refer to Fast Pad timing in Table 17 and Table 18 (different values for 1.8V vs 3.3V).  
Internal Arbitration  
External Arbitration  
The EBTS=0 timings are only valid/ tested at VDDE=2.25-3.6V, whereas EBTS=1 timings are valid/tested at 1.6–3.6V.  
Voh_f  
VDDE/2  
Vol_f  
CLKOUT  
2
3
2
4
1
Figure 11. CLKOUT Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
33  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
VDDE/2  
CLKOUT  
6
5
VDDE/2  
5
OUTPUT  
BUS  
VDDE/2  
6
5
5
OUTPUT  
SIGNAL  
VDDE/2  
6
OUTPUT  
SIGNAL  
VDDE/2  
Figure 12. Synchronous Output Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
34  
Freescale Semiconductor  
Electrical Characteristics  
CLKOUT  
VDDE/2  
7
8
INPUT  
BUS  
VDDE/2  
7
8
INPUT  
SIGNAL  
VDDE/2  
Figure 13. Synchronous Input Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
35  
Electrical Characteristics  
3.13.5 External Interrupt Timing (IRQ Pin)  
1
Table 23. External Interrupt Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
IRQ Pulse Width Low  
IRQ Pulse Width High  
IRQ Edge to Edge Time2  
tIPWL  
TIPWH  
tICYC  
3
3
6
tCYC  
tCYC  
tCYC  
1
2
IRQ timing specified at FSYS = 132MHz, VDD = 1.35V to 1.65V, VDDEH = 3.0V to 5.5V, VDD33 and VDDSYN = 3.0V to 3.6V,  
TA = TL to TH, and CL = 200pF with SRC = 0b11.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
IRQ  
2
1
3
Figure 14. External Interrupt Timing  
CLKOUT  
4
IRQ  
Figure 15. External Interrupt Setup Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
36  
Freescale Semiconductor  
Electrical Characteristics  
3.13.6 eTPU Timing  
1
Table 24. eTPU Timing  
Characteristic  
eTPU Input Channel Pulse Width  
eTPU Output Channel Pulse Width  
Num  
Symbol  
Min  
Max  
Unit  
1
2
tICPW  
4
2
tCYC  
tCYC  
tOCPW  
1
eTPU timing specified at FSYS = 132MHz, VDD = 1.35V to 1.65V, VDDEH = 3.0V to 5.5V, VDD33 and VDDSYN = 3.0V to 3.6V,  
TA = TL to TH, and CL = 200pF with SRC = 0b11.  
2
eTPU  
OUTPUT  
eTPU INPUT  
AND TCRCLK  
1
Figure 16. eTPU Timing  
CLKOUT  
4
eTPU  
OUTPUT  
3
eTPU INPUT  
AND TCRCLK  
Figure 17. eTPU Input/Output Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
37  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
3.13.7 eMIOS (MTS) Timing  
1
Table 25. MTS Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
eMIOS (MTS) Input Pulse Width  
eMIOS (MTS) Output Pulse Width  
tMIPW  
4
1
tCYC  
tCYC  
tMOPW  
1
MTS timing specified at FSYS = 132MHz, VDD = 1.35V to 1.65V, VDDEH = 3.0V to 5.5V, VDD33 and VDDSYN = 3.0V to 3.6V,  
TA = TL to TH, and CL = 50pF with SRC = 0b11.  
3.13.8 DSPI Timing  
1
Table 26. DSPI Timing  
80 MHz  
Symbol  
112 MHz  
132 MHz  
Num  
Characteristic  
SCK Cycle TIme2,3  
PCS to SCK Delay4  
After SCK Delay5  
SCK Duty Cycle  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
1
2
3
4
tSCK  
tCSC  
tASC  
tSDC  
25ns  
23  
2.9ms 17.9ns 2.0ms  
15.2ns  
13  
1.7ms  
ns  
ns  
ns  
15  
14  
22  
12  
tSCK/2  
–2ns  
tSCK/2  
+ 2ns  
5
6
Slave Access Time  
(SS active to SOUT driven)  
tA  
25  
25  
25  
25  
25  
ns  
ns  
Slave SOUT Disable Time  
(SS inactive to SOUT High-Z or  
invalid)  
tDIS  
25  
7
8
9
PCSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
tSUI  
4
5
4
5
4
5
ns  
ns  
Data Setup Time for Inputs  
Master (MTFE = 0)  
20  
2
–4  
20  
20  
