MPC8313CZQGDFA [FREESCALE]

PowerQUICC™ II Pro Processor Hardware Specifications; 的PowerQUICC ™II Pro处理器硬件规格
MPC8313CZQGDFA
型号: MPC8313CZQGDFA
厂家: Freescale    Freescale
描述:

PowerQUICC™ II Pro Processor Hardware Specifications
的PowerQUICC ™II Pro处理器硬件规格

文件: 总100页 (文件大小:1203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8313EEC  
Rev. 2.1, 12/2008  
Freescale Semiconductor  
Technical Data  
MPC8313E  
PowerQUICC II Pro Processor  
Hardware Specifications  
Contents  
This document provides an overview of the MPC8313E  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
PowerQUICC™ II Pro processor features, including a block  
diagram showing the major functional components. The  
MPC8313E is a cost-effective, low-power, highly integrated  
host processor that addresses the requirements of several  
printing and imaging, consumer, and industrial applications,  
including main CPUs and I/O processors in printing systems,  
networking switches and line cards, wireless LANs  
(WLANs), network access servers (NAS), VPN routers,  
intelligent NIC, and industrial controllers. The MPC8313E  
extends the PowerQUICC™ family, adding higher CPU  
performance, additional functionality, and faster interfaces  
while addressing the requirements related to time-to-market,  
price, power consumption, and package size.  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 6  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 13  
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 14  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8. Ethernet: Three-Speed Ethernet, MII Management . 21  
9. High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 36  
10. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
11. Enhanced Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
14. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
15. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
16. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
17. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
18. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
19. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 63  
20. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
21. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
22. System Design Information . . . . . . . . . . . . . . . . . . . 88  
23. Document Revision History . . . . . . . . . . . . . . . . . . . 94  
24. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 97  
NOTE  
The information in this document is accurate for  
revisions 1.0, 2.x, and later. See Section 24.1, “Part  
Numbers Fully Addressed by this Document.”  
© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved.  
Overview  
1 Overview  
The MPC8313E incorporates the e300c3 core, which includes 16 Kbytes of L1 instruction and data caches  
and on-chip memory management units (MMUs). The MPC8313E has interfaces to dual enhanced  
three-speed 10/100/1000 Mbps Ethernet controllers, a DDR1/DDR2 SDRAM memory controller, an  
enhanced local bus controller, a 32-bit PCI controller, a dedicated security engine, a USB 2.0 dual-role  
2
controller and an on-chip full-speed PHY, a programmable interrupt controller, dual I C controllers, a  
4-channel DMA controller, and a general-purpose I/O port. A block diagram of the MPC8313E is shown  
in Figure 1.  
DUART  
Dual I C  
e300c3 Core w/FPU and  
Power Management  
2
Timers  
GPIO  
Interrupt  
16-KB  
I-Cache  
16-KB  
D-Cache  
Local Bus,  
SPI  
DDR1/DDR2  
Controller  
Controller  
USB 2.0  
Host/Device/OTG  
Gb Ethernet  
MAC  
Gb Ethernet  
MAC  
Security Engine 2.2  
I/O Sequencer  
(IOS)  
On-Chip  
ULPI  
FS PHY  
PCI  
DMA  
Note: The MPC8313 does not include a security engine.  
Figure 1. MPC8313E Block Diagram  
The MPC8313E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded  
from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES,  
3DES, AES, SHA-1, and MD-5 algorithms.  
1.1  
MPC8313E Features  
The following features are supported in the MPC8313E:  
Embedded PowerPC™ e300 processor core built on Power Architecture™ technology; operates at  
up to 333 MHz.  
High-performance, low-power, and cost-effective host processor  
DDR1/DDR2 memory controller—one 16-/32-bit interface at up to 333 MHz supporting both  
DDR1 and DDR2  
16-Kbyte instruction cache and 16-Kbyte data cache, a floating point unit, and two integer units  
Peripheral interfaces such as 32-bit PCI interface with up to 66-MHz operation, 16-bit enhanced  
local bus interface with up to 66-MHz operation, and USB 2.0 (full speed) with an on-chip PHY.  
Security engine provides acceleration for control and data plane security protocols  
Power management controller for low-power consumption  
High degree of software compatibility with previous-generation PowerQUICC processor-based  
designs for backward compatibility and easier software migration  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
2
Freescale Semiconductor  
Overview  
1.2  
Serial Interfaces  
2
The following interfaces are supported in the MPC8313E: dual UART, dual I C, and an SPI interface  
1.3  
Security Engine  
The security engine is optimized to handle all the algorithms associated with IPSec, IEEE Std 802.11i®,  
and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution  
units (EUs). The execution units are as follows:  
Data encryption standard execution unit (DEU), supporting DES and 3DES  
Advanced encryption standard unit (AESU), supporting AES  
Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-224, SHA-256, and  
HMAC with any algorithm  
One crypto-channel supporting multi-command descriptor chains  
1.4  
DDR Memory Controller  
The MPC8313E DDR1/DDR2 memory controller includes the following features:  
Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM  
Support for up to 333 MHz  
Support for two physical banks (chip selects), each bank independently addressable  
64-Mbit to 1-Gbit devices with x8/x16/x32 data ports (no direct x4 support)  
Support for one 16-bit device or two 8-bit devices on a 16-bit bus, or one 32-bit device or two  
16-bit devices on a 32-bit bus  
Support for up to 16 simultaneous open pages  
Supports auto refresh  
On-the-fly power management using CKE  
1.8-/2.5-V SSTL2 compatible I/O  
1.5  
PCI Controller  
The MPC8313E PCI controller includes the following features:  
PCI specification revision 2.3 compatible  
Single 32-bit data PCI interface operates at up to 66 MHz  
PCI 3.3-V compatible (not 5-V compatible)  
Support for host and agent modes  
On-chip arbitration, supporting three external masters on PCI  
Selectable hardware-enforced coherency  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
3
Overview  
1.6  
USB Dual-Role Controller  
The MPC8313E USB controller includes the following features:  
Supports USB on-the-go mode, which includes both device and host functionality, when using an  
external ULPI (UTMI + low-pin interface) PHY  
Compatible with Universal Serial Bus Specification, Rev. 2.0  
Supports operation as a stand-alone USB device  
— Supports one upstream facing port  
— Supports three programmable USB endpoints  
Supports operation as a stand-alone USB host controller  
— Supports USB root hub with one downstream-facing port  
— Enhanced host controller interface (EHCI) compatible  
Supports full-speed (12 Mbps), and low-speed (1.5 Mbps) operation. Low-speed operation is  
supported only in host mode.  
Supports UTMI + low pin interface (ULPI) or on-chip USB 2.0 full-speed PHY  
1.7  
Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)  
The MPC8313E eTSECs include the following features:  
Two RGMII/SGMII/MII/RMII/RTBI interfaces  
Two controllers designed to comply with IEEE Std 802.3®, 802.3u®, 802.3x®, 802.3z®,  
802.3au®, and 802.3ab®  
Support for Wake-on-Magic Packet™, a method to bring the device from standby to full operating  
mode  
MII management interface for external PHY control and status  
Three-speed support (10/100/1000 Mbps)  
On-chip high-speed serial interface to external SGMII PHY interface  
Support for IEEE Std 1588™  
Support for two full-duplex FIFO interface modes  
Multiple PHY interface configuration  
TCP/IP acceleration and QoS features available  
IP v4 and IP v6 header recognition on receive  
IP v4 header checksum verification and generation  
TCP and UDP checksum verification and generation  
Per-packet configurable acceleration  
Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2®, PPPoE session, MPLS  
stacks, and ESP/AH IP-security headers  
Transmission from up to eight physical queues.  
Reception to up to eight physical queues  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
4
Freescale Semiconductor  
Overview  
Full- and half-duplex Ethernet support (1000 Mbps supports only full-duplex):  
— IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or  
software-programmed PAUSE frame generation and recognition)  
— Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and  
IEEE 802.1 virtual local area network (VLAN) tags and priority  
— VLAN insertion and deletion  
– Per-frame VLAN control word or default VLAN for each eTSEC  
– Extracted VLAN control word passed to software separately  
— Retransmission following a collision  
— CRC generation and verification of inbound/outbound packets  
— Programmable Ethernet preamble insertion and extraction of up to 7 bytes  
MAC address recognition:  
— Exact match on primary and virtual 48-bit unicast addresses  
– VRRP and HSRP support for seamless router fail-over  
— Up to 16 exact-match MAC addresses supported  
— Broadcast address (accept/reject)  
— Hash table match on up to 512 multicast addresses  
— Promiscuous mode  
Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet  
programming models  
RMON statistics support  
10-Kbyte internal transmit and 2-Kbyte receive FIFOs  
MII management interface for control and status  
1.8  
Programmable Interrupt Controller (PIC)  
The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible  
solution for general-purpose interrupt control. The PIC programming model supports 5 external and 34  
internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.  
1.9  
Power Management Controller (PMC)  
The MPC8313E power management controller includes the following features:  
Provides power management when the device is used in both host and agent modes  
Supports PCI power management 1.2 D0, D1, D2, D3hot, and D3cold states  
On-chip split power supply controlled through external power switch for minimum standby power  
Support for PME generation in PCI agent mode, PME detection in PCI host mode  
Supports wake-up from Ethernet (Magic Packet), USB, GPIO, and PCI (PME input as host)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
5
Electrical Characteristics  
1.10 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) allows the MPC8313E to exchange data between other PowerQUICC  
family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time  
clocks, A/D converters, and ISDN devices.  
The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface  
(receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an  
independent baud-rate generator, and a control unit.  
2
1.11 DMA Controller, Dual I C, DUART, Local Bus Controller, and  
Timers  
The MPC8313E provides an integrated four-channel DMA controller with the following features:  
Allows chaining (both extended and direct) through local memory-mapped chain descriptors  
(accessible by local masters)  
Supports misaligned transfers  
2
There are two I C controllers. These synchronous, multi-master buses can be connected to additional  
devices for expansion and system development.  
The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550  
programming models. The 16-byte FIFOs are supported for both the transmitter and the receiver.  
The MPC8313E local bus controller (LBC) port allows connections with a wide variety of external DSPs  
and ASICs. Three separate state machines share the same external pins and can be programmed separately  
to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses  
to asynchronous devices using a simple handshake protocol. The three user programmable machines  
(UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip  
select can be configured so that the associated chip interface can be controlled by the GPCM or UPM  
controller. The FCM provides a glueless interface to parallel-bus NAND Flash E2PROM devices. The  
FCM contains three basic configuration register groups—BRn, ORn, and FMR. Both may exist in the  
same system. The local bus can operate at up to 66 MHz.  
The MPC8313E system timers include the following features: periodic interrupt timer, real time clock,  
software watchdog timer, and two general-purpose timer blocks.  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8313E. The MPC8313E is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
6
Freescale Semiconductor  
Electrical Characteristics  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
Table 1 provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic  
Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
V
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 1.26  
V
V
V
V
V
DD  
AV  
DD  
Core power supply for SerDes transceivers  
Pad power supply for SerDes transceivers  
DDR and DDR2 DRAM I/O voltage  
XCOREV  
DD  
XPADV  
DD  
GV  
–0.3 to 2.75  
–0.3 to 1.98  
DD  
PCI, local bus, DUART, system control and power  
management, I C, and JTAG I/O voltage  
NV /LV  
–0.3 to 3.6  
V
DD  
DD  
2
eTSEC, USB  
LV  
/LV  
–0.3 to 3.6  
V
V
V
V
DDA  
DDB  
Input voltage  
DDR DRAM signals  
MV  
–0.3 to (GV + 0.3)  
2, 5  
2, 5  
4, 5  
IN  
DD  
DDR DRAM reference  
MV  
–0.3 to (GV + 0.3)  
DD  
REF  
Enhanced three-speed Ethernet signals  
LV  
–0.3 to (LV  
+ 0.3)  
+ 0.3)  
IN  
DDA  
or  
–0.3 to (LV  
DDB  
Local bus, DUART, SYS_CLK_IN, system  
control, and power management, I C, and  
JTAG signals  
OV  
–0.3 to (NV + 0.3)  
V
3, 5  
IN  
IN  
DD  
2
PCI  
OV  
T
–0.3 to (NV + 0.3)  
V
6
DD  
Storage temperature range  
–55 to 150  
°C  
STG  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MV must not exceed GV by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
IN  
DD  
power-on reset and power-down sequences.  
3. Caution: OV must not exceed NV by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
IN  
DD  
power-on reset and power-down sequences.  
4. Caution: LV must not exceed LV /LV by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
DDB  
IN  
DDA  
power-on reset and power-down sequences.  
2.1.2  
Power Supply Voltage Specification  
Table 2 provides the recommended operating conditions for the MPC8313E. Note that the values in  
Table 2 are the recommended and tested operating conditions. If a particular block is given a voltage  
falling within the range in the Recommended Value column, the MPC8313E is capable of delivering the  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
7
Electrical Characteristics  
amount of current listed in the Current Requirement column; this is the maximum current possible. Proper  
device operation outside of these conditions is not guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Current  
Requirement  
Characteristic  
Core supply voltage  
Symbol  
Unit  
1
Value  
V
1.0 V ± 50 mV  
1.0 V ± 50 mV  
1.0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
469 mA  
377 mA  
170 mA  
DD  
Internal core logic constant power  
SerDes internal digital power  
V
DDC  
XCOREV  
XCOREV  
DD  
SerDes internal digital ground  
0.0  
SS  
SerDes I/O digital power  
XPADV  
XPADV  
1.0  
10 mA  
DD  
SerDes I/O digital ground  
0.0  
SS  
DD  
SS  
SerDes analog power for PLL  
SDAV  
SDAV  
1.0 V ± 50 mV  
0.0  
10 mA  
SerDes analog ground for PLL  
Dedicated 3.3 V analog power for USB PLL  
Dedicated 1.0 V analog power for USB PLL  
Dedicated analog ground for USB PLL  
Dedicated USB power for USB bias circuit  
Dedicated USB ground for USB bias circuit  
Dedicated power for USB transceiver  
Dedicated ground for USB transceiver  
Analog power for e300 core APLL  
Analog power for system APLL  
USB_PLL_PWR3  
USB_PLL_PWR1  
USB_PLL_GND  
USB_VDDA_BIAS  
USB_VSSA_BIAS  
USB_VDDA  
3.3 V ± 300 mV  
1.0 V ± 50 mV  
0.0  
2–3 mA  
2–3 mA  
3.3 V ± 300 mV  
0.0  
4–5 mA  
3.3 V ± 300 mV  
0.0  
75 mA  
USB_VSSA  
AV  
AV  
1.0 V ± 50 mV  
1.0 V ± 50 mV  
2.5 V ± 125 mV  
1.8 V ± 80 mV  
1/2 DDR supply  
2–3 mA  
2–3 mA  
131 mA  
140 mA  
DD1  
DD2  
DDR1 DRAM I/O voltage (333 MHz, 32-bit operation)  
DDR2 DRAM I/O voltage (333 MHz, 32-bit operation)  
Differential reference voltage for DDR controller  
GV  
GV  
DD  
DD  
MV  
REF  
(0.49 × GV to  
DD  
0.51 × GV  
)
DD  
2
Standard I/O voltage  
eTSEC2 IO supply  
NV  
3.3 V ± 300 mV  
V
V
74 mA  
22 mA  
DD  
LV  
2.5 V ± 125 mV/  
3.3 V ± 300 mV  
DDA  
eTSEC1/USB DR IO supply  
LV  
2.5 V ± 125 mV/  
3.3 V ± 300 mV  
V
44 mA  
DDB  
Supply for eLBC IOs  
Analog and digital ground  
Junction temperature  
LV  
3.3 V ± 300 mV  
0.0  
V
V
16 mA  
DD  
V
SS  
T
0 to 105  
°C  
J
1
GV , NV , AV , and V must track each other and must vary in the same direction—either in the positive or negative  
DD  
DD  
DD  
DD  
direction.  
2
Some GPIO pins may operate from a 2.5-V supply when configured for other functions.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
8
Freescale Semiconductor  
Electrical Characteristics  
Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8313E.  
G/L/NV + 20%  
DD  
G/L/NV + 5%  
DD  
G/L/NV  
V
DD  
IH  
V
SS  
V
V
– 0.3 V  
SS  
SS  
V
IL  
– 0.7 V  
Not to Exceed 10%  
1
of t  
interface  
Note:  
1. Note that t  
refers to the clock period associated with the bus clock  
interface  
interface.  
Figure 2. Overshoot/Undershoot Voltage for GV /NV /LV  
DD  
DD  
DD  
2.1.3  
Output Driver Characteristics  
Table 3 provides information on the characteristics of the output driver strengths.  
Table 3. Output Drive Capability  
Driver Type  
Output Impedance (Ω)  
Supply Voltage  
NV = 3.3 V  
Local bus interface utilities signals  
PCI signals  
42  
25  
18  
18  
42  
42  
42  
42  
DD  
DDR signal  
GV = 2.5 V  
DD  
DDR2 signal  
GV = 1.8 V  
DD  
2
DUART, system control, I C, JTAG, SPI  
NV = 3.3 V  
DD  
GPIO signals  
eTSEC signals  
USB signals  
NV = 3.3 V  
DD  
LV  
, LV  
= 2.5/3.3 V  
DDB  
DDA  
LV  
= 2.5/3.3 V  
DDB  
2.2  
Power Sequencing  
The MPC8313E does not require the core supply voltage (V and V  
) and IO supply voltages (GV  
,
DD  
DDC  
DD  
LV , and OV ) to be applied in any particular order. Note that during power ramp-up, before the power  
DD  
DD  
supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of  
time that all input and output pins are actively driven and cause contention and excessive current. In order  
to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V  
DD  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
9
Power Characteristics  
and V  
) before the I/O voltage (GV , LV , and OV ) and assert PORESET before the power  
DD DD DD  
DDC  
supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise  
to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies  
(I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating  
PORESET.  
Note that there is no specific power down sequence requirement for the MPC8313E. I/O voltage supplies  
(GV , LV , and OV ) do not have any ordering requirements with respect to one another.  
DD  
DD  
DD  
I/O Voltage (GV , GV , and OV )  
DD  
DD  
DD  
V
Core Voltage (V , V  
)
DD DDC  
0.7 V  
90%  
t
0
PORESET  
t
/t  
>= 32 clocks  
SYS_CLK_IN PCI_SYNC_IN  
Figure 3. Power-Up Sequencing Example  
3 Power Characteristics  
The estimated typical power dissipation, not including I/O supply power, for this family of MPC8313E  
