MPC8323E_10 [FREESCALE]

PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications; 的PowerQUICC ™II Pro的集成通信处理器系列硬件规格
MPC8323E_10
型号: MPC8323E_10
厂家: Freescale    Freescale
描述:

PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications
的PowerQUICC ™II Pro的集成通信处理器系列硬件规格

通信
文件: 总82页 (文件大小:1059K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8323EEC  
Rev. 3, 02/2010  
Freescale Semiconductor  
Technical Data  
MPC8323E  
PowerQUICC™ II Pro Integrated  
Communications Processor  
Family Hardware Specifications  
Contents  
This document provides an overview of the MPC8323E  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
PowerQUICC™ II Pro processor features. The MPC8323E  
is a cost-effective, highly integrated communications  
processor that addresses the requirements of several  
networking applications, including ADSL SOHO and  
residential gateways, modem/routers, industrial control, and  
test and measurement applications. The MPC8323E extends  
current PowerQUICC offerings, adding higher CPU  
performance, additional functionality, and faster interfaces,  
while addressing the requirements related to time-to-market,  
price, power consumption, and board real estate. This  
document describes the MPC8323E, and unless otherwise  
noted, the information also applies to the MPC8323,  
MPC8321E, and MPC8321.  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 6  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6. DDR1 and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . 13  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8. Ethernet and MII Management . . . . . . . . . . . . . . . . . 19  
9. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
11. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
12. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
13. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
14. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
15. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
16. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
17. TDM/SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
18. UTOPIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
19. HDLC, BISYNC, Transparent, and Synchronous  
To locate published errata or updates for this document, refer  
to the MPC8323E product summary page on our website  
listed on the back cover of this document or contact your  
local Freescale sales office.  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
20. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
21. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 49  
22. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
23. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
24. System Design Information . . . . . . . . . . . . . . . . . . . 76  
25. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 79  
26. Document Revision History . . . . . . . . . . . . . . . . . . . 80  
© 2010 Freescale Semiconductor, Inc. All rights reserved.  
Overview  
1 Overview  
The MPC8323E incorporates the e300c2 (MPC603e-based) core built on Power Architecture™  
technology, which includes 16 Kbytes of L1 instruction and data caches, dual integer units, and on-chip  
memory management units (MMUs). The e300c2 core does not contain a floating point unit (FPU). The  
MPC8323E also includes a 32-bit PCI controller, four DMA channels, a security engine, and a 32-bit  
DDR1/DDR2 memory controller.  
A new communications complex based on QUICC Engine™ technology forms the heart of the networking  
capability of the MPC8323E. The QUICC Engine block contains several peripheral controllers and a  
32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified  
communication controllers (UCCs). Note that the MPC8321 and MPC8321E do not support UTOPIA. A  
block diagram of the MPC8323E is shown in Figure 1.  
MPC8323E  
e300c2 Core  
System Interface Unit  
(SIU)  
Security Engine (SEC 2.2)  
16 KB  
I-Cache  
16 KB  
D-Cache  
Memory Controllers  
GPCM/UPM  
Integer Unit  
(IU1)  
Integer Unit  
(IU2)  
DDR  
32-Bit DDR1/DDR2  
Interface Unit  
Classic G2 MMUs  
PCI  
PCI Controller  
Local Bus  
Timers, Power Management,  
and JTAG/COP  
Local  
QUICC Engine Block  
Bus Arbitration  
DUART  
Multi-User  
Accelerators  
Baud Rate  
Generators  
RAM  
Serial DMA  
and  
2
I C  
2 Virtual  
DMAs  
Single 32-Bit RISC CP  
Parallel I/O  
4 Channel DMA  
Interrupt Controller  
Protection and Configuration  
System Reset  
Time Slot Assigner  
Serial Interface  
Clock Synthesizer  
4 TDM Ports  
3 MII/RMII  
1 UL2/8-Bit  
Figure 1. MPC8323E Block Diagram  
Each of the five UCCs can support a variety of communication protocols: 10/100 Mbps Ethernet, serial  
ATM, HDLC, UART, and BISYNC—and, in the MPC8323E and MPC8323, multi-PHY ATM and ATM  
support for up to OC-3 speeds.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
2
Freescale Semiconductor  
Overview  
NOTE  
The QUICC Engine block can also support a UTOPIA level 2 capable of  
supporting 31 multi-PHY (MPC8323E- and MPC8323-specific).  
The MPC8323E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded  
from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES,  
3DES, AES, SHA-1, and MD-5 algorithms.  
In summary, the MPC8323E family provides users with a highly integrated, fully programmable  
communications processor. This helps ensure that a low-cost system solution can be quickly developed  
and offers flexibility to accommodate new standards and evolving system requirements.  
1.1  
MPC8323E Features  
Major features of the MPC8323E are as follows:  
High-performance, low-power, and cost-effective single-chip data-plane/control-plane solution for  
ATM or IP/Ethernet packet processing (or both).  
MPC8323E QUICC Engine block offers a future-proof solution for next generation designs by  
supporting programmable protocol termination and network interface termination to meet evolving  
protocol standards.  
Single platform architecture supports the convergence of IP packet networks and ATM networks.  
DDR1/DDR2 memory controller—one 32-bit interface at up to 266 MHz supporting both DDR1  
and DDR2.  
An e300c2 core built on Power Architecture technology with 16-Kbyte instruction and data caches,  
and dual integer units.  
Peripheral interfaces such as 32-bit PCI (2.2) interface up to 66-MHz operation, 16-bit local bus  
interface up to 66-MHz operation, and USB 2.0 (full-/low-speed).  
Security engine provides acceleration for control and data plane security protocols.  
High degree of software compatibility with previous-generation PowerQUICC processor-based  
designs for backward compatibility and easier software migration.  
1.1.1  
Protocols  
The protocols are as follows:  
ATM SAR up to 155 Mbps (OC-3) full duplex, with ATM traffic shaping (ATF TM4.1)  
Support for ATM AAL1 structured and unstructured circuit emulation service (CES 2.0)  
Support for IMA and ATM transmission convergence sub-layer  
ATM OAM handling features compatible with ITU-T I.610  
IP termination support for IPv4 and IPv6 packets including TOS, TTL, and header checksum  
processing  
Extensive support for ATM statistics and Ethernet RMON/MIB statistics  
Support for 64 channels of HDLC/transparent  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
3
Overview  
1.1.2  
Serial Interfaces  
The MPC8323E serial interfaces are as follows:  
Support for one UL2 interface with 31 multi-PHY addresses (MPC8323E and MPC8323 only)  
Support for up to three 10/100 Mbps Ethernet interfaces using MII or RMII  
Support for up to four T1/E1/J1/E3 or DS-3 serial interfaces (TDM)  
2
Support for dual UART and SPI interfaces and a single I C interface  
1.2  
QUICC Engine Block  
The QUICC Engine block is a versatile communications complex that integrates several communications  
peripheral controllers. It provides on-chip system design for a variety of applications, particularly in  
communications and networking systems. The QUICC Engine block has the following features:  
One 32-bit RISC controller for flexible support of the communications peripherals  
Serial DMA channel for receive and transmit on all serial channels  
Five universal communication controllers (UCCs) supporting the following protocols and  
interfaces (not all of them simultaneously):  
— 10/100 Mbps Ethernet/IEEE 802.3® standard  
— IP support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing  
ATM protocol through UTOPIA interface (note that the MPC8321 and MPC8321E do not  
support the UTOPIA interface)  
— HDLC /transparent up to 70-Mbps full-duplex  
— HDLC bus up to 10 Mbps  
— Asynchronous HDLC  
— UART  
— BISYNC up to 2 Mbps  
— QUICC multi-channel controller (QMC) for 64 TDM channels  
One UTOPIA interface (UPC1) supporting 31 multi-PHYs (MPC8323E- and MPC8323-specific)  
Two serial peripheral interfaces (SPI). SPI2 is dedicated to Ethernet PHY management.  
Four TDM interfaces  
Thirteen independent baud rate generators and 19 input clock pins for supplying clocks to UCC  
serial channels  
Four independent 16-bit timers that can be interconnected as two 32-bit timers  
The UCCs are similar to the PowerQUICC II peripherals: SCC (BISYNC, UART, and HDLC bus) and  
FCC (fast Ethernet, HDLC, transparent, and ATM).  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
4
Freescale Semiconductor  
Overview  
1.3  
Security Engine  
The security engine is optimized to handle all the algorithms associated with IPSec, IEEE 802.11i®  
standard, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto  
execution units (EUs). The execution units are:  
Data encryption standard execution unit (DEU), supporting DES and 3DES  
Advanced encryption standard unit (AESU), supporting AES  
Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any  
algorithm  
One crypto-channel supporting multi-command descriptor chains  
1.4  
DDR Memory Controller  
The MPC8323E DDR1/DDR2 memory controller includes the following features:  
Single 32-bit interface supporting both DDR1 and DDR2 SDRAM  
Support for up to 266-MHz data rate  
Support for two ×16 devices  
Support for up to 16 simultaneous open pages  
Supports auto refresh  
On-the-fly power management using CKE  
1.8-/2.5-V SSTL2 compatible I/O  
Support for 1 chip select only  
FCRAM, ECC, hardware/software calibration, bit deskew, QIN stage, or atomic logic are not  
supported.  
1.5  
PCI Controller  
The MPC8323E PCI controller includes the following features:  
PCI Specification Revision 2.3 compatible  
Single 32-bit data PCI interface operates up to 66 MHz  
PCI 3.3-V compatible (not 5-V compatible)  
Support for host and agent modes  
On-chip arbitration, supporting three external masters on PCI  
Selectable hardware-enforced coherency  
1.6  
Programmable Interrupt Controller (PIC)  
The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible  
solution for general-purpose interrupt control. The PIC programming model is compatible with the  
MPC8260 interrupt controller, and it supports 8 external and 35 internal discrete interrupt sources.  
Interrupts can also be redirected to an external interrupt controller.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
5
Electrical Characteristics  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8323E. The MPC8323E is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
Table 1 provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
V
–0.3 to 1.26  
–0.3 to 1.26  
V
V
V
DD  
AV  
DDn  
DDR1 and DDR2 DRAM I/O voltage  
GV  
–0.3 to 2.75  
–0.3 to 1.98  
DD  
2
PCI, local bus, DUART, system control and power management, I C,  
SPI, MII, RMII, MII management, and JTAG I/O voltage  
OV  
–0.3 to 3.6  
V
DD  
Input voltage  
DDR1/DDR2 DRAM signals  
DDR1/DDR2 DRAM reference  
MV  
–0.3 to (GV + 0.3)  
V
V
V
2
2
3
IN  
DD  
MV  
–0.3 to (GV + 0.3)  
DD  
REF  
Local bus, DUART, CLKIN, system  
control and power management,  
OV  
–0.3 to (OV + 0.3)  
DD  
IN  
2
I C, SPI, and JTAG signals  
PCI  
OV  
–0.3 to (OV + 0.3)  
V
5
IN  
DD  
Storage temperature range  
T
–55 to 150  
°C  
STG  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MV must not exceed GV by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
IN  
DD  
power-on reset and power-down sequences.  
3. Caution: OV must not exceed OV by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
IN  
DD  
power-on reset and power-down sequences.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
6
Freescale Semiconductor  
Electrical Characteristics  
2.1.2  
Power Supply Voltage Specification  
Table 2 provides the recommended operating conditions for the MPC8323E. Note that these values are the  
recommended and tested operating conditions. Proper device operation outside of these conditions is not  
guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Characteristic  
Symbol  
Unit  
Notes  
Value  
Core supply voltage  
PLL supply voltage  
V
1.0 V ± 50 mV  
1.0 V ± 50 mV  
V
V
V
1
1
1
DD  
AV  
DD  
DDR1 and DDR2 DRAM I/O voltage  
GV  
2.5 V ± 125 mV  
1.8 V ± 90 mV  
DD  
PCI, local bus, DUART, system control and power management,  
I C, SPI, and JTAG I/O voltage  
OV  
3.3 V ± 300 mV  
V
1
2
DD  
2
Junction temperature  
T /T  
0 to 105  
°C  
A
J
Note:  
1. GV , OV , AV , and V must track each other and must vary in the same direction—either in the positive or negative  
DD  
DD  
DD  
DD  
direction.  
2. Minimum temperature is specified with T ; maximum temperature is specified with T .  
A
J
Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8323E  
G/OV + 20%  
DD  
G/OV + 5%  
DD  
G/OV  
V
DD  
IH  
GND  
GND – 0.3 V  
V
IL  
GND – 0.7 V  
Not to Exceed 10%  
1
of t  
interface  
Note:  
1. t  
refers to the clock period associated with the bus clock interface.  
interface  
Figure 2. Overshoot/Undershoot Voltage for GV /OV  
DD  
DD  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
7
Electrical Characteristics  
2.1.3  
Output Driver Characteristics  
Table 3 provides information on the characteristics of the output driver strengths. The values are  
preliminary estimates.  
Table 3. Output Drive Capability  
Output Impedance  
Supply  
Voltage  
Driver Type  
(Ω)  
Local bus interface utilities signals  
PCI signals  
42  
25  
18  
18  
42  
42  
OV = 3.3 V  
DD  
DDR1 signal  
GV = 2.5 V  
DD  
DDR2 signal  
GV = 1.8 V  
DD  
DUART, system control, I2C, SPI, JTAG  
GPIO signals  
OV = 3.3 V  
DD  
OV = 3.3 V  
DD  
2.1.4  
Input Capacitance Specification  
Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.  