2
3
20  
2
6
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)6  
Master (MTFE = 1, CPHA = 1)  
20  
20  
10  
Data Hold Time for Inputs  
Master (MTFE = 0)  
tHI  
–4  
7
21  
–4  
–4  
7
14  
–4  
–4  
7
12  
–4  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)6  
Master (MTFE = 1, CPHA = 1)  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
38  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 26. DSPI Timing (continued)  
80 MHz  
112 MHz  
132 MHz  
Unit  
Num  
Characteristic  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
11  
Data Valid (after SCK edge)  
Master (MTFE = 0)  
tSUO  
5
25  
18  
5
5
25  
14  
5
5
25  
13  
5
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA=0)  
Master (MTFE = 1, CPHA=1)  
12  
Data Hold Time for Outputs  
Master (MTFE = 0)  
tHO  
–5  
5.5  
8
–5  
5.5  
4
–5  
5.5  
3
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
–5  
–5  
–5  
1
2
DSPI timing specified at VDD = 1.35V to 1.65V, VDDEH = 3.0V to 5.5V, VDD33 and VDDSYN = 3.0V to 3.6V, TA = TL to TH,  
and CL = 50pF with SRC = 0b11.  
The minimum SCK Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated  
based on two MPC55xx devices communicating over a DSPI link.  
3
4
5
6
The actual minimum SCK Cycle Time is limited by pad performance.  
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]  
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC]  
This number is calculated assuming the SMPL_PT bit field in DSPI_MCR is set to 0b10.  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 18. DSPI Classic SPI Timing — Master, CPHA = 0  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
39  
Electrical Characteristics  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 19. DSPI Classic SPI Timing — Master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
9
10  
Data  
Last Data  
First Data  
SIN  
Figure 20. DSPI Classic SPI Timing — Slave, CPHA = 0  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
40  
Freescale Semiconductor  
Electrical Characteristics  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 21. DSPI Classic SPI Timing — Slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Figure 22. DSPI Modified Transfer Format Timing — Master, CPHA = 0  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
41  
Electrical Characteristics  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 23. DSPI Modified Transfer Format Timing — Master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 24. DSPI Modified Transfer Format Timing — Slave, CPHA =0  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
42  
Freescale Semiconductor  
Electrical Characteristics  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 25. DSPI Modified Transfer Format Timing — Slave, CPHA =1  
8
7
PCSS  
PCSx  
Figure 26. DSPI PCS Strobe (PCSS) Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
43  
Electrical Characteristics  
3.13.9 eQADC SSI Timing  
1
Table 27. EQADC SSI Timing Characteristics (pads at 3.3V or at 5.0V)  
CLOAD = 25pF on all outputs. Pad drive strength set to maximum.  
Num  
Rating  
FCK Frequency 2, 3  
Symbol  
Min  
Typ  
Max  
Unit  
1
2
3
4
5
6
7
8
fFCK  
tFCK  
1/17  
1/2  
fSYS_CLK  
tSYS_CLK  
ns  
FCK Period (tFCK = 1/ fFCK  
Clock (FCK) High Time  
Clock (FCK) Low Time  
SDS Lead/Lag Time  