devices is shown in Table 4. Table 5 shows the estimated typical I/O power dissipation.  
1
Table 4. MPC8313E Power Dissipation  
Maximum for  
Rev. 1.0  
Maximum for  
Core Frequency  
(MHz)  
CSB Frequency  
(MHz)  
2
Typical  
Rev. 2.x or Later  
Unit  
3
3
Silicon  
Silicon  
333  
400  
167  
133  
820  
820  
1020  
1020  
1200  
1200  
mW  
mW  
1
The values do not include I/O supply power or AV , but do include core, USB PLL, and a portion of SerDes  
DD  
digital power (not including XCOREV , XPADV , or SDAV , which all have dedicated power supplies for  
DD  
DD  
DD  
the SerDes PHY).  
2
3
Typical power is based on a voltage of V = 1.05 V and an artificial smoker test running at room  
temperature.  
Maximum power is based on a voltage of V = 1.05 V, a junction temperature of T = 105°C, and an artificial  
smoker test.  
DD  
DD  
J
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
10  
Power Characteristics  
Table 5 describes a typical scenario where blocks with the stated percentage of utilization and impedances  
consume the amount of power described.  
1
Table 5. MPC8313E Typical I/O Power Dissipation  
LV  
LV  
(3.3 V)  
/
LV  
LV  
(2.5 V)  
/
DDA  
DDA  
GV  
GV  
NV  
LV  
DD  
(3.3 V)  
DD  
DD  
DD  
Interface  
Parameter  
Unit Comments  
DDB  
DDB  
(1.8 V) (2.5 V) (3.3 V)  
DDR 1, 60% utilization,  
50% read/write  
333 MHz,  
32 bits  
0.355  
0.323  
W
W
R = 22 Ω  
s
266 MHz,  
32 bits  
R = 50 Ω  
t
single pair of clock  
capacitive load: data = 8 pF,  
control address = 8 pF,  
clock = 8 pF  
DDR 2, 60% utilization,  
50% read/write  
333 MHz,  
32 bits  
0.266  
0.246  
W
W
R = 22 Ω  
s
266 MHz,  
32 bits  
R = 75 Ω  
t
single pair of clock  
capacitive load: data = 8 pF,  
control address = 8 pF,  
clock = 8 pF  
PCI I/O load = 50 pF  
33 MHz  
66 MHz  
66 MHz  
50 MHz  
0.120  
0.249  
W
W
W
W
W
Local bus I/O load = 20 pF  
TSEC I/O load = 20 pF  
0.056  
0.040  
MII,  
25 MHz  
0.008  
Multiple by  
number of  
interface  
used  
RGMII,  
125 MHz  
0.078  
0.044  
W
USBDR controller load = 20 pF  
Other I/O  
60 MHz  
0.078  
W
W
0.015  
Table 6 shows the estimated core power dissipation of the MPC8313E while transitioning into the  
D3 warm low-power state.  
1
Table 6. MPC8313E Low-Power Modes Power Dissipation  
Rev. 2.x or  
Later  
2
3
333-MHz Core, 167-MHz CSB  
Rev. 1.0  
Unit  
3
D3 warm  
400  
425  
mW  
1
2
All interfaces are enabled. For further power savings, disable the clocks to unused  
blocks.  
The interfaces are run at the following frequencies: DDR: 333 MHz, eLBC 83 MHz,  
PCI 33 MHz, eTSEC1 and TSEC2: 167 MHz, SEC: 167 MHz, USB: 167 MHz. See  
the SCCR register for more information.  
This is maximum power in D3 Warm based on a voltage of 1.05 V and a junction  
temperature of 105°C.  
3
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
11  
Clock Input Timing  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8313E.  
4.1  
DC Electrical Characteristics  
Table 7 provides the system clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for the  
MPC8313E.  
Table 7. SYS_CLK_IN DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
V
2.4  
–0.3  
NV + 0.3  
V
V
IH  
DD  
Input low voltage  
V
I
0.4  
±10  
±10  
IL  
SYS_CLK_IN input current  
PCI_SYNC_IN input current  
0 V V NV  
μA  
μA  
IN  
DD  
IN  
IN  
0 V V 0.5 V  
I
IN  
or  
NV – 0.5 V V NV  
DD  
IN  
DD  
PCI_SYNC_IN input current  
0.5 V V NV – 0.5 V  
I
±50  
μA  
IN  
DD  
IN  
4.2  
AC Electrical Characteristics  
The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK,  
depending on whether the device is configured in PCI host or PCI agent mode. Table 8 provides the system  
clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8313E.  
Table 8. SYS_CLK_IN AC Timing Specifications  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
SYS_CLK_IN/PCI_CLK frequency  
SYS_CLK_IN/PCI_CLK cycle time  
SYS_CLK_IN/PCI_CLK rise and fall time  
SYS_CLK_IN/PCI_CLK duty cycle  
SYS_CLK_IN/PCI_CLK jitter  
Notes:  
f
t
24  
15  
0.6  
40  
66.67  
MHz  
ns  
1
2
SYS_CLK_IN  
SYS_CLK_IN  
t
, t  
0.8  
1.2  
ns  
KH KL  
t
/t  
60  
%
3
KHK SYS_CLK_IN  
±150  
ps  
4, 5  
1. Caution: The system, core, security block must not exceed their respective maximum or minimum operating frequencies.  
2. Rise and fall times for SYS_CLK_IN/PCI_CLK are measured at 0.4 and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The SYS_CLK_IN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set  
low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
12  
Freescale Semiconductor  
RESET Initialization  
5 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the MPC8313E.  
5.1  
RESET DC Electrical Characteristics  
Table 9 provides the DC electrical characteristics for the RESET pins.  
Table 9. RESET Pins DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
2.1  
–0.3  
NV + 0.3  
V
V
IH  
DD  
Input low voltage  
Input current  
V
I
0.8  
±5  
IL  
0 V V NV  
μA  
V
IN  
IN  
DD  
Output high voltage  
Output low voltage  
Output low voltage  
V
I
= –8.0 mA  
OH  
2.4  
OH  
V
I
= 8.0 mA  
= 3.2 mA  
OL  
0.5  
0.4  
V
OL  
OL  
V
I
V
OL  
5.2  
RESET AC Electrical Characteristics  
Table 10 provides the reset initialization AC timing specifications.  
Table 10. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET or SRESET (input) to activate reset flow  
32  
32  
t
1
2
PCI_SYNC_IN  
Required assertion time of PORESET with stable clock and power applied to  
SYS_CLK_IN when the device is in PCI host mode  
t
SYS_CLK_IN  
PCI_SYNC_IN  
PCI_SYNC_IN  
Required assertion time of PORESET with stable clock and power applied to  
PCI_SYNC_IN when the device is in PCI agent mode  
32  
t
t
1
HRESET assertion (output)  
512  
4
1
2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]  
and CFG_SYS_CLK_IN_DIV) with respect to negation of PORESET when  
the device is in PCI host mode  
t
SYS_CLK_IN  
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2]  
and CFG_CLKIN_DIV) with respect to negation of PORESET when the  
device is in PCI agent mode  
4
t
1
PCI_SYNC_IN  
Input hold time for POR configuration signals with respect to negation of  
HRESET  
0
4
ns  
ns  
3
Time for the device to turn off POR configuration signal drivers with respect  
to the assertion of HRESET  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
13  
DDR and DDR2 SDRAM  
Table 10. RESET Initialization Timing Specifications (continued)  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Time for the device to turn on POR configuration signal drivers with respect to  
the negation of HRESET  
1
t
1, 3  
PCI_SYNC_IN  
Notes:  
1. t  
is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary  
PCI_SYNC_IN  
clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV.  
2. t is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.  
SYS_CLK_IN  
3. POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
Table 11 provides the PLL lock times.  
Table 11. PLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
100  
μs  
6 DDR and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR SDRAM interface. Note that  
DDR SDRAM is GV (typ) = 2.5 V and DDR2 SDRAM is GV (typ) = 1.8 V.  
DD  
DD  
6.1  
DDR and DDR2 SDRAM DC Electrical Characteristics  
Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) when  
GV (typ) = 1.8 V.  
DD  
Table 12. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GV  
MV  
1.7  
1.9  
V
V
1
2
DD  
I/O reference voltage  
I/O termination voltage  
Input high voltage  
0.49 × GV  
0.51 × GV  
DD  
REF  
TT  
DD  
V
MV  
– 0.04  
MV  
+ 0.04  
REF  
V
3
REF  
V
MV  
+ 0.125  
GV + 0.3  
V
4
IH  
REF  
DD  
Input low voltage  
V
I
–0.3  
MV  
– 0.125  
REF  
V
IL  
Output leakage current  
–9.9  
–13.4  
13.4  
9.9  
μA  
mA  
mA  
OZ  
OH  
Output high current (V  
= 1.420 V)  
I
OUT  
Output low current (V  
= 0.280 V)  
I
OL  
OUT  
Notes:  
1. GV is expected to be within 50 mV of the DRAM GV at all times.  
DD  
DD  
2. MV  
is expected to be equal to 0.5 × GV , and to track GV DC variations as measured at the receiver. Peak-to-peak  
REF  
DD DD  
may not exceed ±2% of the DC value.  
noise on MV  
REF  
3. V is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
TT  
equal to MV  
. This rail should track variations in the DC level of MV  
.
REF  
REF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GV  
.
DD  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
14  
Freescale Semiconductor  
DDR and DDR2 SDRAM  
Table 13 provides the DDR2 capacitance when GV (typ) = 1.8 V.  
DD  
Table 13. DDR2 SDRAM Capacitance for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
C
6
8
pF  
pF  
1
1
IO  
C
0.5  
DIO  
1. This parameter is sampled. GV = 1.8 V ± 0.090 V, f = 1 MHz, T = 25°C, V  
= GV /2, V  
(peak-to-peak) = 0.2 V.  
DD  
A
OUT  
DD  
OUT  
Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when  
GV (typ) = 2.5 V.  
DD  
Table 14. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GV  
MV  
2.3  
2.7  
V
V
1
2
DD  
I/O reference voltage  
I/O termination voltage  
Input high voltage  
0.49 × GV  
0.51 × GV  
DD  
REF  
TT  
DD  
V
MV  
– 0.04  
+ 0.15  
MV  
+ 0.04  
REF  
V
3
REF  
REF  
V
MV  
GV + 0.3  
V
4
IH  
DD  
Input low voltage  
V
I
–0.3  
MV  
– 0.15  
REF  
V
IL  
Output leakage current  
–9.9  
–16.2  
16.2  
–9.9  
μA  
mA  
mA  
OZ  
OH  
Output high current (V  
= 1.95 V)  
I
OUT  
Output low current (V  
= 0.35 V)  
I
OL  
OUT  
Notes:  
1. GV is expected to be within 50 mV of the DRAM GV at all times.  
DD  
DD  
2. MV  
is expected to be equal to 0.5 × GV , and to track GV DC variations as measured at the receiver. Peak-to-peak  
REF  
DD DD  
may not exceed ±2% of the DC value.  
noise on MV  
REF  
3. V is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
TT  
equal to MV  
. This rail should track variations in the DC level of MV  
.
REF  
REF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GV  
.
DD  
Table 15 provides the DDR capacitance when GV (typ) = 2.5 V.  
DD  
Table 15. DDR SDRAM Capacitance for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
C
6
8
pF  
pF  
1
1
IO  
C
0.5  
DIO  
1. This parameter is sampled. GV = 2.5 V ± 0.125 V, f = 1 MHz, T = 25°C, V  
= GV /2, V  
(peak-to-peak) = 0.2 V.  
DD  
A
OUT  
DD  
OUT  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
15  
DDR and DDR2 SDRAM  
Table 16 provides the current draw characteristics for MV  
.
REF  
Table 16. Current Draw Characteristics for MV  
REF  
Parameter/Condition  
Current draw for MV  
Symbol  
Min  
Max  
Unit  
Note  
I
500  
μA  
1
REF  
MVREF  
Note:  
1. The voltage regulator for MV  
must be able to supply up to 500 μA current.  
REF  
6.2  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR SDRAM interface.  
6.2.1  
DDR and DDR2 SDRAM Input AC Timing Specifications  
Table 17 provides the input AC timing specifications for the DDR2 SDRAM when GV (typ) = 1.8 V.  
DD  
Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
At recommended operating conditions with GVDD of 1.8 ± 5%.  
Parameter  
Symbol  
Min  
Max  
– 0.25  
REF  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
V
MV  
V
V
IL  
V
MV  
+ 0.25  
REF  
IH  
Table 18 provides the input AC timing specifications for the DDR SDRAM when GV (typ) = 2.5 V.  
DD  
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface  
At recommended operating conditions with GVDD of 2.5 ± 5%.  
Parameter  
Symbol  
Min  
Max  
– 0.31  
REF  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
V
MV  
V
V
IL  
V
MV  
+ 0.31  
REF  
IH  
Table 19 provides the input AC timing specifications for the DDR2 SDRAM interface.  
Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions. with GVDD of 2.5 ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Controller skew for MDQS—MDQ  
t
ps  
1, 2  
CISKEW  
333 MHz  
266 MHz  
Notes:  
–750  
–750  
750  
750  
1. t  
represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that  
CISKEW  
is captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t  
. This can be  
DISKEW  
determined by the following equation: t  
= ± (T/4 – abs(t  
)) where T is the clock period and abs(t  
) is the  
DISKEW  
CISKEW  
CISKEW  
absolute value of t  
.
CISKEW  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
16  
DDR and DDR2 SDRAM  
Figure 4 illustrates the DDR input timing diagram showing the t  
timing parameter.  
DISKEW  
MCK[n]  
MCK[n]  
t
MCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
t
DISKEW  
t
DISKEW  
Figure 4. DDR Input Timing Diagram  
6.2.2  
DDR and DDR2 SDRAM Output AC Timing Specifications  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Rev. 1.0 Silicon  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, MCK[n]/MCK[n] crossing  
t
6
10  
ns  
ns  
2
3
MCK  
ADDR/CMD output setup with respect to MCK  
t
t
t
t
DDKHAS  
DDKHAX  
DDKHCS  
DDKHCX  
333 MHz  
266 MHz  
2.1  
2.5  
ADDR/CMD output hold with respect to MCK  
ns  
ns  
ns  
3
3
3
333 MHz  
266 MHz  
2.4  
3.15  
MCS[n] output setup with respect to MCK  
333 MHz  
266 MHz  
2.4  
3.15  
MCS[n] output hold with respect to MCK  
333 MHz  
266 MHz  
2.4  
3.15  
MCK to MDQS Skew  
t
–0.6  
0.6  
ns  
ps  
4
5
DDKHMH  
MDQ//MDM output setup with respect to  
MDQS  
t
t
t
DDKHDS,  
t
DDKLDS  
333 MHz  
266 MHz  
800  
900  
MDQ//MDM output hold with respect to MDQS  
ps  
ns  
5
6
DDKHDX,  
t
DDKLDX  
333 MHz  
266 MHz  
900  
1100  
MDQS preamble start  
–0.5 × t  
– 0.6  
–0.5 × t  
+ 0.6  
MCK  
DDKHMP  
MCK  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
17  
DDR and DDR2 SDRAM  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Rev. 1.0 Silicon (continued)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MDQS epilogue end  
Notes:  
t
–0.6  
0.6  
ns  
6
DDKHME  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. Output hold time can be read as DDR timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
symbolizes DDR timing (DD) for the time t memory clock reference (K) goes from the high (H) state until  
t
DDKHAS  
MCK  
outputs (A) are setup (S) or output valid time. Also, t  
symbolizes DDR timing (DD) for the time t  
memory clock  
DDKLDX  
MCK  
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.  
4. Note that t follows the symbol conventions described in note 1. For example, t describes the DDR timing (DD)  
DDKHMH  
DDKHMH  
from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t  
can be modified through control  
DDKHMH  
of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the  
CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same  
adjustment value. See the MPC8313E PowerQUICC™ II Pro Integrated Processor Family Reference Manual, for a  
description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t  
symbol conventions described in note 1.  
follows the  
DDKHMP  
Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Silicon Rev 2.x or Later  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, MCK[n]/MCK[n] crossing  
t
6
10  
ns  
ns  
2
3
MCK  
ADDR/CMD output setup with respect to MCK  
t
t
t
t
DDKHAS  
DDKHAX  
DDKHCS  
DDKHCX  
333 MHz  
266 MHz  
2.1  
2.5  
ADDR/CMD output hold with respect to MCK  
ns  
ns  
ns  
3
3
3
333 MHz  
266 MHz  
2.0  
2.7  
MCS[n] output setup with respect to MCK  
333 MHz  
266 MHz  
2.1  
3.15  
MCS[n] output hold with respect to MCK  
333 MHz  
266 MHz  
2.0  
2.7  
MCK to MDQS Skew  
t
–0.6  
0.6  
ns  
ps  
4
5
DDKHMH  
MDQ//MDM output setup with respect to  
t
DDKHDS,  
MDQS  
t
DDKLDS  
333 MHz  
266 MHz  
800  
900  
MDQ//MDM output hold with respect to MDQS  
t
ps  
5
DDKHDX,  
t
DDKLDX  
333 MHz  
266 MHz  
750  
1000  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
18  
DDR and DDR2 SDRAM  
Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Silicon Rev 2.x or Later (continued)  
1
Parameter  
MDQS preamble start  
Symbol  
Min  
Max  
Unit  
Notes  
t
–0.5 × t  
– 0.6  
–0.5 × t  
+ 0.6  
ns  
ns  
6
6
DDKHMP  
MCK  
MCK  
MDQS epilogue end  
t
–0.6  
0.6  
DDKHME  
Notes:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. Output hold time can be read as DDR timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
symbolizes DDR timing (DD) for the time t memory clock reference (K) goes from the high (H) state until  
t
DDKHAS  
MCK  
outputs (A) are setup (S) or output valid time. Also, t  
symbolizes DDR timing (DD) for the time t  
memory clock  
DDKLDX  
MCK  
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.  
4. Note that t follows the symbol conventions described in note 1. For example, t describes the DDR timing (DD)  
DDKHMH  
DDKHMH  
from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t  
can be modified through control  
DDKHMH  
of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the  
CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same  
adjustment value. See the MPC8313E PowerQUICC™ II Pro Integrated Processor Family Reference Manual, for a  
description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t  
symbol conventions described in note 1.  
follows the  
DDKHMP  
NOTE  
For the ADDR/CMD setup and hold specifications in Table 21, it is  
assumed that the clock control register is set to adjust the memory clocks by  
1/2 applied cycle.  
Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t  
).  
DDKHMH  
MCK[n]  
MCK[n]  
t
MCK  
t
(max) = 0.6 ns  
DDKHMH  
MDQS  
MDQS  
t
(min) = –0.6 ns  
DDKHMH  
Figure 5. Timing Diagram for t  
DDKHMH  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
19  
DUART  
Figure 6 shows the DDR and DDR2 SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
t
MCK  
t
,t  
DDKHAS DDKHCS  
t
, t  
DDKHAX DDKHCX  
ADDR/CMD  
Write A0  
NOOP  
t
DDKHMP  
t
DDKHMH  
MDQS[n]  
MDQ[x]  
t
DDKHME  
t
DDKHDS  
t
DDKLDS  
D0  
D1  
t
DDKLDX  
t
DDKHDX  
Figure 6. DDR and DDR2 SDRAM Output Timing Diagram  
Figure 7 provides the AC test load for the DDR bus.  
Output  
Z = 50 Ω  
0
GV /2  
DD  
R = 50 Ω  
L
Figure 7. DDR AC Test Load  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface.  
7.1  
DUART DC Electrical Characteristics  
Table 22 provides the DC electrical characteristics for the DUART interface.  
Table 22. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
V
2.0  
NV + 0.3  
V
V
IH  
DD  
Low-level input voltage NV  
V
–0.3  
0.8  
DD  
IL  
High-level output voltage, I = –100 μA  
V
NV – 0.2  
V
OH  
OH  
DD  
Low-level output voltage, I = 100 μA  
V
0.2  
±5  
V
OL  
OL  
IN  
Input current (0 V V NV  
)
DD  
I
μA  
IN  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
20  
Ethernet: Three-Speed Ethernet, MII Management  
7.2  
DUART AC Electrical Specifications  
Table 23 provides the AC timing parameters for the DUART interface.  
Table 23. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
th  
2. The middle of a start bit is detected as the 8 sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are  
th  
sampled each 16 sample.  
8 Ethernet: Three-Speed Ethernet, MII Management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII  
management.  
8.1  
Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical  
Characteristics  
The electrical characteristics specified here apply to all the media independent interface (MII), reduced  
gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and  
reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management  
data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be  
operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and  
RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical  
Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC  
are specified in Section 8.5, “Ethernet Management Interface Electrical Characteristics.”  
8.1.1  
TSEC DC Electrical Characteristics  
All RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in  
Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as  
defined by JEDEC EIA/JESD8-5.  