Table 4. Input Capacitance Specification  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input capacitance for all pins except CLKIN  
Input capacitance for CLKIN  
C
6
8
pF  
pF  
1
I
C
10  
ICLKIN  
Note:  
1. The external clock generator should be able to drive 10 pF.  
2.2  
Power Sequencing  
The device does not require the core supply voltage (V ) and IO supply voltages (GV and OV ) to  
DD  
DD  
DD  
be applied in any particular order. Note that during power ramp-up, before the power supplies are stable  
and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input  
and output pins are actively driven and cause contention and excessive current. In order to avoid actively  
driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V ) before the I/O  
DD  
voltage (GV and OV ) and assert PORESET before the power supplies fully ramp up. In the case  
DD  
DD  
where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before  
the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are  
stable, wait for a minimum of 32 clock cycles before negating PORESET.  
Note that there is no specific power down sequence requirement for the device. I/O voltage supplies  
(GV and OV ) do not have any ordering requirements with respect to one another.  
DD  
DD  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
8
Freescale Semiconductor  
Power Characteristics  
I/O Voltage (GV and OV  
)
DD  
DD  
V
Core Voltage (V  
)
DD  
0.7 V  
90%  
t
0
PORESET  
t
/t  
>= 32 clocks  
SYS_CLK_IN PCI_SYNC_IN  
Figure 3. MPC8323E Power-Up Sequencing Example  
3 Power Characteristics  
The estimated typical power dissipation for this family of MPC8323E devices is shown in Table 5.  
Table 5. MPC8323E Power Dissipation  
CSB  
Frequency (MHz)  
QUICC Engine  
Frequency (MHz)  
Core  
Frequency (MHz)  
Typical  
Maximum  
Unit  
Notes  
133  
133  
200  
200  
266  
333  
0.74  
0.78  
1.48  
1.62  
W
W
1, 2, 3  
1, 2, 3  
Notes:  
1. The values do not include I/O supply power (OV and GV ) or AV . For I/O power values, see Table 6.  
DD  
DD  
DD  
2. Typical power is based on a nominal voltage of V = 1.0 V, ambient temperature, and the core running a Dhrystone  
DD  
benchmark application. The measurements were taken on the MPC8323MDS evaluation board using WC process silicon.  
3. Maximum power is based on a voltage of V = 1.07 V, WC process, a junction T = 110°C, and an artificial smoke test.  
DD  
J
Table 6 shows the estimated typical I/O power dissipation for the device.  
Table 6. Estimated Typical I/O Power Dissipation  
Interface  
Parameter  
GV (1.8 V) GV (2.5 V) OV (3.3 V) Unit  
Comments  
DD  
DD  
DD  
DDR I/O  
266 MHz, 1 × 32 bits  
0.212  
0.367  
W
65% utilization  
2.5 V  
R = 20 Ω  
s
R = 50 Ω  
t
1 pair of clocks  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
9
Clock Input Timing  
Table 6. Estimated Typical I/O Power Dissipation (continued)  
Local bus I/O  
load = 25 pF  
1 pair of clocks  
66 MHz, 32 bits  
0.12  
W
PCI I/O load = 30 pF  
66 MHz, 32 bits  
UTOPIA 8-bit 31 PHYs  
TDM serial  
0.057  
0.041  
0.001  
0.004  
0.003  
0.025  
0.017  
0.009  
0.009  
0.002  
0.001  
0.001  
0.002  
W
W
W
W
W
W
W
W
W
W
W
W
W
QUICC Engine block and  
other I/Os  
Mutiply by number  
of interfaces used.  
TDM nibble  
HDLC/TRAN serial  
HDLC/TRAN nibble  
DUART  
MIIs  
RMII  
Ethernet management  
USB  
SPI  
Timer output  
NOTE  
AV n (1.0 V) is estimated to consume 0.05 W (under normal operating  
DD  
conditions and ambient temperature).  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8323E.  
NOTE  
The rise/fall time on QUICC Engine input pins should not exceed 5 ns. This  
should be enforced especially on clock signals. Rise time refers to signal  
transitions from 10% to 90% of VCC; fall time refers to transitions from  
90% to 10% of VCC.  
4.1  
DC Electrical Characteristics  
Table 7 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8323E.  
Table 7. CLKIN DC Electrical Characteristics  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
V
2.7  
OV + 0.3  
V
V
IH  
DD  
V
–0.3  
0.4  
IL  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
10  
Freescale Semiconductor  
RESET Initialization  
Table 7. CLKIN DC Electrical Characteristics (continued)  
CLKIN input current  
0 V V OV  
I
I
±5  
μA  
μA  
IN  
DD  
IN  
IN  
PCI_SYNC_IN input current  
0 V V 0.5 V or  
±5  
IN  
OV – 0.5 V V OV  
DD  
IN  
DD  
PCI_SYNC_IN input current  
0.5 V V OV – 0.5 V  
I
±50  
μA  
IN  
DD  
IN  
4.2  
AC Electrical Characteristics  
The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI_CLK, depending  
on whether the device is configured in PCI host or PCI agent mode. Table 8 provides the clock input  
(CLKIN/PCI_CLK) AC timing specifications for the MPC8323E.  
Table 8. CLKIN AC Timing Specifications  
Parameter/Condition  
CLKIN/PCI_CLK frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
f
t
25  
15  
0.6  
0.6  
40  
66.67  
MHz  
ns  
1
2
CLKIN  
CLKIN/PCI_CLK cycle time  
CLKIN rise and fall time  
PCI_CLK rise and fall time  
CLKIN/PCI_CLK duty cycle  
CLKIN/PCI_CLK jitter  
Notes:  
CLKIN  
t
, t  
0.8  
0.8  
4
ns  
KH KL  
t
, t  
1.2  
60  
ns  
2
PCH PCL  
t
/t  
%
3
KHK CLKIN  
±150  
ps  
4, 5  
1. Caution: The system, core, security, and QUICC Engine block must not exceed their respective maximum or minimum  
operating frequencies.  
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be < 500 kHz at –20 dB. The bandwidth must be set low to  
allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.  
5 RESET Initialization  
This section describes the AC electrical specifications for the reset initialization timing requirements of  
the MPC8323E. Table 9 provides the reset initialization AC timing specifications for the reset  
component(s).  
Table 9. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET or SRESET (input) to activate reset  
flow  
32  
t
1
PCI_SYNC_IN  
Required assertion time of PORESET with stable clock applied to CLKIN  
when the MPC8323E is in PCI host mode  
32  
32  
t
2
1
CLKIN  
Required assertion time of PORESET with stable clock applied to  
PCI_SYNC_IN when the MPC8323E is in PCI agent mode  
t
PCI_SYNC_IN  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
11  
RESET Initialization  
Table 9. RESET Initialization Timing Specifications (continued)  
HRESET/SRESET assertion (output)  
512  
16  
4
t
t
1
1
2
PCI_SYNC_IN  
HRESET negation to SRESET negation (output)  
PCI_SYNC_IN  
Input setup time for POR configuration signals  
t
CLKIN  
(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to  
negation of PORESET when the MPC8323E is in PCI host mode  
Input setup time for POR configuration signals  
4
t
1
PCI_SYNC_IN  
(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to  
negation of PORESET when the MPC8323E is in PCI agent mode  
Input hold time for POR config signals with respect to negation of  
HRESET  
0
1
4
ns  
ns  
3
Time for the MPC8323E to turn off POR configuration signals with respect  
to the assertion of HRESET  
Time for the MPC8323E to turn on POR configuration signals with respect  
to the negation of HRESET  
t
1, 3  
PCI_SYNC_IN  
Notes:  
1. t  
is the clock period of the input clock applied to PCI_SYNC_IN. When the MPC8323E is In PCI host mode the  
PCI_SYNC_IN  
primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Reference Manual for more details.  
2. t  
is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8323E is in PCI host mode. See  
CLKIN  
the MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Reference Manual for more details.  
3. POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
Table 10 provides the PLL lock times.  
Table 10. PLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
100  
μs  
5.1  
Reset Signals DC Electrical Characteristics  
Table 11 provides the DC electrical characteristics for the MPC8323E reset signals mentioned in Table 9.  
Table 11. Reset Signals DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
Notes  
V
I
2.4  
V
V
1
1
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
I
V
1
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
1
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
Note:  
1. This specification applies when operating from 3.3 V supply.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
12  
Freescale Semiconductor  
DDR1 and DDR2 SDRAM  
6 DDR1 and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR1 and DDR2 SDRAM interface  
of the MPC8323E. Note that DDR1 SDRAM is Dn_GV (typ) = 2.5 V and DDR2 SDRAM is  
DD  
Dn_GV (typ) = 1.8 V. The AC electrical specifications are the same for DDR1 and DDR2 SDRAM.  
DD  
6.1  
DDR1 and DDR2 SDRAM DC Electrical Characteristics  
Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the  
MPC8323E when Dn_GV (typ) = 1.8 V.  
DD  
Table 12. DDR2 SDRAM DC Electrical Characteristics for Dn_GV (typ) = 1.8 V  
DD  
Max  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Unit  
Notes  
Dn_GV  
1.71  
1.89  
V
V
1
2
DD  
I/O reference voltage  
I/O termination voltage  
Input high voltage  
MVREFn  
0.49 × Dn_GV  
0.51 × Dn_GV  
REF  
DD  
DD  
V
MVREFn  
– 0.04  
MVREFn + 0.04  
REF  
V
3
TT  
REF  
V
MVREFn  
+ 0.125  
Dn_GV + 0.3  
V
4
IH  
REF  
DD  
Input low voltage  
V
I
–0.3  
MVREFn  
– 0.125  
V
IL  
REF  
Output leakage current  
–9.9  
–13.4  
13.4  
9.9  
μA  
mA  
mA  
OZ  
OH  
Output high current (V  
= 1.35 V)  
I
OUT  
Output low current (V  
= 0.280 V)  
I
OL  
OUT  
Notes:  
1. Dn_GV is expected to be within 50 mV of the DRAM Dn_GV at all times.  
DD  
DD  
2. MVREFn  
is expected to be equal to 0.5 × Dn_GV , and to track Dn_GV DC variations as measured at the receiver.  
REF  
DD  
DD  
Peak-to-peak noise on MVREFn  
may not exceed ±2% of the DC value.  
REF  
3. V is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
TT  
equal to MVREFn  
. This rail should track variations in the DC level of MVREFn  
.
REF  
REF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT Dn_GV  
.
DD  
Table 13 provides the DDR2 capacitance when Dn_GV (typ) = 1.8 V.  
DD  
Table 13. DDR2 SDRAM Capacitance for Dn_GV (typ) = 1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
C
6
8
pF  
pF  
1
1
IO  
C
0.5  
DIO  
1. This parameter is sampled. Dn_GV = 1.8 V ± 0.090 V, f = 1 MHz, T = 25 °C, V  
= Dn_GV ÷ 2,  
DD  
A
OUT  
DD  
V
(peak-to-peak) = 0.2 V.  
OUT  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
13  
DDR1 and DDR2 SDRAM  
Table 14 provides the recommended operating conditions for the DDR1 SDRAM component(s) of the  
MPC8323E when Dn_GV (typ) = 2.5 V.  
DD  
Table 14. DDR1 SDRAM DC Electrical Characteristics for Dn_GV (typ) = 2.5 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
Dn_GV  
2.375  
2.625  
V
V
1
2
DD  
I/O reference voltage  
I/O termination voltage  
Input high voltage  
MVREFn  
0.49 × Dn_GV  
0.51 × Dn_GV  
DD  
REF  
DD  
V
MVREFn  
– 0.04  
+ 0.15  
MVREFn + 0.04  
REF  
V
3
TT  
REF  
REF  
V
MVREFn  
Dn_GV + 0.3  
V
4
IH  
DD  
Input low voltage  
V
I
–0.3  
–9.9  
MVREFn  
– 0.15  
REF  
V
IL  
Output leakage current  
–9.9  
μA  
mA  
mA  
OZ  
OH  
Output high current (V  
= 1.95 V)  
I
–16.2  
16.2  
OUT  
Output low current (V  
= 0.35 V)  
I
OUT  
OL  
Notes:  
1. Dn_GV is expected to be within 50 mV of the DRAM Dn_GV at all times.  
DD  
DD  
2. MVREFn  
is expected to be equal to 0.5 × Dn_GV , and to track Dn_GV DC variations as measured at the receiver.  
DD DD  
REF  
Peak-to-peak noise on MVREFn  
may not exceed ±2% of the DC value.  
REF  
3. V is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
TT  
equal to MVREFn  
. This rail should track variations in the DC level of MVREFn  
.
REF  
REF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT Dn_GV  
.
DD  
Table 15 provides the DDR1 capacitance Dn_GV (typ) = 2.5 V.  
DD  
Table 15. DDR1 SDRAM Capacitance for Dn_GV (typ) = 2.5 V Interface  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ,DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
C
6
8
pF  
pF  
1
1
IO  
C
0.5  
DIO  
1. This parameter is sampled. Dn_GV = 2.5 V ± 0.125 V, f = 1 MHz, T = 25° C, V  
= Dn_GV ÷ 2,  
DD  
A
OUT  
DD  
V
(peak-to-peak) = 0.2 V.  
OUT  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
14  
Freescale Semiconductor  
DDR1 and DDR2 SDRAM  
6.2  
DDR1 and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR1 and DDR2 SDRAM interface.  
6.2.1  
DDR1 and DDR2 SDRAM Input AC Timing Specifications  
Table 16 provides the input AC timing specifications for the DDR2 SDRAM (Dn_GV (typ) = 1.8 V).  
DD  
Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
At recommended operating conditions with Dn_GVDD of 1.8 ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
V
MVREFn  
– 0.25  
V
V
IL  
REF  
V
MVREFn  
+ 0.25  
REF  
IH  
Table 17 provides the input AC timing specifications for the DDR1 SDRAM (Dn_GV (typ) = 2.5 V).  
DD  
Table 17. DDR1 SDRAM Input AC Timing Specifications for 2.5 V Interface  
At recommended operating conditions with Dn_GVDD of 2.5 ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
V
MVREFn  
– 0.31  
V
V
IL  
REF  
V
MVREFn  
+ 0.31  
REF  
IH  
Table 18 provides the input AC timing specifications for the DDR1 and DDR2 SDRAM interface.  
Table 18. DDR1 and DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions with Dn_GVDD of (1.8 or 2.5 V) ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Controller skew for MDQS—MDQ/MDM  
t
ps  
1, 2  
CISKEW  
266 MHz  
200 MHz  
–750  
–1250  
750  
1250  
Notes:  
1. t  
represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that  
CISKEW  
is captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t  
. This can be  
DISKEW  
determined by the following equation: t  
= ±(T/4 – abs(t  
)) where T is the clock period and abs(t  
) is the  
DISKEW  
CISKEW  
CISKEW  
absolute value of t  
.
CISKEW  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
15  
DDR1 and DDR2 SDRAM  
Figure 4 shows the input timing diagram for the DDR controller.  
MCK[n]  
MCK[n]  
t
MCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
t
DISKEW  
t
DISKEW  
Figure 4. DDR Input Timing Diagram  
6.2.2  
DDR1 and DDR2 SDRAM Output AC Timing Specifications  
Table 19 provides the output AC timing specifications for the DDR1 and DDR2 SDRAM interfaces.  
Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications  
At recommended operating conditions with Dn_GVDD of (1.8 or 2.5 V) ± 5%.  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MCK cycle time, (MCK/MCK crossing)  
t
7.5  
10  
ns  
ns  
2
3
MCK  
ADDR/CMD output setup with respect to MCK  