)
2
17  
tFCKHT  
tFCKLT  
tSDS_LL  
tSDO_LL  
tSYS_CLK 6.5  
9* tSYS_CLK + 6.5  
tSYS_CLK 6.5  
8* tSYS_CLK + 6.5  
ns  
–7.5  
–7.5  
22  
+7.5  
+7.5  
ns  
SDO Lead/Lag Time  
ns  
EQADC Data Setup Time (Inputs)  
EQADC Data Hold Time (Inputs)  
tEQ SU  
ns  
_
tEQ_HO  
1
ns  
1
SS timing specified at FSYS = 132MHz, VDD = 1.35V to 1.65V, VDDEH = 3.0V to 5.5V, VDD33 and VDDSYN = 3.0V to 3.6V,  
TA = TL to TH, and CL = 50pF with SRC = 0b11.  
2
3
Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.  
FCK duty is not 50% when it is generated through the division of the system clock by an odd number.  
2
3
4
FCK  
SDS  
5
6
4
5
25th  
1st (MSB)  
2nd  
26th  
SDO  
External Device Data Sample at  
FCK Falling Edge  
8
7
1st (MSB) 2nd  
25th  
26th  
SDI  
EQADC Data Sample at  
FCK Rising Edge  
Figure 27. EQADC SSI Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
44  
Freescale Semiconductor  
Electrical Characteristics  
3.14 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at 3.3 V. Note that the timing  
specifications for the MII signals are independent of system clock frequency (part speed designation).  
3.14.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed 4× the RX_CLK  
frequency.  
Table 28 lists MII receive channel timings.  
Table 28. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
1
2
3
4
RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
RX_CLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
RX_CLK period  
RX_CLK period  
RX_CLK pulse width low  
Figure 28 shows MII receive signal timings listed in Table 28.  
M3  
RX_CLK (input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M1  
M2  
Figure 28. MII Receive Signal Timing Diagram  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
45  
Electrical Characteristics  
3.14.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
TX_CLK frequency.  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising  
or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of  
non-compliant MII PHYs.  
Refer to the ethernet chapter of the device Reference Manual for details of this option and how to enable it.  
Table 29 lists MII transmit channel timings.  
Table 29. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
5
6
7
8
TX_CLK to TXD[3:0], TX_EN, TX_ER invalid  
TX_CLK to TXD[3:0], TX_EN, TX_ER valid  
TX_CLK pulse width high  
5
ns  
25  
ns  
35%  
35%  
65%  
65%  
TX_CLK period  
TX_CLK period  
TX_CLK pulse width low  
Figure 29 shows MII transmit signal timings listed in Table 29.  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
M6  
Figure 29. MII Transmit Signal Timing Diagram  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
46  
Freescale Semiconductor  
Electrical Characteristics  
3.14.3 MII Async Inputs Signal Timing (CRS and COL)  
Table 30 lists MII asynchronous inputs signal timing.  
Table 30. MII Async Inputs Signal Timing  
Num  
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
9
1.5  
TX_CLK period  
Figure 30 shows MII asynchronous input timings listed in Table 30.  
CRS, COL  
M9  
Figure 30. MII Async Inputs Timing Diagram  
3.14.4 MII Serial Management Channel Timing (MDIO and MDC)  
Table 31 lists MII serial management channel timings. The FEC functions correctly with a maximum  
MDC frequency of 2.5 MHz.  