Table 24. MII DC Electrical Characteristics  
Parameter  
Symbol  
/LV  
Conditions  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Output high voltage  
LV  
2.97  
2.40  
3.63  
V
V
DDA  
DDB  
V
I
= –4.0 mA  
LV  
or LV  
= Min  
LV  
LV  
+ 0.3  
DDA  
OH  
OH  
DDA  
DDB  
or  
+ 0.3  
DDB  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
21  
Ethernet: Three-Speed Ethernet, MII Management  
Table 24. MII DC Electrical Characteristics (continued)  
Symbol Conditions Min  
Parameter  
Max  
Unit  
Output low voltage  
Input high voltage  
V
I
= 4.0 mA  
LV  
or LV  
= Min  
V
SS  
0.50  
V
V
OL  
OL  
DDA  
DDB  
V
2.0  
LV  
LV  
+ 0.3  
DDA  
IH  
or  
+ 0.3  
DDB  
Input low voltage  
Input high current  
Input low current  
Note:  
V
I
–0.3  
0.90  
40  
V
IL  
1
V
= LV  
or LV  
DDB  
μA  
μA  
IH  
IN  
DDA  
1
I
V
= VSS  
IN  
–600  
IL  
1. The symbol V , in this case, represents the LV symbol referenced in Table 1 and Table 2.  
IN  
IN  
Table 25. RGMII/RTBI DC Electrical Characteristics  
Parameters  
Symbol  
/LV  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
LV  
2.37  
2.00  
2.63  
V
V
DDA  
DDB  
V
I
= –1.0 mA  
LV  
or LV  
= Min  
LV  
LV  
+ 0.3  
DDA  
OH  
OH  
DDA  
DDB  
or  
+ 0.3  
DDB  
Output low voltage  
Input high voltage  
V
I
= 1.0 mA  
LV  
LV  
or LV  
or LV  
= Min  
= Min  
V – 0.3  
SS  
0.40  
+ 0.3  
DDA  
V
V
OL  
OL  
DDA  
DDA  
DDB  
DDB  
V
1.7  
LV  
LV  
IH  
or  
+ 0.3  
DDB  
Input low voltage  
Input high current  
Input low current  
Note:  
V
LV  
or LV  
= Min  
–0.3  
0.70  
10  
V
IL  
DDA  
DDB  
1
V
I
= LV  
or LV  
DDB  
μA  
μA  
IH  
IN  
DDA  
1
I
V
= V  
–15  
IL  
IN  
SS  
1. Note that the symbol V , in this case, represents the LV symbol referenced in Table 1 and Table 2.  
IN  
IN  
8.2  
MII, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.  
8.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
22  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
8.2.1.1  
MII Transmit AC Timing Specifications  
Table 26 provides the MII transmit AC timing specifications.  
Table 26. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.  
Parameter/Condition Symbol  
TX_CLK clock period 10 Mbps  
1
Min  
Typ  
Max  
Unit  
t
t
400  
40  
5
ns  
ns  
%
MTX  
MTX  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
t
t
35  
1
65  
15  
4.0  
4.0  
MTXH/ MTX  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
t
ns  
ns  
ns  
MTKHDX  
TX_CLK data clock rise V (min) to V (max)  
t
MTXR  
1.0  
1.0  
IL  
IH  
TX_CLK data clock fall V (max) to V (min)  
t
MTXF  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes MII transmit  
(first two letters of functional block)(reference)(state)(signal)(state)  
MTKHDX  
timing (MT) for the time t  
clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
MTX  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of t represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
MTX  
used with the appropriate letter: R (rise) or F (fall).  
Figure 8 shows the MII transmit AC timing diagram.  
t
t
MTXR  
MTX  
TX_CLK  
t
t
MTXH  
MTXF  
TXD[3:0]  
TX_EN  
TX_ER  
t
MTKHDX  
Figure 8. MII Transmit AC Timing Diagram  
8.2.1.2  
MII Receive AC Timing Specifications  
Table 27 provides the MII receive AC timing specifications.  
Table 27. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.  
Parameter/Condition Symbol  
RX_CLK clock period 10 Mbps  
1
Min  
Typ  
Max  
Unit  
t
400  
40  
65  
ns  
ns  
%
MRX  
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
t
MRX  
t
/t  
35  
MRXH MRX  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
t
10.0  
ns  
MRDVKH  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
23  
Ethernet: Three-Speed Ethernet, MII Management  
Table 27. MII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
t
10.0  
1.0  
ns  
ns  
ns  
MRDXKH  
RX_CLK clock rise V (min) to V (max)  
t
MRXR  
4.0  
4.0  
IL  
IH  
RX_CLK clock fall time V (max) to V (min)  
t
MRXF  
1.0  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes MII receive  
(first two letters of functional block)(reference)(state)(signal)(state)  
MRDVKH  
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t  
clock reference (K)  
MRX  
going to the high (H) state or setup time. Also, t  
symbolizes MII receive timing (GR) with respect to the time data input  
MRDXKL  
signals (D) went invalid (X) relative to the t  
clock reference (K) going to the low (L) state or hold time. Note that, in general,  
MRX  
the clock reference symbol representation is based on three letters representing the clock of a particular functional. For  
example, the subscript of t represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used  
MRX  
with the appropriate letter: R (rise) or F (fall).  
Figure 9 provides the AC test load for TSEC.  
Output  
Z = 50 Ω  
0
LV  
/2 or LV  
/2  
DDB  
DDA  
R = 50 Ω  
L
Figure 9. TSEC AC Test Load  
Figure 10 shows the MII receive AC timing diagram.  
t
t
MRXR  
MRX  
RX_CLK  
t
t
MRXF  
MRXH  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
t
MRDVKH  
t
MRDXKH  
Figure 10. MII Receive AC Timing Diagram RMII AC Timing Specifications  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
24  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
8.2.1.3  
RMII Transmit AC Timing Specifications  
Table 28 provides the RMII transmit AC timing specifications.  
Table 28. RMII Transmit AC Timing Specifications  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK clock  
t
35  
2
20  
65  
ns  
%
RMX  
REF_CLK duty cycle  
t
t
RMXH/ RMX  
REF_CLK to RMII data TXD[1:0], TX_EN delay  
t
10  
ns  
ns  
ns  
RMTKHDX  
REF_CLK data clock rise V (min) to V (max)  
t
RMXR  
1.0  
1.0  
4.0  
4.0  
IL  
IH  
REF_CLK data clock fall V (max) to V (min)  
t
RMXF  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first three letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes RMII  
(first two letters of functional block)(reference)(state)(signal)(state)  
RMTKHDX  
transmit timing (RMT) for the time t  
clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in  
RMX  
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of t represents the RMII(RM) reference (X) clock. For rise and fall times, the latter  
RMX  
convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 11 shows the RMII transmit AC timing diagram.  
t
t
RMX  
RMXR  
REF_CLK  
t
t
RMXF  
RMXH  
TXD[1:0]  
TX_EN  
t
RMTKHDX  
Figure 11. RMII Transmit AC Timing Diagram  
8.2.1.4  
RMII Receive AC Timing Specifications  
Table 29 provides the RMII receive AC timing specifications.  
Table 29. RMII Receive AC Timing Specifications  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK clock period  
t
35  
20  
65  
ns  
%
RMX  
REF_CLK duty cycle  
t
/t  
RMXH RMX  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
t
t
4.0  
2.0  
1.0  
ns  
ns  
ns  
RMRDVKH  
RMRDXKH  
REF_CLK clock rise V (min) to V (max)  
t
RMXR  
4.0  
IL  
IH  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
25  
Ethernet: Three-Speed Ethernet, MII Management  
Table 29. RMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK clock fall time V (max) to V (min)  
t
RMXF  
1.0  
4.0  
ns  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first three letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes RMII  
(first two letters of functional block)(reference)(state)(signal)(state)  
RMRDVKH  
receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t  
clock  
RMX  
reference (K) going to the high (H) state or setup time. Also, t  
the time data input signals (D) went invalid (X) relative to the t  
symbolizes RMII receive timing (RMR) with respect to  
clock reference (K) going to the low (L) state or hold time.  
RMRDXKL  
RMX  
Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular  
functional. For example, the subscript of t represents the RMII (RM) reference (X) clock. For rise and fall times, the latter  
RMX  
convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 12 provides the AC test load.  
Output  
Z = 50 Ω  
0
NV /2  
DD  
R = 50 Ω  
L
Figure 12. AC Test Load  
Figure 13 shows the RMII receive AC timing diagram.  
t
t
RMXR  
RMX  
REF_CLK  
t
t
RMXF  
RMXH  
RXD[1:0]  
CRS_DV  
RX_ER  
Valid Data  
t
RMRDVKH  
t
RMRDXKH  
Figure 13. RMII Receive AC Timing Diagram  
8.2.2  
RGMII and RTBI AC Timing Specifications  
Table 30 presents the RGMII and RTBI AC timing specifications.  
Table 30. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB of 2.5 V ± 5%.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Data to clock output skew (at transmitter)  
t
t
–0.5  
1.0  
7.2  
45  
0.5  
2.8  
8.8  
55  
ns  
ns  
ns  
%
SKRGT  
SKRGT  
2
Data to clock input skew (at receiver)  
3
Clock cycle duration  
t
8.0  
50  
RGT  
4, 5  
Duty cycle for 1000Base-T  
t
/t  
RGTH RGT  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
26  
Ethernet: Three-Speed Ethernet, MII Management  
Table 30. RGMII and RTBI AC Timing Specifications (continued)  
At recommended operating conditions with LVDDA/LVDDB of 2.5 V ± 5%.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
3, 5  
Duty cycle for 10BASE-T and 100BASE-TX  
Rise time (20%–80%)  
t
/t  
40  
47  
50  
60  
0.75  
0.75  
%
ns  
ns  
ns  
%
RGTH RGT  
t
RGTR  
Fall time (20%–80%)  
t
RGTF  
6
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Notes:  
t
8.0  
G12  
t
/t  
53  
G125H G125  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent  
RGMII and RTBI timing. For example, the subscript of t represents the RTBI (T) receive (RX) clock. Note also that the  
RGT  
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews,  
the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is  
added to the associated clock signal.  
3. For 10 and 100 Mbps, t  
scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.  
RGT  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long  
as the minimum duty cycle is not violated and stretching occurs for no more than three t  
between.  
of the lowest speed transitioned  
RGT  
5. Duty cycle reference is LV  
/2 or LV  
/2.  
DDA  
DDB  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
Figure 14 shows the RGMII and RTBI AC timing and multiplexing diagrams.  
t
RGT  
t
RGTH  
GTX_CLK  
(At Transmitter)  
t
SKRGT  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
t
SKRGT  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
t
SKRGT  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
t
SKRGT  
RX_CLK  
(At PHY)  
Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
27  
Ethernet: Three-Speed Ethernet, MII Management  
8.3  
SGMII Interface Electrical Characteristics  
Each SGMII port features a 4-wire AC-coupled serial link from the dedicated SerDes interface of  
MPC8313E as shown in Figure 15, where C is the external (on board) AC-coupled capacitor. Each  
TX  
output pin of the SerDes transmitter differential pair features a 50-Ω output impedance. Each input of the  
SerDes receiver differential pair features 50-Ω on-die termination to XCOREVSS. The reference circuit  
of the SerDes transmitter and receiver is shown in Figure 33.  
When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of  
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines  
described in Section 22.5, “Connection Recommendations,” as long as such termination does not violate  
the desired POR configuration requirement on these pins, if applicable.  
When operating in SGMII mode, the TSEC_GTX_CLK125 clock is not required for this port. Instead, the  
SerDes reference clock is required on SD_REF_CLK and SD_REF_CLK pins.  
8.3.1  
DC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
The characteristics and DC requirements of the separate SerDes reference clock are described in Section 9,  
“High-Speed Serial Interfaces (HSSI).”  
8.3.2  
AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
Table 31 lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and  
SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock  
source.  
Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements  
Symbol  
Parameter Description  
Min  
Typ  
Max  
Unit  
t
REFCLK cycle time  
8
ns  
ps  
REF  
t
t
REFCLK cycle-to-cycle jitter. Difference in the period of any two  
adjacent REFCLK cycles  
100  
REFCJ  
Phase jitter. Deviation in edge location with respect to mean  
edge location  
–50  
50  
ps  
REFPJ  
8.3.3  
SGMII Transmitter and Receiver DC Electrical Characteristics  
Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical  
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD_TX[n] and  
SD_TX[n]) as depicted in Figure 16.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
28  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
Table 32. SGMII DC Transmitter Electrical Characteristics  
Parameter  
Supply voltage  
Symbol  
XCOREV  
Min  
Typ  
Max  
Unit  
Notes  
0.95  
1.0  
1.05  
V
DD  
Output high voltage  
V
XCOREV  
/2 mV  
1
1
OH  
DD-Typ  
+ |V  
|
/2  
OD -max  
Output low voltage  
V
XCOREV  
/2  
mV  
OL  
DD-Typ  
– |V  
|
/2  
OD -max  
Output ringing  
V
10  
%
RING  
2, 3  
Output differential voltage  
|V  
|
323  
500  
725  
mV  
Equalization  
setting: 1.0x  
OD  
Output offset voltage  
V
425  
40  
500  
575  
60  
mV  
1, 4  
OS  
Output impedance  
(single-ended)  
R
Ω
O
Mismatch in a pair  
ΔR  
10  
25  
25  
40  
%
O
Change in V between 0 and 1  
Δ|V  
|
mV  
mV  
mA  
OD  
OD  
OS  
Change in V between 0 and 1  
ΔV  
OS  
Output current on short to GND  
I
, I  
SA SB  
Notes:  
1. This will not align to DC-coupled SGMII. XCOREV  
= 1.0 V.  
DD-Typ  
2. |V | = |V  
– V  
|. |V | is also referred as output differential peak voltage. V  
= 2*|V |.  
OD  
TXn  
TXn  
OD  
TX-DIFFp-p OD  
3. The |V | value shown in the Typ column is based on the condition of XCOREV  
= 1.0 V, no common mode offset  
OD  
DD-Typ  
variation (V  
= 500 mV), SerDes transmitter is terminated with 100-Ω differential load between TX[n] and TX[n].  
OS  
4. V is also referred to as output common mode voltage.  
OS  
TXn  
RXm  
50 Ω  
C
C
TX  
50 Ω  
Receiver  
Transmitter  
50 Ω  
TX  
TXn  
RXm  
50 Ω  
50 Ω  
MPC8313E SGMII  
SerDes Interface  
C
RXn  
TXm  
TX  
TX  
50 Ω  
Receiver  
Transmitter  
50 Ω  
C
RXn  
TXm  
50 Ω  
Figure 15. 4-Wire AC-Coupled SGMII Serial Link Connection Example  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
29  
Ethernet: Three-Speed Ethernet, MII Management  
MPC8313E SGMII  
SerDes Interface  
TXn  
TXn  
50 Ω  
50  
50  
Ω
Transmitter  
V
V
os  
OD  
50 Ω  
Ω
Figure 16. SGMII Transmitter DC Measurement Circuit  
Table 33. SGMII DC Receiver Electrical Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
Supply voltage  
XCOREV  
0.95  
1.0  
N/A  
1.05  
V
DD  
DC Input voltage range  
1
2
Input differential voltage  
V
100  
30  
1200  
100  
100  
120  
35  
mV  
mV  
mV  
Ω
RX_DIFFp-p  
Loss of signal threshold  
VL  
OS  
Input AC common mode voltage  
Receiver differential input impedance  
Receiver common mode input impedance  
Common mode input voltage  
V
3
4
CM_ACp-p  
Z
80  
20  
100  
RX_DIFF  
Z
Ω
RX_CM  
V
V
V
CM  
xcorevss  
Notes:  
1. Input must be externally AC-coupled.  
2. V  
3. V  
is also referred to as peak to peak input differential voltage  
is also referred to as peak to peak AC common mode voltage.  
RX_DIFFp-p  
CM_ACp-p  
4. On-chip termination to XCOREV  
.
SS  
8.3.4  
SGMII AC Timing Specifications  
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver  
characteristics are measured at the transmitter outputs (TX[n] and TX[n]) or at the receiver inputs (RX[n]  
and RX[n]) as depicted in Figure 18, respectively.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
30  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
8.3.4.1  
SGMII Transmit AC Timing Specifications  
Table 34 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.  
Table 34. SGMII Transmit AC Timing Specifications  
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.  
Parameter  
Deterministic jitter  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
JD  
JT  
0.17  
0.35  
UI p-p  
UI p-p  
ps  
Total jitter  
Unit interval  
UI  
799.92  
50  
800  
800.08  
120  
1
V
V
fall time (80%–20%)  
rise time (20%–80%)  
tfall  
ps  
OD  
OD  
t
50  
120  
ps  
rise  
Note:  
1. Each UI is 800 ps ± 100 ppm.  
8.3.4.2  
SGMII Receive AC Timing Specifications  
Table 35 provides the SGMII receive AC timing specifications. Source synchronous clocking is not  
supported. Clock is recovered from the data. Figure 17 shows the SGMII receiver input compliance mask  
eye diagram.  
Table 35. SGMII Receive AC Timing Specifications  
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.  
Parameter  
Deterministic jitter tolerance  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
JD  
JDR  
JSIN  
JT  
0.37  
0.55  
0.1  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
1
1
1
1
Combined deterministic and random jitter tolerance  
Sinusoidal jitter tolerance  
Total jitter tolerance  
0.65  
–12  
Bit error ratio  
BER  
UI  
10  
Unit interval  
799.92  
5
800  
800.08  
200  
ps  
2
3
AC coupling capacitor  
C
nF  
TX  
Notes:  
1. Measured at receiver.  
2. Each UI is 800 ps ± 100 ppm.  
3. The external AC coupling capacitor is required. It is recommended to be placed near the device transmitter outputs.  
4. Refer to the RapidIO™ 1x/4x LP Serial Physical Layer Specification, for interpretation of jitter specifications.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
31  
Ethernet: Three-Speed Ethernet, MII Management  
V
/2  
/2  
RX_DIFFp-p-max  
V
RX_DIFFp-p-min  
RX_DIFFp-p-min  
0
V  
V  
/2  
/2  
RX_DIFFp-p-max  
1
0
0.275  
0.4  
0.6  
0.725  
Time (UI)  
Figure 17. SGMII Receiver Input Compliance Mask  
D+ Package  
Pin  
C = TX  
TX  
Silicon  
+ Package  
C = TX  
D– Package  
R = 50 Ω  
R = 50 Ω  
Pin  
Figure 18. SGMII AC Test/Measurement Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
32  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
8.4  
eTSEC IEEE 1588 AC Specifications  
Figure 19 provides the data and command output timing diagram.  
t
T1588CLKOUT  
t
T1588CLKOUTH  
TSEC_1588_CLK_OUT  
t
T1588OV  
TSEC_1588_PULSE_OUT  
TSEC_1588_TRIG_OUT  
The output delay is count starting rising edge if t  
count starting falling edge.  
is non-inverting. Otherwise, it is  
Note:  
T1588CLKOUT  
Figure 19. eTSEC IEEE 1588 Output AC Timing  
Figure 20 provides the data and command input timing diagram.  
t
T1588CLK  
t
T1588CLKH  
TSEC_1588_CLK  
TSEC_1588_TRIG_IN  
t
T1588TRIGH  
Figure 20. eTSEC IEEE 1588 Input AC Timing  
The IEEE 1588 AC timing specifications are in Table 36.  
Table 36. eTSEC IEEE 1588 AC Timing Specifications  
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
TSEC_1588_CLK clock period  
TSEC_1588_CLK duty cycle  
t
3.8  
40  
50  
T
× 9  
ns  
%
1, 3  
T1588CLK  
RX_CLK  
t
/t  
60  
T1588CLKH T1588CLK  
TSEC_1588_CLK peak-to-peak  
jitter  
t
250  
2.0  
2.0  
ps  
T1588CLKINJ  
Rise time eTSEC_1588_CLK  
(20%–80%)  
t
1.0  
1.0  
50  
ns  
ns  
ns  
%
T1588CLKINR  
Fall time eTSEC_1588_CLK  
(80%–20%)  
t
T1588CLKINF  
TSEC_1588_CLK_OUT clock  
period  
t
t
2 × t  
T1588CLK  
T1588CLKOUT  
TSEC_1588_CLK_OUT duty cycle  
30  
70  
T1588CLKOTH  
/t  
T1588CLKOUT  
TSEC_1588_PULSE_OUT  
t
0.5  
3.0  
ns  
T1588OV  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
33  
Ethernet: Three-Speed Ethernet, MII Management  
Table 36. eTSEC IEEE 1588 AC Timing Specifications (continued)  
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
TSEC_1588_TRIG_IN pulse width  
t
2 × t  
ns  
2
T1588TRIGH  
T1588CLK_MAX  
Notes:  
1.T  
is the max clock period of eTSEC receiving clock selected by TMR_CTRL[CKSEL]. See the MPC8313E  
RX_CLK  
PowerQUICC™ II Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.  