t
t
t
t
DDKHAS  
DDKHAX  
DDKHCS  
DDKHCX  
266 MHz  
200 MHz  
2.5  
3.5  
ADDR/CMD output hold with respect to MCK  
ns  
ns  
ns  
ns  
3
3
3
4
266 MHz  
200 MHz  
2.5  
3.5  
MCS output setup with respect to MCK  
MCS output hold with respect to MCK  
MCK to MDQS Skew  
266 MHz  
200 MHz  
2.5  
3.5  
266 MHz  
200 MHz  
2.5  
3.5  
t
–0.6  
0.6  
DDKHMH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
16  
Freescale Semiconductor  
DDR1 and DDR2 SDRAM  
Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications (continued)  
At recommended operating conditions with Dn_GVDD of (1.8 or 2.5 V) ± 5%.  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MDQ/MDM output setup with respect to MDQS  
t
ns  
5
DDKHDS,  
t
DDKLDS  
266 MHz  
200 MHz  
0.9  
1.0  
MDQ/MDM output hold with respect to MDQS  
t
ps  
5
DDKHDX,  
t
DDKLDX  
266 MHz  
200 MHz  
1100  
1200  
MDQS preamble start  
MDQS epilogue end  
Notes:  
t
t
–0.5 × t  
– 0.6 –0.5 × t  
+ 0.6  
ns  
ns  
6
6
DDKHMP  
MCK  
MCK  
–0.6  
0.6  
DDKHME  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. Output hold time can be read as DDR timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
symbolizes DDR timing (DD) for the time t memory clock reference (K) goes from the high (H) state until outputs  
t
DDKHAS  
MCK  
(A) are setup (S) or output valid time. Also, t  
symbolizes DDR timing (DD) for the time t  
memory clock reference  
DDKLDX  
MCK  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD  
setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied  
cycle.  
4. Note that t  
follows the symbol conventions described in note 1. For example, t  
describes the DDR timing (DD)  
DDKHMH  
DDKHMH  
from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t  
can be modified through control  
DDKHMH  
of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the  
CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same  
adjustment value. See the MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Reference Manual for  
a description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data  
mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t  
symbol conventions described in note 1.  
follows the  
DDKHMP  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
17  
DDR1 and DDR2 SDRAM  
Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t  
).  
DDKHMH  
MCK  
MCK  
t
MCK  
t
(max) = 0.6 ns  
DDKHMH  
MDQS  
MDQS  
t
(min) = –0.6 ns  
DDKHMH  
Figure 5. Timing Diagram for t  
DDKHMH  
Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
t
MCK  
t
,t  
DDKHAS DDKHCS  
t
,t  
DDKHAX DDKHCX  
ADDR/CMD  
Write A0  
NOOP  
t
DDKHMP  
t
DDKHMH  
MDQS[n]  
MDQ[x]  
t
DDKHME  
t
DDKHDS  
t
DDKLDS  
D0  
D1  
t
DDKLDX  
t
DDKHDX  
Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
18  
DUART  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the  
MPC8323E.  
7.1  
DUART DC Electrical Characteristics  
Table 20 provides the DC electrical characteristics for the DUART interface of the MPC8323E.  
Table 20. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage OV  
V
2
OV + 0.3  
V
V
IH  
DD  
V
–0.3  
0.8  
DD  
IL  
High-level output voltage, I = –100 μA  
V
OV – 0.2  
V
OH  
OH  
DD  
Low-level output voltage, I = 100 μA  
V
0.2  
±5  
V
OL  
OL  
IN  
1
Input current (0 V V OV  
)
DD  
I
μA  
IN  
Note:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and Table 2.  
IN  
IN  
7.2  
DUART AC Electrical Specifications  
Table 21 provides the AC timing parameters for the DUART interface of the MPC8323E.  
Table 21. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
th  
2. The middle of a start bit is detected as the 8 sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are  
th  
sampled each 16 sample.  
8 Ethernet and MII Management  
This section provides the AC and DC electrical characteristics for Ethernet and MII management.  
8.1  
Ethernet Controller (10/100 Mbps)—MII/RMII Electrical  
Characteristics  
The electrical characteristics specified here apply to all MII (media independent interface) and RMII  
(reduced media independent interface), except MDIO (management data input/output) and MDC  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
19  
Ethernet and MII Management  
(management data clock). The MII and RMII are defined for 3.3 V. The electrical characteristics for MDIO  
and MDC are specified in Section 8.3, “Ethernet Management Interface Electrical Characteristics.”  
8.1.1  
DC Electrical Characteristics  
All MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 22.  
The potential applied to the input of a MII or RMII receiver may exceed the potential of the receiver’s  
power supply (that is, a MII driver powered from a 3.6-V supply driving V into a MII receiver powered  
OH  
from a 2.5-V supply). Tolerance for dissimilar MII driver and receiver supply potentials is implicit in these  
specifications.  
Table 22. MII and RMII DC Electrical Characteristics  
Parameter  
Symbol  
OV  
Conditions  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.97  
2.40  
GND  
2.0  
3.63  
V
V
DD  
V
I
= –4.0 mA OV = Min  
OV + 0.3  
OH  
OH  
DD  
DD  
V
I
= 4.0 mA  
OV = Min  
0.50  
V
OL  
OL  
DD  
V
OV + 0.3  
V
IH  
DD  
V
I
–0.3  
0.90  
±5  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
8.2  
MII and RMII AC Timing Specifications  
The AC timing specifications for MII and RMII are presented in this section.  
8.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.1.1  
MII Transmit AC Timing Specifications  
Table 23 provides the MII transmit AC timing specifications.  
Table 23. MII Transmit AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
t
t
35  
1
400  
40  
5
ns  
ns  
%
MTX  
MTX  
t
/t  
65  
15  
4.0  
MTXH MTX  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
t
ns  
ns  
MTKHDX  
TX_CLK data clock rise V (min) to V (max)  
t
MTXR  
1.0  
IL  
IH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
20  
Freescale Semiconductor  
Ethernet and MII Management  
Table 23. MII Transmit AC Timing Specifications (continued)  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
Parameter/Condition  
TX_CLK data clock fall V (max) to V (min)  
1
Symbol  
Min  
Typical  
Max  
Unit  
t
MTXF  
1.0  
4.0  
ns  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes MII transmit  
(first two letters of functional block)(reference)(state)(signal)(state)  
MTKHDX  
timing (MT) for the time t  
clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
MTX  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of t represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
MTX  
used with the appropriate letter: R (rise) or F (fall).  
Figure 7 shows the MII transmit AC timing diagram.  
t
t
MTX  
MTXR  
TX_CLK  
t
t
MTXF  
MTXH  
TXD[3:0]  
TX_EN  
TX_ER  
t
MTKHDX  
Figure 7. MII Transmit AC Timing Diagram  
8.2.1.2  
MII Receive AC Timing Specifications  
Table 24 provides the MII receive AC timing specifications.  
Table 24. MII Receive AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
RX_CLK clock period 10 Mbps  
t
400  
40  
ns  
ns  
%
MRX  
RX_CLK clock period 100 Mbps  
t
MRX  
RX_CLK duty cycle  
t
/t  
35  
65  
MRXH MRX  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
t
10.0  
10.0  
1.0  
ns  
ns  
ns  
MRDVKH  
MRDXKH  
t
RX_CLK clock rise V (min) to V (max)  
t
MRXR  
4.0  
IL  
IH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
21  
Ethernet and MII Management  
Table 24. MII Receive AC Timing Specifications (continued)  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
RX_CLK clock fall time V (max) to V (min)  
t
MRXF  
1.0  
4.0  
ns  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes MII receive  
(first two letters of functional block)(reference)(state)(signal)(state)  
MRDVKH  
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t  
clock reference (K)  
MRX  
going to the high (H) state or setup time. Also, t  
symbolizes MII receive timing (GR) with respect to the time data input  
MRDXKL  
signals (D) went invalid (X) relative to the t  
clock reference (K) going to the low (L) state or hold time. Note that, in general,  
MRX  
the clock reference symbol representation is based on three letters representing the clock of a particular functional. For  
example, the subscript of t represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used  
MRX  
with the appropriate letter: R (rise) or F (fall).  
Figure 8 provides the AC test load.  
OV /2  
Output  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 8. AC Test Load  
Figure 9 shows the MII receive AC timing diagram.  
t
t
MRXR  
MRX  
RX_CLK  
t
t
MRXH  
MRXF  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
t
MRDVKH  
t
MRDXKH  
Figure 9. MII Receive AC Timing Diagram  
8.2.2  
RMII AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
22  
Freescale Semiconductor  
Ethernet and MII Management  
8.2.2.1  
RMII Transmit AC Timing Specifications  
Table 23 provides the RMII transmit AC timing specifications.  
Table 25. RMII Transmit AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
REF_CLK clock  
t
35  
2
20  
65  
ns  
%
RMX  
REF_CLK duty cycle  
t
/t  
RMXH RMX  
REF_CLK to RMII data TXD[1:0], TX_EN delay  
t
10  
ns  
ns  
ns  
RMTKHDX  
REF_CLK data clock rise V (min) to V (max)  
t
RMXR  
1.0  
1.0  
4.0  
4.0  
IL  
IH  
REF_CLK data clock fall V (max) to V (min)  
t
RMXF  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first three letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes RMII  
(first two letters of functional block)(reference)(state)(signal)(state)  
RMTKHDX  
transmit timing (RMT) for the time t  
clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in  
RMX  
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of t represents the RMII(RM) reference (X) clock. For rise and fall times, the latter  
RMX  
convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 10 shows the RMII transmit AC timing diagram.  
t
t
RMXR  
RMX  
REF_CLK  
t
t
RMXH  
RMXF  
TXD[1:0]  
TX_EN  
t
RMTKHDX  
Figure 10. RMII Transmit AC Timing Diagram  
8.2.2.2  
RMII Receive AC Timing Specifications  
Table 24 provides the RMII receive AC timing specifications.  
Table 26. RMII Receive AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
REF_CLK clock period  
t
35  
20  
65  
ns  
%
RMX  
REF_CLK duty cycle  
t
/t  
RMXH RMX  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
t
t
4.0  
2.0  
1.0  
ns  
ns  
ns  
RMRDVKH  
RMRDXKH  
REF_CLK clock rise V (min) to V (max)  
t
RMXR  
4.0  
IL  
IH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
23  
Ethernet and MII Management  
Table 26. RMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
REF_CLK clock fall time V (max) to V (min)  
t
RMXF  
1.0  
4.0  
ns  
IH  
IL  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first three letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes RMII  
(first two letters of functional block)(reference)(state)(signal)(state)  
RMRDVKH  
receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t  
clock  
RMX  
reference (K) going to the high (H) state or setup time. Also, t  
the time data input signals (D) went invalid (X) relative to the t  
symbolizes RMII receive timing (RMR) with respect to  
clock reference (K) going to the low (L) state or hold time.  
RMRDXKL  
RMX  
Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular  
functional. For example, the subscript of t represents the RMII (RM) reference (X) clock. For rise and fall times, the latter  
RMX  
convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 11 provides the AC test load.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 11. AC Test Load  
Figure 12 shows the RMII receive AC timing diagram.  
t
t
RMXR  
RMX  
REF_CLK  
t
t
RMXH  
RMXF  
RXD[1:0]  
CRS_DV  
RX_ER  
Valid Data  
t
RMRDVKH  
t
RMRDXKH  
Figure 12. RMII Receive AC Timing Diagram  
8.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for  
MII, and RMII are specified in Section 8.1, “Ethernet Controller (10/100 Mbps)—MII/RMII Electrical  
Characteristics.”  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
24  
Freescale Semiconductor  
Ethernet and MII Management  
8.3.1  
MII Management DC Electrical Characteristics  
MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for  
MDIO and MDC are provided in Table 27.  
Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Symbol  
OV  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.97  
2.10  
GND  
2.00  
3.63  
V
V
DD  
V
I
= –1.0 mA OV = Min  
OV + 0.3  
OH  
OH  
DD  
DD  
V
I
= 1.0 mA  
OV = Min  
0.50  
V
OL  
OL  
DD  
V
V
IH  
V
I
0.80  
±5  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
8.3.2  
MII Management AC Electrical Specifications  
Table 28 provides the MII management AC timing specifications.  
Table 28. MII Management AC Timing Specifications  
At recommended operating conditions with OVDD is 3.3 V ± 10%.  
1
Parameter/Condition  
MDC frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
f
t
32  
10  
5
2.5  
400  
70  
10  
10  
MHz  
ns  
MDC  
MDC period  
MDC  
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
t
ns  
MDCH  
t
ns  
MDKHDX  
t
ns  
MDDVKH  
MDDXKH  
t
0
ns  
t
ns  
MDCR  
MDC fall time  
t
ns  
MDHF  
Note:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes management  
(first two letters of functional block)(reference)(state)(signal)(state)  
MDKHDX  
data timing (MD) for the time t  
from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time.  
MDC  
Also, t  
symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state  
MDDVKH  
(V) relative to the t  
clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter  
MDC  
convention is used with the appropriate letter: R (rise) or F (fall).  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
25  
Local Bus  
Figure 13 shows the MII management AC timing diagram.  
t
t
MDC  
MDCR  
MDC  
t
t
MDCH  
MDCF  
MDIO  
(Input)  
t
MDDVKH  
t
MDDXKH  
MDIO  
(Output)  
t
MDKHDX  
Figure 13. MII Management Interface Timing Diagram  
9 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the  
MPC8323E.  
9.1  
Local Bus DC Electrical Characteristics  
Table 29 provides the DC electrical characteristics for the local bus interface.  
Table 29. Local Bus DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
V
2
OV + 0.3  
V
V
IH  
DD  
V
–0.3  
0.8  
IL  
High-level output voltage, I = –100 μA  
V
OV – 0.2  
V
OH  
OH  
DD  
Low-level output voltage, I = 100 μA  
V
0.2  
±5  
V
OL  
OL  
IN  
Input current  
I
μA  
9.2  