Table 31. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
10  
11  
12  
13  
14  
15  
MDC falling edge to MDIO output invalid (minimum propagation delay)  
MDC falling edge to MDIO output valid (max prop delay)  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high  
0
10  
0
25  
ns  
ns  
ns  
ns  
40% 60% MDC period  
40% 60% MDC period  
MDC pulse width low  
Figure 31 shows MII serial management channel timings listed in Table 31.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
47  
Preliminary—Subject to Change Without Notice  
Electrical Characteristics  
M14  
M15  
MDC (output)  
M10  
MDIO (output)  
M11  
MDIO (input)  
M12  
Figure 31. MII Serial Management Channel Timing Diagram  
M13  
CLKOUT  
RESET  
5
5
6
6
RSTOUT  
Figure 32. Reset and Configuration Pin Timing  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
48  
Freescale Semiconductor  
Mechanicals  
4
Mechanicals  
Pinouts  
4.1  
4.1.1  
MPC5553 416 PBGA Pinout  
Figure 33, Figure 34, and Figure 35 show the pinout for the MPC5553 416 PBGA package. While the  
MPC5553 and the MPC5554/MPC5565/MPC5566 are pin-compatible, the MPC5553 ball map is shown  
here to highlight the balls that are not connected to any signal on the MCP5553 (the eTPUB[0:31] and  
TSIZ[0:1]). The alternate Ethernet signals that are multiplexed with the data bus are not shown for the  
MPC5553.  
NOTE  
Some pins have names that include functions that are not available on all  
family members. For example, ball R25 of the 416 BGA package is named  
‘SINA,’ but the MPC5553 does not have a DSPI_A module. In this case, the  
SINA pin can only be used for its alternate functions of GPIO94 or PCSC2.  
See the specific device reference manual for functions available on each  
device in the family.  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
49  
Preliminary—Subject to Change Without Notice  
Mechanicals  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
ETRIG  
1
GPIO  
205  
AN1  
AN5  
VRH  
AN23 AN27 AN28 AN35 VSSA0 AN15  
AN22 AN26 AN31 AN32 VSSA0 AN14  
NC_1 NC_2 NC_3 NC_4  
MDO11 MDO8 VDD VDD33 VSS  
A
B
VSS VSTBY AN37 AN11 VDDA1 AN16  
VDD VSS AN36 AN39 AN19 AN20  
A
REF  
BYPC  
ETRIG  
0
AN0  
AN4  
AN3  
NC_5 NC_6 NC_7 NC_8 MDO10 MDO7 MDO4 MDO0 VSS VDDE7  
B
AN21  
AN7  
AN2  
VRL  
AN6  
AN25 AN30 AN33 VDDA0 AN13 NC_9 NC_10 NC_11 NC_12 MDO9 MDO6 MDO3 MDO1 VSS VDDE7 VDD  
C
D
E
VDD33 VDD  
ETPUA ETPUA  
VSS  
VDD  
AN8  
VSS  
VDD  
AN17 VSSA1  
AN38 AN9  
C
VDDEH  
9
VDDEH  
8
AN10 AN18  
AN24 AN29 AN34  
AN12 NC_13 NC_14 NC_15 NC_16 MDO5 MDO2  
VSS VDDE7 TCK  
VDDE7 TMS TDO  
TDI  
D
30  
31  
ETPUA ETPUA VDDEH  
28 29  
TEST  
E
1
ETPUA ETPUA ETPUA VDDEH  
MSEO0 JCOMP EVTI EVTO  
GPIO  
F
F
24  
27  
26  
1
ETPUA ETPUA ETPUA ETPUA  
MSEO1 MCKO  
NC_17  
G
H
J
G
H
23  
22  
25  
21  
204  
ETPUA ETPUA ETPUA ETPUA  
20 19 18 17  
GPIO  
RDY  
Version 2.1 – 13 July 2004  
NC_18 NC_19  
203  
ETPUA ETPUA ETPUA ETPUA  
16 15 14 13  
VDDEH  
6
NC_20 NC_21 NC_22  
J
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDE7 VDDE7 VDDE7 VDDE7  
NC_23 NC_24 NC_25 NC_26  
NC_27 NC_28 NC_29 NC_30  
NC_31 NC_32 NC_33 SINB  
SOUTB PCSB3 PCSB0 PCSB1  
PCSA3 PCSB4 SCKB PCSB2  
PCSB5 SOUTA SINA SCKA  
PCSA1 PCSA0 PCSA2 VPP  
PCSA4 TXDA PCSA5 VFLASH  
K
K
12  
11  
10  
9