2. It need to be at least two times of clock period of clock selected by TMR_CTRL[CKSEL]. See the MPC8313E PowerQUICC™  
II Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.  
3. The maximum value of t  
is not only defined by the value of T  
, but also defined by the recovered clock. For  
T1588CLK  
RX_CLK  
example, for 10/100/1000 Mbps modes, the maximum value of t  
is 3600, 280, and 56 ns, respectively.  
T1588CLK  
8.5  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for  
MII, RMII, RGMII, SGMII, and RTBI are specified in Section 8.1, “Enhanced Three-Speed Ethernet  
Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics.”  
8.5.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 2.5 V or 3.3 V. Table 37 and Table 38  
provide the DC electrical characteristics for MDIO and MDC.  
Table 37. MII Management DC Electrical Characteristics When Powered at 2.5 V  
Parameter  
Symbol  
/NV  
Conditions  
Min  
Max  
Unit  
Supply voltage (2.5 V)  
Output high voltage  
NV  
2.37  
2.00  
2.63  
V
V
DDA  
DDB  
V
I
= –1.0 mA  
NV  
or NV  
= Min  
NV  
NV  
+ 0.3  
DDA  
or  
OH  
OH  
DDA  
DDB  
+ 0.3  
DDB  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
V
I
= 1.0 mA  
NV  
NV  
NV  
or NV  
or NV  
or NV  
= Min  
= Min  
= Min  
V – 0.3  
SS  
0.40  
V
V
OL  
OL  
DDA  
DDA  
DDA  
DDB  
DDB  
DDB  
V
1.7  
–0.3  
IH  
V
0.70  
10  
V
IL  
1
I
V
= NV  
or NV  
DDB  
μA  
μA  
IH  
IN  
DDA  
DDA  
I
V
= NV  
or NV  
DDB  
–15  
IL  
IN  
1. Note that the symbol V , in this case, represents the LV symbol referenced in Table 1 and Table 2.  
IN  
IN  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
34  
Ethernet: Three-Speed Ethernet, MII Management  
Table 38. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Symbol  
/NV  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V) NV  
Output high voltage  
2.97  
2.10  
3.63  
V
V
DDA  
DDB  
V
I
= –1.0 mA  
= 1.0 mA  
NV  
LV  
or NV  
= Min  
= Min  
NV  
NV  
+ 0.3  
DDA  
or  
OH  
OH  
DDA  
DDA  
DDB  
+ 0.3  
DDB  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
V
I
or LV  
V
SS  
0.50  
V
V
OL  
OL  
DDB  
V
2.0  
IH  
V
0.80  
40  
V
IL  
1
I
NV  
NV  
or NV  
or NV  
= Max  
V
= 2.1 V  
= 0.5 V  
μA  
μA  
IH  
DDA  
DDA  
DDB  
DDB  
IN  
I
= Max  
V
–600  
IL  
IN  
1. Note that the symbol V , in this case, represents the LV symbol referenced in Table 1 and Table 2.  
IN  
IN  
8.5.2  
MII Management AC Electrical Specifications  
Table 39 provides the MII management AC timing specifications.  
Table 39. MII Management AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB is 3.3 V ± 0.3V or 2.5 V ± 5%  
1
Parameter/Condition  
MDC frequency  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
f
t
32  
10  
5
2.5  
400  
MHz  
ns  
2
MDC  
MDC  
MDC period  
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
t
ns  
MDCH  
t
170  
ns  
MDKHDX  
t
ns  
MDDVKH  
MDDXKH  
t
0
ns  
t
10  
10  
ns  
MDCR  
MDC fall time  
t
ns  
MDHF  
Notes:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes management  
(first two letters of functional block)(reference)(state)(signal)(state)  
MDKHDX  
data timing (MD) for the time t  
from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time.  
MDC  
Also, t  
symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state  
MDDVKH  
(V) relative to the t  
clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter  
MDC  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency  
of the Mgmt Clock EC_MDC.)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
35  
High-Speed Serial Interfaces (HSSI)  
Figure 21 shows the MII management AC timing diagram.  
t
t
MDCR  
MDC  
MDC  
t
t
MDCF  
MDCH  
MDIO  
(Input)  
t
MDDVKH  
t
MDDXKH  
MDIO  
(Output)  
t
MDKHDX  
Figure 21. MII Management Interface Timing Diagram  
9 High-Speed Serial Interfaces (HSSI)  
This section describes the common portion of SerDes DC electrical specifications, which is the DC  
requirement for SerDes reference clocks. The SerDes data lane’s transmitter and receiver reference circuits  
are also shown.  
9.1  
Signal Terms Definition  
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms  
used in the description and specification of differential signals.  
Figure 22 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for  
description. The figure shows waveform for either a transmitter output (TXn and TXn) or a receiver input  
(RXn and RXn). Each signal swings between A volts and B volts where A > B.  
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions  
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling  
environment.  
1. Single-ended swing  
The transmitter output signals and the receiver input signals TXn, TXn, RXn, and RXn each have  
a peak-to-peak swing of A – B volts. This is also referred as each signal wire’s single-ended swing.  
2. Differential output voltage, V (or differential output swing):  
OD  
The differential output voltage (or swing) of the transmitter, V , is defined as the difference of  
OD  
the two complimentary output voltages: V  
negative.  
– V  
The V value can be either positive or  
TXn  
TXn. OD  
3. Differential input voltage, V (or differential input swing):  
ID  
The differential input voltage (or swing) of the receiver, V , is defined as the difference of the two  
ID  
complimentary input voltages: V  
– V  
. The V value can be either positive or negative.  
RXn  
RXn ID  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
36  
High-Speed Serial Interfaces (HSSI)  
4. Differential peak voltage, V  
DIFFp  
The peak value of the differential transmitter output signal or the differential receiver input signal  
is defined as differential peak voltage, V = |A – B| volts.  
DIFFp  
5. Differential peak-to-peak, V  
DIFFp-p  
Since the differential output signal of the transmitter and the differential input signal of the receiver  
each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter  
output signal or the differential receiver input signal is defined as differential peak-to-peak voltage,  
V
= 2 × V  
= 2 × |(A – B)| volts, which is twice of differential swing in amplitude, or  
DIFFp-p  
DIFFp  
twice of the differential peak. For example, the output differential peak-peak voltage can also be  
calculated as V = 2 × |V |.  
TX-DIFFp-p  
OD  
6. Differential waveform  
The differential waveform is constructed by subtracting the inverting signal (TXn, for example)  
from the non-inverting signal (TXn, for example) within a differential pair. There is only one signal  
trace curve in a differential waveform. The voltage represented in the differential waveform is not  
referenced to ground. Refer to Figure 31 as an example for differential waveform.  
7. Common mode voltage, V  
cm  
The common mode voltage is equal to one half of the sum of the voltages between each conductor  
of a balanced interchange circuit and ground. In this example, for SerDes output, V  
=
cm_out  
(V  
+ V )/2 = (A + B)/2, which is the arithmetic mean of the two complimentary output  
TXn  
TXn  
voltages within a differential pair. In a system, the common mode voltage may often differ from  
one component’s output to the other’s input. Sometimes, it may be even different between the  
receiver input and driver output circuits within the same component. It’s also referred as the DC  
offset in some occasion.  
TXn or RXn  
A Volts  
V
= (A + B)/2  
cm  
TXn or RXn  
B Volts  
Differential Swing, V or V = A – B  
ID  
OD  
Differential Peak Voltage, V  
= |A – B|  
DIFFp  
Differential Peak-Peak Voltage, V  
= 2*V  
(not shown)  
DIFFpp  
DIFFp  
Figure 22. Differential Voltage Definitions for Transmitter or Receiver  
To illustrate these definitions using real values, consider the case of a CML (current mode logic)  
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing  
that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or  
TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since the  
differential signaling environment is fully symmetrical, the transmitter output’s differential swing (V  
)
OD  
has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between  
500 and –500 mV, in other words, V is 500 mV in one phase and –500 mV in the other phase. The peak  
OD  
differential voltage (V  
) is 500 mV. The peak-to-peak differential voltage (V  
) is 1000 mV p-p.  
DIFFp  
DIFFp-p  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
37  
High-Speed Serial Interfaces (HSSI)  
9.2  
SerDes Reference Clocks  
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by  
the corresponding SerDes lanes. The SerDes reference clocks input is SD_REF_CLK and SD_REF_CLK  
for SGMII interface.  
The following sections describe the SerDes reference clock requirements and some application  
information.  
9.2.1  
SerDes Reference Clock Receiver Characteristics  
Figure 23 shows a receiver reference diagram of the SerDes reference clocks.  
The supply voltage requirements for XCOREV are specified in Table 1 and Table 2.  
DD  
SerDes reference clock receiver reference circuit structure:  
— The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown  
in Figure 23. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-Ω  
termination to XCOREV followed by on-chip AC coupling.  
SS  
— The external reference clock driver must be able to drive this termination.  
— The SerDes reference clock input can be either differential or single-ended. Refer to the  
differential mode and single-ended mode description below for further detailed requirements.  
The maximum average current requirement that also determines the common mode voltage range:  
— When the SerDes reference clock differential inputs are DC coupled externally with the clock  
driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the  
exact common mode input voltage is not critical as long as it is within the range allowed by the  
maximum average current of 8 mA (refer to the following bullet for more detail), since the  
input is AC-coupled on-chip.  
— This current limitation sets the maximum common mode input voltage to be less than 0.4 V  
(0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above XCOREV .  
SS  
For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output  
driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the differential  
input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.  
— If the device driving the SD_REF_CLK and SD_REF_CLK inputs cannot drive 50 Ω to  
XCOREV DC, or it exceeds the maximum input current limitations, then it must be  
SS  
AC-coupled off-chip.  
The input amplitude requirement. This requirement is described in detail in the following sections.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
38  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
50 Ω  
SDn_REF_CLK  
SDn_REF_CLK  
Input  
Amp  
50 Ω  
Figure 23. Receiver of SerDes Reference Clocks  
9.2.2  
DC Level Requirement for SerDes Reference Clocks  
The DC level requirement for the MPC8313E SerDes reference clock inputs is different depending on the  
signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described  
below.  
Differential mode  
— The input amplitude of the differential clock must be between 400 and 1600 mV differential  
peak-to-peak (or between 200 and 800 mV differential peak). In other words, each signal wire  
of the differential pair must have a single-ended swing less than 800 mV and greater than  
200 mV. This requirement is the same for both external DC-coupled or AC-coupled  
connection.  
— For external DC-coupled connection, as described in Section 9.2.1, “SerDes Reference Clock  
Receiver Characteristics,” the maximum average current requirements sets the requirement for  
average voltage (common mode voltage) to be between 100 and 400 mV. Figure 24 shows the  
SerDes reference clock input requirement for the DC-coupled connection scheme.  
— For external AC-coupled connection, there is no common mode voltage requirement for the  
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver  
and the SerDes reference clock receiver operate in different command mode voltages. The  
SerDes reference clock receiver in this connection scheme has its common mode voltage set to  
XCOREV . Each signal wire of the differential inputs is allowed to swing below and above  
SS  
the command mode voltage (XCOREV ). Figure 25 shows the SerDes reference clock input  
SS  
requirement for AC-coupled connection scheme.  
Single-ended mode  
— The reference clock can also be single-ended. The SD_REF_CLK input amplitude  
(single-ended swing) must be between 400 and 800 mV peak-to-peak (from V to V ) with  
min  
max  
SD_REF_CLK either left unconnected or tied to ground.  
— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 26 shows  
the SerDes reference clock input requirement for the single-ended signaling mode.  
— To meet the input amplitude requirement, the reference clock inputs might need to be DC or  
AC coupled externally. For the best noise performance, the reference of the clock could be DC  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
39  
High-Speed Serial Interfaces (HSSI)  
or AC coupled into the unused phase (SD_REF_CLK) through the same source impedance as  
the clock input (SD_REF_CLK) in use.  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
V
< 800 mV  
max  
100 mV < V < 400 mV  
cm  
V
> 0 V  
min  
SD_REF_CLK  
Figure 24. Differential Reference Clock Input DC Requirements (External DC-Coupled)  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
V
< V + 400 mV  
max cm  
V
cm  
SD_REF_CLK  
V
> V – 400 mV  
min cm  
Figure 25. Differential Reference Clock Input DC Requirements (External AC-Coupled)  
400 mV < SD_REF_CLK Input Amplitude < 800 mV  
SD_REF_CLK  
0 V  
SD_REF_CLK  
Figure 26. Single-Ended Reference Clock Input DC Requirements  
9.2.3  
Interfacing With Other Differential Signaling Levels  
With on-chip termination to XCOREV , the differential reference clocks inputs are HCSL  
SS  
(high-speed current steering logic) compatible DC coupled.  
Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can  
be used but may need to be AC coupled due to the limited common mode input range allowed (100  
to 400 mV) for DC-coupled connection.  
LVPECL outputs can produce a signal with too large of an amplitude and may need to be  
DC-biased at the clock driver output first, then followed with series attenuation resistor to reduce  
the amplitude, in addition to AC coupling.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
40  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
NOTE  
Figure 27 to Figure 30 are for conceptual reference only. Due to the fact that  
the clock driver chip's internal structure, output impedance, and termination  
requirements are different between various clock driver chip manufacturers,  
it is possible that the clock circuit reference designs provided by clock  
driver chip vendors are different from what is shown in the figures. They  
might also vary from one vendor to the other. Therefore, Freescale can  
neither provide the optimal clock driver reference circuits, nor guarantee the  
correctness of the following clock driver connection reference circuits. It is  
recommended that the system designer contact the selected clock driver  
chip vendor for the optimal reference circuits for the MPC8313E SerDes  
reference clock receiver requirement provided in this document.  
Figure 27 shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It  
assumes that the DC levels of the clock driver chip is compatible with MPC8313E SerDes reference clock  
input’s DC requirement.  
HCSL CLK Driver Chip  
MPC8313E  
50 Ω  
CLK_Out  
SDn_REF_CLK  
33 Ω  
33 Ω  
SerDes Refer.  
CLK Receiver  
100 Ω Differential PWB Trace  
Clock Driver  
CLK_Out  
SDnn_REF_CLK  
50 Ω  
Clock driver vendor dependent  
source termination resistor  
Total 50 Ω. Assume clock driver’s  
output impedance is about 16 Ω.  
Figure 27. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)  
Figure 28 shows the SerDes reference clock connection reference circuits for LVDS type clock driver.  
Since LVDS clock driver’s common mode voltage is higher than the MPC8313E SerDes reference clock  
input’s allowed range (100 to 400 mV), the AC-coupled connection scheme must be used. It assumes the  
LVDS output driver features a 50-Ω termination resistor. It also assumes that the LVDS transmitter  
establishes its own common mode level without relying on the receiver or other external component.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
41  
High-Speed Serial Interfaces (HSSI)  
LVDS CLK Driver Chip  
MPC8313E  
50 Ω  
CLK_Out  
SDn_REF_CLK  
SDn_REF_CLK  
10 nF  
SerDes Refer.  
CLK Receiver  
100 Ω Differential PWB Trace  
Clock Driver  
10 nF  
CLK_Out  
50 Ω  
Figure 28. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)  
Figure 29 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver.  
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with  
the MPC8313E SerDes reference clock input’s DC requirement, AC coupling has to be used. Figure 29  
assumes that the LVPECL clock driver’s output impedance is 50 Ω. R1 is used to DC-bias the LVPECL  
outputs prior to AC coupling. Its value could be ranged from 140 to 240 Ω depending on the clock driver  
vendor’s requirement. R2 is used together with the SerDes reference clock receiver’s 50-Ω termination  
resistor to attenuate the LVPECL output’s differential peak level such that it meets the MPC8313E  
SerDes3 reference clock’s differential input amplitude requirement (between 200 and 800 mV differential  
peak). For example, if the LVPECL output’s differential peak is 900 mV and the desired SerDes reference  
clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω.  
Consult with the clock driver chip manufacturer to verify whether this connection scheme is compatible  
with a particular clock driver chip.  
LVPECL CLK Driver Chip  
MPC8313E  
50 Ω  
SDn_REF_CLK  
10 nF  
CLK_Out  
R2  
SerDes Refer.  
CLK Receiver  
R1  
R1  
100 Ω Differential PWB Trace  
10 nF  
Clock Driver  
CLK_Out  
R2  
SDn_REF_CLK  
50 Ω  
Figure 29. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
42  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
Figure 30 shows the SerDes reference clock connection reference circuits for a single-ended clock driver.  
It assumes the DC levels of the clock driver are compatible with the MPC8313E SerDes reference clock  
input’s DC requirement.  
Single-Ended CLK  
Driver Chip  
MPC8313E  
Total 50 Ω. Assume clock driver’s  
output impedance is about 16 Ω.  
50 Ω  
SDn_REF_CLK  
33 Ω  
Clock Driver  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 Ω Differential PWB Trace  
SDn_REF_CLK  
50 Ω  
50 Ω  
Figure 30. Single-Ended Connection (Reference Only)  
9.2.4  
AC Requirements for SerDes Reference Clocks  
The clock driver selected should provide a high quality reference clock with low-phase noise and  
cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and  
is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise  
occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the  
transmission line and reduce reflections which are a source of noise to the system.  
Table 40 describes some AC parameters for SGMII protocol.  
Table 40. SerDes Reference Clock Common AC Parameters  
At recommended operating conditions with XVDD_SRDS1 or XVDD_SRDS2 = 1.0 V ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Rising edge rate  
Falling edge rate  
Rise edge rate  
Fall edge rate  
1.0  
1.0  
4.0  
4.0  
V/ns  
V/ns  
mV  
2, 3  
2, 3  
2
Differential input high voltage  
Differential input low voltage  
V
+200  
IH  
V
–200  
mV  
2
IL  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
43  
High-Speed Serial Interfaces (HSSI)  
Table 40. SerDes Reference Clock Common AC Parameters (continued)  