Local Bus AC Electrical Specifications  
Table 30 describes the general timing parameters of the local bus interface of the MPC8323E.  
Table 30. Local Bus General Timing Parameters  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
t
15  
7
ns  
ns  
ns  
ns  
2
LBK  
Input setup to local bus clock (LCLKn)  
t
t
3, 4  
3, 4  
5
LBIVKH  
LBIXKH  
Input hold from local bus clock (LCLKn)  
1.0  
1.5  
LALE output fall to LAD output transition (LATCH hold time)  
t
LBOTOT1  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
26  
Freescale Semiconductor  
Local Bus  
Notes  
Table 30. Local Bus General Timing Parameters (continued)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock (LCLKn) to output valid  
t
t
3
2.5  
47  
3
ns  
ns  
ns  
ns  
%
6
7
LBOTOT2  
LBOTOT3  
t
3
LBKHOV  
LBKHOZ  
Local bus clock (LCLKn) to output high impedance for LAD/LDP  
Local bus clock (LCLKn) duty cycle  
t
4
8
t
53  
400  
1.7  
LBDC  
Local bus clock (LCLKn) jitter specification  
t
ps  
ns  
LBRJ  
Delay between the input clock (PCI_SYNC_IN) of local bus  
output clock (LCLKn)  
t
LBCDL  
Notes:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes local bus  
(first two letters of functional block)(reference)(state)(signal)(state)  
LBIXKH1  
timing (LB) for the input (I) to go invalid (X) with respect to the time the t  
clock one(1).  
clock reference (K) goes high (H), in this case for  
LBK  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from OV /2 of the rising/falling edge of LCLK0 to 0.4 × OV of the signal in question for 3.3-V  
DD  
DD  
signaling levels.  
4. Input timings are measured at the pin.  
5. t should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less than the load  
LBOTOT1  
on LAD output pins.  
6. t  
should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10 pF less than the load on  
LBOTOT2  
LAD output pins.  
7. t  
should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD output pins.  
LBOTOT3  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
Figure 14 provides the AC test load for the local bus.  
OV /2  
Output  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 14. Local Bus C Test Load  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
27  
Local Bus  
Figure 15 through Figure 17 show the local bus signals.  
LCLK[n]  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
t
LBIXKH  
LBIXKH  
t
LBIVKH  
Input Signal:  
LGTA  
t
LBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE  
t
LBKHOZ  
t
LBKHOV  
Output Signals:  
LAD[0:15]  
t
LBOTOT  
LALE  
Figure 15. Local Bus Signals, Nonspecial Signals Only  
LCLK  
T1  
T3  
t
LBKHOZ  
t
LBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
LBIXKH  
t
LBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]/LDP[0:3]  
t
LBKHOZ  
t
LBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 16. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
28  
Freescale Semiconductor  
JTAG  
LCLK  
T1  
T2  
T3  
T4  
t
LBKHOZ  
t
LBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
LBIXKH  
t
LBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
LBKHOZ  
t
LBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 17. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4  
10 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1™ (JTAG)  
interface of the MPC8323E.  
10.1 JTAG DC Electrical Characteristics  
Table 31 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the  
MPC8323E.  
Table 31. JTAG Interface DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
V
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
I
OL  
OL  
V
2.5  
OV + 0.3  
DD  
IH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
29  
JTAG  
Table 31. JTAG Interface DC Electrical Characteristics (continued)  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input low voltage  
Input current  
V
I
–0.3  
0.8  
±5  
V
IL  
0 V V OV  
μA  
IN  
IN  
DD  
10.2 JTAG AC Electrical Characteristics  
This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the  
MPC8323E. Table 32 provides the JTAG AC timing specifications as defined in Figure 19 through  
Figure 22.  
1
Table 32. JTAG AC Timing Specifications (Independent of CLKIN)  
At recommended operating conditions (see Table 2).  
2
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
f
0
33.3  
MHz  
ns  
3
JTG  
t
30  
11  
0
JTG  
t
ns  
JTKHKL  
t
, t  
2
ns  
JTGR JTGF  
t
25  
ns  
TRST  
Input setup times:  
ns  
Boundary-scan data  
t
t
4
4
4
4
5
5
JTDVKH  
TMS, TDI  
JTIVKH  
Input hold times:  
Valid times:  
ns  
ns  
ns  
Boundary-scan data  
TMS, TDI  
t
10  
10  
JTDXKH  
t
JTIXKH  
Boundary-scan data  
TDO  
t
t
2
2
15  
15  
JTKLDV  
JTKLOV  
Output hold times:  
Boundary-scan data  
TDO  
t
t
2
2
JTKLDX  
JTKLOX  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
30  
Freescale Semiconductor  
JTAG  
1
Table 32. JTAG AC Timing Specifications (Independent of CLKIN) (continued)  
At recommended operating conditions (see Table 2).  
2
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
JTAG external clock to output high impedance:  
ns  
Boundary-scan data  
TDO  
t
2
2
19  
9
5, 6  
6
JTKLDZ  
t
JTKLOZ  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of t  
to the midpoint of the signal in question.  
TCLK  
The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 14).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes JTAG device  
(first two letters of functional block)(reference)(state)(signal)(state)  
JTDVKH  
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t  
clock reference (K)  
JTG  
going to the high (H) state or setup time. Also, t  
symbolizes JTAG timing (JT) with respect to the time data input signals  
JTDXKH  
(D) went invalid (X) relative to the t  
clock reference (K) going to the high (H) state. Note that, in general, the clock reference  
JTG  
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the  
latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to t  
.
TCLK  
5. Non-JTAG signal output timing with respect to t  
6. Guaranteed by design and characterization.  
.
TCLK  
Figure 18 provides the AC test load for TDO and the boundary-scan outputs of the MPC8323E.  
OV /2  
Output  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 18. AC Test Load for the JTAG Interface  
Figure 19 provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
VM  
VM  
t
t
JTKHKL  
JTGR  
t
t
JTGF  
JTG  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 19. JTAG Clock Input Timing Diagram  
Figure 20 provides the TRST timing diagram.  
TRST  
VM  
VM  
t
TRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 20. TRST Timing Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
31  
JTAG  
Figure 21 provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
t
JTDVKH  
t
JTDXKH  
Input  
Data Valid  
Boundary  
Data Inputs  
t
JTKLDV  
t
JTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
t
JTKLDZ  
Boundary  
Data Outputs  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 21. Boundary-Scan Timing Diagram  
Figure 22 provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
t
JTIVKH  
t
JTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
t
JTKLOV  
t
JTKLOX  
Output Data Valid  
t
JTKLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 22. Test Access Port Timing Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
32  
Freescale Semiconductor  
I2C  
11 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the MPC8323E.  
2
11.1 I C DC Electrical Characteristics  
2
Table 33 provides the DC electrical characteristics for the I C interface of the MPC8323E.  
2
Table 33. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input high voltage level  
Input low voltage level  
V
0.7 × OV  
–0.3  
0
OV + 0.3  
V
V
1
IH  
DD  
DD  
V
0.3 × OV  
IL  
DD  
Low level output voltage  
V
0.4  
V
OL  
I2KLKV  
Output fall time from V (min) to V (max) with a bus  
t
20 + 0.1 × C  
B
250  
ns  
2
IH  
IL  
capacitance from 10 to 400 pF  
Pulse width of spikes which must be suppressed by the  
input filter  
t
0
50  
ns  
3
I2KHKL  
Capacitance for each I/O pin  
C
I
10  
±5  
pF  
4
I
Input current (0 V V OV  
)
μA  
IN  
DD  
IN  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. C = capacitance of one bus line in pF.  
B
3. Refer to the MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Reference Manual for information on  
the digital filter used.  
4. I/O pins obstructs the SDA and SCL lines if OV is switched off.  
DD  
2
11.2 I C AC Electrical Specifications  
2
Table 34 provides the AC timing parameters for the I C interface of the MPC8323E.  
2
Table 34. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 33).  
1
Parameter  
Symbol  
Min  
Max  
Unit  
SCL clock frequency  
f
0
400  
kHz  
μs  
I2C  
Low period of the SCL clock  
High period of the SCL clock  
t
1.3  
0.6  
0.6  
0.6  
I2CL  
I2CH  
t
μs  
Setup time for a repeated START condition  
t
μs  
I2SVKH  
Hold time (repeated) START condition (after this period, the first clock  
pulse is generated)  
t
μs  
I2SXKL  
Data setup time  
t
100  
ns  
I2DVKH  
Data hold time:  
CBUS compatible masters  
t
μs  
I2DXKL  
2
2
3
I C bus devices  
0
0.9  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
33  
I2C  
2
Table 34. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 33).  
1
Parameter  
Symbol  
Min  
Max  
Unit  
4
4
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
t
20 + 0.1 C  
20 + 0.1 C  
0.6  
300  
300  
ns  
ns  
μs  
μs  
V
I2CR  
b
b
t
I2CF  
t
I2PVKH  
Bus free time between a STOP and START condition  
t
1.3  
I2KHDX  
Noise margin at the LOW level for each connected device (including  
hysteresis)  
V
0.1 × OV  
NL  
DD  
DD  
Noise margin at the HIGH level for each connected device (including  
hysteresis)  
V
0.2 × OV  
V
NH  
Notes:  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
2
inputs and t  
for outputs. For example, t  
symbolizes I C timing (I2)  
(first two letters of functional block)(reference)(state)(signal)(state)  
I2DVKH  
with respect to the time data input signals (D) reach the valid state (V) relative to the t clock reference (K) going to the high  
I2C  
2
(H) state or setup time. Also, t  
symbolizes I C timing (I2) for the time that the data with respect to the start condition  
clock reference (K) going to the low (L) state or hold time. Also, t  
I2SXKL  
2
(S) went invalid (X) relative to the t  
symbolizes I C  
I2C  
I2PVKH  
timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t clock  
I2C  
reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
2. MPC8323E provides a hold time of at least 300 ns for the SDA signal (referred to the V (min) of the SCL signal) to bridge  
IH  
the undefined region of the falling edge of SCL.  
3. The maximum t  
has only to be met if the device does not stretch the LOW period (t  
) of the SCL signal.  
I2CL  
I2DVKH  
4. C = capacitance of one bus line in pF.  
B
2
Figure 23 provides the AC test load for the I C.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
2
Figure 23. I C AC Test Load  
2
Figure 24 shows the AC timing diagram for the I C bus.  
SDA  
t
t
t
t
I2CF  
I2CF  
I2DVKH  
I2KHKL  
t
t
t
I2CR  
I2CL  
I2SXKL  
SCL  
t
t
t
t
I2PVKH  
I2SXKL  
I2CH  
I2SVKH  
t
I2DXKL  
S
Sr  
P
S
2
Figure 24. I C Bus AC Timing Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
34  
Freescale Semiconductor  
PCI  
12 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8323E.  
12.1 PCI DC Electrical Characteristics  
Table 35 provides the DC electrical characteristics for the PCI interface of the MPC8323E.  
1,2  
Table 35. PCI DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Test Condition  
Min  
Max  
Unit  
V
V
V (min) or  
2
OV + 0.3  
V
V
V
IH  
OUT  
OH  
DD  
Low-level input voltage  
High-level output voltage  
V
V
V (max)  
–0.3  
0.8  
IL  
OUT  
OL  
V
OV = min,  
OV – 0.2  
OH  
DD  
DD  
I
= –100 μA  
OH  
Low-level output voltage  
V
OV = min,  
0.2  
±5  
V
OL  
DD  
I
= 100 μA  
OL  
Input current  
I
0 V V OV  
DD  
μA  
IN  
IN  
Notes:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and Table 2.  
IN  
IN  
2. Ranges listed do not meet the full range of the DC specifications of the PCI 2.3 Local Bus Specifications.  
12.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus of the MPC8323E. Note that the  
PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8323E  
is configured as a host or agent device. Table 36 shows the PCI AC timing specifications at 66 MHz.  
.
Table 36. PCI AC Timing Specifications at 66 MHz  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Clock to output valid  
t
1
6.0  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
Output hold from clock  
2
t
PCKHOX  
Clock to output high impedence  
Input setup to clock  
Input hold from clock  
Notes:  
t
3.0  
0
14  
2, 3  
2, 4  
2, 4  
PCKHOZ  
t
PCIVKH  
PCIXKH  
t
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes PCI timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
PCIVKH  
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t  
, reference  
SYS  
(K) going to the high (H) state or setup time. Also, t  
symbolizes PCI timing (PC) with respect to the time hard reset  
PCRHFV  
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
35  
PCI  
Table 37 shows the PCI AC timing specifications at 33 MHz.  
Table 37. PCI AC Timing Specifications at 33 MHz  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Clock to output valid  
t
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
PCKHOX  
Output hold from clock  
2
t
Clock to output high impedence  
Input setup to clock  
Input hold from clock  
Notes:  
t
3.0  
0
2, 3  
2, 4  
2, 4  
PCKHOZ  
t
PCIVKH  
PCIXKH  
t
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes PCI timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
PCIVKH  
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t  
, reference  
SYS  
(K) going to the high (H) state or setup time. Also, t  
symbolizes PCI timing (PC) with respect to the time hard reset  
PCRHFV  
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
Figure 25 provides the AC test load for PCI.  
OV /2  
Output  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 25. PCI AC Test Load  
Figure 26 shows the PCI input AC timing conditions.  
CLK  
t
PCIVKH  
t
PCIXKH  
Input  
Figure 26. PCI Input AC Timing Measurement Conditions  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
36  
Freescale Semiconductor  
Timers  
Figure 27 shows the PCI output AC timing conditions.  
CLK  
t
PCKHOV  
t
PCKHOX  
Output Delay  
t
PCKHOZ  