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDE7  
VSS VDDE7  
VSS VDDE7  
L
L
8
7
6
5
ETPUA ETPUA ETPUA ETPUA  
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
M
N
P
M
N
4
3
2
1
ETPUA TCRCLK  
BDIP  
TEA  
0
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CS3  
CS2  
CS1  
CS0  
P
R
T
WE3  
WE2  
WE1  
WE0  
R
VDDE2 VSS VDDE2 VDDE2 VDDE2 VDDE2 VSS  
VSS VDDE2 VDDE2 VDDE2 VDDE2 VDDE2 VSS  
VDDE2 NC_34 RD_WR VDDE2  
ADDR  
T
U
V
NC_35  
TA  
VDD33  
U
16  
ADDR ADDR  
18 17  
ADDR  
8
RST  
CNTXC RXDA RSTOUT  
CFG  
TS  
V
ADDR ADDR ADDR ADDR  
RXDB CNRXC TXDB RESET  
W
Y
W
Y
20  
19  
9
10  
NC_X  
Note:  
No connects (x = 1 to 38)  
ADDR ADDR ADDR  
WKP BOOT VRC  
VSS  
SYN  
VDDE2  
22  
21  
11  
CFG  
CFG1  
VSS  
NC_36 NC_37  
No connect. AC22 & AD23 reserved  
ADDR ADDR ADDR ADDR  
VDDEH PLL  
BOOT  
EXTAL  
XTAL  
AA  
AA  
AB  
AC  
AD  
AE  
AF  
24  
23  
13  
12  
6
CFG1 CFG0  
ADDR ADDR ADDR  
VRC  
CTL  
PLL  
CFG0  
VDD  
AB VDDE2  
25  
15  
14  
ADDR ADDR ADDR  
DATA DATA  
26 28  
DATA DATA DATA DATA  
DATA DATA EMIOS EMIOS EMIOS EMIOS VDDEH  
VDDE2  
VDD  
SYN  
VDDE2  
VDDE5 NC_36 VSS  
VDD VRC33  
AC  
AD  
AE  
VSS  
VDD  
26  
27  
31  
30  
31  
8
10  
12  
14  
2
8
12  
21  
4
ADDR ADDR  
DATA DATA DATA DATA  
24 25 27 29  
GPIO DATA DATA DATA DATA EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
VDD33  
CNTXA VDDE5 NC_37 VSS  
VDD VDD33  
VSS  
VDD  
28  
30  
207  
9
11  
13  
15  
3
6
10  
15  
17  
22  
ADDR  
29  
DATA DATA DATA DATA DATA DATA DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
CNRXA VDDE5 CLKOUT VSS  
OE  
BR  
BG  
VDD  
VSS  
VDD  
17  
19  
VDDE2  
5
21  
23  
0
2
4
6
VDDE2  
11  
1
5
9
13  
16  
19  
23  
DATA DATA  
DATA DATA GPIO DATA DATA  
DATA DATA  
5
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
ENG  
CLK  
NC_38  
14  
CNTXB CNRXB VDDE5  
22 23 24  
VSS  
26  
AF VSS  
1
VDD  
2
16  
18  
20  
22  
206  
1
3
7
0
4
7
11  
14  
18  
20  
3
4
6
7
8
9
10  
12  
13  
15  
16  
17  
18  
19  
20  
21  
25  
Figure 33. MPC5553 416 Package  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
50  
Freescale Semiconductor  
Mechanicals  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
AN1  
AN5  
VRH  
AN23 AN27 AN28  
AN35  
A
B
VSS VSTBY AN37 AN11 VDDA1 AN16  
VDD VSS AN36 AN39 AN19 AN20  
REF  
BYPC  
AN0  
AN4  
AN3  
AN22 AN26 AN31 AN32  
AN21  
AN7  
AN2  
VRL  
AN6  
AN25 AN30 AN33  
AN24 AN29 AN34  
C
D
E
VDD33 VDD  
ETPUA ETPUA  
VSS  
VDD  
AN8  
VSS  
VDD  
AN17 VSSA1  
AN38 AN9  
AN10 AN18  
30  
31  
ETPUA ETPUA VDDEH  
28 29  
1
ETPUA ETPUA ETPUA VDDEH  
F
24  
27  
26  
1
ETPUA ETPUA ETPUA ETPUA  
G
H
J
23  
22  
25  
21  
Version 2.1 – 13 July 2004  
ETPUA ETPUA ETPUA ETPUA  
20 19 18 17  
ETPUA ETPUA ETPUA ETPUA  
16 15 14 13  
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
12  
11  
10  
9
ETPUA ETPUA ETPUA ETPUA  
L
8
7
6
5
ETPUA ETPUA ETPUA ETPUA  
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
M
N
P
4
3
2
1
ETPUA TCRCLK  
BDIP  
TEA  
0
A
CS3  
CS2  
CS1  
CS0  
R
T
WE3  
WE2  
WE1  
WE0  
VDDE2 VSS VDDE2 VDDE2  
VSS VDDE2 VDDE2 VDDE2  
VDDE2 NC_34 RD_WR VDDE2  
ADDR  
U
V
NC_35  
TA  
VDD33  
16  
ADDR ADDR  
18 17  
ADDR  
8
TS  
ADDR ADDR ADDR ADDR  
NC_X  
W
Y
Note:  
No connects (x = 1 to 38)  
20  
19  
9
10  