At recommended operating conditions with XVDD_SRDS1 or XVDD_SRDS2 = 1.0 V ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Rising edge rate (SDn_REF_CLK) to falling edge rate  
(SDn_REF_CLK) matching  
Rise-fall  
matching  
20  
%
1, 4  
Notes:  
1. Measurement taken from single-ended waveform.  
2. Measurement taken from differential waveform.  
3. Measured from –200 to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The  
signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is  
centered on the differential zero crossing. See Figure 31.  
4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a  
200 mV window centered on the median cross point, where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median  
cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge  
rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should  
not exceed 20% of the slowest edge rate. See Figure 32.  
Rise Edge Rage  
Fall Edge Rate  
V
= +200 mV  
0.0 V  
IH  
V
= –200 mV  
IL  
SDn_REF_CLK  
Minus  
SDn_REF_CLK  
Figure 31. Differential Measurement Points for Rise and Fall Time  
T
T
RISE  
FALL  
SDn_REF_CLK  
SDn_REF_CLK  
V
V
+ 100 mV  
CROSS MEDIAN  
V
V
CROSS MEDIAN  
CROSS MEDIAN  
– 100 mV  
CROSS MEDIAN  
SDn_REF_CLK  
SDn_REF_CLK  
Figure 32. Single-Ended Measurement Points for Rise and Fall Time Matching  
The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol  
based on application usage. Refer to the following section for detailed information:  
Section 8.3.2, “AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
9.2.4.1 Spread Spectrum Clock  
SD_REF_CLK/SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread  
spectrum clock source.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
44  
Freescale Semiconductor  
USB  
9.3  
SerDes Transmitter and Receiver Reference Circuits  
Figure 33 shows the reference circuits for the SerDes data lane’s transmitter and receiver.  
RXn  
TXn  
50 Ω  
50 Ω  
50 Ω  
Receiver  
Transmitter  
50 Ω  
TXn  
RXn  
Figure 33. SerDes Transmitter and Receiver Reference Circuits  
The SerDes data lane’s DC and AC specifications are defined in the interface protocol section listed below  
(SGMII) based on the application usage:  
Section 8.3, “SGMII Interface Electrical Characteristics  
Please note that a external AC-coupling capacitor is required for the above serial transmission protocol  
with the capacitor value defined in the specifications of the protocol section.  
10 USB  
10.1 USB Dual-Role Controllers  
This section provides the AC and DC electrical specifications for the USB interface.  
10.1.1 USB DC Electrical Characteristics  
Table 41 provides the DC electrical characteristics for the USB interface.  
Table 41. USB DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
+ 0.3  
DDB  
Unit  
V
2.0  
–0.3  
LV  
V
V
IH  
Low-level input voltage  
Input current  
V
I
0.8  
±5  
IL  
μA  
V
IN  
High-level output voltage, I = –100 μA  
V
LV  
– 0.2  
DDB  
OH  
OH  
Low-level output voltage, I = 100 μA  
V
0.2  
V
OL  
OL  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
45  
USB  
10.1.2 USB AC Electrical Specifications  
Table 42 describes the general timing parameters of the USB interface.  
Table 42. USB General Timing Parameters (ULPI Mode Only)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
USB clock cycle time  
t
15  
4
7
ns  
ns  
ns  
ns  
ns  
USCK  
Input setup to USB clock—all inputs  
input hold to USB clock—all inputs  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
Note:  
t
USIVKH  
USIXKH  
t
1
t
t
2
USKHOV  
USKHOX  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes USB timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
USIXKH  
(USB) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, t  
USKHOX  
symbolizes us timing (USB) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or  
output hold time.  
Figure 34 and Figure 35 provide the AC test load and signals for the USB, respectively.  
Output  
NV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 34. USB AC Test Load  
USBDR_CLK  
t
USIXKH  
t
USIVKH  
Input Signals  
t
t
USKHOV  
USKHOX  
Output Signals  
Figure 35. USB Signals  
10.2 On-Chip USB PHY  
This section describes the DC and AC electrical specifications for the on-chip USB PHY of the  
MPC8313E. See Chapter 7 in the USB Specifications Rev. 2, for more information.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
46  
Freescale Semiconductor  
Enhanced Local Bus  
Table 43 provides the USB clock input (USB_CLK_IN) DC timing specifications.  
Table 43. USB_CLK_IN DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
V
2.7  
NV + 0.3  
V
V
IH  
DD  
V
–0.3  
0.4  
IL  
Table 44 provides the USB clock input (USB_CLK_IN) AC timing specifications.  
Table 44. USB_CLK_IN AC Timing Specifications  
Parameter/Condition  
Frequency range  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
f
–0.05  
40  
24  
0
48  
0.05  
60  
MHz  
%
USB_CLK_IN  
Clock frequency tolerance  
Reference clock duty cycle  
t
CLK_TOL  
Measured at 1.6 V  
t
50  
%
CLK_DUTY  
Total input jitter/time interval  
error  
Peak-to-peak value measured with a  
second order high-pass filter of 500 kHz  
bandwidth  
t
200  
ps  
CLK_PJ  
11 Enhanced Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface.  
11.1 Local Bus DC Electrical Characteristics  
Table 45 provides the DC electrical characteristics for the local bus interface.  
Table 45. Local Bus DC Electrical Characteristics at 3.3 V  
Parameter  
High-level input voltage for Rev 1.0  
Symbol  
Min  
Max  
LV + 0.3  
Unit  
V
V
2.0  
2.1  
–0.3  
V
V
IH  
IH  
DD  
High-level input voltage for Rev 2.x or later  
LV + 0.3  
DD  
Low-level input voltage  
V
I
0.8  
±5  
V
IL  
1
Input current, (V  
= 0 V or V = LV  
)
μA  
V
IN  
IN  
DD  
IN  
High-level output voltage, (LV = min, I  
= –2 mA)  
= 2 mA)  
V
LV – 0.2  
DD  
OH  
OH  
OH  
DD  
Low-level output voltage, (LV = min, I  
V
0.2  
V
DD  
OL  
Note: The parameters stated in above table are valid for all revisions unless explicitly mentioned.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
47  
Enhanced Local Bus  
11.2 Local Bus AC Electrical Specifications  
Table 46 describes the general timing parameters of the local bus interface.  
Table 46. Local Bus General Timing Parameters  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
t
15  
7
3.0  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
5
LBK  
Input setup to local bus clock  
t
t
LBIVKH  
LBIXKH  
Input hold from local bus clock  
1.0  
1.5  
3
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output rise to LCLK negative edge  
LALE output fall to LCLK negative edge  
LALE output fall to LCLK negative edge  
LALE output fall to LCLK negative edge  
Local bus clock to output valid  
t
t
t
LBOTOT1  
LBOTOT2  
LBOTOT3  
LALEHOV  
6
2.5  
7
t
t
t
t
–1.5  
–5.0  
–4.5  
5
6
7
3
8
LALETOT1  
LALETOT2  
LALETOT3  
t
t
LBKHOV  
Local bus clock to output high impedance for LAD  
Notes:  
4
LBKHOZ  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes local bus  
(first two letters of functional block)(reference)(state)(signal)(state)  
LBIXKH1  
timing (LB) for the input (I) to go invalid (X) with respect to the time the t  
clock one (1).  
clock reference (K) goes high (H), in this case for  
LBK  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from NV /2 of the rising/falling edge of LCLK0 to 0.4 × NV of the signal in question for 3.3-V  
DD  
DD  
signaling levels.  
4. Input timings are measured at the pin.  
5.t  
6.t  
7.t  
and t  
should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less  
LBOTOT1  
LALETOT1  
than the load on LAD output pins.  
and t should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10 pF less than  
LBOTOT2  
LALETOT2  
the load on LAD output pins.  
and t should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD  
LBOTOT3  
LALETOT3  
output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
Figure 36 provides the AC test load for the local bus.  
Output  
NV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 36. Local Bus AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
48  
Freescale Semiconductor  
Enhanced Local Bus  
Figure 37 through Figure 40 show the local bus signals.  
LCLK[n]  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
LBIXKH  
t
LBIVKH  
Input Signal:  
LGTA  
t
LBIXKH  
t
LBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE  
t
LBKHOZ  
t
LBKHOV  
Output Signals:  
LAD[0:15]  
t
LBOTOT  
LALE  
Figure 37. Local Bus Signals, Non-Special Signals Only  
LCLK  
T1  
T3  
t
LBKHOZ  
t
LBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
LBIXKH  
t
LBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
LBKHOZ  
t
LBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 38. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
49  
Enhanced Local Bus  
LCLK  
T1  
T2  
T3  
T4  
t
LBKHOZ  
t
LBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
LBIXKH  
t
LBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
LBKHOZ  
t
LBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 39. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4  
LCLK[n]  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
t
LBIXKH  
LBIXKH  
t
LBIVKH  
Input Signal:  
LGTA  
t
LBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE  
t
LBKHOZ  
t
LBKHOV  
Output Signals:  
LAD[0:15]  
t
LBOTOT  
t
t
LALEHOV  
LALETOT  
LALE  
Figure 40. Local Bus Signals, LALE with Respect to LCLK  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
50  
Freescale Semiconductor  
JTAG  
12 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std 1149.1™ (JTAG)  
interface.  
12.1 JTAG DC Electrical Characteristics  
Table 47 provides the DC electrical characteristics for the IEEE Std 1149.1 (JTAG) interface.  
Table 47. JTAG Interface DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
2.1  
–0.3  
NV + 0.3  
V
V
IH  
DD  
Input low voltage  
Input current  
V
I
0.8  
±5  
IL  
μA  
V
IN  
Output high voltage  
Output low voltage  
Output low voltage  
V
I
= –8.0 mA  
OH  
2.4  
OH  
V
I
= 8.0 mA  
= 3.2 mA  
OL  
0.5  
0.4  
V
OL  
OL  
V
I
V
OL  
12.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE Std 1149.1 (JTAG) interface.  
Table 48 provides the JTAG AC timing specifications as defined in Figure 42 through Figure 45.  
1
Table 48. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)  
At recommended operating conditions (see Table 2).  
2
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
f
0
33.3  
MHz  
ns  
JTG  
t
30  
15  
0
JTG  
t
ns  
JTKHKL  
t
& t  
2
ns  
JTGR  
JTGF  
t
25  
ns  
3
4
TRST  
Input setup times:  
ns  
Boundary-scan data  
t
t
4
4
JTDVKH  
TMS, TDI  
JTIVKH  
Input hold times:  
Valid times:  
ns  
ns  
Boundary-scan data  
TMS, TDI  
t
t
10  
10  
4
5
JTDXKH  
JTIXKH  
Boundary-scan data  
TDO  
t
t
2
2
11  
11  
JTKLDV  
JTKLOV  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
51  
JTAG  
1
Table 48. JTAG AC Timing Specifications (Independent of SYS_CLK_IN) (continued)  
At recommended operating conditions (see Table 2).  
2
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Output hold times:  
Boundary-scan data  
TDO  
t
t
2
2
ns  
5
JTKLDX  
JTKLOX  
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
t
t
2
2
19  
9
ns  
5, 6  
JTKLDZ  
JTKLOZ  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of t  
to the midpoint of the signal in question.  
TCLK  
The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 34).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes JTAG device  
(first two letters of functional block)(reference)(state)(signal)(state)  
JTDVKH  
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t  
clock reference (K)  
JTG  
going to the high (H) state or setup time. Also, t  
symbolizes JTAG timing (JT) with respect to the time data input signals  
JTDXKH  
(D) went invalid (X) relative to the t  
clock reference (K) going to the high (H) state. Note that, in general, the clock reference  
JTG  
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the  
latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to t  
.
TCLK  
5. Non-JTAG signal output timing with respect to t  
6. Guaranteed by design and characterization.  
.
TCLK  
Figure 41 provides the AC test load for TDO and the boundary-scan outputs.  
Output  
NV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 41. AC Test Load for the JTAG Interface  
Figure 42 provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
t
VM  
VM  
t
JTGR  
JTKHKL  
t
t
JTGF  
JTG  
VM = Midpoint Voltage (NV /2)  
DD  
Figure 42. JTAG Clock Input Timing Diagram  
Figure 43 provides the TRST timing diagram.  
TRST  
VM  
VM  
t
TRST  
VM = Midpoint Voltage (NV /2)  
DD  
Figure 43. TRST Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
52  
Freescale Semiconductor  
JTAG  
Figure 44 provides the boundary-scan timing diagram.  
JTAG  
External Clock  
VM  
VM  
t
JTDVKH  
t
JTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
t
JTKLDV  
t
JTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
t
JTKLDZ  
Boundary  
Data Outputs  
Output Data Valid  
VM = Midpoint Voltage (NV /2)  
DD  
Figure 44. Boundary-Scan Timing Diagram  
Figure 45 provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
t
JTIVKH  
t
JTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
t
JTKLOV  
t
JTKLOX  
Output Data Valid  
t
JTKLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (NV /2)  
DD  
Figure 45. Test Access Port Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
53  
I2C  
13 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface.  
2
13.1 I C DC Electrical Characteristics  
2
Table 49 provides the DC electrical characteristics for the I C interface.  
2
Table 49. I C DC Electrical Characteristics  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
Parameter  
Input high voltage level  
Symbol  
Min  
Max  
Unit  
Notes  
V
0.7 × NV  
–0.3  
0
NV + 0.3  
V
V
IH  
DD  
DD  
Input low voltage level  
V
0.3 × NV  
IL  
DD  
Low level output voltage  
V
0.2 × NV  
V
1
2
OL  
DD  
Output fall time from V (min) to V (max) with a bus  
t
20 + 0.1 × C  
B
250  
ns  
IH  
IL  
I2KLKV  
capacitance from 10 to 400 pF  
Pulse width of spikes which must be suppressed by  
the input filter  
t
0
50  
ns  
3
4
I2KHKL  
Capacitance for each I/O pin  
C
I
10  
pF  
I
Input current, (0 V V NV  
)
± 5  
μA  
IN  
DD  
IN  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. C = capacitance of one bus line in pF.  
B
3. Refer to the MPC8313E PowerQUICC™ II Pro Integrated Processor Family Reference Manual, for information on the digital  
filter used.  
4. I/O pins obstruct the SDA and SCL lines if NV is switched off.  
DD  
2
13.2 I C AC Electrical Specifications  
2
Table 50 provides the AC timing parameters for the I C interface.  
2
Table 50. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 49).  
1
Parameter  
Symbol  
Min  
Max  
Unit  
SCL clock frequency  
f
0
400  
kHz  
μs  
I2C  
Low period of the SCL clock  
High period of the SCL clock  
t
1.3  
0.6  
0.6  
0.6  
I2CL  
I2CH  
t
μs  
Setup time for a repeated START condition  
t
μs  
I2SVKH  
Hold time (repeated) START condition (after this period, the first clock  
pulse is generated)  
t
μs  
I2SXKL  
Data setup time  
t
100  
ns  
I2DVKH  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
54  
Freescale Semiconductor  
I2C  
2
Table 50. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 49).  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Data hold time:  
t
μs  
I2DXKL  
CBUS compatible masters  
0
0.9  
2
2
3
I C bus devices  
5
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
t
0.6  
300  
ns  
μs  
μs  
V
I2CF  
t
I2PVKH  
Bus free time between a STOP and START condition  
t
1.3  
I2KHDX  
Noise margin at the LOW level for each connected device (including  
hysteresis)  
V
0.1 × NV  
NL  
DD  
DD  
Noise margin at the HIGH level for each connected device (including  
hysteresis)  
V
0.2 × NV  
V
NH  
Notes:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
2
inputs and t  
for outputs. For example, t  
symbolizes I C timing (I2)  
(first two letters of functional block)(reference)(state)(signal)(state)  
I2DVKH  
with respect to the time data input signals (D) reach the valid state (V) relative to the t clock reference (K) going to the high  
I2C  
2
(H) state or setup time. Also, t  
symbolizes I C timing (I2) for the time that the data with respect to the start condition  
clock reference (K) going to the low (L) state or hold time. Also, t  
I2SXKL  
2
(S) went invalid (X) relative to the t  
symbolizes I C  
I2C  
I2PVKH  
timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t clock  
I2C  
reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
2. The MPC8313E provides a hold time of at least 300 ns for the SDA signal (referred to the V  
the undefined region of the falling edge of SCL.  
of the SCL signal) to bridge  
IHmin  
3. The maximum t  
has only to be met if the device does not stretch the LOW period (t  
) of the SCL signal.  
I2DVKH  
I2CL  
4. C = capacitance of one bus line in pF.  
B
2
5. The MPC8313E does not follow the I C-BUS Specifications, Version 2.1, regarding the t  
AC parameter.  
I2CF  
2
Figure 46 provides the AC test load for the I C.  
Output  
NV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
2
Figure 46. I C AC Test Load  
2
Figure 47 shows the AC timing diagram for the I C bus.  
SDA  
t
t
t
t
I2CF  
I2CF  
I2DVKH  
I2KHKL  
t
t
t
I2CR  
I2CL  
I2SXKL  
SCL  
t
t
t
t
I2PVKH  
I2SXKL  
I2CH  
I2SVKH  
t
S
Sr  
P
I2DXKL  
S
2
Figure 47. I C Bus AC Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
55  
PCI  
14 PCI  
This section describes the DC and AC electrical specifications for the PCI bus.  
14.1 PCI DC Electrical Characteristics  
Table 51 provides the DC electrical characteristics for the PCI interface.  
1
Table 51. PCI DC Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input current  
V
V
V (min) or  
0.5 × NV  
–0.5  
NV + 0.3  
V
V
IH  
OUT  
OH  
DD  
DD  
V
V
V (max)  
0.3 × NV  
IL  
OUT  
OL  
DD  
V
NV = min, I = –100 μA  
0.9 × NV  
V
OH  
DD  
OH  
DD  
V
NV = min, I = 100 μA  
0.1 × NV  
V
OL  
DD  
OL  
DD  
I
0 V V NV  
DD  
±5  
μA  
IN  
IN  
Note:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and Table 2.  
IN  
IN  
14.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or  
PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8313E is configured  
as a host or agent device.  
Table 52 shows the PCI AC timing specifications at 66 MHz.  
.
Table 52. PCI AC Timing Specifications at 66 MHz  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Clock to output valid  
t
1
6.0  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
2
t
PCKHOX  
t
3.0  
0
14  
2, 3  
2, 4  
2, 4  
PCKHOZ  
t
PCIVKH  
t
PCIXKH  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes PCI timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
PCIVKH  
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t  
, reference  
SYS  
(K) going to the high (H) state or setup time. Also, t  
symbolizes PCI timing (PC) with respect to the time hard reset  
PCRHFV  
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
56  
Freescale Semiconductor  
PCI  
Table 53 shows the PCI AC timing specifications at 33 MHz.  
Table 53. PCI AC Timing Specifications at 33 MHz  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Clock to output valid  
t
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
PCKHOX  
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
2
t
t
3.0  
0
2, 3  
2, 4  
2, 4  
PCKHOZ  
t
PCIVKH  
PCIXKH  
t
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes PCI timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
PCIVKH  
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t  
, reference  
SYS  