High-Impedance  
Output  
Figure 27. PCI Output AC Timing Measurement Condition  
13 Timers  
This section describes the DC and AC electrical specifications for the timers of the MPC8323E.  
13.1 Timer DC Electrical Characteristics  
Table 38 provides the DC electrical characteristics for the MPC8323E timer pins, including TIN, TOUT,  
TGATE, and RTC_CLK.  
Table 38. Timer DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
I
V
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
13.2 Timer AC Timing Specifications  
Table 39 provides the timer input and output AC timing specifications.  
1
Table 39. Timer Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Unit  
Timers inputs—minimum pulse width  
Notes:  
t
20  
ns  
TIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any  
external synchronous logic. Timer inputs are required to be valid for at least t  
ns to ensure proper operation.  
TIWID  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
37  
GPIO  
Figure 28 provides the AC test load for the timers.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 28. Timers AC Test Load  
14 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the MPC8323E.  
14.1 GPIO DC Electrical Characteristics  
Table 11 provides the DC electrical characteristics for the MPC8323E GPIO.  
Table 40. GPIO DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
Notes  
V
I
2.4  
V
V
1
1
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
I
V
1
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
1
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
Note:  
1. This specification applies when operating from 3.3-V supply.  
14.2 GPIO AC Timing Specifications  
Table 41 provides the GPIO input and output AC timing specifications.  
1
Table 41. GPIO Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
20  
Unit  
GPIO inputs—minimum pulse width  
Notes:  
t
ns  
PIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least t  
ns to ensure proper operation.  
PIWID  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
38  
Freescale Semiconductor  
IPIC  
Figure 29 provides the AC test load for the GPIO.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 29. GPIO AC Test Load  
15 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the  
MPC8323E.  
15.1 IPIC DC Electrical Characteristics  
Table 42 provides the DC electrical characteristics for the external interrupt pins of the MPC8323E.  
1,2  
Table 42. IPIC DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
2.0  
–0.3  
OV + 0.3  
V
V
IH  
DD  
Input low voltage  
Input current  
V
I
0.8  
±5  
IL  
μA  
V
IN  
Output low voltage  
Output low voltage  
Notes:  
V
I
= 6.0 mA  
= 3.2 mA  
OL  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.  
2. IRQ_OUT and MCP_OUT are open drain pins, thus V is not relevant for those pins.  
OH  
15.2 IPIC AC Timing Specifications  
Table 43 provides the IPIC input and output AC timing specifications.  
1
Table 43. IPIC Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Unit  
IPIC inputs—minimum pulse width  
t
20  
ns  
PIWID  
Notes:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least t  
in edge triggered mode.  
ns to ensure proper operation when working  
PIWID  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
39  
SPI  
16 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8323E.  
16.1 SPI DC Electrical Characteristics  
Table 44 provides the DC electrical characteristics for the MPC8323E SPI.  
Table 44. SPI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
I
V
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
0.8  
±5  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
16.2 SPI AC Timing Specifications  
Table 45 and provide the SPI input and output AC timing specifications.  
1
Table 45. SPI AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
SPI outputs—Master mode (internal clock) delay  
SPI outputs—Slave mode (external clock) delay  
SPI inputs—Master mode (internal clock) input setup time  
SPI inputs—Master mode (internal clock) input hold time  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
t
0.5  
2
6
ns  
ns  
ns  
ns  
ns  
ns  
NIKHOV  
t
8
NEKHOV  
t
t
6
NIIVKH  
0
NIIXKH  
t
4
NEIVKH  
NEIXKH  
t
2
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the NMSI  
(first two letters of functional block)(reference)(state)(signal)(state)  
NIKHOV  
outputs internal timing (NI) for the time t  
valid (V).  
memory clock reference (K) goes from the high state (H) until outputs (O) are  
SPI  
Figure 30 provides the AC test load for the SPI.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 30. SPI AC Test Load  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
40  
Freescale Semiconductor  
TDM/SI  
Figure 31 and Figure 32 represent the AC timing from Table 45. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 31 shows the SPI timing in slave mode (external clock).  
SPICLK (Input)  
t
NEIXKH  
t
NEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
t
NEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 31. SPI AC Timing in Slave Mode (External Clock) Diagram  
Figure 32 shows the SPI timing in master mode (internal clock).  
SPICLK (Output)  
t
NIIXKH  
t
NIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
t
NIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 32. SPI AC Timing in Master Mode (Internal Clock) Diagram  
17 TDM/SI  
This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial  
interface of the MPC8323E.  
17.1 TDM/SI DC Electrical Characteristics  
Table 46 provides the DC electrical characteristics for the MPC8323E TDM/SI.  
Table 46. TDM/SI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –2.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
V
OH  
Output low voltage  
Input high voltage  
V
I
= 3.2 mA  
0.5  
OL  
OL  
V
2.0  
OV + 0.3  
DD  
IH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
41  
TDM/SI  
Table 46. TDM/SI DC Electrical Characteristics (continued)  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input low voltage  
Input current  
V
I
–0.3  
0.8  
±5  
V
IL  
0 V V OV  
μA  
IN  
IN  
DD  
17.2 TDM/SI AC Timing Specifications  
Table 47 provides the TDM/SI input and output AC timing specifications.  
1
Table 47. TDM/SI AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
TDM/SI outputs—External clock delay  
TDM/SI outputs—External clock High Impedance  
TDM/SI inputs—External clock input setup time  
TDM/SI inputs—External clock input hold time  
Notes:  
t
t
2
2
5
2
12  
10  
ns  
ns  
ns  
ns  
SEKHOV  
SEKHOX  
t
SEIVKH  
SEIXKH  
t
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the TDM/SI  
(first two letters of functional block)(reference)(state)(signal)(state)  
SEKHOX  
outputs external timing (SE) for the time t  
are invalid (X).  
memory clock reference (K) goes from the high state (H) until outputs (O)  
TDM/SI  
Figure 33 provides the AC test load for the TDM/SI.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 33. TDM/SI AC Test Load  
Figure 34 represents the AC timing from Table 47. Note that although the specifications generally  
reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the  
active edge.  
TDM/SICLK (Input)  
t
SEIXKH  
t
SEIVKH  
Input Signals:  
TDM/SI  
(See Note)  
t
SEKHOV  
Output Signals:  
TDM/SI  
(See Note)  
t
SEKHOX  
Note: The clock edge is selectable on TDM/SI.  
Figure 34. TDM/SI AC Timing (External Clock) Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
42  
Freescale Semiconductor  
UTOPIA  
18 UTOPIA  
This section describes the UTOPIA DC and AC electrical specifications of the MPC8323E.  
NOTE  
The MPC8321E and MPC8321 do not support UTOPIA.  
18.1 UTOPIA DC Electrical Characteristics  
Table 48 provides the DC electrical characteristics for the MPC8323E UTOPIA.  
Table 48. UTOPIA DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –8.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 8.0 mA  
OL  
0.5  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
I
0.8  
±5  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
18.2 UTOPIA AC Timing Specifications  
Table 49 provides the UTOPIA input and output AC timing specifications.  
1
Table 49. UTOPIA AC Timing Specifications  
2
Characteristic  
UTOPIA outputs—Internal clock delay  
Symbol  
Min  
Max  
Unit  
t
0
1
0
1
8
4
0
1
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
UIKHOV  
UTOPIA outputs—External clock delay  
UTOPIA outputs—Internal clock high impedance  
UTOPIA outputs—External clock high impedance  
UTOPIA inputs—Internal clock input setup time  
UTOPIA inputs—External clock input setup time  
UTOPIA inputs—Internal clock input hold time  
UTOPIA inputs—External clock input hold time  
Notes:  
t
UEKHOV  
t
5.5  
8
UIKHOX  
t
UEKHOX  
t
UIIVKH  
t
UEIVKH  
t
UIIXKH  
t
UEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the UTOPIA  
(first two letters of functional block)(reference)(state)(signal)(state)  
UIKHOX  
outputs internal timing (UI) for the time t  
invalid (X).  
memory clock reference (K) goes from the high state (H) until outputs (O) are  
UTOPIA  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
43  
UTOPIA  
Figure 35 provides the AC test load for the UTOPIA.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 35. UTOPIA AC Test Load  
Figure 36 and Figure 37 represent the AC timing from Table 49. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 36 shows the UTOPIA timing with external clock.  
UTOPIACLK (Input)  
t
UEIXKH  
t
UEIVKH  
Input Signals:  
UTOPIA  
t
UEKHOV  
Output Signals:  
UTOPIA  
t
UEKHOX  
Figure 36. UTOPIA AC Timing (External Clock) Diagram  
Figure 37 shows the UTOPIA timing with internal clock.  
UTOPIACLK (Output)  
t
UIIXKH  
t
UIIVKH  
Input Signals:  
UTOPIA  
t
UIKHOV  
Output Signals:  
UTOPIA  
t
UIKHOX  
Figure 37. UTOPIA AC Timing (Internal Clock) Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
44  
Freescale Semiconductor  
HDLC, BISYNC, Transparent, and Synchronous UART  
19 HDLC, BISYNC, Transparent, and Synchronous  
UART  
This section describes the DC and AC electrical specifications for the high level data link control (HDLC),  
BISYNC, transparent, and synchronous UART of the MPC8323E.  
19.1 HDLC, BISYNC, Transparent, and Synchronous UART DC  
Electrical Characteristics  
Table 50 provides the DC electrical characteristics for the MPC8323E HDLC, BISYNC, transparent, and  
synchronous UART protocols.  
Table 50. HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –2.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.5  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
I
0.8  
±5  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
19.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing  
Specifications  
Table 51 provides the input and output AC timing specifications for HDLC, BISYNC, and transparent  
UART protocols.  
1
Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications  
2
Characteristic  
Outputs—Internal clock delay  
Symbol  
Min  
Max  
Unit  
t
0
1
0
1
6
4
0
5.5  
10  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HIKHOV  
Outputs—External clock delay  
t
HEKHOV  
Outputs—Internal clock high impedance  
Outputs—External clock high impedance  
Inputs—Internal clock input setup time  
Inputs—External clock input setup time  
Inputs—Internal clock input hold time  
t
HIKHOX  
t
HEKHOX  
t
HIIVKH  
t
HEIVKH  
t
HIIXKH  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
45  
HDLC, BISYNC, Transparent, and Synchronous UART  
1
Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications (continued)  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
Inputs—External clock input hold time  
Notes:  
t
1
ns  
HEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the outputs  
(first two letters of functional block)(reference)(state)(signal)(state)  
HIKHOX  
internal timing (HI) for the time t  
memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).  
serial  
1
Table 52. Synchronous UART AC Timing Specifications  
2
Characteristic  
Outputs—Internal clock delay  
Symbol  
Min  
Max  
Unit  
t
0
1
0
1
6
4
0
1
5.5  
10  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
UAIKHOV  
Outputs—External clock delay  
t
UAEKHOV  
Outputs—Internal clock high impedance  
Outputs—External clock high impedance  
Inputs—Internal clock input setup time  
Inputs—External clock input setup time  
Inputs—Internal clock input hold time  
Inputs—External clock input hold time  
Notes:  
t
UAIKHOX  
t
UAEKHOX  
t
UAIIVKH  
t
UAEIVKH  
t
UAIIXKH  
t
UAEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state)(reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the outputs  
(first two letters of functional block)(reference)(state)(signal)(state)  
UAIKHOX  
internal timing (UAI) for the time t  
invalid (X).  
memory clock reference (K) goes from the high state (H) until outputs (O) are  
serial  
Figure 38 provides the AC test load.  
OV /2  
Output  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 38. AC Test Load  
Figure 39 and Figure 40 represent the AC timing from Table 51. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
46  
Freescale Semiconductor  
HDLC, BISYNC, Transparent, and Synchronous UART  
Figure 39 shows the timing with external clock.  
Serial CLK (Input)  
t
HEIXKH  
t
HEIVKH  
Input Signals:  
(See Note)  
t
HEKHOV  
Output Signals:  
(See Note)  
t
HEKHOX  
Note: The clock edge is selectable.  
Figure 39. AC Timing (External Clock) Diagram  
Figure 40 shows the timing with internal clock.  
Serial CLK (Output)  
t
HIIXKH  
t
HIIVKH  
Input Signals:  
(See Note)  
t
HIKHOV  
Output Signals:  
(See Note)  
t
HIKHOX  
Note: The clock edge is selectable.  
Figure 40. AC Timing (Internal Clock) Diagram  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
47  
USB  
20 USB  
This section provides the AC and DC electrical specifications for the USB interface of the MPC8323E.  
20.1 USB DC Electrical Characteristics  
Table 53 provides the DC electrical characteristics for the USB interface.  
1
Table 53. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage, I  
V
2
OV + 0.3  
V
V
IH  
DD  
V
–0.3  
0.8  
IL  
= –100 μA  
V
OV – 0.2  
V
OH  
OH  
DD  
Low-level output voltage, I = 100 μA  
V
0.2  
±5  
V
OL  
OL  
IN  
Input current  
I
μA  
Note:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and Table 2.  
IN  
IN  
20.2 USB AC Electrical Specifications  
Table 54 describes the general timing parameters of the USB interface of the MPC8323E.  
Table 54. USB General Timing Parameters  
1
Parameter  