ADDR ADDR ADDR  
VDDE2  
NC_36 NC_37  
No connect. AC22 & AD23 reserved  
22  
21  
11  
ADDR ADDR ADDR ADDR  
AA  
24  
23  
13  
12  
ADDR ADDR ADDR  
AB VDDE2  
25  
15  
14  
ADDR ADDR ADDR  
DATA DATA  
26 28  
DATA DATA DATA DATA  
VDDE2  
VDDE2  
AC  
AD  
VSS  
VDD  
26  
27  
31  
30  
31  
8
10  
ADDR ADDR  
DATA DATA DATA DATA  
24 25 27 29  
GPIO DATA DATA DATA  
VDD33  
VSS  
VDD  
28  
30  
207  
9
11  
13  
ADDR  
29  
DATA DATA DATA DATA DATA DATA DATA DATA  
OE  
BR  
AE  
VSS  
VDD  
17  
19  
VDDE2  
5
21  
23  
0
2
4
6
VDDE2  
11  
DATA DATA  
DATA DATA  
GPIO DATA DATA  
DATA DATA  
5
AF VSS  
1
VDD  
2
16  
18  
20  
6
22  
7
206  
1
3
7
3
4
8
9
10  
12  
13  
Figure 34. MPC5553 416 Package, Left Side  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
51  
Mechanicals  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
ETRIG  
1
GPIO  
205  
VSSA0 AN15  
VSSA0 AN14  
NC_1 NC_2 NC_3 NC_4  
MDO11 MDO8 VDD VDD33 VSS  
A
ETRIG  
0
NC_5 NC_6 NC_7 NC_8 MDO10 MDO7 MDO4 MDO0  
VSS VDDE7  
B
VDDA0 AN13 NC_9 NC_10 NC_11 NC_12 MDO9 MDO6 MDO3 MDO1  
VSS VDDE7 VDD  
C
VDDEH  
9
VDDEH  
8
AN12 NC_13 NC_14 NC_15 NC_16 MDO5 MDO2  
VSS VDDE7 TCK  
VDDE7 TMS TDO  
TDI  
D
TEST  
EVTO  
NC_17  
E
MSEO0 JCOMP EVTI  
F
GPIO  
MSEO1 MCKO  
204  
G
H
GPIO  
203  
RDY  
NC_18 NC_19  
VDDEH  
6
NC_20 NC_21 NC_22  
J
VDDE7 VDDE7 VDDE7 VDDE7  
NC_23 NC_24 NC_25 NC_26  
NC_27 NC_28 NC_29 NC_30  
NC_31 NC_32 NC_33 SINB  
SOUTB PCSB3 PCSB0 PCSB1  
PCSA3 PCSB4 SCKB PCSB2  
PCSB5 SOUTA SINA SCKA  
PCSA1 PCSA0 PCSA2 VPP  
PCSA4 TXDA PCSA5 VFLASH  
K
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDE7  
VSS VDDE7  
VSS VDDE7  
L
M
N
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
R
VDDE2 VDDE2 VSS  
VDDE2 VDDE2 VSS  
T
U
RST  
CNTXC RXDA RSTOUT  
CFG  
V
RXDB CNRXC TXDB RESET  
W
Y
WKP BOOT  
CFG CFG1  
VRC  
VSS  
VSS  
SYN  
VDDEH PLL  
BOOT  
EXTAL  
XTAL  
AA  
AB  
AC  
AD  
AE  
AF  
6
CFG1 CFG0  
VRC  
CTL  
PLL  
CFG0  
VDD  
DATA DATA EMIOS EMIOS EMIOS EMIOS VDDEH  
VDD  
SYN  
VDDE5 NC_36 VSS  
VDD VRC33  
12  
14  
2
8
12  
21  
4
DATA EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
CNTXA VDDE5 NC_37 VSS  
VDD VDD33  
15  
3
6
10  
15  
17  
22  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
BG  
CNRXA VDDE5 CLKOUT VSS  
VDD  
1
5
9
13  
16  
19  
23  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
ENG  
CLK  
NC_38  
14  
CNTXB CNRXB VDDE5  
22 23 24  
VSS  
26  
0
4
7
11  
14  
18  
20  
15  
16  
17  
18  
19  
20  
21  
25  
Figure 35. MPC5553 416 Package, Right Side  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
52  
Freescale Semiconductor  
Mechanicals  
4.1.2  
MPC5553 324 PBGA Pinout  
Figure 36 is a pinout for the MPC5553 324 PBGA package.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
AN28 AN35 VSSA0 AN12 MDO11 MDO10 MDO8 VDD VDD33 VSS  
AN31 AN32 VSSA0 AN13 MDO9 MDO7 MDO4 MDO0 VSS VDDE7  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSSA1 AN1  
AN5  
VRH  
VRL  
AN27  
A
B
VSS  
VDD VSTBY AN37 AN11 VDDA1  
A
REF  
BYPC  
AN16  
AN20 AN21  
AN9  
AN0  
AN4  
AN3  
AN23 AN26  
AN22 AN25  
VDD33 VSS  
VDD  
VSS  
AN36  
VDD  
VSS  
AN39  
AN8  
AN19  
AN17  
AN38  
B
ETPUA ETPUA  
30  
AN7  
AN2  
AN30 AN33 VDDA0 AN14 MDO5 MDO2 MDO1  
VDDEH  
VSS VDDE7 VDD  
C
D
E
C
D
E
31  