(K) going to the high (H) state or setup time. Also, t  
symbolizes PCI timing (PC) with respect to the time hard reset  
PCRHFV  
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
Figure 48 provides the AC test load for PCI.  
Output  
NV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 48. PCI AC Test Load  
Figure 49 shows the PCI input AC timing conditions.  
CLK  
t
PCIVKH  
t
PCIXKH  
Input  
Figure 49. PCI Input AC Timing Measurement Conditions  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
57  
Timers  
Figure 50 shows the PCI output AC timing conditions.  
CLK  
t
PCKHOV  
t
PCKHOX  
Output Delay  
t
PCKHOZ  
High-Impedance  
Output  
Figure 50. PCI Output AC Timing Measurement Condition  
15 Timers  
This section describes the DC and AC electrical specifications for the timers.  
15.1 Timers DC Electrical Characteristics  
Table 54 provides the DC electrical characteristics for the MPC8313E timers pins, including TIN, TOUT,  
TGATE, and RTC_CLK.  
Table 54. Timers DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –8.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 8.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
OL  
V
2.1  
–0.3  
NV + 0.3  
V
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V NV  
DD  
μA  
IN  
IN  
15.2 Timers AC Timing Specifications  
Table 55 provides the Timers input and output AC timing specifications.  
1
Table 55. Timers Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Unit  
Timers inputs—minimum pulse width  
Notes:  
t
20  
ns  
TIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any  
external synchronous logic. Timers inputs are required to be valid for at least t  
ns to ensure proper operation  
TIWID  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
58  
Freescale Semiconductor  
GPIO  
Figure 51 provides the AC test load for the Timers.  
Output  
Z = 50 Ω  
0
NV /2  
DD  
R = 50 Ω  
L
Figure 51. Timers AC Test Load  
16 GPIO  
This section describes the DC and AC electrical specifications for the GPIO.  
16.1 GPIO DC Electrical Characteristics  
Table 56 provides the DC electrical characteristics for the GPIO when the GPIO pins are operating from  
a 3.3-V supply.  
1
Table 56. GPIO (When Operating at 3.3 V) DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –8.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 8.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
OL  
V
2.0  
–0.3  
NV + 0.3  
V
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V NV  
DD  
μA  
IN  
IN  
1
This specification only applies to GPIO pins that are operating from a 3.3-V supply. See Table 63 for the power supply listed  
for the individual GPIO signal.  
Table 57 provides the DC electrical characteristics for the GPIO when the GPIO pins are operating from  
a 2.5-V supply.  
1
Table 57. GPIO (When Operating at 2.5 V) DC Electrical Characteristics  
Parameters  
Symbol  
NV  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
2.37  
2.00  
2.63  
V
V
DD  
V
I
= –1.0 mA  
= 1.0 mA  
NV = min  
NV + 0.3  
OH  
OH  
DD  
DD  
V
I
NV = min  
V – 0.3  
SS  
0.40  
V
OL  
OL  
DD  
V
NV = min  
1.7  
–0.3  
NV + 0.3  
V
IH  
DD  
DD  
V
I
NV = min  
0.70  
10  
V
IL  
DD  
DD  
V
= NV  
μA  
IH  
IN  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
59  
IPIC  
1
Table 57. GPIO (When Operating at 2.5 V) DC Electrical Characteristics (continued)  
Parameters  
Input low current  
Symbol  
Conditions  
= V  
Min  
Max  
Unit  
I
V
–15  
μA  
IL  
IN  
SS  
1
This specification only applies to GPIO pins that are operating from a 2.5-V supply. See Table 63 for the power supply listed  
for the individual GPIO signal.  
16.2 GPIO AC Timing Specifications  
Table 58 provides the GPIO input and output AC timing specifications.  
1
Table 58. GPIO Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Unit  
GPIO inputs—minimum pulse width  
Notes:  
t
20  
ns  
PIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLKIN. Timings  
are measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least t  
ns to ensure proper operation.  
PIWID  
Figure 52 provides the AC test load for the GPIO.  
Output  
NV /2  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 52. GPIO AC Test Load  
17 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins.  
17.1 IPIC DC Electrical Characteristics  
Table 59 provides the DC electrical characteristics for the external interrupt pins.  
Table 59. IPIC DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
2.1  
–0.3  
NV + 0.3  
V
V
IH  
DD  
Input low voltage  
Input current  
V
I
0.8  
±5  
IL  
μA  
V
IN  
Output low voltage  
Output low voltage  
V
I
= 8.0 mA  
= 3.2 mA  
OL  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
60  
SPI  
17.2 IPIC AC Timing Specifications  
Table 60 provides the IPIC input and output AC timing specifications.  
1
Table 60. IPIC Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Unit  
IPIC inputs—minimum pulse width  
t
20  
ns  
PIWID  
Notes:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least t  
in edge triggered mode.  
ns to ensure proper operation when working  
PIWID  
18 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8313E.  
18.1 SPI DC Electrical Characteristics  
Table 61 provides the DC electrical characteristics for the MPC8313E SPI.  
Table 61. SPI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
I
V
OL  
OL  
V
2.1  
–0.3  
NV + 0.3  
V
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V NV  
DD  
μA  
IN  
IN  
18.2 SPI AC Timing Specifications  
Table 62 and provide the SPI input and output AC timing specifications.  
1
Table 62. SPI AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
SPI outputs—master mode (internal clock) delay  
SPI outputs—slave mode (external clock) delay  
t
0.5  
2
6
8
ns  
ns  
ns  
ns  
ns  
NIKHOV  
t
NEKHOV  
SPI inputs—master mode (internal clock) input setup time  
SPI inputs—master mode (internal clock) input hold time  
SPI inputs—slave mode (external clock) input setup time  
t
t
6
NIIVKH  
0
NIIXKH  
t
4
NEIVKH  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
61  
SPI  
1
Table 62. SPI AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
SPI inputs—slave mode (external clock) input hold time  
t
2
ns  
NEIXKH  
Notes:  
1. Output specifications are measured from the 50% level of the rising edge of SYS_CLK_IN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the NMSI  
(first two letters of functional block)(reference)(state)(signal)(state)  
NIKHOV  
outputs internal timing (NI) for the time t  
valid (V).  
memory clock reference (K) goes from the high state (H) until outputs (O) are  
SPI  
Figure 53 provides the AC test load for the SPI.  
Output  
NV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 53. SPI AC Test Load  
Figure 54 through Figure 55 represent the AC timing from Table 62. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 54 shows the SPI timing in slave mode (external clock).  
SPICLK (Input)  
t
NEIXKH  
t
NEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
t
NEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 54. SPI AC Timing in Slave Mode (External Clock) Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
62  
Freescale Semiconductor  
Package and Pin Listings  
Figure 55 shows the SPI timing in master mode (internal clock).  
SPICLK (Output)  
t
NIIXKH  
t
NIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
t
NIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 55. SPI AC Timing in Master Mode (Internal Clock) Diagram  
19 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8313E is available in  
a thermally enhanced plastic ball grid array (TEPBGAII), see Section 19.1, “Package Parameters for the  
MPC8313E TEPBGAII,” and Section 19.2, “Mechanical Dimensions of the MPC8313E TEPBGAII,” for  
information on the TEPBGAII.  
19.1 Package Parameters for the MPC8313E TEPBGAII  
The package parameters are as provided in the following list. The package type is 27 mm × 27 mm,  
516 TEPBGAII.  
Package outline  
Interconnects  
Pitch  
27 mm × 27 mm  
516  
1.00 mm  
2.25 mm  
Module height (typical)  
Solder Balls  
95.5 Sn/0.5 Cu/4 Ag (VR package),  
62 Sn/36 Pb/2 Ag (ZQ package)  
Ball diameter (typical)  
0.6 mm  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
63  
Package and Pin Listings  
19.2 Mechanical Dimensions of the MPC8313E TEPBGAII  
Figure 56 shows the mechanical dimensions and bottom surface nomenclature of the 516-TEPBGAII  
package.  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensions and tolerances per ASME Y14.5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
5. Package code 5368 is to account for PGE and the built-in heat spreader.  
Figure 56. Mechanical Dimension and Bottom Surface Nomenclature of the MPC8313E TEPBGAII  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
64  
Freescale Semiconductor  
Package and Pin Listings  
19.3 Pinout Listings  
Table 63 provides the pin-out listing for the MPC8313E, TEPBGAII package.  
Table 63. MPC8313E TEPBGAII Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
DDR Memory Controller Interface  
Pin Type  
Notes  
MEMC_MDQ0  
MEMC_MDQ1  
MEMC_MDQ2  
MEMC_MDQ3  
MEMC_MDQ4  
MEMC_MDQ5  
MEMC_MDQ6  
MEMC_MDQ7  
MEMC_MDQ8  
MEMC_MDQ9  
MEMC_MDQ10  
MEMC_MDQ11  
MEMC_MDQ12  
MEMC_MDQ13  
MEMC_MDQ14  
MEMC_MDQ15  
MEMC_MDQ16  
MEMC_MDQ17  
MEMC_MDQ18  
MEMC_MDQ19  
MEMC_MDQ20  
MEMC_MDQ21  
MEMC_MDQ22  
MEMC_MDQ23  
MEMC_MDQ24  
MEMC_MDQ25  
MEMC_MDQ26  
MEMC_MDQ27  
MEMC_MDQ28  
A8  
A9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
C10  
C9  
E9  
E11  
E10  
C8  
E8  
A6  
B6  
C6  
C7  
D7  
D6  
A5  
A19  
D18  
A17  
E17  
E16  
C18  
D19  
C19  
E19  
A22  
C21  
C20  
A21  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
65  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
MEMC_MDQ29  
MEMC_MDQ30  
MEMC_MDQ31  
MEMC_MDM0  
MEMC_MDM1  
MEMC_MDM2  
MEMC_MDM3  
MEMC_MDQS0  
MEMC_MDQS1  
MEMC_MDQS2  
MEMC_MDQS3  
MEMC_MBA0  
MEMC_MBA1  
MEMC_MBA2  
MEMC_MA0  
A20  
C22  
B22  
B7  
IO  
IO  
IO  
O
O
O
O
IO  
IO  
IO  
IO  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
E6  
E18  
E20  
A7  
E7  
B19  
A23  
D15  
A18  
A15  
E12  
D11  
B11  
A11  
A12  
E13  
C12  
E14  
B15  
C17  
C13  
A16  
C15  
C16  
E15  
B18  
C11  
B10  
MEMC_MA1  
MEMC_MA2  
MEMC_MA3  
MEMC_MA4  
MEMC_MA5  
MEMC_MA6  
MEMC_MA7  
MEMC_MA8  
MEMC_MA9  
MEMC_MA10  
MEMC_MA11  
MEMC_MA12  
MEMC_MA13  
MEMC_MA14  
MEMC_MWE  
MEMC_MRAS  
MEMC_MCAS  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
66  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
MEMC_MCS0  
MEMC_MCS1  
MEMC_MCKE  
MEMC_MCK  
D10  
A10  
B14  
A13  
A14  
B23  
C23  
O
O
O
O
O
O
O
GV  
GV  
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
3
MEMC_MCK  
MEMC_MODT0  
MEMC_MODT1  
Local Bus Controller Interface  
LAD0  
LAD1  
LAD2  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
LAD15  
LA16  
K25  
K24  
K23  
K22  
J25  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
J24  
J23  
J22  
H24  
F26  
G24  
F25  
E25  
F24  
G22  
F23  
AC25  
AC26  
AB22  
AB23  
AB24  
AB25  
AB26  
E22  
LA17  
O
LA18  
O
LA19  
O
LA20  
O
LA21  
O
LA22  
O
LA23  
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
67  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
LA24  
E23  
D22  
D23  
J26  
O
O
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
LA25  
LCS0  
O
LCS1  
O
LCS2  
F22  
O
LCS3  
D26  
E24  
H26  
L22  
O
LWE0/LFWE  
O
LWE1  
O
LBCTL  
O
LALE/M1LALE/M2LALE  
LGPL0/LFCLE  
E26  
AA23  
AA24  
AA25  
AA26  
Y22  
E21  
H22  
G26  
AC24  
Y24  
Y26  
W22  
W24  
W26  
V22  
V23  
V24  
V25  
V26  
U22  
AD24  
L25  
O
O
LGPL1/LFALE  
O
LGPL2/LOE/LFRE  
LGPL3/LFWP  
O
O
LGPL4/LGTA/LUPWAIT/LFRB  
LGPL5  
IO  
O
LCLK0  
O
LCLK1  
O
LA0/GPIO0/MSRCID0  
LA1/GPIO1//MSRCID1  
LA2/GPIO2//MSRCID2  
LA3/GPIO3//MSRCID3  
LA4/GPIO4//MSRCID4  
LA5/GPIO5/MDVAL  
LA6/GPIO6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
LA7/GPIO7/TSEC_1588_TRIG2  
LA8/GPIO13/TSEC_1588_ALARM1  
LA9/GPIO14/TSEC_1588_PP3  
LA10/TSEC_1588_CLK  
LA11/TSEC_1588_GCLK  
LA12/TSEC_1588_PP1  
LA13/TSEC_1588_PP2  
8
8
8
8
8
8
8
O
O
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
68  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
LA14/TSEC_1588_TRIG1  
LA15/TSEC_1588_ALARM2  
L24  
K26  
O
O
LV  
LV  
8
8
DD  
DD  
DUART  
UART_SOUT1/MSRCID0  
N2  
M5  
M1  
K1  
M3  
L1  
O
IO  
IO  
IO  
O
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
UART_SIN1/MSRCID1  
UART_CTS1/GPIO8/MSRCID2  
UART_RTS1/GPIO9/MSRCID3  
UART_SOUT2/MSRCID4/TSEC_1588_CLK  
UART_SIN2/MDVAL/TSEC_1588_GCLK  
UART_CTS2/TSEC_1588_PP1  
UART_RTS2/TSEC_1588_PP2  
8
8
8
8
IO  
IO  
IO  
L5  
L3  
2
I C interface  
IIC1_SDA/CKSTOP_OUT/TSEC_1588_TRIG1  
IIC1_SCL/CKSTOP_IN/TSEC_1588_ALARM2  
IIC2_SDA/PMC_PWR_OK/GPIO10  
IIC2_SCL/GPIO11  
J4  
J2  
J3  
H5  
IO  
IO  
IO  
IO  
NV  
NV  
NV  
NV  
2, 8  
2, 8  
2
DD  
DD  
DD  
DD  
2
Interrupts  
MCP_OUT  
G5  
K5  
K4  
K2  
K3  
J1  
O
I
NV  
NV  
NV  
NV  
NV  
NV  
2
DD  
DD  
DD  
DD  
DD  
DD  
IRQ0/MCP_IN  
IRQ1  
I
IRQ2  
I
IRQ3/CKSTOP_OUT  
IRQ4/CKSTOP_IN/GPIO12  
IO  
IO  
Configuration  
CFG_CLKIN_DIV  
EXT_PWR_CTRL  
CFG_LBIU_MUX_EN  
D5  
J5  
I
O
I
NV  
NV  
NV  
DD  
DD  
DD  
R24  
JTAG  
TCK  
TDI  
E1  
E2  
E3  
I
I
NV  
NV  
NV  
DD  
DD  
DD  
4
3
TDO  
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
69  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
TMS  
E4  
E5  
I
I
NV  
NV  
4
4
DD  
DD  
TRST  
TEST  
TEST_MODE  
QUIESCE  
F4  
F5  
I
NV  
NV  
6
DD  
DD  
DEBUG  
O
System Control  
HRESET  
PORESET  
SRESET  
F2  
F3  
F1  
IO  
NV  
NV  
NV  
1
DD  
DD  
DD  
I
I
Clocks  
SYS_CR_CLK_IN  
SYS_CR_CLK_OUT  
SYS_CLK_IN  
U26  
U25  
U23  
T26  
R26  
T22  
U24  
R22  
T24  
I
O
I
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
USB_CR_CLK_IN  
USB_CR_CLK_OUT  
USB_CLK_IN  
I
O
I
PCI_SYNC_OUT  
RTC_PIT_CLOCK  
PCI_SYNC_IN  
O
I
3
I
MISC  
PCI  
THERM0  
THERM1  
N1  
N3  
I
I
NV  
NV  
7
7
DD  
DD  
PCI_INTA  
PCI_RESET_OUT  
PCI_AD0  
AF7  
O
O
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
AB11  
AB20  
AF23  
AF22  
AB19  
AE22  
AF21  
IO  
IO  
IO  
IO  
IO  
IO  
PCI_AD1  
PCI_AD2  
PCI_AD3  
PCI_AD4  
PCI_AD5  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
70  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI_AD6  
AD19  
AD20  
AC18  
AD18  
AB18  
AE19  
AB17  
AE18  
AD17  
AF19  
AB14  
AF15  
AD14  
AE14  
AF12  
AE11  
AD12  
AB13  
AF9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
PCI_AD7  
PCI_AD8  
PCI_AD9  
PCI_AD10  
PCI_AD11  
PCI_AD12  
PCI_AD13  
PCI_AD14  
PCI_AD15  
PCI_AD16  
PCI_AD17  
PCI_AD18  
PCI_AD19  
PCI_AD20  
PCI_AD21  
PCI_AD22  
PCI_AD23  
PCI_AD24  
PCI_AD25  
PCI_AD26  
PCI_AD27  
PCI_AD28  
PCI_AD29  
PCI_AD30  
PCI_AD31  
PCI_C/BE0  
PCI_C/BE1  
PCI_C/BE2  
PCI_C/BE3  
PCI_PAR  
AD11  
AE10  
AB12  
AD10  
AC10  
AF10  
AF8  
AC19  
AB15  
AF14  
AF11  
AD16  
AF16  
PCI_FRAME  
5
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
71  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI_TRDY  
AD13  
AC15  
AF13  
AC14  
AF20  
AE15  
AD15  
AB10  
AD9  
IO  
IO  
IO  
IO  
I
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
NV  
5
5
5
5
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
PCI_IRDY  
PCI_STOP  
PCI_DEVSEL  
PCI_IDSEL  
PCI_SERR  
IO  
IO  
IO  
I
5
5
PCI_PERR  
PCI_REQ0  
PCI_REQ1/CPCI_HS_ES  
PCI_REQ2  
AD8  
I
PCI_GNT0  
AC11  
AE7  
IO  
O
O
I
PCI_GNT1/CPCI_HS_LED  
PCI_GNT2/CPCI_HS_ENUM  
M66EN  
AD7  
AD21  
AF17  
AB16  
AF18  
AD22  
PCI_CLK0  
O
O
O
IO  
PCI_CLK1  
PCI_CLK2  
PCI_PME  
ETSEC1/_USBULPI  
TSEC1_COL/USBDR_TXDRXD0  
AD2  
AC3  
AF3  
AE3  
AD3  
AC6  
AF4  
AB6  
AB5  
AD4  
AF5  
AE6  
AC7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
TSEC1_CRS/USBDR_TXDRXD1  
TSEC1_GTX_CLK/USBDR_TXDRXD2  
TSEC1_RX_CLK/USBDR_TXDRXD3  
TSEC1_RX_DV/USBDR_TXDRXD4  
TSEC1_RXD3/USBDR_TXDRXD5  
3
TSEC1_RXD2/USBDR_TXDRXD6  
TSEC1_RXD1/USBDR_TXDRXD7  
TSEC1_RXD0/USBDR_NXT/TSEC_1588_TRIG1  
TSEC1_RX_ER/USBDR_DIR/TSEC_1588_TRIG2  
TSEC1_TX_CLK/USBDR_CLK/TSEC_1588_CLK  
TSEC1_TXD3/TSEC_1588_GCLK  
I
I
O
O
TSEC1_TXD2/TSEC_1588_PP1  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
72  
Freescale Semiconductor  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
TSEC1_TXD1/TSEC_1588_PP2  
TSEC1_TXD0/USBDR_STP/TSEC_1588_PP3  
TSEC1_TX_EN/TSEC_1588_ALARM1  
TSEC1_TX_ER/TSEC_1588_ALARM2  
TSEC1_GTX_CLK125  
AD6  
AD5  
AB7  
AB8  
AE1  
AF6  
AB9  
O
O
O
O
I
LV  
LV  
LV  
LV  
LV  
DDB  
DDB  
DDB  
DDB  
DDB  
TSEC1_MDC/LB_POR_CFG_BOOT_ECC_DIS  
TSEC1_MDIO  
O
IO  
NV  
NV  
9
2
DD  
DD  
ETSEC2  
TSEC2_COL/GTM1_TIN4/GTM2_TIN3/GPIO15  
TSEC2_CRS/GTM1_TGATE4/GTM2_TGATE3/GPIO16  
TSEC2_GTX_CLK/GTM1_TOUT4/GTM2_TOUT3/GPIO17  
TSEC2_RX_CLK/GTM1_TIN2/GTM2_TIN1/GPIO18  
TSCE2_RX_DV/GTM1_TGATE2/GTM2_TGATE1/GPIO19  
TSEC2_RXD3/GPIO20  
AB4  
AB3  
AC1  
AC2  
AA3  
Y5  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
TSEC2_RXD2/GPIO21  
AA4  
AB2  
AA5  
AA2  
AB1  
W3  
TSEC2_RXD1/GPIO22  
TSEC2_RXD0/GPIO23  
TSEC2_RX_ER/GTM1_TOUT2/GTM2_TOUT1/GPIO24  
TSEC2_TX_CLK/GPIO25  
TSEC2_TXD3/CFG_RESET_SOURCE0  
TSEC2_TXD2/CFG_RESET_SOURCE1  
TSEC2_TXD1/CFG_RESET_SOURCE2  
TSEC2_TXD0/CFG_RESET_SOURCE3  
TSEC2_TX_EN/GPIO26  
Y1  
W5  
Y3  
AA1  
W1  
TSEC2_TX_ER/GPIO27  
SGMII PHY  
TXA  
TXA  
RXA  
RXA  
TXB  
TXB  
U3  
V3  
U1  
V1  
P4  
N4  
O
O
I
I
O
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
73  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
RXB  
R1  
P1  
V5  
I
I
I
RXB  
SD_IMP_CAL_RX  
200 Ω to  
GND  
SD_REF_CLK  
SD_REF_CLK  
SD_PLL_TPD  
SD_IMP_CAL_TX  
T5  
T4  
T2  
N5  
I
I
O
I
100 Ω to  
GND  
SDAVDD  
R5  
R4  
R3  
IO  
O
SD_PLL_TPA_ANA  
SDAVSS  
IO  
USB PHY  
USB_DP  
P26  
N26  
P24  
L26  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
USB_DM  
USB_VBUS  
USB_TPA  
USB_RBIAS  
USB_PLL_PWR3  
USB_PLL_GND  
USB_PLL_PWR1  
USB_VSSA_BIAS  
USB_VDDA_BIAS  
USB_VSSA  
M24  
M26  
N24  
N25  
M25  
M22  
N22  
P22  
USB_VDDA  
GTM/USB  
USBDR_DRIVE_VBUS/GTM1_TIN1/GTM2_TIN2/LSRCID0  
AD23  
AE23  
IO  
IO  
NV  
NV  
DD  
DD  
USBDR_PWRFAULT/GTM1_TGATE1/GTM2_TGATE2/  
LSRCID1  
USBDR_PCTL0/GTM1_TOUT1/LSRCID2  
USBDR_PCTL1/LBC_PM_REF_10/LSRCID3  
AC22  
AB21  
O
O
NV  
NV  
DD  
DD  
SPI  
SPIMOSI/GTM1_TIN3/GTM2_TIN4/GPIO28/LSRCID4  
H1  
IO  
NV  
DD  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
74  
Freescale Semiconductor  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
SPIMISO/GTM1_TGATE3/GTM2_TGATE4/GPIO29/  
LDVAL  
H3  
IO  
NV  
DD  
SPICLK/GTM1_TOUT3/GPIO30  
SPISEL/GPIO31  
G1  
G3  
IO  
IO  
NV  
NV  
DD  
DD  
Power and Ground Supplies  
AV  
AV  
F14  
P21  
Powerfore300  
core APLL  
(1.0 V)  
DD1  
DD2  
Power for  
system APLL  
(1.0 V)  
GV  
A2,A3,A4,A24,A25,B3,  
B4,B5,B12,B13,B20,B21,  
B24,B25,B26,D1,D2,D8,  
D9,D16,D17  
Power for  
DDR1 and  
DDR2 DRAM  
I/O voltage  
(1.8/2.5 V)  
DD  
LV  
LV  
D24,D25,G23,H23,R23, Power for local  
DD  
T23,W25,Y25,AA22,AC23  
bus (3.3 V)  
W2,Y2  
Power for  
eTSEC2  
DDA  
DDB  
(2.5 V, 3.3 V)  
LV  
AC8,AC9,AE4,AE5  
C14,D14  
Power for  
eTSEC1/  
USB DR  
(2.5 V, 3.3 V)  
MV  
Reference  
voltage signal  
for DDR  
REF  
NV  
G4,H4,L2,M2,AC16,AC17, Standard I/O  
AD25,AD26,AE12,AE13, voltage (3.3 V)  
AE20,AE21,AE24,AE25,  
DD  
AE26,AF24,AF25  
V
V
K11,K12,K13,K14,K15,  
K16,L10,L17,M10,M17,  
N10,N17,U12,U13,  
Power for core  
(1.0 V)  
DD  
F6,F10,F19,K6,K10,K17,  
Internal core  
DDC  
K21,P6,P10,P17,R10,R17, logic constant  
T10,T17,U10,U11,U14,  
U15,U16,U17,W6,W21,  
AA6,AA10,AA14,AA19  
power (1.0 V)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
75  
Package and Pin Listings  
Table 63. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
V
B1,B2,B8,B9,B16,B17,C1,  
C2,C3,C4,C5,C24,C25,  
C26,D3,D4,D12,D13,D20,  
D21,F8,F11,F13,F16,F17,  