USB clock cycle time  
Symbol  
Min  
Max  
Unit  
Notes  
t
t
20.83  
166.67  
ns  
ns  
ns  
ns  
ns  
Full speed 48 MHz  
Low speed 6 MHz  
USCK  
USCK  
USB clock cycle time  
Skew between TXP and TXN  
Skew among RXP, RXN, and RXD  
Skew among RXP, RXN, and RXD  
Notes:  
t
5
USTSPN  
t
10  
100  
Full speed transitions  
Low speed transitions  
USRSPND  
t
USRPND  
1. The symbols used for timing specifications follow the pattern of t  
for receive signals  
(first two letters of functional block)(state)(signal)  
and t  
for transmit signals. For example, t  
symbolizes USB timing (US) for the  
(first two letters of functional block)(state)(signal)  
USRSPND  
USB receive signals skew (RS) among RXP, RXN, and RXD (PND). Also, t  
transmit signals skew (TS) between TXP and TXN (PN).  
symbolizes USB timing (US) for the USB  
USTSPN  
2. Skew measurements are done at OV /2 of the rising or falling edge of the signals.  
DD  
Figure 41 provide the AC test load for the USB.  
OV /2  
Output  
Z = 50 Ω  
0
DD  
R = 50 Ω  
L
Figure 41. USB AC Test Load  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
48  
Freescale Semiconductor  
Package and Pin Listings  
21 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8323E is available in  
a thermally enhanced Plastic Ball Grid Array (PBGA); see Section 21.1, “Package Parameters for the  
MPC8323E PBGA,” and Section 21.2, “Mechanical Dimensions of the MPC8323E PBGA,” for  
information on the PBGA.  
21.1 Package Parameters for the MPC8323E PBGA  
The package parameters are as provided in the following list. The package type is 27 mm × 27 mm, 516  
PBGA.  
Package outline  
Interconnects  
Pitch  
27 mm × 27 mm  
516  
1.00 mm  
2.25 mm  
Module height (typical)  
Solder Balls  
62 Sn/36 Pb/2 Ag (ZQ package)  
95.5 Sn/0.5 Cu/4Ag (VR package)  
Ball diameter (typical)  
0.6 mm  
21.2 Mechanical Dimensions of the MPC8323E PBGA  
Figure 42 shows the mechanical dimensions and bottom surface nomenclature of the MPC8323E,  
516-PBGA package.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
49  
Package and Pin Listings  
Notes:  
1.All dimensions are in millimeters.  
2.Dimensions and tolerances per ASME Y14.5M-1994.  
3.Maximum solder ball diameter measured parallel to datum A.  
4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
Figure 42. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8323E PBGA  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
50  
Freescale Semiconductor  
Package and Pin Listings  
21.3 Pinout Listings  
Table 55 shows the pin list of the MPC8323E.  
Table 55. MPC8323E PBGA Pinout Listing  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
DDR Memory Controller Interface  
MEMC_MDQ0  
MEMC_MDQ1  
MEMC_MDQ2  
MEMC_MDQ3  
MEMC_MDQ4  
MEMC_MDQ5  
MEMC_MDQ6  
MEMC_MDQ7  
MEMC_MDQ8  
MEMC_MDQ9  
MEMC_MDQ10  
MEMC_MDQ11  
MEMC_MDQ12  
MEMC_MDQ13  
MEMC_MDQ14  
MEMC_MDQ15  
MEMC_MDQ16  
MEMC_MDQ17  
MEMC_MDQ18  
MEMC_MDQ19  
MEMC_MDQ20  
MEMC_MDQ21  
MEMC_MDQ22  
MEMC_MDQ23  
MEMC_MDQ24  
MEMC_MDQ25  
MEMC_MDQ26  
MEMC_MDQ27  
MEMC_MDQ28  
AE9  
AD10  
AF10  
AF9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
AF7  
AE10  
AD9  
AF8  
AE6  
AD7  
AF6  
AC7  
AD8  
AE7  
AD6  
AF5  
AD18  
AE19  
AF17  
AF19  
AF18  
AE18  
AF20  
AD19  
AD21  
AF22  
AC21  
AF21  
AE21  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
51  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
MEMC_MDQ29  
MEMC_MDQ30  
MEMC_MDQ31  
MEMC_MDM0  
MEMC_MDM1  
MEMC_MDM2  
MEMC_MDM3  
MEMC_MDQS0  
MEMC_MDQS1  
MEMC_MDQS2  
MEMC_MDQS3  
MEMC_MBA0  
MEMC_MBA1  
MEMC_MBA2  
MEMC_MA0  
AD20  
AF23  
AD22  
AC9  
IO  
IO  
IO  
O
O
O
O
IO  
IO  
IO  
IO  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
AD5  
AE20  
AE22  
AE8  
AE5  
AC19  
AE23  
AD16  
AD17  
AE17  
AD12  
AE12  
AF12  
AC13  
AD13  
AE13  
AF13  
AC15  
AD15  
AE15  
AF15  
AE16  
AF16  
AB16  
AC17  
AE11  
AD11  
AC11  
MEMC_MA1  
MEMC_MA2  
MEMC_MA3  
MEMC_MA4  
MEMC_MA5  
MEMC_MA6  
MEMC_MA7  
MEMC_MA8  
MEMC_MA9  
MEMC_MA10  
MEMC_MA11  
MEMC_MA12  
MEMC_MA13  
MEMC_MWE  
MEMC_MRAS  
MEMC_MCAS  
MEMC_MCS  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
52  
Freescale Semiconductor  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
MEMC_MCKE  
MEMC_MCK  
MEMC_MCK  
MEMC_MODT  
AD14  
O
O
O
O
GV  
GV  
GV  
GV  
3
DD  
DD  
DD  
DD  
AF14  
AE14  
AF11  
Local Bus Controller Interface  
LAD0  
LAD1  
LAD2  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
LAD15  
LA16  
LA17  
LA18  
LA19  
LA20  
LA21  
LA22  
LA23  
LA24  
LA25  
LCS0  
N25  
P26  
P25  
R26  
R25  
T26  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
4
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
T25  
U25  
M24  
N24  
P24  
R24  
T24  
U24  
U26  
V26  
K25  
L25  
O
L26  
O
L24  
O
M26  
M25  
N26  
AC24  
AC25  
AB23  
AB24  
O
O
O
O
O
O
O
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
53  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
LCS1  
LCS2  
LCS3  
LWE0  
LWE1  
LBCTL  
AB25  
AA23  
AA24  
Y23  
O
O
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
4
4
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
O
4
O
4
W25  
V25  
O
4
O
4
RST_LALE/M1LALE/M2LALE  
CFG_RESET_SOURCE[0]/LSDA10/LGPL0  
CFG_RESET_SOURCE[1]/LSDWE/LGPL1  
LSDRAS/LGPL2/LOE  
V24  
O
4
L23  
IO  
IO  
O
K23  
J23  
CFG_RESET_SOURCE[2]/LSDCAS/LGPL3  
LGPL4/LGTA/LUPWAIT/LPBSE  
LGPL5  
H23  
G23  
AC22  
Y24  
IO  
IO  
O
4
4
PD_XLB_CLOCK_OUT/LCLK0/  
O
PD_MG2XLB_ENC_CLOCK/CORE_CLK_OUT  
PD_XLB2MG_DDR_CLOCK/LCLK1/  
PD_MG2XLB_ENC_SYNC  
Y25  
O
OV  
DD  
DUART  
G1  
UART_SOUT1/MSRCID0 (DDR ID)/LSRCID0  
UART_SIN1/MSRCID1 (DDR ID)/LSRCID1  
UART_CTS1/MSRCID2 (DDR ID)/LSRCID2  
UART_RTS1/MSRCID3 (DDR ID)/LSRCID3  
UART_SOUT2/MSRCID4 (DDR ID)/LSRCID4  
UART_SIN2/MDVAL (DDR ID)/LDVAL  
UART_CTS2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
G2  
H3  
K3  
H2  
H1  
J3  
UART_RTS2  
K4  
2
I C interface  
AE24  
AF24  
IIC_SDA/CKSTOP_OUT  
IIC_SCL/CKSTOP_IN  
IO  
IO  
OV  
OV  
2
2
DD  
DD  
Programmable Interrupt Controller  
MCP_OUT  
IRQ0/MCP_IN  
IRQ1  
AD25  
AD26  
K1  
O
I
OV  
OV  
OV  
DD  
DD  
DD  
IO  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
54  
Freescale Semiconductor  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
IRQ2  
K2  
J2  
I
I
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
IRQ3  
IRQ4  
J1  
I
IRQ5  
AE26  
AE25  
AF25  
F1  
I
IRQ6/CKSTOP_OUT  
IRQ7/CKSTOP_IN  
CFG_CLKIN_DIV  
CFG_LBIU_MUX_EN  
IO  
I
I
M23  
I
JTAG  
W26  
Y26  
TCK  
TDI  
I
I
OV  
OV  
OV  
OV  
OV  
4
DD  
DD  
DD  
DD  
DD  
TDO  
TMS  
TRST  
AA26  
AB26  
AC26  
TEST  
N23  
O
I
3
4
I
4
TEST_MODE  
QUIESCE  
I
OV  
OV  
6
DD  
DD  
PMC  
T23  
O
System Control  
HRESET  
PORESET  
SRESET  
AC23  
AD23  
AD24  
IO  
I
OV  
OV  
OV  
1
2
DD  
DD  
DD  
IO  
Clocks  
CLKIN  
R3  
P4  
I
O
O
I
OV  
OV  
OV  
OV  
OV  
OV  
OV  
3
DD  
DD  
DD  
DD  
DD  
DD  
DD  
CLKIN  
PCI_SYNC_OUT  
RTC_PIT_CLOCK  
V1  
U23  
V2  
PCI_SYNC_IN/PCI_CLK  
I
PCI_CLK0/clkpd_cerisc1_ipg_clkout/DPTC_OSC  
T3  
O
O
PCI_CLK1/clkpd_half_cemb4ucc1_ipg_clkout/  
CLOCK_XLB_CLOCK_OUT  
U2  
PCI_CLK2/clkpd_third_cesog_ipg_clkout/  
cecl_ipg_ce_clock  
R4  
O
OV  
DD  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
55  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
Power and Ground Supplies  
AV  
AV  
AV  
AV  
1
2
3
4
P3  
AA1  
AB15  
C24  
AB8  
I
I
I
I
I
AV  
AV  
AV  
AV  
1
2
3
4
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
MVREF1  
DDR  
reference  
voltage  
MVREF2  
AB17  
I
DDR  
reference  
voltage  
PCI  
AF2  
AE2  
L1  
PCI_INTA /IRQ_OUT  
PCI_RESET_OUT  
O
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
2
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
O
PCI_AD0/MSRCID0 (DDR ID)  
PCI_AD1/MSRCID1 (DDR ID)  
PCI_AD2/MSRCID2 (DDR ID)  
PCI_AD3/MSRCID3 (DDR ID)  
PCI_AD4/MSRCID4 (DDR ID)  
PCI_AD5/MDVAL (DDR ID)  
PCI_AD6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
L2  
M1  
M2  
L3  
N1  
N2  
M3  
P1  
PCI_AD7  
PCI_AD8  
PCI_AD9  
R1  
N3  
N4  
T1  
PCI_AD10  
PCI_AD11  
PCI_AD12  
PCI_AD13  
R2  
T2  
PCI_AD14/ECID_TMODE_IN  
PCI_AD15  
U1  
Y2  
PCI_AD16  
PCI_AD17  
Y1  
PCI_AD18  
AA2  
AB1  
PCI_AD19  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
56  
Freescale Semiconductor  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
PCI_AD20  
PCI_AD21  
PCI_AD22  
PCI_AD23  
PCI_AD24  
PCI_AD25  
PCI_AD26  
PCI_AD27  
PCI_AD28  
PCI_AD29  
PCI_AD30  
PCI_AD31  
PCI_C_BE0  
PCI_C_BE1  
PCI_C_BE2  
PCI_C_BE3  
PCI_PAR  
AB2  
Y4  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
5
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
AC1  
AA3  
AA4  
AD1  
AD2  
AB3  
AB4  
AE1  
AC3  
AC4  
M4  
T4  
Y3  
AC2  
U3  
PCI_FRAME  
PCI_TRDY  
PCI_IRDY  
PCI_STOP  
PCI_DEVSEL  
PCI_IDSEL  
PCI_SERR  
PCI_PERR  
PCI_REQ0  
W1  
W4  
5
W2  
5
V4  
5
W3  
5
P2  
5
U4  
IO  
IO  
IO  
I
V3  
5
AD4  
AE3  
AF3  
AD3  
AE4  
AF4  
L4  
PCI_REQ1/CPCI_HS_ES  
PCI_REQ2  
I
PCI_GNT0  
IO  
O
PCI_GNT1/CPCI_HS_LED  
PCI_GNT2/CPCI_HS_ENUM  
M66EN  
O
I
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
57  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Signal Package Pin Number Pin Type  
CE/GPIO  
Power  
Supply  
Notes  
GPIO_PA0/SER1_TXD[0]/TDMA_TXD[0]/USBTXN  
GPIO_PA1/SER1_TXD[1]/TDMA_TXD[1]/USBTXP  
GPIO_PA2/SER1_TXD[2]/TDMA_TXD[2]  
GPIO_PA3/SER1_TXD[3]/TDMA_TXD[3]  
GPIO_PA4/SER1_RXD[0]/TDMA_RXD[0]/USBRXP  
GPIO_PA5/SER1_RXD[1]/TDMA_RXD[1]/USBRXN  
GPIO_PA6/SER1_RXD[2]/TDMA_RXD[2]/USBRXD  
GPIO_PA7/SER1_RXD[3]/TDMA_RXD[3]  
GPIO_PA8/SER1_CD/TDMA_REQ/USBOE  
GPIO_PA9 TDMA_CLKO  
G3  
F3  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
F2  
E3  
E2  
E1  
D3  
D2  
D1  
C3  
C2  
C1  
B1  
GPIO_PA10/SER1_CTS/TDMA_RSYNC  
GPIO_PA11/TDMA_STROBE  
GPIO_PA12/SER1_RTS/TDMA_TSYNC  
GPIO_PA13/CLK9/BRGO9  
H4  
G4  
J4  
GPIO_PA14/CLK11/BRGO10  
GPIO_PA15/BRGO7  
GPIO_PA16/ LA0 (LBIU)  
K24  
K26  
G25  
GPIO_PA17/ LA1 (LBIU)  
GPIO_PA18/Enet2_TXD[0]/SER2_TXD[0]/  
TDMB_TXD[0]/LA2 (LBIU)  
GPIO_PA19/Enet2_TXD[1]/SER2_TXD[1]/  
TDMB_TXD[1]/LA3 (LBIU)  
G26  
H25  
H26  
C25  
C26  
D25  
D26  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
GPIO_PA20/Enet2_TXD[2]/SER2_TXD[2]/  
TDMB_TXD[2]/LA4 (LBIU)  
GPIO_PA21/Enet2_TXD[3]/SER2_TXD[3]/  
TDMB_TXD[3]/LA5 (LBIU)  
GPIO_PA22/Enet2_RXD[0]/SER2_RXD[0]/  
TDMB_RXD[0]/LA6 (LBIU)  
GPIO_PA23/Enet2_RXD[1]/SER2_RXD[1]/  
TDMB_RXD[1]/LA7 (LBIU)  
GPIO_PA24/Enet2_RXD[2]/SER2_RXD[2]/  
TDMB_RXD[2]/LA8 (LBIU)  
GPIO_PA25/Enet2_RXD[3]/SER2_RXD[3]/  
TDMB_RXD[3]/LA9 (LBIU)  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
58  
Freescale Semiconductor  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
GPIO_PA26/Enet2_RX_ER/SER2_CD/TDMB_REQ/  
LA10 (LBIU)  
E26  
IO  
OV  
DD  
GPIO_PA27/Enet2_TX_ER/TDMB_CLKO/LA11 (LBIU)  
F25  
E25  
IO  
IO  
OV  
OV  
DD  
DD  
GPIO_PA28/Enet2_RX_DV/SER2_CTS/  
TDMB_RSYNC/LA12 (LBIU)  
GPIO_PA29/Enet2_COL/RXD[4]/SER2_RXD[4]/  
TDMB_STROBE/LA13 (LBIU)  
J25  
F26  
IO  
IO  
OV  
OV  
DD  
DD  
GPIO_PA30/Enet2_TX_EN/SER2_RTS/  
TDMB_TSYNC/LA14 (LBIU)  
GPIO_PA31/Enet2_CRS/SDET LA15 (LBIU)  
J26  
IO  
IO  
OV  
OV  
DD  
DD  
GPIO_PB0/Enet3_TXD[0]/SER3_TXD[0]/  
TDMC_TXD[0]  
A13  
GPIO_PB1/Enet3_TXD[1]/SER3_TXD[1]/  
TDMC_TXD[1]  
B13  
A14  
B14  
B8  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
GPIO_PB2/Enet3_TXD[2]/SER3_TXD[2]/  
TDMC_TXD[2]  
GPIO_PB3/Enet3_TXD[3]/SER3_TXD[3]/  
TDMC_TXD[3]  
GPIO_PB4/Enet3_RXD[0]/SER3_RXD[0]/  
TDMC_RXD[0]  
GPIO_PB5/Enet3_RXD[1]/SER3_RXD[1]/  
TDMC_RXD[1]  
A8  
GPIO_PB6/Enet3_RXD[2]/SER3_RXD[2]/  
TDMC_RXD[2]  
A9  
GPIO_PB7/Enet3_RXD[3]/SER3_RXD[3]/  
TDMC_RXD[3]  
B9  
GPIO_PB8/Enet3_RX_ER/SER3_CD/TDMC_REQ  
GPIO_PB9/Enet3_TX_ER/TDMC_CLKO  
A11  
B11  
A10  
IO  
IO  
IO  
OV  
OV  
OV  
DD  
DD  
DD  
GPIO_PB10/Enet3_RX_DV/SER3_CTS/  
TDMC_RSYNC  
GPIO_PB11/Enet3_COL/RXD[4]/SER3_RXD[4]/  
TDMC_STROBE  
A15  
B12  
IO  
IO  
OV  
OV  
DD  
DD  
GPIO_PB12/Enet3_TX_EN/SER3_RTS/  
TDMC_TSYNC  
GPIO_PB13/Enet3_CRS/SDET  
GPIO_PB14/CLK12  
B15  
D9  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
GPIO_PB15 UPC1_TxADDR[4]  
GPIO_PB16 UPC1_RxADDR[4]  
D14  
B16  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
59  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
GPIO_PB17/BRGO1/CE_EXT_REQ1  
D10  
C10  
IO  
IO  
OV  
OV  
DD  
DD  
GPIO_PB18/Enet4_TXD[0]/SER4_TXD[0]/  
TDMD_TXD[0]  
GPIO_PB19/Enet4_TXD[1]/SER4_TXD[1]/  
TDMD_TXD[1]  
C9  
D8  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
GPIO_PB20/Enet4_TXD[2]/SER4_TXD[2]/  
TDMD_TXD[2]  
GPIO_PB21/Enet4_TXD[3]/SER4_TXD[3]/  
TDMD_TXD[3]  
C8  
GPIO_PB22/Enet4_RXD[0]/SER4_RXD[0]/  
TDMD_RXD[0]  
C15  
C14  
D13  
C13  
GPIO_PB23/Enet4_RXD[1]/SER4_RXD[1]/  
TDMD_RXD[1]  
GPIO_PB24/Enet4_RXD[2]/SER4_RXD[2]/  
TDMD_RXD[2]  
GPIO_PB25/Enet4_RXD[3]/SER4_RXD[3]/  
TDMD_RXD[3]  
GPIO_PB26/Enet4_RX_ER/SER4_CD/TDMD_REQ  
GPIO_PB27/Enet4_TX_ER/TDMD_CLKO  
C12  
D11  
D12  
IO  
IO  
IO  
OV  
OV  
OV  
DD  
DD  
DD  
GPIO_PB28/Enet4_RX_DV/SER4_CTS/  
TDMD_RSYNC  
GPIO_PB29/Enet4_COL/RXD[4]/SER4_RXD[4]/  
TDMD_STROBE  
D7  
IO  
IO  
OV  
OV  
DD  
DD  
GPIO_PB30/Enet4_TX_EN/SER4_RTS/  
TDMD_TSYNC  
C11  
GPIO_PB31/Enet4_CRS/SDET  
C7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
GPIO_PC0/UPC1_TxDATA[0]/SER5_TXD[0]  
GPIO_PC1/UPC1_TxDATA[1]/SER5_TXD[1]  
GPIO_PC2/UPC1_TxDATA[2]/SER5_TXD[2]  
GPIO_PC3/UPC1_TxDATA[3]/SER5_TXD[3]  
GPIO_PC4/UPC1_TxDATA[4]  
A18  
A19  
B18  
B19  
A24  
B24  
A23  
B26  
A21  
B20  
GPIO_PC5/UPC1_TxDATA[5]  
GPIO_PC6/UPC1_TxDATA[6]  
GPIO_PC7/UPC1_TxDATA[7]  
GPIO_PC8/UPC1_RxDATA[0]/SER5_RXD[0]  
GPIO_PC9/UPC1_RxDATA[1]/SER5_RXD[1]  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
60  
Freescale Semiconductor  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
GPIO_PC10/UPC1_RxDATA[2]/SER5_RXD[2]  
GPIO_PC11/UPC1_RxDATA[3]/SER5_RXD[3]  
GPIO_PC12/UPC1_RxDATA[4]  
B21  
A20  
D19  
C18  
D18  
A25  
C21  
D22  
C23  
D23  
C17  
D17  
C16  
D16  
A16  
D20  
E23  
B17  
B22  
A17  
A22  
C20  
A2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
GPIO_PC13/UPC1_RxDATA[5]/LSRCID0  
GPIO_PC14/UPC1_RxDATA[6]/LSRCID1  
GPIO_PC15/UPC1_RxDATA[7]/LSRCID2  
GPIO_PC16/UPC1_TxADDR[0]  
GPIO_PC17/UPC1_TxADDR[1]/LSRCID3  
GPIO_PC18/UPC1_TxADDR[2]/LSRCID4  
GPIO_PC19/UPC1_TxADDR[3]/LDVAL  
GPIO_PC20/UPC1_RxADDR[0]  
GPIO_PC21/UPC1_RxADDR[1]  
GPIO_PC22/UPC1_RxADDR[2]  
GPIO_PC23/UPC1_RxADDR[3]  
GPIO_PC24/UPC1_RxSOC/SER5_CD  
GPIO_PC25/UPC1_RxCLAV  
GPIO_PC26/UPC1_RxPRTY/CE_EXT_REQ2  