ETPUA ETPUA ETPUA  
28 29 26  
AN10 AN18  
AN6  
AN24  
AN29  
AN34  
AN15 MDO6 MDO3  
VSS VDDE7 TCK  
VDDE7 TMS TDO  
VDDE7 JCOMP EVTI  
TDI  
VDD  
9
ETPUA ETPUA ETPUA ETPUA  
24 27 25 21  
TEST  
EVTO  
ETPUA ETPUA ETPUA ETPUA  
23  
F
F
22  
17  
18  
ETPUA ETPUA ETPUA ETPUA  
RDY MCKO MSEO0 MSEO1  
G
H
J
G
H
J
20  
19  
14  
13  
Version 2.2p – 13 July 2004  
ETPUA ETPUA ETPUA VDDEH  
VDDEH GPIO GPIO  
SINB  
16 15 10  
1
10  
203  
204  
ETPUA ETPUA ETPUA ETPUA  
12 11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDE7  
SOUTB PCSB3 PCSB0 PCSB1  
PCSA3 PCSB4 SCKB PCSB2  
PCSB5 SOUTA SINA SCKA  
PCSA1 PCSA0 PCSA2 VPP  
PCSA4 TXDA PCSA5 VFLASH  
6
9
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
K
8
7
2
5
ETPUA ETPUA ETPUA ETPUA  
L
L
4
3
0
1
TCRCLK  
A
VDDE2 VDDE2 VSS  
M
N
P
BDIP  
CS1  
CS0  
M
N
P
VSS  
VSS  
VSS VDDE2 VSS  
VSS VDDE2 VSS  
CS3  
CS2  
WE1  
WE0  
ADDR ADDR  
RST  
CNTXC RXDA RSTOUT  
CFG  
RD_WR  
VDDE2  
VDD33  
TA  
16  
17  
ADDR ADDR  
WKP  
CNRXC TXDB RESET  
CFG  
R
T
R
T
18  
19  
ADDR ADDR ADDR  
20 21 12  
BOOT  
CFG1  
VRC  
VSS  
VSS  
SYN  
RXDB  
TS  
NC  
Note:  
No connect. Reserved (W18 & Y19 are shorted to each other)  
ADDR ADDR ADDR ADDR  
VDDEH PLL  
BOOT  
EXTAL  
XTAL  
U
V
U
V
22  
23  
13  
14  
6
CFG1 CFG0  
ADDR ADDR ADDR ADDR  
VRC  
CTL  
PLL  
CFG0  
VDD  
24  
25  
15  
31  
ADDR  
26  
ADDR  
30  
DATA DATA DATA EMIOS EMIOS VDDEH EMIOS EMIOS  
VDD  
SYN  
VDDE2 VDD33 VDDE2  
DATA DATA DATA  
VDDE5  
NC  
VSS  
NC  
VDD VRC33  
VSS  
W
Y
VDDE2  
VSS  
VDD  
W
Y
11  
12  
14  
2
8
4
12  
21  
ADDR ADDR  
28  
GPIO DATA DATA EMIOS EMIOS EMIOS EMIOS EMIOS  
VDDE2  
CNTXA VDDE5  
VDD VDD33  
VSS  
VDD  
VDD  
27  
8
9
10  
207  
13  
15  
6
10  
15  
13  
17  
22  
ADDR  
29  
DATA  
1
GPIO DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
3
VDDE2  
VDDE2  
VDDE2  
CNRXA VDDE5 CLKOUT VSS  
VDD  
AA  
VSS  
AA  
AB  
206  
5
7
OE  
9
5
9
16  
19  
23  
DATA DATA DATA DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
0
ENG  
CNTXB CNRXB VDDE5  
CLK  
VSS  
22  
AB VSS  
1
VDD VDDE2  
0
2
3
4
6
1
4
7
11  
14  
18  
20  
2
3
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Figure 36. MPC5553 324 Package  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
53  
Preliminary—Subject to Change Without Notice  
Mechanicals  
4.1.3  
MPC5553 208 MAP BGA Pinout  
Figure 37 is a pinout for the MPC5553 208 MAP BGA package.  
NOTE  
VDDEH10 and VDDEH6 are connected internally on the 208-ball package  
and are listed as VDDEH6.  
1
2
3
4
5
6
7
8
9
10  
AN27 VSSA0 AN12 MDO2 MDO0 VDD33 VSS  
VSS VDD  
VSS MSEO0 TCK  
11  
12  
13  
14  
15  
16  
VSSA1 AN1  
AN5  
VRH  
VRL  
A
B
C
D
E
F
VSS  
AN9  
AN11 VDDA1  
AN38 AN21  
A
B
C
D
E
F
REF  
BYPC  
AN22 AN25 AN28 VDDA0 AN13 MDO3 MDO1  
VDD  
VSS  
AN0  
AN4  
AN3  
AN6  
AN7  
AN23 AN32 AN33 AN14 AN15  
VDDEH  
VSTBY VDD  
VSS  
VDD  
AN37  
AN17 AN34 AN16  
AN24 AN30 AN31 AN35  
VSS  
TMS  
TDI  
EVTO TEST  
EVTI MSEO1  
VDD33 AN39  
ETPUA ETPUA  
VSS  
VDD  
AN36  
AN18  
AN2  
9
VDDE7  
30  
31  
ETPUA ETPUA ETPUA  
28 29 26  
VDDEH  
6
TDO MCKO JCOMP  
8 June 2005p  
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SOUTB PCSB3 SINB PCSB0  
PCSA3 PCSB4 PCSB2 PCSB1  
PCSB5 TXDA PCSA2 SCKB  
G
H
J
G
H
J
24  
27  
25  
21  
ETPUA ETPUA ETPUA ETPUA  
23 22 17 18  
ETPUA ETPUA ETPUA ETPUA  
20 19 14 13  
ETPUA ETPUA ETPUA VDDEH  
CNTXC RXDA RSTOUT VPP  
WKP  
K
L
K
L
16  
15  
7
1
ETPUA ETPUA ETPUA TCRCLK  
TXDB CNRXC  
RESET  
12 11  
6
A
CFG  
CS0  
Note:  
No connect. R1 reserved for CS0  
ETPUA ETPUA ETPUA ETPUA  
PLL  
BOOT  
VSS  
SYN  
RXDB  
M
N
P
R
T
M
N
P
R
T
10  
9
1
5
CFG0 CFG1  
ETPUA ETPUA ETPUA  
EMIOS EMIOS VDDEH EMIOS EMIOS  
2
VRC  
CTL  
PLL  
VDD33  
VDDE2  
VDD33 VSS  
CNTXA VDD  
EXTAL  
VSS  
VDD  
8
4
0
10  
4
12  
21  
CFG1  
ETPUA ETPUA  
GPIO  
207  
EMIOS EMIOS EMIOS EMIOS EMIOS  
6
VSS VRC33 XTAL  
VSS  
VDD  
3
2
8
16 17 22  
GPIO EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
206  
VDD  
CNRXA CNRXB VDD  
VSS  
CS0  
VSS  
VDD  
4
3
9
11  
14  
19  
23  
SYN  
VSS  
16  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
0
4
ENG  
CNTXB VDDE5  
CLK  
VDD  
15  
VSS  
1
VDD  
2
OE  
3
1
5
5
6
7
7
13  
8
15  
9
18  
10  
20  
11  
12  
13  
14  
Figure 37. MPC5553 208 Package  
MPC5553 Microcontroller Data Sheet, Rev. 0  
54  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Mechanicals  
4.2  
Package Dimensions  
4.2.1  
MPC5553 416-Pin Package  
Figure 38 is a package drawing of the MPC5553 416 pin TEPBGA package.  
Figure 38. MPC5553 416 TEPBGA Package  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
55  
Preliminary—Subject to Change Without Notice  
Mechanicals  
4.2.2  
MPC5553 324-Pin Package  
Figure 39 is a package drawing of the MPC5553 324-pin TEPBGA package.  
Figure 39. MPC5553 324 TEPBGA Package  
MPC5553 Microcontroller Data Sheet, Rev. 0  
56  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Mechanicals  
4.2.3  
MPC5553 208-Pin Package  
Figure 40 is a package drawing of the MPC5553 208-pin MAP BGA package.  
Figure 40. MPC5553 208 MAP BGA Package  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
57  
Preliminary—Subject to Change Without Notice  
Revision History  
5 Revision History  
Table 32 provides a revision history of this document.  
Table 32. Revision History  
Substantive Change(s)  
This is the first released version of this document.  
Revision  
Location(s)  
Rev. 0  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
58  
Freescale Semiconductor  
THIS PAGE IS INTENTIONALLY BLANK  
MPC5553 Microcontroller Data Sheet, Rev. 0  
Preliminary—Subject to Change Without Notice  
Freescale Semiconductor  
59  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
Semiconductor was negligent regarding the design or manufacture of the part.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
The PowerPC name is a trademark of IBM Corp. and is used under license.  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5553  
Rev. 0  
06/2006  
Preliminary—Subject to Change Without Notice  

相关型号:

MPC5553MVF112

Microcontroller
FREESCALE

MPC5553MVF112R2

Microcontroller
FREESCALE

MPC5553MVF132

Microcontroller
FREESCALE

MPC5553MVF132R2

Microcontroller
FREESCALE

MPC5553MVF80

Microcontroller
FREESCALE

MPC5553MVF80R2

Microcontroller
FREESCALE

MPC5553MVM112

Microcontroller
FREESCALE

MPC5553MVM112R2

Microcontroller
FREESCALE

MPC5553MVM132

Microcontroller
FREESCALE

MPC5553MVM132R2

Microcontroller
FREESCALE

MPC5553MVM80

Microcontroller
FREESCALE

MPC5553MVM80R2

Microcontroller
FREESCALE