F21,G2,G25,H2,H6,H21,  
H25,L4,L6,L11,L12,L13,  
L14,L15,L16,L21,L23,M4,  
M11,M12,M13,M14,M15,  
M16,M23,N6,N11,N12,  
N13,N14,N15,N16,  
SS  
N21,N23,P11,P12,P13,  
P14,P15,P16,P23,P25,  
R11,R12,R13,R14,R15,  
R16,R25,T6,T11,T12,T13,  
T14,T15,T16,T21,T25,U5,  
U6,U21,W4,W23,Y4,Y23,  
AA8,AA11,AA13,AA16,  
AA17,AA21,AC4,AC5,  
AC12,AC13,AC20,AC21,  
AD1,AE2,AE8,AE9,AE16,  
AE17,AF2  
XCOREV  
XCOREV  
T1,U2,V2  
Core power for  
SerDes  
transceivers  
(1.0 V)  
DD  
SS  
P2,R2,T3  
P5,U4  
XPADV  
Pad power for  
SerDes  
DD  
transceivers  
(1.0 V)  
XPADV  
P3,V4  
SS  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to NV  
.
DD  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to NV  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
.
DD  
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. This pin must always be tied to V  
.
SS  
7. Internal thermally sensitive resistor, resistor value varies linearly with temperature. Useful for determining the junction  
temperature.  
8. 1588 signals are available on these pins only in MPC8313 Rev 2.x or later.  
9. LB_POR_CFG_BOOT_ECC_DIS is available only in MPC8313 Rev 2.x or later.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
76  
Freescale Semiconductor  
Clocking  
20 Clocking  
Figure 57 shows the internal distribution of clocks within the MPC8313E.  
MPC8313E  
e300c3 Core  
core_clk  
Core PLL  
USB Mac  
1
x M  
USB PHY  
PLL  
To DDR  
Memory  
Controller  
mux  
csb_clk  
DDR  
DDR  
Memory  
Device  
MEMC_MCK  
MEMC_MCK  
Clock  
USB_CLK_IN  
Divider  
/2  
USB_CR_CLK_IN  
ddr_clk  
2
x L  
Crystal  
Clock  
Unit  
System  
PLL  
lbc_clk  
/1,/2  
USB_CR_CLK_OUT  
/n  
Local Bus  
Memory  
Device  
To Local Bus  
LCLK[0:1]  
LBC  
Clock  
Divider  
csb_clk to Rest  
of the Device  
CFG_CLKIN_DIV  
PCI_CLK/  
PCI_SYNC_IN  
SYS_CLK_IN  
SYS_CR_CLK_IN  
1
0
PCI_SYNC_OUT  
Crystal  
PCI Clock  
Divider (÷2)  
SYS_CR_CLK_OUT  
3
PCI_CLK_OUT[0:2]  
RTC_CLK (32 kHz)  
GTX_CLK125  
125-MHz Source  
eTSEC  
Protocol  
RTC  
Converter  
Sys Ref  
1
2
Multiplication factor M = 1, 1.5, 2, 2.5, and 3. Value is decided by RCWLR[COREPLL].  
Multiplication factor L = 2, 3, 4, 5, and 6. Value is decided by RCWLR[SPMF].  
Figure 57. MPC8313E Clock Subsystem  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
77  
Clocking  
The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK,  
depending on whether the device is configured in PCI host or PCI agent mode. When the device is  
configured as a PCI host device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI  
clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The  
CFG_CLKIN_DIV configuration input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out  
on the PCI_SYNC_OUT signal. The OCCR[PCICOEn] parameters select whether the PCI_SYNC_OUT  
is driven out on the PCI_CLK_OUTn signals.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device  
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured  
as a PCI agent device the SYS_CLK_IN signal should be tied to VSS.  
As shown in Figure 57, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the  
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbc_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV) is the SYS_CLK_IN frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up  
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL)  
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset,  
Clocking, and Initialization,” in the MPC8313E PowerQUICC II Pro Integrated Processor Family  
Reference Manual, for more information on the clock subsystem.  
The internal ddr_clk frequency is determined by the following equation:  
ddr_clk = csb_clk × (1 + RCWL[DDRCM])  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The internal lbc_clk frequency is determined by the following equation:  
lbc_clk = csb_clk × (1 + RCWL[LBCM])  
Note that lbc_clk is not the external local bus frequency; lbc_clk passes through the a LBC clock divider  
to create the external local bus clock outputs (LCLK[0:1]). The LBC clock divider ratio is controlled by  
LCCR[CLKDIV].  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 64 specifies which units have a configurable clock  
frequency.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
78  
Freescale Semiconductor  
Clocking  
Table 64. Configurable Clock Units  
Default  
Frequency  
Unit  
Options  
TSEC1  
TSEC2  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
2
Security Core, I C, SAP, TPR  
USB DR  
PCI and DMA complex  
Table 65 provides the operating frequencies for the MPC8313E TEPBGAII under recommended operating  
conditions (see Table 2).  
Table 65. Operating Frequencies for TEPBGAII  
Maximum  
Operating Frequency  
1
Characteristic  
Unit  
e300 core frequency (core_clk)  
333  
167  
167  
66  
MHz  
MHz  
MHz  
MHz  
MHz  
Coherent system bus frequency (csb_clk)  
2
DDR1/2 memory bus frequency (MCK)  
3
Local bus frequency (LCLKn)  
PCI input frequency (SYS_CLK_IN or PCI_CLK)  
66  
Notes:  
1. The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be  
chosen such that the resulting csb_clk, MCK, LCLK[0:1], and core_clk frequencies do not  
exceed their respective maximum or minimum operating frequencies. The value of  
SCCR[ENCCM] and SCCR[USBDRCM] must be programmed such that the maximum  
internal operating frequency of the security core and USB modules do not exceed their  
respective value listed in this table.  
2. The DDR data rate is 2x the DDR memory bus frequency.  
3. The local bus frequency is 1/2, 1/4, or 1/8 of the lbc_clk frequency (depending on  
LCCR[CLKDIV]), which is in turn, 1x or 2x the csb_clk frequency (depending on  
RCWL[LBCM]).  
20.1 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. Table 66 shows the multiplication factor  
encodings for the system PLL.  
Table 66. System PLL Multiplication Factors  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0000  
0001  
0010  
Reserved  
Reserved  
× 2  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
79  
Clocking  
Table 66. System PLL Multiplication Factors (continued)  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0011  
0100  
× 3  
× 4  
0101  
× 5  
0110  
× 6  
0111–1111  
Reserved  
As described in Section 20, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (SYS_CLK_IN or PCI_SYNC_IN) and the internal coherent system bus clock  
(csb_clk). Table 67 shows the expected frequency values for the CSB frequency for select csb_clk to  
SYS_CLK_IN/PCI_SYNC_IN ratios.  
Table 67. CSB Frequency Options  
2
Input Clock Frequency (MHz)  
CFG_CLKIN_DIV  
csb_clk :Input  
Clock Ratio  
SPMF  
24  
25  
33.33  
66.67  
1
2
at Reset  
csb_clk Frequency (MHz)  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
0010  
0011  
0100  
0101  
0110  
0010  
0011  
0100  
0101  
0110  
2:1  
3:1  
4:1  
5:1  
6:1  
2:1  
3:1  
4:11  
5:1  
6:1  
133  
100  
100  
125  
150  
133  
167  
120  
144  
133  
100  
133  
167  
100  
125  
150  
120  
144  
1
2
CFG_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.  
SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
80  
Freescale Semiconductor  
Clocking  
20.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 68 shows the encodings for RCWL[COREPLL]. COREPLL values that are  
not listed in Table 68 should be considered as reserved.  
NOTE  
Core VCO frequency = core frequency × VCO divider. The VCO divider,  
which is determined by RCWLR[COREPLL], must be set properly so that  
the core VCO frequency is in the range of 400–800 MHz.  
Table 68. e300 Core PLL Configuration  
RCWL[COREPLL]  
1
2
core_clk : csb_clk Ratio  
VCO Divider (VCOD)  
0–1  
nn  
2–5  
6
0000  
0
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core directly)  
(PLL off, csb_clk clocks core directly)  
11  
00  
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
nnnn  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
n
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
n/a  
1:1  
n/a  
2
4
8
2
4
8
2
4
8
2
4
8
2
4
8
1:1  
1:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
1
2
For core_clk:csb_clk ratios of 2.5:1 and 3:1, the core_clk must not exceed its maximum operating frequency of  
333 MHz.  
Core VCO frequency = core frequency × VCO divider. Note that VCO divider has to be set properly so that the core  
VCO frequency is in the range of 400–800 MHz.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
81  
Thermal  
20.3 Example Clock Frequency Combinations  
Table 69 shows several possible frequency combinations that can be selected based on the indicated input  
reference frequencies, with RCWLR[LBCM] = 0 and RCWLR[DDRCM] =1, such that the LBC operates  
with a frequency equal to the frequency of csb_clk and the DDR controller operates at twice the frequency  
of csb_clk.  
Table 69. System Clock Frequencies  
LBC(lbc_clk)  
e300 Core(core_clk)  
SYS_  
CSB  
DDR  
USB  
ref  
1
2
3
CLK_IN/ SPMF VCOD VCO  
PCI_CLK  
/2  
/4  
/8  
× 1 × 1.5 × 2 × 2.5 × 3  
4
5
(csb_clk) (ddr_clk)  
6
25.0  
25.0  
33.3  
33.3  
48.0  
66.7  
6
5
5
4
3
2
2
2
2
2
2
2
600.0  
500.0  
666.0  
532.8  
576.0  
533.4  
150.0  
125.0  
166.5  
133.2  
144.0  
133.3  
300.0  
250.0  
333.0  
266.4  
288.0  
266.7  
37.5 18.8 Note  
150.0 225 300 375  
62.5 31.25 15.6 Note 6 125.0 188 250 313 375  
41.63 20.8 Note 6 166.5 250 333  
66.6 33.3 16.7 Note 6 133.2 200 266 333 400  
36 18.0 48.0 144.0 216 288 360  
66.7 33.34 16.7 Note 6 133.3 200 267 333 400  
1
2
3
4
System PLL multiplication factor.  
System PLL VCO divider.  
When considering operating frequencies, the valid core VCO operating range of 400–800 MHz must not be violated.  
Due to erratum eTSEC40, csb_clk frequencies of less than 133 MHz do not support gigabit Ethernet data rates. The core  
frequency must be 333 MHz for gigabit Ethernet operation. This erratum will be fixed in revision 2 silicon.  
Frequency of USB PLL input reference.  
5
6
USB reference clock must be supplied from a separate source as it must be 24 or 48 MHz, the USB reference must be  
supplied from a separate external source using USB_CLK_IN.  
21 Thermal  
This section describes the thermal specifications of the MPC8313E.  
21.1 Thermal Characteristics  
Table 70 provides the package thermal characteristics for the 516, 27 × 27 mm TEPBGAII.  
Table 70. Package Thermal Characteristics for TEPBGAII  
Characteristic  
Board Type  
Symbol  
TEPBGA II  
Unit  
Notes  
Junction-to-ambient natural convection  
Junction-to-ambient natural convection  
Junction-to-ambient (@200 ft/min)  
Junction-to-ambient (@200 ft/min)  
Junction-to-board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
RθJA  
RθJA  
25  
18  
20  
15  
10  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2, 3  
1, 3  
1, 3  
4
RθJMA  
RθJMA  
RθJB  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
82  
Thermal  
Notes  
Table 70. Package Thermal Characteristics for TEPBGAII (continued)  
Characteristic  
Junction-to-case  
Board Type  
Symbol  
TEPBGA II  
Unit  
RθJC  
8
7
°C/W  
°C/W  
5
6
Junction-to-package top  
Natural convection  
ΨJT  
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
21.2 Thermal Management Information  
For the following sections, P = (V × I ) + P , where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
21.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = junction temperature (°C)  
J
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
21.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
83  
Thermal  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
T = junction temperature (°C)  
J
T = board temperature at the package perimeter (°C)  
B
R
= junction-to-board thermal resistance (°C/W) per JESD51–8  
θJB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
21.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
T = junction temperature (°C)  
J
T = thermocouple temperature on top of package (°C)  
T
Ψ
= thermal characterization parameter (°C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
21.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink is required to provide the necessary thermal management of  
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case  
thermal resistance and a case to ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case-to- ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
84  
Freescale Semiconductor  
Thermal  
R
θJC is device related and cannot be influenced by the user. The user controls the thermal environment to  
change the case-to-ambient thermal resistance, RθCA. For instance, the user can change the size of the heat  
sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit  
board, or change the thermal dissipation on the printed-circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, airflow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
Table 71. Thermal Resistance for TEPBGAII with Heat Sink in Open Flow  
Thermal Resistance  
Heat Sink Assuming Thermal Grease  
Airflow  
(°C/W)  
Wakefield 53 × 53 × 2.5 mm pin fin  
Natural convection  
0.5 m/s  
13.0  
10.6  
9.7  
1 m/s  
2 m/s  
9.2  
4 m/s  
8.9  
Aavid 35 × 31 × 23 mm pin fin  
Aavid 30 × 30 × 9.4 mm pin fin  
Aavid 43 × 41 × 16.5 mm pin fin  
Natural convection  
0.5 m/s  
14.4  
11.3  
10.5  
9.9  
1 m/s  
2 m/s  
4 m/s  
9.4  
Natural convection  
0.5 m/s  
16.5  
13.5  
12.1  
10.9  
10.0  
14.5  
11.7  
10.5  
9.7  
1 m/s  
2 m/s  
4 m/s  
Natural convection  
0.5 m/s  
1 m/s  
2 m/s  
4 m/s  
9.2  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in Table 71. More detailed thermal  
models can be made available on request.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
85  
Thermal  
Heat sink Vendors include the following list:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-749-7601  
818-842-7277  
408-436-8770  
Alpha Novatech  
473 Sapena Ct. #12  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC)  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
Internet: www.mei-thermal.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105  
Internet: www.chipcoolers.com  
800-522-6752  
603-635-2800  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01801  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Corporate Center  
PO BOX 994  
Midland, MI 48686-0994  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
888-642-7674  
Phoenix, AZ 85044  
Internet: www.microsi.com  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
86  
Freescale Semiconductor  
Thermal  
The Bergquist Company  
18930 West 78th St.  
800-347-4572  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
21.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.  
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic  
surfaces and its performance verified under the application requirements.  
21.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction to case  
thermal resistance.  
T = T + (Rθ x P )  
J
C
JC  
D
where:  
T = junction temperature (°C)  
J
T = case temperature of the package  
C
Rθ = junction-to-case thermal resistance  
JC  
P = power dissipation  
D
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
87  
System Design Information  
22 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8313E SYS_CLK_IN  
22.1 System Clocking  
The MPC8313E includes three PLLs.  
1. The platform PLL (AV  
) generates the platform clock from the externally supplied  
DD2  
SYS_CLK_IN input in PCI host mode or SYS_CLK_IN/PCI_SYNC_IN in PCI agent mode. The  
frequency ratio between the platform and SYS_CLK_IN is selected using the platform PLL ratio  
configuration bits as described in Section 20.1, “System PLL Configuration.”  
2. The e300 core PLL (AV  
) generates the core clock as a slave to the platform clock. The  
DD1  
frequency ratio between the e300 core clock and the platform clock is selected using the e300  
PLL ratio configuration bits as described in Section 20.2, “Core PLL Configuration.”  
3. There is a PLL for the SerDes block.  
22.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins (AV  
,
DD1  
AV  
, and SDAV , respectively). The AV level should always be equivalent to V , and preferably  
DD2  
DD DD DD  
these voltages are derived directly from V through a low frequency filter scheme such as the following.  
DD  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide independent filter circuits as illustrated in Figure 58, one to each of the five AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
Figure 58 shows the PLL power supply filter circuits.  
1.0 Ω  
V
AV  
and AV  
DD1 DD2  
DD  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
Figure 58. PLL Power Supply Filter Circuit  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
88  
Freescale Semiconductor  
System Design Information  
The SDAV signal provides power for the analog portions of the SerDes PLL. To ensure stability of the  
DD  
internal clock, the power supplied to the PLL is filtered using a circuit like the one shown in Figure 59.  
For maximum effectiveness, the filter circuit should be placed as closely as possible to the SDAV ball  
DD  
to ensure it filters out as much noise as possible. The ground connection should be near the SDAV ball.  
DD  
The 0.003-µF capacitor is closest to the ball, followed by the two 2.2-µF capacitors, and finally the 1-Ω  
resistor to the board supply plane. The capacitors are connected from traces from SDAV to the ground  
DD  
plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be  
kept short, wide, and direct.  
1.0 Ω  
SDAV  
SDAV  
XCOREV  
DD  
SS  
DD  
1
1
2.2 µF  
2.2 µF  
0.003 µF  
Note:  
1. An 0805 sized capacitor is recommended for system initial bring-up.  
Figure 59. SerDes PLL Power Supply Filter Circuit  
Note the following:  
SDAV should be a filtered version of XCOREV  
.
DD  
DD  
Output signals on the SerDes interface are fed from the XPADV power plane. Input signals and  
DD  
sensitive transceiver analog circuits are on the XCOREV supply.  
DD  
Power: XPADV consumes less than 300 mW; XCOREV + SDAV consumes less than  
DD DD DD  
750 mW.  
22.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8313E system, and the  
MPC8313E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that  
the system designer place at least one decoupling capacitor at each V , NV , GV , LV , LV ,  
DD  
DD  
DD  
DD  
DDA  
and LV  
pin of the device. These decoupling capacitors should receive their power from separate V  
,
DD  
DDB  
NV , GV , LV , LV  
, LV  
, and VSS power planes in the PCB, utilizing short traces to  
DD  
DD  
DD  
DDA  
DDB  
minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern.  
Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , NV , GV , LV , LV  
, and LV  
planes, to enable quick recharging of the  
DD  
DD  
DD  
DD  
DDA  
DDB  
smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating  
to ensure the quick response time necessary. They should also be connected to the power and ground  
planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 µF (AVX TPS  
tantalum or Sanyo OSCON). However, customers should work directly with their power regulator vendor  
for best values and types of bulk capacitors.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
89  
System Design Information  
22.4 SerDes Block Power Supply Decoupling Recommendations  
The SerDes block requires a clean, tightly regulated source of power (XCOREV and XPADV ) to  
DD  
DD  
ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling  
scheme is outlined below.  
Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power  
and ground should be done with multiple vias to further reduce inductance.  
First, the board should have at least 10 × 10-nF SMT ceramic chip capacitors as close as possible  
to the supply balls of the device. Where the board has blind vias, these capacitors should be placed  