GPIO_PC27/UPC1_RxEN  
GPIO_PC28/UPC1_TxSOC  
GPIO_PC29/UPC1_TxCLAV/SER5_CTS  
GPIO_PC30/UPC1_TxPRTY  
GPIO_PC31/UPC1_TxEN/SER5_RTS  
GPIO_PD0/SPIMOSI  
GPIO_PD1/SPIMISO  
B2  
GPIO_PD2/SPICLK  
B3  
GPIO_PD3/SPISEL  
A3  
GPIO_PD4/SPI_MDIO/CE_MUX_MDIO  
GPIO_PD5/SPI_MDC/CE_MUX_MDC  
GPIO_PD6/CLK8/BRGO16/CE_EXT_REQ3  
GPIO_PD7/GTM1_TIN1/GTM2_TIN2/CLK5  
GPIO_PD8/GTM1_TGATE1/GTM2_TGATE2/CLK6  
GPIO_PD9/GTM1_TOUT1  
A4  
B4  
F24  
G24  
H24  
D24  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
61  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
GPIO_PD10/GTM1_TIN2/GTM2_TIN1/CLK17  
GPIO_PD11/GTM1_TGATE2/GTM2_TGATE1  
GPIO_PD12/GTM1_TOUT2/GTM2_TOUT1  
GPIO_PD13/GTM1_TIN3/GTM2_TIN4/BRGO8  
GPIO_PD14/GTM1_TGATE3/GTM2_TGATE4  
GPIO_PD15/GTM1_TOUT3  
J24  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
B25  
C4  
D4  
D5  
A5  
GPIO_PD16/GTM1_TIN4/GTM2_TIN3  
GPIO_PD17/GTM1_TGATE4/GTM2_TGATE3  
GPIO_PD18/GTM1_TOUT4/GTM2_TOUT3  
GPIO_PD19/CE_RISC1_INT/CE_EXT_REQ4  
GPIO_PD20/CLK18/BRGO6  
B5  
C5  
A6  
B6  
D21  
GPIO_PD21/CLK16/BRGO5/UPC1_CLKO  
GPIO_PD22/CLK4/BRGO9/UCC2_CLKO  
GPIO_PD23/CLK3/BRGO10/UCC3_CLKO  
GPIO_PD24/CLK10/BRGO2/UCC4_CLKO  
GPIO_PD25/CLK13/BRGO16/UCC5_CLKO  
GPIO_PD26/CLK2/BRGO4/UCC1_CLKO  
GPIO_PD27/CLK1/BRGO3  
C19  
A7  
B7  
A12  
B10  
E4  
F4  
GPIO_PD28/CLK19/BRGO11  
D15  
GPIO_PD29/CLK15/BRGO8  
C6  
GPIO_PD30/CLK14  
D6  
E24  
GPIO_PD31/CLK7/BRGO15  
Power anf Ground Supplies  
GV  
AA8, AA10, AA11, AA13,  
AA14, AA16, AA17, AA19,  
AA21, AB9, AB10, AB11,  
AB12, AB14, AB18, AB20,  
AB21, AC6, AC8, AC14, AC18  
GV  
DD  
DD  
DD  
OV  
E5, E6, E8, E9, E10, E12, E14,  
E15, E16, E18, E19, E20, E22,  
F5, F6, F8, F10, F14, F16, F19,  
F22, G22, H5, H6, H21, J5,  
J22, K21, K22, L5, L6, L22, M5,  
M22, N5, N21, N22, P6, P22,  
P23, R5, R23, T5, T21, T22,  
U6, U22, V5, V22, W22, Y5,  
AB5, AB6, AC5  
OV  
DD  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
62  
Freescale Semiconductor  
Package and Pin Listings  
Table 55. MPC8323E PBGA Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
V
V
K10, K11, K12, K13, K14, K15,  
K16, K17, L10, L17, M10, M17,  
N10, N17, P10, P17, R10, R17,  
T10, T17, U10, U11, U12, U13,  
U14, U15, U16, U17  
V
DD  
SS  
DD  
B23, E7, E11, E13, E17, E21,  
F11, F13, F17, F21, F23, G5,  
H22, K5, K6, L11, L12, L13,  
L14, L15, L16, L21, M11, M12,  
M13, M14, M15, M16, N6, N11,  
N12, N13, N14, N15, N16, P5,  
P11, P12, P13, P14, P15, P16,  
P21, R11, R12, R13, R14, R15,  
R16, R22, T6, T11, T12, T13,  
T14, T15, T16, U5, U21, V23,  
W5, W6, W21, W23, W24, Y22,  
AA5, AA6, AA22, AA25, AB7,  
AB13, AB19, AB22, AC10,  
AC12, AC16, AC20  
V
SS  
No Connect  
NC  
C22  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV  
.
DD  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG and local bus pins have weak internal pull-up P-FETs that are always enabled.  
.
DD  
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow the PCI specification’s recommendation.  
6. This pin must always be tied to GND.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
63  
Clocking  
22 Clocking  
Figure 43 shows the internal distribution of clocks within the MPC8323E.  
e300c2 core  
MPC8323E  
core_clk  
Core PLL  
to DDR  
csb_clk  
memory  
controller  
DDR  
Clock  
Divider  
MEMC_MCK  
MEMC_MCK  
DDR  
Memory  
Device  
/2  
QUICC  
Engine  
PLL  
ddr_clk  
ce_clk to QUICC  
Engine block  
Clock  
Unit  
lbc_clk  
System  
PLL  
/n  
Local Bus  
Memory  
Device  
LBC  
Clock  
LCLK[0:1]  
PCI_CLK/  
Divider  
to local bus  
csb_clk to rest  
of the device  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
1
0
PCI_SYNC_OUT  
Crystal  
PCI Clock  
Divider (÷2)  
CLKIN  
3
PCI_CLK_OUT[0:2]  
Figure 43. MPC8323E Clock Subsystem  
The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI_CLK, depending  
on whether the device is configured in PCI host or PCI agent mode, respectively.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
64  
Freescale Semiconductor  
Clocking  
22.1 Clocking in PCI Host Mode  
When the MPC8323E is configured as a PCI host device (RCWH[PCIHOST] = 1), CLKIN is its primary  
input clock. CLKIN feeds the PCI clock divider (÷2) and the PCI_SYNC_OUT and PCI_CLK_OUT  
multiplexors. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven  
out on the PCI_SYNC_OUT signal.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system.  
22.1.1 PCI Clock Outputs (PCI_CLK_OUT[0:2])  
When the MPC8323E is configured as a PCI host, it provides three separate clock output signals,  
PCI_CLK_OUT[0:2], for external PCI agents.  
When the device comes out of reset, the PCI clock outputs are disabled and are actively driven to a steady  
low state. Each of the individual clock outputs can be enabled (enable toggling of the clock) by setting its  
corresponding OCCR[PCICOEn] bit. All output clocks are phase-aligned to each other.  
22.2 Clocking in PCI Agent Mode  
When the MPC8323E is configured as a PCI agent device, PCI_CLK is the primary input clock. In agent  
mode, the CLKIN signal should be tied to GND, and the clock output signals, PCI_CLK_OUTn and  
PCI_SYNC_OUT, are not used.  
22.3 System Clock Domains  
As shown in Figure 43, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create three major clock domains:  
The coherent system bus clock (csb_clk)  
The QUICC Engine clock (ce_clk)  
The internal clock for the DDR controller (ddr_clk)  
The internal clock for the local bus controller (lb_clk)  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = [PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV)] × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV) is the CLKIN frequency.  
The csb_clk serves as the clock input to the e300c2 core. A second PLL inside the core multiplies up the  
csb_clk frequency to create the internal clock for the core (core_clk). The system and core PLL multipliers  
are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is  
loaded at power-on reset or by one of the hard-coded reset options. See the “Reset Configuration” section  
in the MPC8323E PowerQUICC™ II Pro Communications Processor Reference Manual for more  
information.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
65  
Clocking  
The ce_clk frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF)  
and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:  
When CLKIN is the primary input clock,  
ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)  
When PCI_CLK is the primary input clock,  
ce_clk = [primary clock input × CEPMF × (1 + ~CFG_CLKIN_DIV)] ÷ (1 + CEPDF)  
See the “QUICC Engine PLL Multiplication Factor” section and the “QUICC Engine PLL Division  
Factor” section in the MPC8323E PowerQUICC™ II Pro Communications Processor Reference Manual  
for more information.  
The DDR SDRAM memory controller operates with a frequency equal to twice the frequency of csb_clk.  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The local bus memory controller operates with a frequency equal to the frequency of csb_clk. Note that  
lbc_clk is not the external local bus frequency; lbc_clk passes through the LBC clock divider to create the  
external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBC clock divider ratio is  
controlled by LCCR[CLKDIV]. See the “LBC Bus Clock and Clock Ratios” section in the MPC8323E  
PowerQUICC™ II Pro Communications Processor Reference Manual for more information.  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. These units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 56 specifies which units have a configurable clock  
frequency. Refer to the “System Clock Control Register (SCCR)” section in the MPC8323E  
PowerQUICC™ II Pro Communications Processor Reference Manual for a detailed description.  
Table 56. Configurable Clock Units  
Unit  
Default Frequency  
Options  
Off, csb_clk/2, csb_clk/3  
Off, csb_clk  
Security core, I2C, SAP, TPR  
PCI and DMA complex  
csb_clk  
csb_clk  
NOTE  
Setting the clock ratio of these units must be performed prior to any access  
to them.  
Table 57 provides the operating frequencies for the 8323E PBGA under recommended operating  
conditions (see Table 2).  
Table 57. Operating Frequencies for PBGA  
1
Characteristic  
Max Operating Frequency  
Unit  
e300 core frequency (core_clk)  
333  
133  
200  
MHz  
MHz  
MHz  
Coherent system bus frequency (csb_clk)  
QUICC Engine frequency (ce_clk)  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
66  
Freescale Semiconductor  
Clocking  
Unit  
Table 57. Operating Frequencies for PBGA (continued)  
1
Characteristic  
Max Operating Frequency  
2
DDR1/DDR2 memory bus frequency (MCLK)  
133  
66  
MHz  
MHz  
MHz  
3
Local bus frequency (LCLKn)  
PCI input frequency (CLKIN or PCI_CLK)  
66  
1
The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk, MCLK,  
LCLK[0:2], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
The DDR1/DDR2 data rate is 2× the DDR1/DDR2 memory bus frequency.  
The local bus frequency is 1/2, 1/4, or 1/8 of the lb_clk frequency (depending on LCCR[CLKDIV]) which is in turn 1× or 2× the  
csb_clk frequency (depending on RCWL[LBCM]).  
2
3
22.4 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. Table 58 shows the multiplication factor  
encodings for the system PLL.  
NOTE  
System PLL VCO frequency = 2 × (CSB frequency) × (System PLL VCO  
divider).  
The VCO divider needs to be set properly so that the System PLL VCO  
frequency is in the range of 300–600 MHz.  
Table 58. System PLL Multiplication Factors  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0000  
0001  
Reserved  
Reserved  
× 2  
0010  
0011  
× 3  
0100  
× 4  
0101  
× 5  
0110  
× 6  
0111–1111  
Reserved  
As described in Section 22, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (csb_clk). Table 59  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
67  
Clocking  
shows the expected frequency values for the CSB frequency for select csb_clk to CLKIN/PCI_SYNC_IN  
ratios.  
Table 59. CSB Frequency Options  
2
Input Clock Frequency (MHz)  
csb_clk :  
CFG_CLKIN_DIV_B  
SPMF  
Input Clock  
25  
33.33  
66.67  
1
at Reset  
2
Ratio  
csb_clk Frequency (MHz)  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
2 : 1  
3 : 1  
133  
100  
4 : 1  
100  
125  
133  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
2 : 1  
133  
3 : 1  
100  
133  
4 : 1  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
1
2
CFG_CLKIN_DIV_B is only used for host mode; CLKIN must be tied low and  
CFG_CLKIN_DIV_B must be pulled up (high) in agent mode.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
68  
Freescale Semiconductor  
Clocking  
22.5 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 60 shows the encodings for RCWL[COREPLL]. COREPLL values not listed  
in Table 60 should be considered reserved.  
Table 60. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO Divider  
0-1  
nn  
2-5  
6
0000  
n
PLL bypassed  
(PLL off, csb_clk clocks  
core directly)  
PLL bypassed  
(PLL off, csb_clk clocks  
core directly)  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1:1  
1:1  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
1:1  
1:1  
1.5:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3:1  
NOTE  
Core VCO frequency = core frequency × VCO divider  
VCO divider (RCWL[COREPLL[0:1]]) must be set properly so that the  
core VCO frequency is in the range of 500–800 MHz.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
69  
Clocking  
22.6 QUICC Engine PLL Configuration  
The QUICC Engine PLL is controlled by the RCWL[CEPMF] and RCWL[CEPDF] parameters. Table 61  
shows the multiplication factor encodings for the QUICC Engine PLL.  
Table 61. QUICC Engine PLL Multiplication Factors  
QUICC Engine PLL Multiplication  
RCWL[CEPMF]  
RCWL[CEPDF]  
Factor = RCWL[CEPMF]/  
(1 + RCWL[CEPDF)  
00000–00001  
00010  
0
0
0
0
0
0
0
0
0
Reserved  
× 2  
00011  
× 3  
00100  
× 4  
00101  
× 5  
00110  
× 6  
00111  
× 7  
01000  
× 8  
01001–11111  
Reserved  
The RCWL[CEVCOD] denotes the QUICC Engine PLL VCO internal frequency as shown in Table 62.  
Table 62. QUICC Engine PLL VCO Divider  
RCWL[CEVCOD]  
VCO Divider  
00  
01  
10  
11  
4
8
2
Reserved  
NOTE  
The VCO divider (RCWL[CEVCOD]) must be set properly so that the  
QUICC Engine VCO frequency is in the range of 300–600 MHz. The  
QUICC Engine frequency is not restricted by the CSB and core frequencies.  
The CSB, core, and QUICC Engine frequencies should be selected  
according to the performance requirements.  
The QUICC Engine VCO frequency is derived from the following  
equations:  
ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)  
QUICC Engine VCO Frequency = ce_clk × VCO divider × (1 + CEPDF)  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
70  
Freescale Semiconductor  
Thermal  
22.7 Suggested PLL Configurations  
To simplify the PLL configurations, the MPC8323E might be separated into two clock domains. The first  
domain contain the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and  
has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock  
domains are independent, and each of their PLLs are configured separately. Both of the domains has one  
common input clock. Table 63 shows suggested PLL configurations for 33, 25, and 66 MHz input clocks.  
Table 63. Suggested PLL Configurations  
QUICC  
Input Clock  
Frequency  
(MHz)  
CSB  
Frequency  
(MHz)  
Core  
Frequency  
(MHz)  
Core  
PLL  
Engine  
Frequency  
(MHz)  
Conf No.  
SPMF  
CEMF  
CEDF  
1
2
3
4
5
6
0100  
0100  
0010  
0100  
0101  
0010  
0000100  
0000101  
0000100  
0000101  
0000101  
0000101  
0110  
1000  
0011  
0110  
1000  
0011  
0
0
0
0
0
0
33.33  
25  
133.33  
100  
266.66  
250  
200  
200  
200  
200  
200  
200  
66.67  
33.33  
25  
133.33  
133.33  
125  
266.66  
333.33  
312.5  
333.33  
66.67  
133.33  
23 Thermal  
This section describes the thermal specifications of the MPC8323E.  
23.1 Thermal Characteristics  
Table 64 provides the package thermal characteristics for the 516 27 × 27 mm PBGA of the MPC8323E.  
Table 64. Package Thermal Characteristics for PBGA  
Characteristic  
Board type  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection  
Junction-to-ambient natural convection  
Junction-to-ambient (@200 ft/min)  
Junction-to-ambient (@200 ft/min)  
Junction-to-board  
Single-layer board (1s)  
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
R
R
28  
21  
23  
18  
13  
9
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2 ,3  
1, 3  
1, 3  
4
θJA  
θJA  
R
R
θJMA  
θJMA  
R
θJB  
Junction-to-case  
R
5
θJC  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
71  
Thermal  
Table 64. Package Thermal Characteristics for PBGA (continued)  
Characteristic  
Board type  
Symbol  
Value  
Unit  
Notes  
Junction-to-package top  
Natural convection  
Ψ
2
°C/W  
6
JT  
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
23.2 Thermal Management Information  
For the following sections, P = (V × I ) + P , where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
23.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = junction temperature (°C)  
J
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
23.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
72  
Freescale Semiconductor  
Thermal  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
T = junction temperature (°C)  
J
T = board temperature at the package perimeter (°C)  
B
R
= junction-to-board thermal resistance (°C/W) per JESD51-8  
θJB  
P = power dissipation in package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
23.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
T = junction temperature (°C)  
J
T = thermocouple temperature on top of package (°C)  
T
Ψ
= thermal characterization parameter (°C/W)  
JT  
P = power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink is required to provide the necessary thermal management of  
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case  
thermal resistance and a case to ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
73  
Thermal  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case-to-ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
Rθ is device related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case-to-ambient thermal resistance, Rθ . For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit  
board, or change the thermal dissipation on the printed-circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, air flow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More  
detailed thermal models can be made available on request.  
Heat sink vendors include the following list:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-567-8082  
Alpha Novatech  
473 Sapena Ct. #12  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC) 818-842-7277  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
408-436-8770  
800-522-2800  
Internet: www.mei-thermal.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
74  
Freescale Semiconductor  
Thermal  
Wakefield Engineering  
33 Bridge St.  
603-635-5102  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01801  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
P.O. Box 994  
Midland, MI 48686-0997  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
800-347-4572  
Internet: www.microsi.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
23.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.  
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic  
surfaces and its performance verified under the application requirements.  
23.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back calculate the case temperature using a separate measurement of the thermal resistance of the  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
75  
System Design Information  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
T = T + (R  
× P )  
D
J
C
θJC  
where:  
T = case temperature of the package (°C)  
C
R
= junction-to-case thermal resistance (°C/W)  
θJC  
P = power dissipation (W)  
D
24 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8323E.  
24.1 System Clocking  
The MPC8323E includes three PLLs.  
The system PLL (AV 2) generates the system clock from the externally supplied CLKIN input.  
The frequency ratio between the system and CLKIN is selected using the system PLL ratio  
configuration bits as described in Section 22.4, “System PLL Configuration.”  
DD  
The e300 core PLL (AV 3) generates the core clock as a slave to the system clock. The frequency  
DD  
ratio between the e300 core clock and the system clock is selected using the e300 PLL ratio  
configuration bits as described in Section 22.5, “Core PLL Configuration.”  
The QUICC Engine PLL (AV 1) which uses the same reference as the system PLL. The QUICC  
DD  
Engine block generates or uses external sources for all required serial interface clocks.  
24.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins. The voltage  
level at each AV n pin should always be equivalent to V , and preferably these voltages are derived  
DD  
DD  
directly from V through a low frequency filter scheme such as the following.  
DD  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide five independent filter circuits as illustrated in Figure 44, one to each of the five AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
76  
Freescale Semiconductor  
System Design Information  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
Figure 44 shows the PLL power supply filter circuit.  
10 Ω  
V
AV (or L2AV  
)
DD  
DD  
DD  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors (<0.5 nH)  
GND  
Figure 44. PLL Power Supply Filter Circuit  
24.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the MPC8323E can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8323E system, and the  
MPC8323E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that  
the system designer place at least one decoupling capacitor at each V , OV , and GV pins of the  
DD  
DD  
DD  
MPC8323E. These decoupling capacitors should receive their power from separate V , OV , GV ,  
DD  
DD  
DD  
and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be  
placed directly under the device using a standard escape pattern. Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , OV , and GV planes, to enable quick recharging of the smaller chip capacitors.  
DD  
DD  
DD  
These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick  
response time necessary. They should also be connected to the power and ground planes through two vias  
to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).  
24.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to OV , or GV as required. Unused active high inputs  
DD  
DD  
should be connected to GND. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , GV , OV , and GND pins of the  
DD  
DD  
DD  
MPC8323E.  
24.5 Output Buffer DC Impedance  
The MPC8323E drivers are characterized over process, voltage, and temperature. For all buses, the driver  
2
is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OV  
0
DD  
or GND. Then, the value of each resistor is varied until the pad voltage is OV /2 (see Figure 45). The  
DD  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
77  
System Design Information  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
OV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
OV  
DD  
R
N
SW2  
SW1  
Pad  
Data  
R
P
OGND  
Figure 45. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
× I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) × I  
. Solving for the output impedance gives R  
=
2
1
2
source  
source  
R
× (V /V – 1). The drive current is then I  
= V /R  
.
term  
1
2
source  
1
source  
Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal OV , 105°C.  
DD  
Table 65. Impedance Characteristics  
Local Bus, Ethernet, DUART, Control,  
Configuration, Power Management  
Impedance  
PCI  
DDR DRAM  
Symbol  
Unit  
R
N
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
20 Target  
20 Target  
NA  
Z
Z
W
W
W
0
0
R
P
Differential  
Z
DIFF  
Note: Nominal supply voltages. See Table 1, T = 105°C.  
j
24.6 Configuration Pin Multiplexing  
The MPC8323E provides the user with power-on configuration options which can be set through the use  
of external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible  
configuration pins). These pins are generally used as output only pins in normal operation.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
78  
Freescale Semiconductor  
Ordering Information  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled  
and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these  
pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize  
the disruption of signal quality or speed for output pins thus configured.  
24.7 Pull-Up Resistor Requirements  
The MPC8323E requires high resistance pull-up resistors (10 kΩ is recommended) on open drain type pins  
2
including I C pins, Ethernet Management MDIO pin, and IPIC interrupt pins.  
For more information on required pull-up resistors and the connections required for the JTAG interface,  
see AN3361, MPC8321E/MPC8323E PowerQUICC™ Design Checklist,” Rev. 1.  
25 Ordering Information  
This section presents ordering information for the devices discussed in this document, and it shows an  
example of how the parts are marked. Ordering information for the devices fully covered by this document  
is provided in Section 25.1, “Part Numbers Fully Addressed by This Document.”  
25.1 Part Numbers Fully Addressed by This Document  
Table 66 provides the Freescale part numbering nomenclature for the MPC8323E family. Note that the  
individual part numbers correspond to a maximum processor core frequency. For available frequencies,  
contact your local Freescale sales office. In addition to the maximum processor core frequency, the part  
numbering scheme also includes the maximum effective DDR memory speed and QUICC Engine bus  
frequency. Each part number also contains a revision code which refers to the die mask revision number.  
Table 66. Part Numbering Nomenclature  
MPC nnnn  
VR  
AF  
D
C
A
E
C
QUICC  
Engine  
Frequency  
Product  
Part  
Encryption Temperature  
e300 Core  
Frequency  
DDR  
Frequency  
Revision  
Level  
2
Package  
1
3
Code Identifier Acceleration  
Range  
MPC  
8323  
Blank = Not  
included  
E = included  
Blank = 0 to  
105°C  
VR = Pb-free AD = 266 MHz D = 266 MHz C = 200 MHz Contact local  
PBGA  
ZQ = Pb  
PBGA  
AF = 333 MHz  
Freescale  
sales office  
C = –40 to  
105°C  
Notes:  
1. Contact local Freescale office on availability of parts with C temperature range.  
2. See Section 21, “Package and Pin Listings,for more information on available package types.  
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification  
support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core  
frequencies.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
79  
Document Revision History  
25.2 Part Marking  
Parts are marked as in the example shown in Figure 46.  
MPCnnnnetppaaar  
core/platform MHZ  
ATWLYYWW  
CCCCC  
*MMMMM  
YWWLAZ  
PBGA  
Notes:  
ATWLYYWW is the traceability code.  
CCCCC is the country code.  
MMMMM is the mask number.  
YWWLAZ is the assembly traceability code.  
Figure 46. Freescale Part Marking for PBGA Devices  
26 Document Revision History  
Table 67 provides a revision history for this hardware specification.  
Table 67. Document Revision History  
Rev.  
No.  
Date  
Substantive Change(s)  
3
12/2009  
• Removed references for note 4 from Table 1.  
• Added Figure 2 in Section 2.1.2, “Power Supply Voltage Specification.  
• Added symbol T in Table 2.  
A
• Added footnote 2 in Table 2.  
• Added a note in Section 4, “Clock Input Timing for rise/fall time of QE input pins.  
• Modified CLKIN, PCI_CLK rise/fall time parameters in Table 8. Modified min value of t  
• Modified Figure 43.  
in Table 19.  
MCK  
• Modified formula for ce_clk calculation in Section 22.3, “System Clock Domains.  
• Added a note in Section 22.4, “System PLL Configuration.  
• Removed the signal ECID_TMODE_IN from Table 55.  
• Removed all references of RST signals from Table 55.  
2
4/2008  
• Removed Figures 2 and 3 overshoot and undershoot voltage specs from Section 2.1.2, “Power Supply  
Voltage Specification,” and footnotes 4 and 5 from Table 1.  
• Corrected QUIESCE signal to be an output signal in Table 55.  
• Added column for GVDD (1.8 V) - DDR2 - to Table 6 with 0.212-W typical power dissipation.  
• Added Figure 4 DDR input timing diagram.  
• Removed CE_TRB* and CE_PIO* signals from Table 55.  
• Added three local bus AC specifications to Table 30 (duty cycle, jitter, delay between input clock and  
local bus clock).  
• Added row in Table 2 stating junction temperature range of 0 to 105°C.  
• Modified Section 2.2, “Power Sequencing,” to include PORESET requirement.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
80  
Freescale Semiconductor  
Document Revision History  
Table 67. Document Revision History  
Substantive Change(s)  
Rev.  
No.  
Date  
1
0
6/2007  
6/2007  
Correction to descriptive text in Section 2.2.  
Initial release.  
MPC8323E PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 3  
Freescale Semiconductor  
81  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,  
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.  
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are  
trademarks of Freescale Semiconductor, Inc. All other product or service  
names are the property of their respective owners. The Power Architecture  
and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org. IEEE  
802.11i, 802.3, and 1149.1 are registered trademarks of the Institute of  
Electrical and Electronics Engineers, Inc. (IEEE). This product is not  
endorsed or approved by the IEEE.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
1-800 441-2447 or  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© 2010 Freescale Semiconductor, Inc.  
Document Number: MPC8323EEC  
Rev. 3  
02/2010  

相关型号:

MPC8323VRADDC

PowerQUICC⑩ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323VRADDCA

PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323VRAFDC

PowerQUICC⑩ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323VRAFDCA

PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323ZQADDC

PowerQUICC⑩ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323ZQADDCA

PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323ZQAFDC

PowerQUICC⑩ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8323ZQAFDCA

PowerQUICC™ II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8343A

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
NXP

MPC8343CVRADDB

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
FREESCALE

MPC8343CVRADDB

PowerQUICC, 32 Bit Power Arch SoC, 266MHz, DDR1/2, PCI, 1GbE, USB, -40 to 105C, Rev 2
NXP

MPC8343CVRADDX

32-BIT, 266MHz, MICROPROCESSOR, PBGA620, 29 X 29 MM, 2.46 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-620
NXP