directly below the chip supply and ground connections. Where the board does not have blind vias,  
these capacitors should be placed in a ring around the device as close to the supply and ground  
connections as possible.  
Second, there should be a 1-µF ceramic chip capacitor from each SerDes supply (XCOREV and  
DD  
XPADV ) to the board ground plane on each side of the device. This should be done for all  
DD  
SerDes supplies.  
Third, between the device and any SerDes voltage regulator there should be a 10-µF, low  
equivalent series resistance (ESR) SMT tantalum chip capacitor and a 100-µF, low ESR SMT  
tantalum chip capacitor. This should be done for all SerDes supplies.  
22.5 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to NV , GV , LV , LV  
, or LV  
as required.  
DD  
DD  
DD  
DDA  
DDB  
Unused active high inputs should be connected to V . All NC (no-connect) signals must remain  
SS  
unconnected.  
Power and ground connections must be made to all external V , NV , GV , LV , LV  
, LV  
,
DD  
DD  
DD  
DD  
DDA  
DDB  
and V pins of the device.  
SS  
22.6 Output Buffer DC Impedance  
The MPC8313E drivers are characterized over process, voltage, and temperature. For all buses, the driver  
2
is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to NV  
0
DD  
or V . Then, the value of each resistor is varied until the pad voltage is NV /2 (see Figure 60). The  
SS  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open), and R is trimmed until the voltage at the pad equals  
P
NV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
90  
System Design Information  
NV  
DD  
R
N
SW2  
SW1  
Pad  
Data  
R
P
V
SS  
Figure 60. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
× I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) × I  
. Solving for the output impedance gives R  
=
2
1
2
source  
source  
R
× (V /V – 1). The drive current is then I  
= V /R  
.
term  
1
2
source  
1
source  
Table 72 summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal NV , 105°C.  
DD  
Table 72. Impedance Characteristics  
Local Bus, Ethernet,  
PCI Signals  
(Not Including PCI  
Output Clocks)  
PCI Output Clocks  
(Including  
PCI_SYNC_OUT)  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
N
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z
Z
Ω
Ω
Ω
0
0
R
P
Differential  
Z
DIFF  
Note: Nominal supply voltages. See Table 1, T = 105°C.  
J
22.7 Configuration Pin Muxing  
The MPC8313E provides the user with power-on configuration options which can be set through the use  
of external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible  
configuration pins). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is  
disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections  
to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should  
minimize the disruption of signal quality or speed for output pins thus configured.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
91  
System Design Information  
22.8 Pull-Up Resistor Requirements  
The MPC8313E requires high resistance pull-up resistors (10 kΩ is recommended) on open drain type pins  
2
including I C, Ethernet management MDIO, and IPIC (integrated programmable interrupt controller).  
Correct operation of the JTAG interface requires configuration of a group of system control pins as  
demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted  
state under normal operating conditions because most have asynchronous behavior and spurious assertion,  
which give unpredictable results.  
Refer to the PCI 2.2 Specification, for all pull-ups required for PCI.  
22.9 JTAG Configuration Signals  
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in  
IEEE 1149.1, but is provided on any Freescale devices that are built on Power Architecture technology.  
The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does  
not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state  
using only the TCK and TMS signals, systems generally assert TRST during power-on reset. Because the  
JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying  
TRST to PORESET is not practical.  
The COP function of these processors allows a remote computer system (typically, a PC with dedicated  
hardware and debugging software) to access and control the internal operations of the processor. The COP  
interface connects primarily through the JTAG port of the processor, with some additional status  
monitoring signals. The COP port requires the ability to independently assert TRST without causing  
PORESET. If the target system has independent reset sources, such as voltage monitors, watchdog timers,  
power supply failures, or push-button switches, then the COP reset signals must be merged into these  
signals with logic.  
The arrangement shown in Figure 61 allows the COP to independently assert HRESET or TRST, while  
ensuring that the target can drive HRESET as well. If the JTAG interface and COP header are not used,  
TRST should be tied to PORESET so that it is asserted when the system reset signal (PORESET) is  
asserted.  
The COP header shown in Figure 61 adds many benefits—breakpoints, watchpoints, register and memory  
examination/modification, and other standard debugger features are possible through this interface—and  
can be as inexpensive as an unpopulated footprint for a header to be added when needed.  
The COP interface has a standard header for connection to the target system, based on the 0.025"  
square-post, 0.100" centered header assembly (often called a Berg header).  
There is no standardized way to number the COP header shown in Figure 61; consequently, many different  
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then  
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter  
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in  
Figure 61 is common to all known emulators.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
92  
Freescale Semiconductor  
System Design Information  
PORESET  
PORESET  
From Target  
Board Sources  
(if any)  
SRESET  
HRESET  
SRESET  
HRESET  
10 kΩ  
HRESET  
NV  
NV  
DD  
DD  
13  
11  
SRESET  
10 kΩ  
10 kΩ  
10 kΩ  
NV  
NV  
DD  
DD  
TRST  
TRST  
4
1
3
2
4
2 kΩ  
VDD_SENSE  
1
6
NV  
DD  
5
6
NC  
5
7
8
CHKSTP_OUT  
CHKSTP_OUT  
15  
10 kΩ  
9
10  
12  
NV  
NV  
DD  
DD  
11  
10 kΩ  
2
14  
KEY  
No pin  
13  
15  
CHKSTP_IN  
TMS  
CHKSTP_IN  
TMS  
8
9
1
3
16  
TDO  
TDI  
COP Connector  
Physical Pin Out  
TDO  
TDI  
TCK  
7
2
TCK  
NC  
NC  
NC  
10  
12  
16  
Notes:  
1. Some systems require power to be fed from the application board into the debugger repeater card  
via the COP header. In this case the resistor value for VDD_SENSE should be around 20 Ω.  
2. Key location; pin 14 is not physically present on the COP header.  
Figure 61. JTAG Interface Connection  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
93  
Document Revision History  
23 Document Revision History  
Table 73 provides a revision history for this hardware specification.  
Table 73. Document Revision History  
Rev.  
Number  
Date  
Substantive Change(s)  
2.1  
2
12/2008  
10/2008  
• Added Figure 2, after Table 2 and renumbered the following figures.  
• Added Note “The information in this document is accurate for revision 1.0, and 2.x and later. See  
Section 24.1, “Part Numbers Fully Addressed by this Document,before Section 1, “Overview.”  
• Added part numbering details for all the silicon revisions in Table 74.  
• Changed V from 2.7 V to 2.4 V in Table 7.  
IH  
• Added a row for V level for Rev 2.x or later in Table 45.  
IH  
• Added a column for maximum power dissipation in low power mode for Rev 2.x or later silicon in  
Table 6.  
• Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4.  
• Removed footnote, “These are preliminary estimates.from Table 4.  
• Added Table 21 for DDR AC Specs on Rev 2.x or later silicon.  
• Added Section 9, “High-Speed Serial Interfaces (HSSI).”  
• Added LFWE, LFCLE, LFALE, LOE, LFRE, LFWP, LGTA, LUPWAIT, and LFRB in Table 63.  
• In Table 39, added note 2: “This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt  
Clock Select] field determines the clock frequency of the Mgmt Clock EC_MDC.)”  
• Removed mentions of SGMII (SGMII has separate specs) from Section 8.1, “Enhanced  
Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI  
Electrical Characteristics.”  
• Corrected Section 8.1, “Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics,to state that  
RGMII/RTBI interfaces only operate at 2.5 V, not 3.3 V.  
• Added ZQ package to ordering information In Table 74 and Section 19.1, “Package Parameters for  
the MPC8313E TEPBGAII” (applicable to both silicon rev. 1.0 and 2.1)  
• Removed footnotes 5 and 6 from Table 1 (left over when the PCI undershoot/overshoot voltages and  
maximum AC waveforms were removed from Section 2.1.2, “Power Supply Voltage Specification”).  
• Removed SD_PLL_TPD (T2) and SD_PLL_TPA_ANA (R4) from Table 63.  
Added Section 8.3, “SGMII Interface Electrical Characteristics.Removed Section 8.5.3 SGMII DC  
Electrical Characteristics.  
• Removed “HRESET negation to SRESET negation (output)” spec and changed “HRESET/SRESET  
assertion (output)” spec to “HRESET assertion (output)” in Table 10.  
• Clarified POR configuration signal specs to “Time for the device to turn off POR configuration signal  
drivers with respect to the assertion of HRESET” and “Time for the device to turn on POR  
configuration signal drivers with respect to the negation of HRESET” in Table 10.  
• Added Section 24.2, “Part Marking,and Figure 62.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
94  
Freescale Semiconductor  
Document Revision History  
Table 73. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Number  
Date  
1
3/2008  
• Replaced OVDD with NV everywhere  
DD  
• Added XCOREVDD and XPADVDD to Table 1  
• Moved VDD and VDDC to the top of the table before SerDes supplies in Table 2  
• In Table 2 split DDR row into two from total current requirement of 425 mA. One for DDR1 (131 mA)  
and other for DDR2 (140 mA).  
• In Table 2 corrected current requirement numbers for NV from 27 mA to 74 mA, LV from 60 mA  
DD  
DD  
to 16 mA, LV  
from 85 mA to 22 mA and LV  
from 85 mA to 44 mA.  
DDA  
DDB  
• In Table 2 corrected Vdd and Vddc current requirements from 560 mA and 454 mA to 469 and  
377 mA, respectively. Corrected Avdd1 and Avdd2 current requirements from 10 mA to 2–3 mA, and  
XCOREVDD from 100 mA to 170 mA.  
• In Table 2, added row stating junction temperature range of 0 to 105•C. Added footnote 2 stating  
GPIO pins may operate from 2.5-V supply as well when configured for different functionality.  
• In Section 2.1.2, “Power Supply Voltage Specification,added a note describing the purpose of  
Table 2.  
• In Section 3, “Power Characteristics,added a note describing the purpose of Table 5.  
• Rewrote Section 2.2, “Power Sequencing,and added Figure 3.  
• In Table 4, added “but do include core, USB PLL, and a portion of SerDes digital power...to Note 1.  
• In Table 4 corrected “Typical power” to “Maximum power” in note 2 and added a note for Typical  
Power.  
• In Table 4 removed 266-MHz row as 266-MHz core parts are not offered.  
• In Table 5, moved Local bus typical power dissipation under LVdd.  
• Added Table 6 to show the low power mode power dissipation for D3warm mode.  
• In Table 8 corrected SYS_CLK_IN frequency range from 25–66 MHz to 24–66.67 MHz.  
• Added Section 8.4, “eTSEC IEEE 1588 AC Specifications”  
• In Table 42 changed minimum value of USB input hold t  
from 0 to 1ns  
USIXKH  
• Added Table 43 and Table 44 showing USB clock in specifications  
• In Table 46, added rows for t  
Figure 40.  
, t  
t
and t  
parameters. Added  
LALEHOV LALETOT1, LALETOT2,  
LALETOT3  
• In Table 50, removed row for rise time (t  
). Removed minimum value of t  
. Added note 5 stating  
I2CR  
I2CF  
that the device does not follow the I2C-BUS Specifications version 2.1 regarding the t  
parameter.  
AC  
I2CF  
• In Table 56, added a note stating: “This specification only applies to GPIO pins that are operating  
from a 3.3-V supply. See Table 63 for the power supply listed for the individual GPIO signal.” [  
• Added Table 57 to show DC characteristics for GPIO pins supplied by a 2.5-V supply. Same as  
eTSEC DC characteristics when operating at 2.5 V.  
• In Section 20, “Clocking,” corrected the sentence “When the device is configured as a PCI agent  
device, PCI_SYNC_IN is the primary input clock.to state “When the device is configured as a PCI  
agent device, PCI_CLK is the primary input clock.”  
• Added “Value is decided by RCWLR[COREPLL]” to note 1 of Figure 57  
• Added paragraph and Figure 59 to Section 22.2, “PLL Power Supply Filtering.”  
• Added Section 22.4, “SerDes Block Power Supply Decoupling Recommendations  
• Removed the two figures on PCI undershoot/overshoot voltages and maximum AC waveforms from  
Section 2.1.2, “Power Supply Voltage Specification,”  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
95  
Document Revision History  
Table 73. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Date  
Number  
1
3/2008  
• In Table 63, added LBC_PM_REF_10 & LSRCID3 as muxed with USBDR_PCTL1  
• In Table 63, added LSRCID2 as muxed with USBDR_PCTL0  
• In Table 63, added LSRCID1 as muxed with USBDR_PWRFAULT  
• In Table 63, added LSRCID0 as muxed with USBDR_DRIVE_VBUS  
• In Table 63, moved T1, U2,& V2 from V to XCOREVDD.  
DD  
• In Table 63, moved P2, R2, & T3 from V to XCOREVSS.  
SS  
• In Table 63, moved P5, & U4 from V to XPADVDD.  
DD  
• In Table 63, moved P3, & V4 from V to XPADVSS.  
SS  
• In Table 63, removed “Double with pad” for AV  
and Ground Supplies section  
and AV  
and moved AV  
and AV  
to Power  
DD2  
DD1  
DD2  
DD1  
• In Table 63, added impedance control requirements for SD_IMP_CAL_TX (100 ohms to GND) and  
SD_IMP_CAL_RX (200 ohms to GND).  
• In Table 63, updated muxing in pinout to show new options for selecting IEEE 1588 functionality.  
Added footnote 8  
• In Table 63, updated muxing in pinout to show new LBC ECC boot enable control muxed with  
eTSEC1_MDC  
• Added pin type information for power supplies.  
• Removed N1 and N3 from Vss section of Table 63. Added Therm0 and Therm1 (N1 and N3,  
respectively). Added note 7 to state: “Internal thermally sensitive resistor, resistor value varies  
linearly with temperature. Useful for determining the junction temperature.”  
• In Table 65 corrected maximum frequency of Local Bus Frequency from “33–66” to 66 MHz  
• In Table 65 corrected maximum frequency of PCI from “24–66” to 66 MHz  
• Added “which is determined by RCWLR[COREPLL],to the note in Section 20.2, “Core PLL  
Configuration” about the VCO divider.  
• Added “(VCOD)” next to VCO divider column in Table 68. Added footnote stating that core_clk  
frequency must not exceed its maximum, so 2.5:1 and 3:1 core_clk:csb_clk ratios are invalid for  
certain csb_clk values.  
• In Table 69, notes were confusing. Added note 3 for VCO column, note 4 for CSB (csb_clk) column,  
note 5 for USB ref column, and note 6 to replace “Note 1”. Clarified note 4 to explain erratum  
eTSEC40.  
• In Table 69, updated note 6 to specify USB reference clock frequencies limited to 24 and 48 for rev.  
2 silicon.  
• Replaced Table 71 “Thermal Resistance for TEPBGAII with Heat Sink in Open Flow”.  
• Removed last row of Table 19.  
• Removed 200 MHz rows from Table 21 and Table 5.  
• Changed VIH minimum spec from 2.0 to 2.1 for clock, PIC, JTAG, SPI, and reset pins in Table 9,  
Table 47, Table 54, Table 59, and Table 61.  
• Added Figure 4 showing the DDR input timing diagram.  
In Table 19, removed “MDM” from the “MDQS-MDQ/MECC/MDM” text under the Parameter  
column for the tCISKEW parameter. MDM is an output signal and should be removed from  
the input AC timing spec table (tCISKEW).  
• Added “and power” to rows 2 and 3 in Table 10  
• Added the sentence “Once both the power supplies...” and PORESET to Section 2.2, “Power  
Sequencing,” and Figure 3.  
• In Figure 35, corrected “USB0_CLK/USB1_CLK/DR_CLK” with “USBDR_CLK”  
• In Table 42, clarified that AC specs are for ULPI only.  
0
6/2007  
Initial release.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
96  
Freescale Semiconductor  
Ordering Information  
24 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 24.1, “Part Numbers Fully Addressed by this Document.”  
24.1 Part Numbers Fully Addressed by this Document  
Table 74 provides the Freescale part numbering nomenclature for the MPC8313E. Note that the individual  
part numbers correspond to a maximum processor core frequency. For available frequencies, contact your  
local Freescale sales office. In addition to the processor frequency, the part numbering scheme also  
includes an application modifier which may specify special application conditions. Each part number also  
contains a revision code which refers to the die mask revision number.  
Table 74. Part Numbering Nomenclature  
MPC nnnn  
pp  
aa  
a
x
e
t
Product  
Code  
Part  
Identifier  
Encryption  
Acceleration  
Temperature  
Range  
e300 core  
Frequency  
DDR  
Frequency  
Revision  
Level  
1
Package  
3
2
MPC  
8313  
Blank = Not  
included  
E = included  
Blank = 0° to 105°C ZQ = PB  
C= –40° to 105°C TEPBGAII  
AF = 333 MHz F = 333 MHz Blank = 1.0  
GD = 400 MHz D = 266 MHz A = 2.0  
B = 2.1  
VR = PB free  
TEPBGAII  
Notes:  
1. See Section 19, “Package and Pin Listings,for more information on available package types.  
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies.  
3. Contact local Freescale office on availability of parts with °C temperature range.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
97  
Ordering Information  
24.2 Part Marking  
Parts are marked as shown in Figure 62.  
MPCnnnnetppaaar  
core/ddr MHz  
ATWLYYWW  
CCCCC  
MMMMM YWWLAZ  
TePBGA  
Notes:  
MPCnnnnetppaar is the orderable part number.  
ATWLYYWW is the standard assembly, test, year, and work week codes.  
CCCCC is the country code.  
MMMMM is the mask number.  
Figure 62. Part Marking for TEPBGAII Device  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
98  
Freescale Semiconductor  
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2.1  
Freescale Semiconductor  
99  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800 441-2447 or  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org. The  
PowerPC name is a trademark of IBM Corp. and is used under license. RapidIO is a  
registered trademark of the RapidIO Trade Association. IEEE Std 802.1, 802.2, 802.3,  
802.3u, 802.3x, 802.3z, 802.3ab, 802.3au, 802.11i, 1149.1, and 1588 are registered  
trademarks or trademarks of the Institute of Electrical and Electronics Engineers, Inc.,  
(IEEE). This product is not endosed or approved by the IEEE. All other product or  
service names are the property of their respective owners.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved.  
Document Number: MPC8313EEC  
Rev. 2.1  
12/2008  

相关型号:

MPC8313CZQGDFB

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313E

PowerQUICC⑩ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRADDC

RISC PROCESSOR
NXP

MPC8313ECVRAFD

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRAFDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRAFDB

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRAFF

PowerQUICC⑩ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRAFF

32-BIT, 333MHz, MICROPROCESSOR, PBGA516, 27 X 27 MM, 2.25 MM HEIGHT, 1 MM PITCH, LEAD FREE, TEPBGAII-516
NXP

MPC8313ECVRAFFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRAFFB

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRGDD

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313ECVRGDDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE