MPC885CZP133 [FREESCALE]

Hardware Specifications; 硬件规格
MPC885CZP133
型号: MPC885CZP133
厂家: Freescale    Freescale
描述:

Hardware Specifications
硬件规格

文件: 总92页 (文件大小:1505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC885EC  
Rev. 3, 07/2004  
Freescale Semiconductor  
MPC885/MPC880  
Hardware Specifications  
Contents  
This hardware specification contains detailed information on  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 9  
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . 10  
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7. Thermal Calculation and Measurement . . . . . . . . . . 12  
8. Power Supply and Power Sequencing . . . . . . . . . . . 14  
9. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
10. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
11. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 44  
12. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 46  
13. UTOPIA AC Electrical Specifications . . . . . . . . . . . 69  
15. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 71  
16. Mechanical Data and Ordering Information . . . . . . . 75  
17. Document Revision History . . . . . . . . . . . . . . . . . . . 89  
power considerations, DC/AC electrical characteristics, and AC  
timing specifications for the MPC885/MPC880 (refer to Table 1  
for the list of devices). The MPC885 is the superset device of the  
MPC885/MPC880 family. The CPU on the MPC885/MPC880 is  
a 32-bit PowerPC™ core that incorporates memory management  
units (MMUs) and instruction and data caches and that  
implements the PowerPC instruction set.  
1 Overview  
The MPC885/880 is a versatile single-chip integrated  
microprocessor and peripheral combination that can be used in a  
variety of controller applications and communications and  
networking systems. The MPC885/MPC880 provides enhanced  
ATM functionality, an additional fast Ethernet controller, a USB,  
and an encryption block.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
Features  
Table 1 shows the functionality supported by the members of the MPC885 family.  
Table 1. MPC885 Family  
Cache  
Ethernet  
Security  
Engine  
Part  
SCC SMC USB  
ATM Support  
I Cache D Cache 10BaseT 10/100  
MPC885  
8 Kbyte 8 Kbyte Up to 3  
8 Kbyte 8 Kbyte Up to 2  
2
2
3
2
2
2
1
1
Serial ATM and  
UTOPIA interface  
Yes  
No  
MPC880  
Serial ATM and  
UTOPIA interface  
2 Features  
The MPC885/880 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx core, a system  
integration unit (SIU), and a communications processor module (CPM).  
The following list summarizes the key MPC885/880 features:  
Embedded MPC8xx core up to 133 MHz  
Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)  
— The 133-MHz core frequency supports 2:1 mode only.  
— The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes.  
Single-issue, 32-bit core (compatible with the PowerPC architecture definition) with thirty-two 32-bit  
general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch and without conditional execution.  
— 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)  
– Instruction cache is two-way, set-associative with 256 sets in 2 blocks  
– Data cache is two-way, set-associative with 256 sets  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache  
blocks.  
– Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and  
are lockable on a cache block basis.  
— MMUs with 32-entry TLB, fully associative instruction and data TLBs  
— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces  
and 16 protection groups  
— Advanced on-chip emulation debug mode  
Provides enhanced ATM functionality found on the MPC862 and MPC866 families and includes the  
following:  
— Improved operation, administration and maintenance (OAM) support  
— OAM performance monitoring (PM) support  
— Multiple APC priority levels available to support a range of traffic pace requirements  
— Port-to-port switching capability without the need for RAM-based microcode  
— Simultaneous MII (100BaseT) and UTOPIA (half- or full -duplex) capability  
— Optional statistical cell counters per PHY  
MPC885/MPC880 Hardware Specifications, Rev. 3  
2
Freescale Semiconductor  
Features  
— UTOPIA L2-compliant interface with added FIFO buffering to reduce the total cell  
transmission time and multi-PHY support. (The earlier UTOPIA L1 specification is also  
supported.)  
2
— Parameter RAM for both SPI and I C can be relocated without RAM-based microcode  
— Supports full-duplex UTOPIA master (ATM side) and slave (PHY side) operations using a split  
bus  
— AAL2/VBR functionality is ROM-resident.  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
32 address lines  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank.  
— Up to 30 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory  
devices  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, and one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbyte–256 Mbyte)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting.  
— Interrupt can be masked on reference match and event capture  
Two fast Ethernet controllers (FEC)—Two 10/100 Mbps Ethernet/IEEE 802.3 CDMA/CS that  
interface through MII and/or RMII interfaces  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Clock synthesizer  
— Decrementer and time base  
— Reset controller  
— IEEE 1149.1 test access port (JTAG)  
Security engine is optimized to handle all the algorithms associated with IPsec, SSL/TLS, SRTP,  
802.11i, and iSCSI processing. Available on the MPC885, the security engine contains a  
crypto-channel, a controller, and a set of crypto hardware accelerators (CHAs). The CHAs are:  
— Data encryption standard execution unit (DEU)  
– DES, 3DES  
– Two key (K1, K2, K1) or three key (K1, K2, K3)  
– ECB and CBC modes for both DES and 3DES  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
3
Features  
— Advanced encryption standard unit (AESU)  
– Implements the Rinjdael symmetric key cipher  
– ECB, CBC, and counter modes  
– 128-, 192-, and 256- bit key lengths  
— Message digest execution unit (MDEU)  
– SHA with 160- or 256-bit message digest  
– MD5 with 128-bit message digest  
– HMAC with either algorithm  
— Crypto-channel supporting multi-command descriptor chains  
— Integrated controller managing internal resources and bus mastering  
— Buffer size of 256 bytes for the DEU, AESU, and MDEU, with flow control for large data sizes  
Interrupts  
— Six external interrupt request (IRQ) lines  
— 12 port pins with interrupt capability  
— 23 internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
Communications processor module (CPM)  
— RISC controller  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and  
RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— 8-Kbytes of dual-port RAM  
— Several serial DMA (SDMA) channels to support the CPM  
— Three parallel I/O registers with open-drain capability  
On-chip 16 × 16 multiply accumulate controller (MAC)  
— One operation per clock (two-clock latency, one-clock blockage)  
— MAC operates concurrently with other instructions  
— FIR loop—Four clocks per four multiplies  
Four baud rate generators  
— Independent (can be connected to any SCC or SMC)  
— Allow changes during operation  
— Autobaud support option  
Up to three serial communication controllers (SCCs) supporting the following protocols:  
— Serial ATM capability on SCCs  
— Optional UTOPIA port on SCC4  
— Ethernet/IEEE 802.3 optional on the SCC(s) supporting full 10-Mbps operation  
— HDLC/SDLC  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support point-to-point protocol (PPP)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
4
Freescale Semiconductor  
Features  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame based with optional cyclic redundancy check (CRC))  
Up to two serial management channels (SMCs) supporting the following protocols:  
— UART (low-speed operation)  
— Transparent  
— General circuit interface (GCI) controller  
— Provide management for BRI devices as GCI controller in time-division multiplexed (TDM)  
channels  
Universal serial bus (USB)—Supports operation as a USB function endpoint, a USB host controller,  
or both for testing purposes (loop-back diagnostics)  
— USB 2.0 full-/low-speed compatible  
— The USB function mode has the following features:  
– Four independent endpoints support control, bulk, interrupt, and isochronous data transfers.  
– CRC16 generation and checking  
– CRC5 checking  
– NRZI encoding/decoding with bit stuffing  
– 12- or 1.5-Mbps data rate  
– Flexible data buffers with multiple buffers per frame  
– Automatic retransmission upon transmit error  
— The USB host controller has the following features:  
– Supports control, bulk, interrupt, and isochronous data transfers  
– CRC16 generation and checking  
– NRZI encoding/decoding with bit stuffing  
– Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data  
rate configuration). Note that low-speed operation requires an external hub.  
– Flexible data buffers with multiple buffers per frame  
– Supports local loop back mode for diagnostics (12 Mbps only)  
Serial peripheral interface (SPI)  
— Supports master and slave modes  
— Supports multiple-master operation on the same bus  
2
Inter-integrated circuit (I C) port  
— Supports master and slave modes  
— Supports a multiple-master environment  
Time-slot assigner (TSA)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
5
Features  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, and clocking  
— Allows dynamic changes  
— Can be internally connected to four serial channels (two SCCs and two SMCs)  
Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on MPC885/880 and other MPC8xx devices  
PCMCIA interface  
— Master (socket) interface, release 2.1-compliant  
— Supports two independent PCMCIA sockets  
— 8 memory or I/O windows supported  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two operate on  
data  
— Supports conditions: = < >  
— Each watchpoint can generate a break point internally.  
Normal high and normal low power modes to conserve power  
1.8-V core and 3.3-V I/O operation  
The MPC885/880 comes in a 357-pin ball grid array (PBGA) package.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
6
Freescale Semiconductor  
Features  
The MPC885 block diagram is shown in Figure 1.  
Instruction  
Bus  
8-Kbyte  
Instruction Cache  
System Interface Unit (SIU)  
Unified  
Bus  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
System Functions  
Data MMU  
32-Entry DTLB  
Load/Store  
Bus  
PCMCIA-ATA Interface  
Slave/Master IF  
Security Engine  
Fast Ethernet  
Controller  
Controller  
Channel  
AESU DEU MDEU  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
BaseT  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
Virtual IDMA  
and  
Serial DMAs  
ROM  
Parallel Interface Port  
Timers  
MIII/RMII  
SCC4/  
UTOPIA  
I2C  
USB  
SCC2  
SCC3  
SMC1  
SMC2  
SPI  
Time Slot Assigner  
Serial Interface  
Figure 1. MPC885 Block Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
7
Features  
The MPC880 block diagram is shown in Figure 2.  
Instruction  
Bus  
8-Kbyte  
Instruction Cache  
System Interface Unit (SIU)  
Unified  
Bus  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
System Functions  
Data MMU  
32-Entry DTLB  
Load/Store  
Bus  
PCMCIA-ATA Interface  
Slave/Master IF  
Fast Ethernet  
Controller  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
BaseT  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
Virtual IDMA  
and  
Serial DMAs  
ROM  
Parallel Interface Port  
Timers  
MIII/RMII  
SCC4/  
UTOPIA  
I2C  
USB  
SCC3  
SMC1  
SMC2  
SPI  
Time Slot Assigner  
Serial Interface  
Figure 2. MPC880 Block Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
8
Freescale Semiconductor  
Maximum Tolerated Ratings  
3 Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC885/880. Table 2  
displays the maximum tolerated ratings, and Table 3 displays the operating temperatures.  
Table 2. Maximum Tolerated Ratings  
Symbol  
Value  
Unit  
Rating  
Supply voltage 1  
VDDH  
VDDL  
–0.3 to 4.0  
–0.3 to 2.0  
–0.3 to 2.0  
<100  
V
V
VDDSYN  
V
Difference  
between  
VDDL and  
VDDSYN  
mV  
Input voltage 2  
Vin  
GND – 0.3 to  
VDDH  
V
Storage temperature range  
Tstg  
–55 to +150  
°C  
1 The power supply of the device must start its ramp from 0.0 V.  
2 Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum  
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may  
affect device reliability or cause permanent damage to the device. See Section 8, “Power Supply and Power  
Sequencing.”  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power  
up and normal operation (that is, if the MPC885/880 is unpowered, a voltage greater than 2.5 V must not be applied  
to its inputs).  
Table 3. Operating Temperatures  
Rating  
Symbol  
Value  
Unit  
Temperature 1 (standard)  
Temperature (extended)  
TA(min)  
Tj(max)  
TA(min)  
Tj(max)  
0
°C  
°C  
°C  
°C  
95  
–40  
100  
1 Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed as  
junction temperature, Tj.  
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for example, either GND or V ).  
DD  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
9
Thermal Characteristics  
4 Thermal Characteristics  
Table 4 shows the thermal characteristics for the MPC885/880.  
Table 4. MPC885/880 Thermal Resistance Data  
Environment  
Single-layer board (1s)  
Rating  
Symbol  
Value  
Unit  
2
Junction-to-ambient 1  
Natural convection  
RθJA  
37  
25  
30  
22  
17  
10  
2
°C/W  
3
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
RθJMA  
3
Airflow (200 ft/min)  
RθJMA  
3
RθJMA  
Junction-to-board 4  
RθJB  
RθJC  
ΨJT  
5
Junction-to-case  
Junction-to-package top 6  
Natural convection  
Airflow (200 ft/min)  
ΨJT  
2
1 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal  
resistance.  
2 Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3 Per JEDEC JESD51-6 with the board horizontal  
4 Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed  
pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated  
value from the junction to the exposed pad without contact resistance.  
6 Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
5 Power Dissipation  
Table 5 provides information on power dissipation. The modes are 1:1, where CPU and bus speeds are equal, and  
2:1, where CPU frequency is twice bus speed.  
Table 5. Power Dissipation (PD)  
Bus  
Mode  
CPU  
Frequency  
Die Revision  
Typical 1  
Maximum 2  
Unit  
66 MHz  
80 MHz  
133 MHz  
310  
350  
430  
390  
430  
495  
mW  
mW  
mW  
1:1  
2:1  
0
1 Typical power dissipation at VDDL = VDDSYN = 1.8 V, and VDDH is at 3.3 V.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
10  
Freescale Semiconductor  
DC Characteristics  
2 Maximum power dissipation at VDDL = VDDSYN= 1.9 V, and VDDH is at 3.5 V.  
NOTE  
The values in Table 5 represent V  
-based power dissipation and do not  
DDL  
include I/O power dissipation over V  
. I/O power dissipation varies  
DDH  
widely by application due to buffer current, depending on external  
circuitry.  
The V  
power dissipation is negligible.  
DDSYN  
6 DC Characteristics  
Table 6 provides the DC electrical characteristics for the MPC885/880.  
Table 6. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Operating voltage  
V
DDL (Core)  
1.7  
3.135  
1.7  
1.9  
3.465  
1.9  
V
V
VDDH (I/O)  
1
VDDSYN  
V
Difference  
between  
VDDL and  
VDDSYN  
100  
mV  
Input high voltage (all inputs except EXTAL and EXTCLK) 2  
Input low voltage 3  
VIH  
VIL  
2.0  
3.465  
0.8  
V
V
V
GND  
EXTAL, EXTCLK input high voltage  
VIHC  
0.7*(VDD  
VDDH  
)
H
Input leakage current, Vin = 5.5 V (except TMS, TRST, DSCK and  
DSDI pins) for 5-V tolerant pins 2  
Iin  
IIn  
IIn  
100  
10  
µA  
µA  
µA  
Input leakage current, Vin = VDDH (except TMS, TRST, DSCK, and  
DSDI)  
Input leakage current, Vin = 0 V (except TMS, TRST, DSCK and DSDI  
pins)  
10  
Input capacitance 4  
Cin  
20  
pF  
V
Output high voltage, IOH = –2.0 mA,  
except XTAL and open-drain pins  
VOH  
2.4  
Output low voltage  
VOL  
0.5  
V
IOL = 2.0 mA (CLKOUT)  
IOL = 3.2 mA 5  
IOL = 5.3 mA 6  
IOL = 7.0 mA (TXD1/PA14, TXD2/PA12)  
IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)  
1 The difference between VDDL and VDDSYN cannot be more than 100 mV.  
2 The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], PE(14:31), TDI, TDO, TCK, TRST, TMS, MII1_TXEN, MII_MDIO  
are 5-V tolerant. The minimum voltage is still 2.0 V.  
3 VIL(max) for the I2C interface is 0.8 V rather than the 1.5 V as specified in the I2C standard.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
11  
Thermal Calculation and Measurement  
4 Input capacitance is periodically sampled.  
5 A(0:31), TSIZ0/REG, TSIZ1, D(0:31), IRQ(2:4), IRQ6, RD/WR, BURST, IP_B(3:7), PA(0:11), PA13, PA15, PB(14:31),  
PC(4:15), PD(3:15), PE(14:31), MII1_CRS, MII_MDIO, MII1_TXEN, MII1_COL.  
6 BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:7), WE(0:3), BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,  
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A,  
OP(0:3) BADDR(28:30)  
7 Thermal Calculation and Measurement  
For the following discussions, P = (VDDL × I  
) + PI/O, where PI/O is the power dissipation of the I/O drivers.  
D
DDL  
NOTE  
The V  
power dissipation is negligible.  
DDSYN  
7.1 Estimation with Junction-to-Ambient Thermal Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation:  
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = ambient temperature ºC  
A
R
= package junction-to-ambient thermal resistance (ºC/W)  
θJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation  
of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor  
of two (in the quantity T –T ) are possible.  
J
A
7.2 Estimation with Junction-to-Case Thermal Resistance  
Historically, thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance  
and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJC θCA  
θJA  
where:  
R
R
R
= junction-to-ambient thermal resistance (ºC/W)  
= junction-to-case thermal resistance (ºC/W)  
= case-to-ambient thermal resistance (ºC/W)  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user adjusts the thermal environment to affect the  
θJC  
case-to-ambient thermal resistance, R  
. For instance, the user can change the airflow around the device, add a  
θCA  
heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the  
printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks  
where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most  
packages, a better model is required.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
12  
Freescale Semiconductor  
Thermal Calculation and Measurement  
7.3 Estimation with Junction-to-Board Thermal Resistance  
A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor  
model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case  
covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the  
top of the package. The junction-to-board thermal resistance describes the thermal performance when most  
of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of  
most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see  
Figure 3.  
Figure 3. Effect of Board Temperature Rise on Thermal Behavior  
If the board temperature is known, an estimate of the junction temperature in the environment can be made  
using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
R
= junction-to-board thermal resistance (ºC/W)  
θJB  
T = board temperature ºC  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored,  
acceptable predictions of junction temperature can be made. For this method to work, the board and board  
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,  
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground  
plane.  
7.4 Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple  
two resistor model can be used with the thermal simulation of the application [2], or a more accurate and  
complex model of the package can be used in the thermal simulation.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
13  
Power Supply and Power Sequencing  
7.5 Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the thermal  
characterization parameter (Ψ ) can be used to determine the junction temperature with a measurement of the  
JT  
temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
Ψ
= thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per the JESD51-2 specification published by JEDEC using a 40  
gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned  
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple  
junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the  
package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.  
7.6 References  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd  
(415) 964-5111  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) specifications  
(Available from Global Engineering Documents)  
800-854-7179 or  
303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its  
Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
8 Power Supply and Power Sequencing  
This section provides design considerations for the MPC885/880 power supply. The MPC885/880 has a core voltage  
(V  
) and PLL voltage (V  
), which both operate at a lower voltage than the I/O voltage V  
. The I/O  
DDL  
DDSYN  
DDH  
section of the MPC885/880 is supplied with 3.3 V across V  
and V (GND).  
DDH  
SS  
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and  
MII_MDIO are 5-V tolerant. All inputs cannot be more than 2.5 V greater than V . In addition, 5-V tolerant pins  
DDH  
can not exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down  
and normal operation.  
One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at  
different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the  
manner in which different voltages are derived. The following restrictions apply:  
V
V
must not exceed V  
during power up and power down.  
DDL  
DDL  
DDH  
must not exceed 1.9 V, and V  
must not exceed 3.465 V.  
DDH  
MPC885/MPC880 Hardware Specifications, Rev. 3  
14  
Freescale Semiconductor  
Layout Practices  
These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge  
(ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system  
power supply design does not control the voltage sequencing, the circuit shown Figure 4 can be added to meet these  
requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and  
core power supplies on power up, and the 1N5820 diodes regulate the maximum potential difference on power  
down.  
VDDH  
VDDL  
MUR420  
1N5820  
Figure 4. Example Voltage Sequencing Circuit  
9 Layout Practices  
Each V pin on the MPC885/880 should be provided with a low-impedance path to the board’s supply. Each GND  
DD  
pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups  
of logic on chip. The V power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors  
DD  
located as close as possible to the four sides of the package. Each board designed should be characterized and  
additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed  
circuit traces connecting to chip V and GND should be kept to less than half an inch per capacitor lead. At a  
DD  
minimum, a four-layer board employing two inner layers as V and GND planes should be used.  
DD  
All output pins on the MPC885/880 have fast rise and fall times. Printed circuit (PC) trace interconnection length  
should be minimized in order to minimize undershoot and reflections caused by these fast output switching times.  
This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches  
are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to  
the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher  
capacitive loads because these loads create higher transient currents in the V and GND circuits. Pull up all unused  
DD  
inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the  
PLL supply pins. For more information, please refer to the MPC885 Users Manual, Section 14.4.3, “Clock  
Synthesizer Power (V  
, V  
, V  
)”.  
DDSYN  
SSSYN  
SSSYN1  
10 Bus Signal Timing  
The maximum bus speed supported by the MPC885/880 is 80 MHz. Higher-speed parts must be operated in  
half-speed bus mode (for example, an MPC885/880 used at 133 MHz must be configured for a 66 MHz bus). Table 7  
shows the frequency ranges for standard part frequencies in 1:1 bus mode, and Table 8 shows the frequency ranges  
for standard part frequencies in 2:1 bus mode.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
15  
Freescale Semiconductor  
Bus Signal Timing  
Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)  
Part Frequency 66 MHz  
80 MHz  
Min  
Max  
Min  
Max  
Core frequency  
Bus frequency  
40  
40  
66.67  
66.67  
40  
40  
80  
80  
Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)  
Part Frequency 66 MHz 80 MHz 133 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
Core frequency  
Bus frequency  
40  
20  
66.67  
33.33  
40  
20  
80  
40  
40  
20  
133  
66  
Table 9 provides the timings for the MPC885/880 at 33-, 40-, 66-, and 80-MHz bus operation.  
The timing for the MPC885/880 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum  
delays. CLKOUT assumes a 100-pF load maximum delay.  
Table 9. Bus Operation Timings  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min Max Min Max Min Max Min Max  
B1  
Bus period (CLKOUT), see Table 7  
ns  
ns  
B1a EXTCLK to CLKOUT phase skew - If  
CLKOUT is an integer multiple of  
–2  
+2  
–2  
+2  
–2  
+2  
–2  
+2  
EXTCLK, then the rising edge of EXTCLK  
is aligned with the rising edge of CLKOUT.  
For a non-integer multiple of EXTCLK, this  
synchronization is lost, and the rising  
edges of EXTCLK and CLKOUT have a  
continuously varying phase skew.  
B1b CLKOUT frequency jitter peak-to-peak  
B1c Frequency jitter on EXTCLK  
1
0.50  
4
1
0.50  
4
1
0.50  
4
1
0.50  
4
ns  
%
B1d CLKOUT phase jitter peak-to-peak  
ns  
for OSCLK 15 MHz  
CLKOUT phase jitter peak-to-peak  
for OSCLK < 15 MHz  
5
5
5
5
ns  
ns  
ns  
B2  
B3  
CLKOUT pulse width low  
(MIN = 0.4 × B1, MAX = 0.6 × B1)  
12.1 18.2 10.0 15.0  
12.1 18.2 10.0 15.0  
6.1  
6.1  
9.1  
9.1  
5.0  
5.0  
7.5  
7.5  
CLKOUT pulse width high  
(MIN = 0.4 × B1, MAX = 0.6 × B1)  
B4  
B5  
CLKOUT rise time  
CLKOUT fall time  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
ns  
ns  
MPC885/MPC880 Hardware Specifications, Rev. 3  
16  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B7  
CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31) output hold  
(MIN = 0.25 × B1)  
7.60  
6.30  
3.80  
3.13  
ns  
B7a CLKOUT to TSIZ(0:1), REG, RSV, BDIP,  
7.60  
7.60  
6.30  
6.30  
3.80  
3.80  
3.13  
3.13  
ns  
ns  
PTR output hold (MIN = 0.25 × B1)  
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1),  
VF(0:2) IWP(0:2), LWP(0:1), STS output  
hold (MIN = 0.25 × B1)  
B8  
CLKOUT to A(0:31), BADDR(28:30)  
RD/WR, BURST, D(0:31) valid  
(MAX = 0.25 × B1 + 6.3)  
13.80  
12.50  
10.00  
9.43  
ns  
B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3)  
13.80  
13.80  
12.50  
12.50  
10.00  
10.00  
9.43  
9.43  
ns  
ns  
BDIP, PTR valid (MAX = 0.25 × B1 + 6.3)  
B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2),  
IWP(0:2), FRZ, LWP(0:1), STS valid 4  
(MAX = 0.25 × B1 + 6.3)  
B9  
CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31), TSIZ(0:1), REG,  
RSV, AT(0:3), PTR High-Z  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43  
ns  
(MAX = 0.25 × B1 + 6.3)  
B11 CLKOUT to TS, BB assertion  
7.60 13.60 6.30 12.30 3.80 9.80 3.13 9.13  
ns  
ns  
(MAX = 0.25 × B1 + 6.0)  
B11a CLKOUT to TA, BI assertion (when driven 2.50 9.30 2.50 9.30 2.50 9.30 2.50 9.30  
by the memory controller or PCMCIA  
interface) (MAX = 0.00 × B1 + 9.30 1)  
B12 CLKOUT to TS, BB negation  
7.60 12.30 6.30 11.00 3.80 8.50 3.13 7.92  
ns  
ns  
(MAX = 0.25 × B1 + 4.8)  
B12a CLKOUT to TA, BI negation (when driven 2.50 9.00 2.50 9.00 2.50 9.00  
by the memory controller or PCMCIA  
2.5  
9.00  
interface) (MAX = 0.00 × B1 + 9.00)  
B13 CLKOUT to TS, BB High-Z  
7.60 21.60 6.30 20.30 3.80 14.00 3.13 12.93 ns  
(MIN = 0.25 × B1)  
B13a CLKOUT to TA, BI High-Z (when driven by 2.50 15.00 2.50 15.00 2.50 15.00 2.5 15.00 ns  
the memory controller or PCMCIA  
interface) (MIN = 0.00 × B1 + 2.5)  
B14 CLKOUT to TEA assertion  
2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00  
ns  
(MAX = 0.00 × B1 + 9.00)  
B15 CLKOUT to TEA High-Z (MIN = 0.00 × B1 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
+ 2.50)  
B16 TA, BI valid to CLKOUT (setup time)  
6.00  
6.00  
6.00  
6
ns  
(MIN = 0.00 × B1 + 6.00)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
17  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
4.50  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B16a TEA, KR, RETRY, CR valid to CLKOUT  
4.50  
4.00  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
4.50  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
4.50  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(setup time) (MIN = 0.00 × B1 + 4.5)  
B16b BB, BG, BR, valid to CLKOUT (setup time) 4.00  
2 (4MIN = 0.00 × B1 + 0.00)  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid 1.00  
(hold time) (MIN = 0.00 × B1 + 1.00 3)  
B17a CLKOUT to KR, RETRY, CR valid (hold  
2.00  
6.00  
time) (MIN = 0.00 × B1 + 2.00)  
B18 D(0:31) valid to CLKOUT rising edge  
(setup time) 4 (MIN = 0.00 × B1 + 6.00)  
B19 CLKOUT rising edge to D(0:31) valid (hold 1.00  
time) 4 (MIN = 0.00 × B1 + 1.00 5)  
B20 D(0:31) valid to CLKOUT falling edge  
4.00  
2.00  
(setup time) 6 (MIN = 0.00 × B1 + 4.00)  
B21 CLKOUT falling edge to D(0:31) valid  
(hold time) 6 (MIN = 0.00 × B1 + 2.00)  
B22 CLKOUT rising edge to CS asserted  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43  
GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)  
B22a CLKOUT falling edge to CS asserted  
GPCM ACS = 10, TRLX = 0  
8.00  
8.00  
8.00  
8.00  
(MAX = 0.00 × B1 + 8.00)  
B22b CLKOUT falling edge to CS asserted  
GPCM ACS = 11, TRLX = 0, EBDF = 0  
(MAX = 0.25 × B1 + 6.3)  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43  
ns  
B22c CLKOUT falling edge to CS asserted  
GPCM ACS = 11, TRLX = 0, EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
10.90 18.00 10.90 16.00 5.20 12.30 4.69 10.93 ns  
B23 CLKOUT rising edge to CS negated  
GPCM read access, GPCM write access  
ACS = 00, TRLX = 0 and CSNT = 0  
(MAX = 0.00 × B1 + 8.00)  
2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00  
ns  
B24 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 0  
(MIN = 0.25 × B1 – 2.00)  
5.60  
13.20  
4.30  
10.50  
1.80  
5.60  
1.13  
4.25  
ns  
ns  
B24a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11 TRLX = 0  
(MIN = 0.50 × B1 – 2.00)  
B25 CLKOUT rising edge to OE, WE(0:3)  
9.00  
9.00  
9.00  
9.00  
ns  
ns  
asserted (MAX = 0.00 × B1 + 9.00)  
B26 CLKOUT rising edge to OE negated  
2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00  
(MAX = 0.00 × B1 + 9.00)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
18  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B27 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 1  
(MIN = 1.25 × B1 – 2.00)  
35.90  
43.50  
29.30  
35.50  
16.90  
20.70  
13.60  
16.75  
ns  
B27a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 1  
(MIN = 1.50 × B1 – 2.00)  
ns  
ns  
ns  
ns  
B28 CLKOUT rising edge to WE(0:3) negated  
GPCM write access CSNT = 0  
9.00  
9.00  
9.00  
9.00  
(MAX = 0.00 × B1 + 9.00)  
B28a CLKOUT falling edge to WE(0:3) negated 7.60 14.30 6.30 13.00 3.80 10.50 3.13 9.93  
GPCM write access TRLX = 0, CSNT = 1,  
EBDF = 0 (MAX = 0.25 × B1 + 6.80)  
B28b CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0, CSNT = 1  
ACS = 10 or ACS = 11, EBDF = 0  
(MAX = 0.25 × B1 + 6.80)  
14.30  
13.00  
10.50  
9.93  
B28c CLKOUT falling edge to WE(0:3) negated 10.90 18.00 10.90 18.00 5.20 12.30 4.69 11.29 ns  
GPCM write access TRLX = 0, CSNT = 1  
write access TRLX = 0, CSNT = 1,  
EBDF = 1 (MAX = 0.375 × B1 + 6.6)  
B28d CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
18.00  
18.00  
12.30  
11.30 ns  
B29 WE(0:3) negated to D(0:31) High-Z GPCM 5.60  
write access, CSNT = 0, EBDF = 0  
4.30  
10.50  
4.30  
1.80  
5.60  
1.80  
5.60  
1.13  
4.25  
1.13  
4.25  
ns  
ns  
ns  
ns  
(MIN = 0.25 × B1 – 2.00)  
B29a WE(0:3) negated to D(0:31) High-Z GPCM 13.20  
write access, TRLX = 0, CSNT = 1,  
EBDF = 0 (MIN = 0.50 × B1 – 2.00)  
B29b CS negated to D(0:31) High-Z GPCM write 5.60  
access, ACS = 00, TRLX = 0 & CSNT = 0  
(MIN = 0.25 × B1 – 2.00)  
B29c CS negated to D(0:31) High-Z GPCM write 13.20  
access, TRLX = 0, CSNT = 1, ACS = 10,  
or ACS = 11 EBDF = 0  
10.50  
(MIN = 0.50 × B1 – 2.00)  
B29d WE(0:3) negated to D(0:31) High-Z GPCM 43.50  
write access, TRLX = 1, CSNT = 1,  
35.50  
35.50  
20.70  
20.70  
16.75  
16.75  
ns  
ns  
EBDF = 0 (MIN = 1.50 × B1 – 2.00)  
B29e CS negated to D(0:31) High-Z GPCM write 43.50  
access, TRLX = 1, CSNT = 1, ACS = 10,  
or ACS = 11 EBDF = 0  
(MIN = 1.50 × B1 – 2.00)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
19  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B29f WE(0:3) negated to D(0:31) High-Z GPCM 5.00  
write access, TRLX = 0, CSNT = 1,  
3.00  
0.00  
0.00  
ns  
EBDF = 1 (MIN = 0.375 × B1 – 6.30)  
B29g CS negated to D(0:31) High-Z GPCM write 5.00  
access, TRLX = 0, CSNT = 1 ACS = 10 or  
ACS = 11, EBDF = 1  
3.00  
0.00  
0.00  
ns  
(MIN = 0.375 × B1 – 6.30)  
B29h WE(0:3) negated to D(0:31) High-Z GPCM 38.40  
write access, TRLX = 1, CSNT = 1,  
31.10  
31.10  
17.50  
17.50  
13.85  
13.85  
ns  
ns  
EBDF = 1 (MIN = 0.375 × B1 – 3.30)  
B29i CS negated to D(0:31) High-Z GPCM write 38.40  
access, TRLX = 1, CSNT = 1, ACS = 10 or  
ACS = 11, EBDF = 1  
(MIN = 0.375 × B1 – 3.30)  
B30 CS, WE(0:3) negated to A(0:31),  
BADDR(28:30) Invalid GPCM write  
access 7 (MIN = 0.25 × B1 – .00)  
5.60  
4.30  
1.80  
5.60  
1.13  
4.25  
ns  
ns  
B30a WE(0:3) negated to A(0:31),  
BADDR(28:30) Invalid GPCM, write  
access, TRLX = 0, CSNT = 1, CS negated  
to A(0:31) invalid GPCM write access  
TRLX = 0, CSNT =1 ACS = 10, or  
ACS == 11, EBDF = 0  
13.20  
10.50  
(MIN = 0.50 × B1 – 2.00)  
B30b WE(0:3) negated to A(0:31) invalid GPCM 43.50  
BADDR(28:30) invalid GPCM write  
access, TRLX = 1, CSNT = 1. CS negated  
to A(0:31) invalid GPCM write access  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS == 11 EBDF = 0  
35.50  
20.70  
16.75  
ns  
ns  
ns  
(MIN = 1.50 × B1 – 2.00)  
B30c WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 0, CSNT = 1. CS negated  
to A(0:31) invalid GPCM write access,  
TRLX = 0, CSNT = 1 ACS = 10,  
ACS == 11, EBDF = 1  
8.40  
6.40  
2.70  
1.70  
(MIN = 0.375 × B1 – 3.00)  
B30d WE(0:3) negated to A(0:31),  
BADDR(28:30) invalidGPCM writeaccess  
TRLX = 1, CSNT =1, CS negated to  
A(0:31) invalid GPCM write access  
TRLX = 1, CSNT = 1, ACS = 10 or 11,  
EBDF = 1  
38.67  
31.38  
17.83  
14.19  
MPC885/MPC880 Hardware Specifications, Rev. 3  
20  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min Max Min Max Min Max Min Max  
B31 CLKOUT falling edge to CS valid, as  
requested by control bit CST4 in the  
corresponding word in the UPM  
(MAX = 0.00 × B1 + 6.00)  
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00  
ns  
B31a CLKOUT falling edge to CS valid, as  
requested by control bit CST1 in the  
corresponding word in the UPM  
(MAX = 0.25 × B1 + 6.80)  
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
B31b CLKOUT rising edge to CS valid, as  
requested by control bit CST2 in the  
corresponding word in the UPM  
(MAX = 0.00 × B1 + 8.00)  
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.40  
ns  
ns  
B31c CLKOUT rising edge to CS valid, as  
requested by control bit CST3 in the  
corresponding word in the UPM  
(MAX = 0.25 × B1 + 6.30)  
B31d CLKOUT falling edge to CS valid, as  
requested by control bit CST1 in the  
corresponding word in the UPM EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
13.30 18.00 11.30 16.00 7.60 12.30 4.69 11.30 ns  
B32 CLKOUT falling edge to BS valid, as  
requested by control bit BST4 in the  
corresponding word in the UPM  
(MAX = 0.00 × B1 + 6.00)  
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00  
ns  
B32a CLKOUT falling edge to BS valid, as  
requested by control bit BST1 in the  
corresponding word in the UPM, EBDF = 0  
(MAX = 0.25 × B1 + 6.80)  
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
B32b CLKOUT rising edge to BS valid, as  
requested by control bit BST2 in the  
corresponding word in the UPM  
(MAX = 0.00 × B1 + 8.00)  
1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00  
ns  
B32c CLKOUT rising edge to BS valid, as  
requested by control bit BST3 in the  
corresponding word in the UPM  
(MAX = 0.25 × B1 + 6.80)  
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
13.30 18.00 11.30 16.00 7.60 12.30 4.49 11.30 ns  
B32d CLKOUT falling edge to BS valid, as  
requested by control bit BST1 in the  
corresponding word in the UPM, EBDF = 1  
(MAX = 0.375 × B1 + 6.60)  
B33 CLKOUT falling edge to GPL valid, as  
requested by control bit GxT4 in the  
corresponding word in the UPM  
(MAX = 0.00 × B1 + 6.00)  
1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00  
ns  
MPC885/MPC880 Hardware Specifications, Rev. 3  
21  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B33a CLKOUT rising edge to GPL valid, as  
requested by control bit GxT3 in the  
corresponding word in the UPM  
(MAX = 0.25 × B1 + 6.80)  
B34 A(0:31), BADDR(28:30), and D(0:31) to  
CS valid, as requested by control bit CST4  
in the corresponding word in the UPM  
(MIN = 0.25 × B1 – 2.00)  
5.60  
13.20  
20.70  
5.60  
4.30  
10.50  
16.70  
4.30  
1.80  
5.60  
9.40  
1.80  
5.60  
9.40  
1.80  
1.13  
4.25  
6.80  
1.13  
4.25  
7.40  
1.13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B34a A(0:31), BADDR(28:30), and D(0:31) to  
CS valid, as requested by control bit CST1  
in the corresponding word in the UPM  
(MIN = 0.50 × B1 – 2.00)  
B34b A(0:31), BADDR(28:30), and D(0:31) to  
CS valid, as requested by CST2 in the  
corresponding word in UPM  
(MIN = 0.75 × B1 – 2.00)  
B35 A(0:31), BADDR(28:30) to CS valid, as  
requested by control bit BST4 in the  
corresponding word in the UPM  
(MIN = 0.25 × B1 – 2.00)  
B35a A(0:31), BADDR(28:30), and D(0:31) to  
BS valid, as requested by BST1 in the  
corresponding word in the UPM  
13.20  
20.70  
5.60  
10.50  
16.70  
4.30  
(MIN = 0.50 × B1 – 2.00)  
B35b A(0:31), BADDR(28:30), and D(0:31) to  
BS valid, as requested by control bit BST2  
in the corresponding word in the UPM  
(MIN = 0.75 × B1 – 2.00)  
B36 A(0:31), BADDR(28:30), and D(0:31) to  
GPL valid, as requested by control bit  
GxT4 in the corresponding word in the  
UPM (MIN = 0.25 × B1 – 2.00)  
B37 UPWAIT valid to CLKOUT falling edge 8  
6.00  
1.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
ns  
ns  
ns  
ns  
(MIN = 0.00 × B1 + 6.00)  
B38 CLKOUT falling edge to UPWAIT valid 8  
(MIN = 0.00 × B1 + 1.00)  
B39 AS valid to CLKOUT rising edge 9  
(MIN = 0.00 × B1 + 7.00)  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, valid 7.00  
to CLKOUT rising edge  
(MIN = 0.00 × B1 + 7.00)  
B41 TS valid to CLKOUT rising edge (setup  
7.00  
7.00  
7.00  
7.00  
ns  
time) (MIN = 0.00 × B1 + 7.00)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
22  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B42 CLKOUT rising edge to TS valid (hold  
2.00  
2.00  
2.00  
2.00  
ns  
ns  
time) (MIN = 0.00 × B1 + 2.00)  
B43 AS negation to memory controller signals  
negation (MAX = TBD)  
TBD  
TBD  
TBD  
TBD  
1 For part speeds above 50 MHz, use 9.80 ns for B11a.  
2 The timing required for BR input is relevant when the MPC885/880 is selected to work with the internal bus arbiter.  
The timing for BG input is relevant when the MPC885/880 is selected to work with the external bus arbiter.  
3 For part speeds above 50 MHz, use 2 ns for B17.  
4 The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.  
5 For part speeds above 50 MHz, use 2 ns for B19.  
6 The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read  
accesses controlled by chip-selects under control of the user-programmable machine (UPM) in the memory  
controller, for data beats where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling  
edge of CLKOUT.)  
7 The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
8 The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in  
B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.  
9 The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior  
specified in Figure 23.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
23  
Freescale Semiconductor  
Bus Signal Timing  
Figure 5 provides the control timing diagram.  
2.0 V  
2.0 V  
CLKOUT  
0.8 V  
0.8 V  
A
B
2.0 V  
2.0 V  
0.8 V  
Outputs  
0.8 V  
A
B
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Outputs  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Inputs  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Inputs  
A
B
C
D
Maximum output delay specification  
Minimum output hold time  
Minimum input setup time specification  
Minimum input hold time specification  
Figure 5. Control Timing  
Figure 6 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 6. External Clock Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
24  
Freescale Semiconductor  
Bus Signal Timing  
Figure 7 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
B9  
Output  
Signals  
B8a  
B7a  
Output  
Signals  
B8b  
B7b  
Output  
Signals  
Figure 7. Synchronous Output Signals Timing  
Figure 8 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12  
B15  
TS, BB  
TA, BI  
TEA  
B13  
B11  
B14  
Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
25  
Freescale Semiconductor  
Bus Signal Timing  
Figure 9 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
B17  
B17  
TA, BI  
B16  
TEA, KR,  
RETRY, CR  
B16  
BB, BG, BR  
Figure 9. Synchronous Input Signals Timing  
Figure 10 provides normal case timing for input data. It also applies to normal read accesses under the control of the  
user-programmable machine (UPM) in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31]  
Figure 10. Input Data Timing in Normal Case  
MPC885/MPC880 Hardware Specifications, Rev. 3  
26  
Freescale Semiconductor  
Bus Signal Timing  
Figure 11 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM  
RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
CLKOUT  
TA  
B20  
B21  
D[0:31]  
Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
Figure 12 through Figure 15 provide the timing for the external bus read controlled by various GPCM factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
D[0:31]  
B18  
Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
27  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B23  
B22  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31]  
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22  
B22  
A[0:31]  
CSx  
B23  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31]  
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
28  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B23  
B22  
B27  
B26  
B19  
OE  
B27  
B22 B22  
B18  
D[0:31]  
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
29  
Freescale Semiconductor  
Bus Signal Timing  
Figure 16 through Figure 18 provide the timing for the external bus write controlled by various GPCM factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B30  
B22  
B23  
B25  
B28  
WE[0:3]  
B26  
B29  
OE  
B29  
B8  
B9  
D[0:31]  
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
30  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
B30 B30  
A[0:31]  
CSx  
B22  
B28 B28  
B25  
B23  
B29 B29  
WE[0:3]  
B26  
B29 B29f  
OE  
B28 B28  
B8  
B9  
D[0:31]  
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
31  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B30 B30  
B22  
B28 B28  
B23  
B25  
B29 B29i  
WE[0:3]  
B26  
B29 B29  
OE  
B29  
B8  
B28 B28  
B9  
D[0:31]  
Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
32  
Freescale Semiconductor  
Bus Signal Timing  
Figure 19 provides the timing for the external bus controlled by the UPM.  
CLKOUT  
B8  
A[0:31]  
B31  
B31  
B31  
B31  
B31  
CSx  
B34  
B34  
B34  
B32 B32  
B32  
B32  
B32  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35  
B35  
B33  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 19. External Bus Timing (UPM-Controlled Signals)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
33  
Freescale Semiconductor  
Bus Signal Timing  
Figure 20 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 20. Asynchronous UPWAIT Asserted Detection in UPM-Handled Cycles Timing  
Figure 21 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 21. Asynchronous UPWAIT Negated Detection in UPM-Handled Cycles Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
34  
Freescale Semiconductor  
Bus Signal Timing  
Figure 22 provides the timing for the synchronous external master access controlled by the GPCM.  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 22. Synchronous External Master Access Timing (GPCM Handled—ACS = 00)  
Figure 23 provides the timing for the asynchronous external master memory access controlled by the GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)  
Figure 24 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 24. Asynchronous External Master—Control Signals Negation Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
35  
Freescale Semiconductor  
Bus Signal Timing  
Table 10 provides the interrupt timing for the MPC885/880.  
Table 10. Interrupt Timing  
All Frequencies  
Num  
Characteristic 1  
Unit  
Min  
Max  
I39  
I40  
I41  
I42  
I43  
IRQx valid to CLKOUT rising edge (setup time)  
IRQx hold time after CLKOUT  
IRQx pulse width low  
6.00  
2.00  
ns  
ns  
ns  
ns  
3.00  
IRQx pulse width high  
3.00  
IRQx edge-to-edge time  
4 × TCLOCKOUT  
1 The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as  
level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference  
to the CLKOUT.  
The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have  
no direct relation with the total system interrupt latency that the MPC885/880 is able to support.  
Figure 25 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 25. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 26 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines  
MPC885/MPC880 Hardware Specifications, Rev. 3  
36  
Freescale Semiconductor  
Bus Signal Timing  
Table 11 shows the PCMCIA timing for the MPC885/880.  
Table 11. PCMCIA Timing  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
A(0:31), REG valid to PCMCIA  
20.70  
16.70  
9.40  
7.40  
ns  
P44 strobe asserted 1  
(MIN = 0.75 × B1 – 2.00)  
A(0:31), REG valid to ALE  
28.30  
23.00  
13.20  
10.50  
ns  
P45 negation1  
(MIN = 1.00 × B1 – 2.00)  
CLKOUT to REG valid  
(MAX = 0.25 × B1 + 8.00)  
7.60  
8.60  
7.60  
7.60  
15.60  
6.30  
7.30  
6.30  
6.30  
14.30  
3.80  
4.80  
3.80  
3.80  
11.80  
3.13  
4.13  
3.13  
3.13  
11.13  
ns  
ns  
ns  
ns  
ns  
P46  
P47  
P48  
P49  
CLKOUT to REG invalid  
(MIN = 0.25 – B1 + 1.00)  
CLKOUT to CE1, CE2 asserted  
(MAX = 0.25 × B1 + 8.00)  
15.60  
15.60  
11.00  
14.30  
14.30  
11.00  
11.80  
11.80  
11.00  
11.13  
11.13  
11.00  
CLKOUT to CE1, CE2 negated  
(MAX = 0.25 × B1 + 8.00)  
CLKOUT to PCOE, IORD,  
P50 PCWE, IOWR assert time  
(MAX = 0.00 × B1 + 11.00)  
CLKOUT to PCOE, IORD,  
P51 PCWE, IOWR negate time  
(MAX = 0.00 × B1 + 11.00)  
2.00  
11.00  
2.00  
11.00  
2.00  
11.00  
2.00  
11.00  
ns  
CLKOUT to ALE assert time  
P52  
7.60  
13.80  
15.60  
6.30  
12.50  
14.30  
3.80  
10.00  
11.80  
3.13  
9.40  
11.13  
ns  
ns  
ns  
(MAX = 0.25 × B1 + 6.30)  
CLKOUT to ALE negate time  
P53  
(MAX = 0.25 × B1 + 8.00)  
PCWE, IOWR negated to  
P54 D(0:31) invalid 1  
5.60  
4.30  
1.80  
1.13  
(MIN = 0.25 × B1 – 2.00)  
WAITA and WAITB valid to  
P55 CLKOUT rising edge1  
(MIN = 0.00 × B1 + 8.00)  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
ns  
ns  
CLKOUT rising edge to WAITA  
P56 and WAITB invalid1  
(MIN = 0.00 × B1 + 2.00)  
1 PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA  
current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See  
Chapter 16, “PCMCIA Interface,” in the MPC885 PowerQUICC Family User’s Manual.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
37  
Freescale Semiconductor  
Bus Signal Timing  
Figure 27 provides the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 27. PCMCIA Access Cycles Timing External Bus Read  
MPC885/MPC880 Hardware Specifications, Rev. 3  
38  
Freescale Semiconductor  
Bus Signal Timing  
Figure 28 provides the PCMCIA access cycle timing for the external bus write.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
PCWE, IOWR  
ALE  
P50  
P53  
B8  
P54  
P52  
D[0:31]  
Figure 28. PCMCIA Access Cycles Timing External Bus Write  
Figure 29 provides the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 29. PCMCIA WAIT Signals Detection Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
39  
Freescale Semiconductor  
Bus Signal Timing  
Table 12 shows the PCMCIA port timing for the MPC885/880.  
Table 12. PCMCIA Port Timing  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
CLKOUT to OPx valid  
(MAX = 0.00 × B1 + 19.00)  
19.00  
19.00  
19.00  
19.00 ns  
P57  
P58  
P59  
P60  
HRESET negated to OPx drive 1  
(MIN = 0.75 × B1 + 3.00)  
25.70  
5.00  
1.00  
21.70  
5.00  
1.00  
14.40  
5.00  
1.00  
12.40  
5.00  
1.00  
ns  
ns  
ns  
IP_Xx valid to CLKOUT rising edge  
(MIN = 0.00 × B1 + 5.00)  
CLKOUT rising edge to IP_Xx invalid  
(MIN = 0.00 × B1 + 1.00)  
1 OP2 and OP3 only.  
Figure 30 provides the PCMCIA output port timing for the MPC885/880.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 30. PCMCIA Output Port Timing  
Figure 31 provides the PCMCIA input port timing for the MPC885/880.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 31. PCMCIA Input Port Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
40  
Freescale Semiconductor  
Bus Signal Timing  
Table 13 shows the debug port timing for the MPC885/880.  
Table 13. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
DSCK cycle time  
3 × TCLOCKO  
-
-
D61  
D62  
UT  
DSCK clock pulse width  
1.25 × TCLO  
CKOUT  
D63 DSCK rise and fall times  
0.00  
8.00  
5.00  
0.00  
0.00  
3.00  
ns  
ns  
ns  
ns  
ns  
D64 DSDI input data setup time  
D65 DSDI data hold time  
D66 DSCK low to DSDO data valid  
D67 DSCK low to DSDO invalid  
15.00  
2.00  
Figure 32 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
Figure 32. Debug Port Clock Input Timing  
Figure 33 provides the timing for the debug port.  
D63  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 33. Debug Port Timings  
MPC885/MPC880 Hardware Specifications, Rev. 3  
41  
Freescale Semiconductor  
Bus Signal Timing  
Table 14 shows the reset timing for the MPC885/880.  
Table 14. Reset Timing  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
CLKOUT to HRESET high  
20.00  
20.00  
20.00  
20.00  
ns  
R69 impedance  
(MAX = 0.00 × B1 + 20.00)  
CLKOUT to SRESET high  
R70 impedance  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
(MAX = 0.00 × B1 + 20.00)  
RSTCONF pulse width  
(MIN = 17.00 × B1)  
515.20  
425.00  
257.60  
212.50  
R71  
R72  
ns  
Configuration data to HRESET  
504.50  
425.00  
277.30  
237.50  
R73 rising edge setup time  
(MIN = 15.00 × B1 + 50.00)  
Configuration data to RSTCONF 350.00  
R74 rising edge setup time  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
(MIN = 0.00 × B1 + 350.00)  
Configuration data hold time after 0.00  
R75 RSTCONF negation  
(MIN = 0.00 × B1 + 0.00)  
Configuration data hold time after 0.00  
R76 HRESET negation  
(MIN = 0.00 × B1 + 0.00)  
HRESET and RSTCONF  
R77 asserted to data out drive  
(MAX = 0.00 × B1 + 25.00)  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
RSTCONF negated to data out  
R78 high impedance  
(MAX = 0.00 × B1 + 25.00)  
CLKOUT of last rising edge  
before chip three-states  
R79 HRESET to data out high  
impedance  
(MAX = 0.00 × B1 + 25.00)  
DSDI, DSCK setup  
R80  
90.90  
0.00  
75.00  
0.00  
45.50  
0.00  
37.50  
0.00  
ns  
ns  
ns  
(MIN = 3.00 × B1)  
DSDI, DSCK hold time  
R81  
(MIN = 0.00 × B1 + 0.00)  
SRESET negated to CLKOUT  
R82 rising edge for DSDI and DSCK  
sample (MIN = 8.00 × B1)  
242.40  
200.00  
121.20  
100.00  
MPC885/MPC880 Hardware Specifications, Rev. 3  
42  
Freescale Semiconductor  
Bus Signal Timing  
Figure 34 shows the reset timing for the data bus configuration.  
HRESET  
R71  
R76  
RSTCONF  
R73  
R74  
R75  
D[0:31] (IN)  
Figure 34. Reset Timing—Configuration from Data Bus  
Figure 35 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 35. Reset Timing—Data Bus Weak Drive During Configuration  
MPC885/MPC880 Hardware Specifications, Rev. 3  
43  
Freescale Semiconductor  
IEEE 1149.1 Electrical Specifications  
Figure 36 provides the reset timing for the debug port configuration.  
CLKOUT  
R70  
R82  
R80  
SRESET  
R80  
R81  
R81  
DSCK, DSDI  
Figure 36. Reset Timing—Debug Port Configuration  
11 IEEE 1149.1 Electrical Specifications  
Table 15 provides the JTAG timings for the MPC885/880 shown in Figure 37 to Figure 40.  
Table 15. JTAG Timing  
All  
Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
J83  
J84  
J85  
J86  
J87  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
10.00  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
27.00  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
20.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
MPC885/MPC880 Hardware Specifications, Rev. 3  
44  
Freescale Semiconductor  
IEEE 1149.1 Electrical Specifications  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 37. JTAG Test Clock Input Timing  
TCK  
TMS, TDI  
TDO  
J85  
J86  
J87  
J88  
J89  
Figure 38. JTAG Test Access Port Timing Diagram  
TCK  
J91  
J90  
TRST  
Figure 39. JTAG TRST Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
45  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCK  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 40. Boundary Scan (JTAG) Timing Diagram  
12 CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module (CPM) of  
the MPC885/880.  
12.1 PIP/PIO AC Electrical Specifications  
Table 16 provides the PIP/PIO AC timings as shown in Figure 41 to Figure 45.  
Table 16. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Data-in setup time to STBI low  
0
4.5  
25  
ns  
clk  
clk  
ns  
clk  
clk  
clk  
clk  
ns  
ns  
ns  
Data-In hold time to STBI high  
0
STBI pulse width  
1.5  
STBO pulse width  
1 clk – 5 ns  
Data-out setup time to STBO low  
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
Data-in hold time from clock high  
Clock low to data-out valid (CPU writes data, control, or direction)  
2
5
2
15  
7.5  
MPC885/MPC880 Hardware Specifications, Rev. 3  
46  
Freescale Semiconductor  
CPM Electrical Characteristics  
DATA-IN  
21  
22  
23  
STBI  
27  
24  
STBO  
Figure 41. PIP Rx (Interlock Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 42. PIP Tx (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 43. PIP Rx (Pulse Mode) Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
47  
Freescale Semiconductor  
CPM Electrical Characteristics  
DATA-OUT  
25  
26  
24  
23  
STBO  
(Output)  
STBI  
(Input)  
Figure 44. PIP TX (Pulse Mode) Timing Diagram  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 45. Parallel I/O Data-In/Data-Out Timing Diagram  
12.2 Port C Interrupt AC Electrical Specifications  
Table 17 provides the timings for port C interrupts.  
Table 17. Port C Interrupt Timing  
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
MPC885/MPC880 Hardware Specifications, Rev. 3  
48  
Freescale Semiconductor  
CPM Electrical Characteristics  
Figure 46 shows the port C interrupt detection timing.  
36  
Port C  
(Input)  
35  
Figure 46. Port C Interrupt Detection Timing  
12.3 IDMA Controller AC Electrical Specifications  
Table 18 provides the IDMA controller timings as shown in Figure 47 to Figure 50.  
Table 18. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
41  
42  
43  
44  
45  
46  
DREQ setup time to clock high  
DREQ hold time from clock high  
7
TBD  
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
SDACK negation delay from TA low  
SDACK negation delay from clock high  
TA assertion to falling edge of the clock setup time (applies to external TA)  
7
1 Applies to high-to-low mode (EDM=1)  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 47. IDMA External Requests Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
49  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
MPC885/MPC880 Hardware Specifications, Rev. 3  
50  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
12.4 Baud Rate Generator AC Electrical Specifications  
Table 19 provides the baud rate generator timings as shown in Figure 51.  
Table 19. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 51. Baud Rate Generator Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
51  
Freescale Semiconductor  
CPM Electrical Characteristics  
12.5 Timer AC Electrical Specifications  
Table 20 provides the general-purpose timer timings as shown in Figure 52.  
Table 20. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
10  
1
25  
ns  
clk  
clk  
clk  
ns  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
2
3
3
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 52. CPM General-Purpose Timers Timing Diagram  
12.6 Serial Interface AC Electrical Specifications  
Table 21 provides the serial interface timings as shown in Figure 53 to Figure 57.  
Table 21. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
70  
71  
L1RCLK, L1TCLK frequency (DSC = 0) 1, 2  
SYNCCLK  
/2.5  
MHz  
L1RCLK, L1TCLK width low (DSC = 0) 2  
P + 10  
P + 10  
ns  
ns  
ns  
ns  
ns  
3
71a L1RCLK, L1TCLK width high (DSC = 0)  
72  
73  
74  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
15.00  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)  
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)  
20.00  
35.00  
MPC885/MPC880 Hardware Specifications, Rev. 3  
52  
Freescale Semiconductor  
CPM Electrical Characteristics  
Table 21. SI Timing (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
75  
76  
77  
78  
L1RSYNC, L1TSYNC rise/fall time  
L1RXD valid to L1CLK edge (L1RXD setup time)  
15.00  
ns  
ns  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
L1CLK edge to L1RXD invalid (L1RXD hold time)  
ns  
4
L1CLK edge to L1ST(1–4) valid  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
ns  
78A L1SYNC valid to L1ST(1–4) valid  
ns  
79  
80  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
ns  
ns  
80A L1TSYNC valid to L1TXD valid 4  
ns  
81  
82  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
ns  
16.00 or  
SYNCCLK  
/2  
MHz  
83  
L1RCLK, L1TCLK width low (DSC =1)  
P + 10  
P + 10  
ns  
ns  
83a L1RCLK, L1TCLK width high (DSC = 1)3  
84  
85  
86  
87  
88  
L1CLK edge to L1CLKO valid (DSC = 1)  
L1RQ valid before falling edge of L1TSYNC4  
L1GR setup time2  
30.00  
ns  
1.00  
42.00  
42.00  
L1TCLK  
ns  
L1GR hold time  
ns  
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,  
DSC = 0)  
0.00  
ns  
1 The ratio SyncCLK/L1RCLK must be greater than 2.5/1.  
2 These specs are valid for IDL mode only.  
3 Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.  
4 These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
53  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE=1, CE=1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
Figure 53. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
54  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE=1, CE=1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=0, CE=0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
55  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1TCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE=1, CE=1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4-1)  
(Output)  
Figure 55. SI Transmit Timing Diagram (DSC = 0)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
56  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE=0, CE=0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=1, CE=1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4-1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
57  
Freescale Semiconductor  
CPM Electrical Characteristics  
Figure 57. IDL Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
58  
Freescale Semiconductor  
CPM Electrical Characteristics  
12.7 SCC in NMSI Mode Electrical Specifications  
Table 22 provides the NMSI external clock timing.  
Table 22. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
100 RCLK1 and TCLK1 width high 1  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
101 RCLK1 and TCLK1 width low  
1/SYNCCLK + 5  
102 RCLK1 and TCLK1 rise/fall time  
15.00  
50.00  
50.00  
103 TXD1 active delay (from TCLK1 falling edge)  
104 RTS1 active/inactive delay (from TCLK1 falling edge)  
105 CTS1 setup time to TCLK1 rising edge  
106 RXD1 setup time to RCLK1 rising edge  
107 RXD1 hold time from RCLK1 rising edge 2  
108 CD1 setup time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
1 The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.  
2 Also applies to CD and CTS hold time when they are used as external sync signals.  
Table 23 provides the NMSI internal clock timing.  
Table 23. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
100 RCLK1 and TCLK1 frequency 1  
0.00  
SYNCCLK/3  
MHz  
ns  
102 RCLK1 and TCLK1 rise/fall time  
30.00  
30.00  
103 TXD1 active delay (from TCLK1 falling edge)  
104 RTS1 active/inactive delay (from TCLK1 falling edge)  
105 CTS1 setup time to TCLK1 rising edge  
106 RXD1 setup time to RCLK1 rising edge  
107 RXD1 hold time from RCLK1 rising edge 2  
108 CD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
ns  
ns  
ns  
1 The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 3/1.  
2 Also applies to CD and CTS hold time when they are used as external sync signals  
MPC885/MPC880 Hardware Specifications, Rev. 3  
59  
Freescale Semiconductor  
CPM Electrical Characteristics  
Figure 58 through Figure 60 show the NMSI timings.  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 58. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 59. SCC NMSI Transmit Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
60  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 60. HDLC Bus Timing Diagram  
12.8 Ethernet Electrical Specifications  
Table 24 provides the Ethernet timings as shown in Figure 61 to Figure 63.  
Table 24. Ethernet Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
120 CLSN width high  
121 RCLK1 rise/fall time  
122 RCLK1 width low  
123 RCLK1 clock period 1  
124 RXD1 setup time  
125 RXD1 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
120  
126 RENA active delay (from RCLK1 rising edge of the last data bit)  
127 RENA width low  
10  
100  
128 TCLK1 rise/fall time  
15  
129 TCLK1 width low  
40  
99  
130 TCLK1 clock period1  
101  
50  
50  
50  
131 TXD1 active delay (from TCLK1 rising edge)  
132 TXD1 inactive delay (from TCLK1 rising edge)  
133 TENA active delay (from TCLK1 rising edge)  
6.5  
10  
MPC885/MPC880 Hardware Specifications, Rev. 3  
61  
Freescale Semiconductor  
CPM Electrical Characteristics  
Table 24. Ethernet Timing (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
134 TENA inactive delay (from TCLK1 rising edge)  
138 CLKO1 low to SDACK asserted 2  
10  
50  
20  
20  
ns  
ns  
ns  
139 CLKO1 low to SDACK negated 2  
1 The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2/1.  
2 SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 61. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 62. Ethernet Receive Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
62  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(NOTE 2)  
NOTES:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is negated before TENA or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 63. Ethernet Transmit Timing Diagram  
12.9 SMC Transparent AC Electrical Specifications  
Table 25 provides the SMC transparent timings as shown in Figure 64.  
Table 25. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
150 SMCLK clock period 1  
151 SMCLK width low  
151A SMCLK width high  
152 SMCLK rise/fall time  
100  
50  
50  
10  
20  
5
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
153 SMTXD active delay (from SMCLK falling edge)  
154 SMRXD/SMSYNC setup time  
155 RXD1/SMSYNC hold time  
1
SyncCLK must be at least twice as fast as SMCLK.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
63  
Freescale Semiconductor  
CPM Electrical Characteristics  
SMCLK  
152  
152  
151  
151  
150  
SMTXD  
(Output)  
NOTE  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
NOTE:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 64. SMC Transparent Timing Diagram  
12.10SPI Master AC Electrical Specifications  
Table 26 provides the SPI master timings as shown in Figure 65 and Figure 66.  
Table 26. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
160 MASTER cycle time  
4
2
1024  
512  
tcyc  
tcyc  
ns  
ns  
ns  
ns  
ns  
ns  
161 MASTER clock (SCK) high or low time  
162 MASTER data setup time (inputs)  
163 Master data hold time (inputs)  
164 Master data valid (after SCK edge)  
165 Master data hold time (outputs)  
166 Rise time output  
15  
0
0
10  
15  
167 Fall time output  
15  
MPC885/MPC880 Hardware Specifications, Rev. 3  
64  
Freescale Semiconductor  
CPM Electrical Characteristics  
SPICLK  
(CI=0)  
(Output)  
161  
161  
167  
166  
166  
167  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
Data  
165  
lsb  
msb  
164  
167  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 65. SPI Master (CP = 0) Timing Diagram  
SPICLK  
(CI=0)  
(Output)  
161  
161  
167  
166  
167  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
166  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 66. SPI Master (CP = 1) Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
65  
Freescale Semiconductor  
CPM Electrical Characteristics  
12.11SPI Slave AC Electrical Specifications  
Table 27 provides the SPI slave timings as shown in Figure 67 and Figure 68.  
Table 27. SPI Slave Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
170 Slave cycle time  
2
50  
tcyc  
ns  
171 Slave enable lead time  
172 Slave enable lag time  
15  
15  
1
ns  
173 Slave clock (SPICLK) high or low time  
174 Slave sequential transfer delay (does not require deselect)  
175 Slave data setup time (inputs)  
tcyc  
tcyc  
ns  
1
20  
20  
176 Slave data hold time (inputs)  
ns  
177 Slave access time  
ns  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
182  
173  
170  
SPICLK  
(CI=1)  
(Input)  
177  
181  
180  
178  
Undef  
SPIMISO  
(Output)  
msb  
175  
Data  
lsb  
msb  
msb  
179  
176  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
Figure 67. SPI Slave (CP = 0) Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
66  
Freescale Semiconductor  
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
181  
SPICLK  
(CI=1)  
(Input)  
177  
182  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
msb  
181 182  
Data  
SPIMOSI  
(Input)  
lsb  
Figure 68. SPI Slave (CP = 1) Timing Diagram  
12.12I2C AC Electrical Specifications  
2
Table 28 provides the I C (SCL < 100 KHz) timings.  
Table 28. I2C Timing (SCL < 100 KHZ)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200 SCL clock frequency (slave)  
0
100  
100  
1
KHz  
KHz  
µs  
200 SCL clock frequency (master) 1  
202 Bus free time between transmissions  
203 Low period of SCL  
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
µs  
204 High period of SCL  
µs  
205 Start condition setup time  
206 Start condition hold time  
207 Data hold time  
µs  
µs  
µs  
208 Data setup time  
250  
ns  
209 SDL/SCL rise time  
µs  
MPC885/MPC880 Hardware Specifications, Rev. 3  
67  
Freescale Semiconductor  
CPM Electrical Characteristics  
Table 28. I2C Timing (SCL < 100 KHZ) (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
210 SDL/SCL fall time  
300  
ns  
211  
Stop condition setup time  
4.7  
µs  
1 SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2).  
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.  
2
Table 29 provides the I C (SCL > 100 KHz) timings.  
Table 29. I2C Timing (SCL > 100 KHZ)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200 SCL clock frequency (slave)  
200 SCL clock frequency (master) 1  
202 Bus free time between transmissions  
203 Low period of SCL  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
BRGCLK/16512  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
0
BRGCLK/48  
s
204 High period of SCL  
s
205 Start condition setup time  
206 Start condition hold time  
207 Data hold time  
s
s
s
208 Data setup time  
1/(40 × fSCL)  
s
209 SDL/SCL rise time  
1/(10 × fSCL)  
1/(33 × fSCL)  
s
210 SDL/SCL fall time  
s
211  
Stop condition setup time  
1/2(2.2 × fSCL)  
s
1 SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) × pre_scaler × 2).  
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
68  
Freescale Semiconductor  
UTOPIA AC Electrical Specifications  
2
Figure 69 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
Figure 69. I2C Bus Timing Diagram  
13 UTOPIA AC Electrical Specifications  
Table 30, Table 31, and Table 32, show the AC electrical specifications for the UTOPIA interface.  
Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (internal clock option)  
Output  
4 ns  
50  
ns  
%
Duty cycle  
Frequency  
50  
33  
MHz  
ns  
U2  
UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr active delay (and  
PHREQ and PHSEL active delay in multi-PHY mode)  
Output  
2 ns  
16 ns  
U3  
U4  
UTPB, SOC, Rxclav and Txclav setup time  
UTPB, SOC, Rxclav and Txclav hold time  
Input  
Input  
4 ns  
1 ns  
ns  
ns  
Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
4 ns  
50  
ns  
%
Duty cycle  
Frequency  
50  
33  
MHz  
ns  
U2  
UTPB, SOC, RxEnb, TxEnb, RxAddr and TxAddr active delay  
(PHREQ and PHSEL active delay in multi-PHY mode)  
Output  
2 ns  
16 ns  
U3  
U4  
UTPB_Aux, SOC_Aux, Rxclav and Txclav setup time  
UTPB_Aux, SOC_Aux, Rxclav and Txclav hold time  
Input  
Input  
4 ns  
1 ns  
ns  
ns  
MPC885/MPC880 Hardware Specifications, Rev. 3  
69  
Freescale Semiconductor  
UTOPIA AC Electrical Specifications  
Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (external clock option)  
Duty cycle  
Input  
4 ns  
60  
ns  
%
40  
Frequency  
33  
MHz  
ns  
U2  
U3  
UTPB, SOC, Rxclav and Txclav active delay  
Output  
Input  
2 ns  
4 ns  
16 ns  
UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr setup  
time  
ns  
U4  
UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr hold  
time  
Input  
1 ns  
ns  
Figure 70 shows signal timings during UTOPIA receive operations.  
U1  
U1  
UtpClk  
U2  
PHREQn  
U3  
U4  
RxClav  
RxEnb  
High-Z at MPHY  
High-Z at MPHY  
U2  
UTPB  
SOC  
U3  
U4  
Figure 70. UTOPIA Receive Timing  
MPC885/MPC880 Hardware Specifications, Rev. 3  
70  
Freescale Semiconductor  
USB Electrical Characteristics  
Figure 71 shows signal timings during UTOPIA transmit operations.  
U1  
U1  
UtpClk  
U2  
PHSELn  
TxClav  
U3  
U4  
High-Z at MPHY  
High-Z at Multi-PHYP  
U2  
TxEnb  
UTPB  
SOC  
U2  
Figure 71. UTOPIA Transmit Timing  
14 USB Electrical Characteristics  
This section provides the AC timings for the USB interface.  
14.1 USB Interface AC Timing Specifications  
The USB Port uses the transmit clock on SCC1. Table 33 lists the USB interface timings.  
Table 33. USB Interface AC Timing Specifications  
All Frequencies  
Name  
Characteristic  
Unit  
Min  
Max  
1
US1 USBCLK frequency of operation  
Low speed  
Full speed  
6
48  
MHz  
MHz  
US4 USBCLK duty cycle (measured at 1.5 V)  
45  
55  
%
1 USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.  
15 FEC Electrical Characteristics  
This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing  
specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII  
signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
71  
Freescale Semiconductor  
FEC Electrical Characteristics  
15.1 MII and Reduced MII Receive Signal Timing  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The reduced MII  
(RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK  
frequency 1%.  
Table 34 provides information on the MII and RMII receive signal timing.  
Table 34. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
MII_RXD[3:0], MII_RX_DV, MII_RX_ERR to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
35%  
4
65% MII_RX_CLK period  
65% MII_RX_CLK period  
MII_RX_CLK pulse width low  
M1_RMII RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK  
setup  
ns  
M2_RMII RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR  
hold  
2
ns  
Figure 72 shows MII receive signal timing.  
M3  
MII_RX_CLK (input)  
M4  
MII_RXD[3:0] (inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 72. MII Receive Signal Timing Diagram  
15.2 MII and Reduced MII Transmit Signal Timing  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. The RMII  
transmitter functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz +1%. There is no minimum  
frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency 1%.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
72  
Freescale Semiconductor  
FEC Electrical Characteristics  
Table 35 provides information on the MII and RMII transmit signal timing.  
Table 35. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
5
4
25  
ns  
ns  
ns  
M20_R RMII_TXD[1:0], RMII_TX_EN to RMII_REFCLK setup  
MII  
M21_R RMII_TXD[1:0], RMII_TX_EN data hold from RMII_REFCLK rising  
2
ns  
MII  
edge  
M7  
MII_TX_CLK and RMII_REFCLK pulse width high  
35%  
65%  
MII_TX_CLK or  
RMII_REFCLK  
period  
M8  
MII_TX_CLK and RMII_REFCLK pulse width low  
35%  
65%  
MII_TX_CLK or  
RMII_REFCLK  
period  
Figure 73 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (input)  
RMII_REFCLK  
M5  
M8  
MII_TXD[3:0] (outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 73. MII Transmit Signal Timing Diagram  
15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 36 provides information on the MII async inputs signal timing.  
Table 36. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK period  
MPC885/MPC880 Hardware Specifications, Rev. 3  
73  
Freescale Semiconductor  
FEC Electrical Characteristics  
Figure 74 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 74. MII Async Inputs Timing Diagram  
15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
Table 37 provides information on the MII serial management channel signal timing. The FEC functions correctly  
with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.  
Table 37. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
M12 MII_MDIO (input) to MII_MDC rising edge setup  
M13 MII_MDIO (input) to MII_MDC rising edge hold  
M14 MII_MDC pulse width high  
10  
25  
ns  
ns  
ns  
0
40%  
40%  
60% MII_MDC period  
60% MII_MDC period  
M15 MII_MDC pulse width low  
Figure 75 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (output)  
M10  
MII_MDIO (output)  
M11  
MII_MDIO (input)  
M12  
M13  
Figure 75. MII Serial Management Channel Timing Diagram  
MPC885/MPC880 Hardware Specifications, Rev. 3  
74  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
16 Mechanical Data and Ordering Information  
Table 38 identifies the available packages and operating frequencies for the MPC885/880 derivative devices.  
Table 38. Available MPC885/880 Packages/Frequencies  
Package Type  
Plastic ball grid array  
ZP suffix — Leaded  
VR suffix — Lead-Free are available as needed  
Temperature (Tj) Frequency (MHz)  
Order Number  
0°C to 95°C  
66  
KMPC885ZP66  
KMPC880ZP66  
MPC885ZP66  
MPC880ZP66  
80  
KMPC885ZP80  
KMPC880ZP80  
MPC885ZP80  
MPC880ZP80  
133  
66  
KMPC885ZP133  
KMPC880ZP133  
MPC885ZP133  
MPC880ZP133  
Plastic ball grid array  
CZP suffix — Leaded  
CVR suffix — Lead-Free are available as needed  
-40°C to 100°C  
KMPC885CZP66  
KMPC880CZP66  
MPC885CZP66  
MPC880CZP66  
133  
KMPC885CZP133  
KMPC880CZP133  
MPC885CZP133  
MPC880CZP133  
MPC885/MPC880 Hardware Specifications, Rev. 3  
75  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
16.1 Pin Assignments  
Figure 76 shows the top-view pinout of the PBGA package. For additional information, see the MPC885  
PowerQUICC Family Users Manual.  
NOTE: This is the top view of the device.  
W
V
U
T
TRST  
TMS  
PA10  
PB25  
PB23  
PC11  
PA8  
PC8  
PA5  
PB17  
PC7  
PA13  
PB16  
PC4  
PC13  
PB15  
PA11  
PE21  
PE31  
PE17  
PE24  
PE30  
PE14  
PE15  
PD5  
PD6  
PE28  
PD12  
PD4  
PE27  
PA4  
PD7  
PA3  
PE22  
PB28  
PB22  
PA7 PB19  
PB31  
PE23  
PB27  
PB14  
PC12  
TCK  
TDO  
PB24  
TDI  
PC10  
PB21  
PA6 MII1_COL PC6  
PD15  
PE29  
PD14  
PE16  
PD13  
PA0  
PD9  
PD10  
PD11  
PA1  
PB29  
PC15  
PA9  
VDDL  
VDDH  
PC9 PB20  
PB18 MII1_CRS PC5  
VDDL  
PD3  
PE19 MII1_TXEN PA2  
PE25  
PE26  
R
P
N
M
L
VDDL  
VDDL  
VDDH  
VDDL  
GND  
PE20  
IRQ7  
PD8  
PC14  
PB26  
PA14  
N/C  
A4  
PE18  
D8  
VDDH  
VDDH  
GND  
GND  
MII_MDIO PB30  
PA12  
PA15  
A0  
IRQ1  
D12  
D23  
D0  
GND  
A2  
A3  
A1  
A5  
IRQ0  
D13  
D27  
D4  
VDDL  
VDDH  
VDDH  
D1  
D17  
D9  
VDDH  
GND  
GND  
VDDL  
VDDL  
A7  
A9  
A8  
A6  
D10  
D14  
D19  
D6  
D11  
D3  
D2  
K
J
VDDL  
GND  
A10  
A14  
A27  
A21  
A25  
A18  
A26  
BSA2  
WE3  
A11  
A16  
A19  
A29  
A30  
A28  
A31  
BSA1  
WE0  
A12  
A15  
A20  
A23  
A22  
TSIZ1  
A13  
D5  
D15  
D18  
D21  
D25  
D29  
D30  
IPA5  
A17  
D22  
D28  
D16  
D20  
D24  
D7  
H
G
F
VDDH  
VDDL  
GND  
A24  
GND  
GND  
VDDH  
VDDL  
VDDH  
VDDL  
TSIZ0  
BSA3  
WE1  
CLKOUT  
IPA2  
D26  
D31  
IPA3  
VDDH  
E
D
C
B
A
VDDL  
VDDL  
VSSSYN  
IPA6  
IPA4  
BSA0 GPL_AB2 CS6  
CS3  
CS1  
CS0  
WR  
BI  
TA  
BR  
BG  
BB  
IRQ6  
BURST  
IRQ2  
IPB1  
IPB3  
IPB4  
ALEB  
IPB2  
IPB7  
AS  
MODCK1 EXTAL RSTCONF IPA7  
WE2  
CS4  
CS7  
CE2_A  
CE1_A  
GPL_A5  
GPL_A4  
IRQ4  
ALEA  
OP1 BADDR28 TEXP WAIT_B VSSSYN1 IPA1  
OP0 BADDR29 HRESET PORESETVDDLSYN IPA0  
GPL_A0  
TEA  
OE  
GPL_AB3 CS5  
CS2  
GPL_B4  
BDIP  
TS  
IRQ3  
IPB5  
IPB0  
IPB6 BADDR30MODCK2 EXTCLK XTAL SRESET WAIT_A  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 76. Pinout of the PBGA Package  
MPC885/MPC880 Hardware Specifications, Rev. 3  
76  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39 contains a list of the MPC885 input and output signals and shows multiplexing and pin assignments.  
Table 39. Pin Assignments  
Name  
A[0:31]  
Pin Number  
Type  
Bidirectional  
M16, N18, N19, M19, M17, M18, L16, L19, L17, L18, K19, K18, K17,  
K16, J19, J17, J18, J16, E19, H18, H17, G19, F17, G17, H16, F19, D19, Three-state  
H19, E18, G18, F18, D18  
D[0:31]  
P2, M1, L1, K2, N1, K4, H3, F2, P1, L4, L3, L2, N3, N2, K3, K1, J2, M4, Bidirectional  
J1, J3, H2, H1, J4, M3, G2, G1, G3, M2, H4, F1, E1, F3  
Three-state  
TSIZ0  
REG  
G16  
Bidirectional  
Three-state  
TSIZ1  
E17  
D13  
C10  
A13  
A12  
C12  
Bidirectional  
Three-state  
RD/WR  
BURST  
Bidirectional  
Three-state  
Bidirectional  
Three-state  
BDIP  
GPL_B5  
Output  
TS  
Bidirectional  
Active pull-up  
TA  
Bidirectional  
Active pull-up  
TEA  
BI  
B12  
D12  
Open-drain  
Bidirectional  
Active pull-up  
IRQ2  
RSV  
B10  
C7  
Bidirectional  
Three-state  
IRQ4  
KR  
Bidirectional  
Three-state  
RETRY  
SPKROUT  
CR  
A11  
Input  
IRQ3  
BR  
BG  
BB  
D11  
C11  
B11  
Bidirectional  
Bidirectional  
Bidirectional  
Active pull-up  
FRZ  
D10  
Bidirectional  
IRQ6  
IRQ0  
IRQ1  
IRQ7  
N4  
P3  
P4  
Input  
Input  
Input  
MPC885/MPC880 Hardware Specifications, Rev. 3  
77  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
B14, C14, A15, D14, C16, A16  
Name  
CS[0:5]  
Type  
Output  
Output  
CS6  
D15  
B16  
B18  
CE1_B  
CS7  
Output  
Output  
CE2_B  
WE0  
BS_B0  
IORD  
WE1  
BS_B1  
IOWR  
E16  
C17  
B19  
Output  
Output  
Output  
WE2  
BS_B2  
PCOE  
WE3  
BS_B3  
PCWE  
BS_A[0:3]  
D17, C18, C19, F16  
B17  
Output  
Output  
GPL_A0  
GPL_B0  
OE  
GPL_A1  
GPL_B1  
A18  
Output  
Output  
GPL_A[2:3]  
GPL_B[2:3]  
CS[2:3]  
D16, A17  
UPWAITA  
GPL_A4  
B13  
A14  
Bidirectional  
Bidirectional  
UPWAITB  
GPL_B4  
GPL_A5  
PORESET  
RSTCONF  
HRESET  
SRESET  
XTAL  
C13  
B3  
D4  
B4  
A3  
A4  
D5  
G4  
A5  
Output  
Input  
Input  
Open-drain  
Open-drain  
Analog output  
Analog input (3.3 V only)  
Output  
EXTAL  
CLKOUT  
EXTCLK  
Input (3.3 V only)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
78  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
TEXP  
Pin Number  
Type  
C4  
Output  
Output  
Output  
Output  
Input  
ALE_A  
CE1_A  
CE2_A  
B7  
B15  
C15  
A2  
WAIT_A  
SOC_Split1  
WAIT_B  
C3  
B1  
Input  
Input  
IP_A0  
UTPB_Split01  
IP_A1  
C1  
F4  
Input  
Input  
UTPB_Split11  
IP_A2  
IOIS16_A  
UTPB_Split21  
IP_A3  
E3  
Input  
Input  
Input  
Input  
Input  
UTPB_Split31  
IP_A4  
D2  
UTPB_Split41  
IP_A5  
D1  
UTPB_Split51  
IP_A6  
E2  
UTPB_Split61  
IP_A7  
D3  
UTPB_Split71  
ALE_B  
DSCK/AT1  
D8  
Bidirectional  
Three-state  
IP_B[0:1]  
IWP[0:1]  
VFLS[0:1]  
A9, D9  
Bidirectional  
IP_B2  
IOIS16_B  
AT2  
C8  
C9  
B9  
Bidirectional  
Three-state  
IP_B3  
IWP2  
VF2  
Bidirectional  
Bidirectional  
Bidirectional  
IP_B4  
LWP0  
VF0  
IP_B5  
LWP1  
VF1  
A10  
MPC885/MPC880 Hardware Specifications, Rev. 3  
79  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
IP_B6  
DSDI  
AT0  
Pin Number  
Type  
Bidirectional  
A8  
B8  
B6  
Three-state  
IP_B7  
PTR  
AT3  
Bidirectional  
Three-state  
OP0  
Bidirectional  
UtpClk_Split1  
OP1  
C6  
D6  
Output  
OP2  
Bidirectional  
MODCK1  
STS  
OP3  
MODCK2  
DSDO  
A6  
A7  
Bidirectional  
Output  
BADDR30  
REG  
BADDR[28:29] C5, B5  
Output  
AS  
D7  
Input  
PA15  
N16  
Bidirectional  
USBRXD  
PA14  
USBOE  
P17  
W11  
P16  
W9  
Bidirectional  
(Optional: open-drain)  
PA13  
RXD2  
Bidirectional  
PA12  
TXD2  
Bidirectional  
(Optional: open-drain)  
PA11  
Bidirectional  
RXD4  
(Optional: open-drain)  
MII1-TXD0  
RMII1-TXD0  
PA10  
W17  
Bidirectional  
MII1-TXER  
TIN4  
(Optional: open-drain)  
CLK7  
PA9  
T15  
Bidirectional  
L1TXDA  
RXD3  
(Optional: open-drain)  
PA8  
W15  
Bidirectional  
L1RXDA  
TXD3  
(Optional: open-drain)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
80  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PA7  
CLK1  
L1RCLKA  
BRGO1  
TIN1  
V14  
PA6  
CLK2  
TOUT1  
U13  
Bidirectional  
Bidirectional  
PA5  
W13  
CLK3  
L1TCLKA  
BRGO2  
TIN2  
PA4  
CTS4  
MII1-TXD1  
RMII1-TXD1  
U4  
W2  
T4  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PA3  
MII1-RXER  
RMII1-RXER  
BRGO3  
PA2  
MII1-RXDV  
RMII1-CRS_DV  
TXD4  
PA1  
U1  
U3  
V3  
MII1-RXD0  
RMII1-RXD0  
BRGO4  
PA0  
MII1-RXD1  
RMII1-RXD1  
TOUT4  
PB31  
Bidirectional  
SPISEL  
(Optional: open-drain)  
MII1 - TXCLK  
RMII1-REFCLK  
PB30  
SPICLK  
P18  
T19  
V19  
Bidirectional  
(Optional: open-drain)  
PB29  
SPIMOSI  
Bidirectional  
(Optional: open-drain)  
PB28  
Bidirectional  
SPIMISO  
BRGO4  
(Optional: open-drain)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
81  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
PB27  
I2CSDA  
BRGO1  
Pin Number  
Type  
Bidirectional  
U19  
R17  
V17  
(Optional: open-drain)  
PB26  
I2CSCL  
BRGO2  
Bidirectional  
(Optional: open-drain)  
PB25  
Bidirectional  
(Optional: open-drain)  
RXADDR31  
TXADDR3  
SMTXD1  
PB24  
U16  
Bidirectional  
(Optional: open-drain)  
TXADDR31  
RXADDR3  
SMRXD1  
PB23  
W16  
Bidirectional  
(Optional: open-drain)  
TXADDR21  
RXADDR2  
SDACK1  
SMSYN1  
PB22  
V15  
U14  
Bidirectional  
(Optional: open-drain)  
TXADDR41  
RXADDR4  
SDACK2  
SMSYN2  
PB21  
Bidirectional  
SMTXD2  
TXADDR1 1  
BRG01  
(Optional: open-drain)  
RXADDR1  
PHSEL[1]  
PB20  
T13  
Bidirectional  
SMRXD2  
L1CLKOA  
TXADDR01  
RXADDR0  
PHSEL[0]  
(Optional: open-drain)  
PB19  
MII1-RXD3  
RTS4  
V13  
T12  
Bidirectional  
(Optional: open-drain)  
PB18  
Bidirectional  
(Optional: open-drain)  
RXADDR41  
TXADDR4  
RTS2  
L1ST2  
MPC885/MPC880 Hardware Specifications, Rev. 3  
82  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
PB17  
Pin Number  
Type  
Bidirectional  
W12  
L1ST3  
(Optional: open-drain)  
BRGO2  
RXADDR11  
TXADDR1  
PHREQ[1]  
PB16  
V11  
Bidirectional  
L1RQa  
(Optional: open-drain)  
L1ST4  
RTS4  
RXADDR01  
TXADDR0  
PHREQ[0]  
PB15  
U10  
Bidirectional  
TXCLAV  
BRG03  
RXCLAV  
PB14  
U18  
R19  
Bidirectional  
Bidirectional  
RXADDR21  
TXADDR2  
PC15  
DREQ0  
RTS3  
L1ST1  
TXCLAV  
RXCLAV  
PC14  
R18  
Bidirectional  
DREQ1  
RTS2  
L1ST2  
PC13  
MII1-TXD3  
SDACK1  
V10  
T18  
Bidirectional  
Bidirectional  
PC12  
MII1-TXD2  
TOUT1  
PC11  
USBRXP  
V16  
U15  
Bidirectional  
Bidirectional  
PC10  
USBRXN  
TGATE1  
PC9  
CTS2  
T14  
Bidirectional  
Bidirectional  
PC8  
W14  
CD2  
TGATE2  
MPC885/MPC880 Hardware Specifications, Rev. 3  
83  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PC7  
V12  
U11  
T10  
CTS4  
L1TSYNCB  
USBTXP  
PC6  
CD4  
Bidirectional  
Bidirectional  
L1RSYNCB  
USBTXN  
PC5  
CTS3  
L1TSYNCA  
SDACK2  
PC4  
CD3  
L1RSYNCA  
W10  
U8  
U7  
U6  
U5  
R2  
T2  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PD15  
L1TSYNCA  
UTPB0  
PD14  
L1RSYNCA  
UTPB1  
PD13  
L1TSYNCB  
UTPB2  
PD12  
L1RSYNCB  
UTPB3  
PD11  
RXD3  
RXENB  
PD10  
TXD3  
TXENB  
PD9  
TXD4  
UTPCLK  
U2  
R3  
PD8  
RXD4  
MII-MDC  
RMII-MDC  
PD7  
W3  
Bidirectional  
RTS3  
UTPB4  
MPC885/MPC880 Hardware Specifications, Rev. 3  
84  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PD6  
W5  
V6  
RTS4  
UTPB5  
PD5  
Bidirectional  
CLK8  
L1TCLKB  
UTPB6  
PD4  
CLK4  
UTPB7  
W4  
T9  
Bidirectional  
Bidirectional  
PD3  
CLK7  
TIN4  
SOC  
PE31  
U9  
Bidirectional  
CLK8  
(Optional: open-drain)  
L1TCLKB  
MII1-RXCLK  
PE30  
W7  
Bidirectional  
L1RXDB  
MII1-RXD2  
(Optional: open-drain)  
PE29  
MII2-CRS  
T8  
V5  
Bidirectional  
(Optional: open-drain)  
PE28  
Bidirectional  
TOUT3  
MII2-COL  
(Optional: open-drain)  
PE27  
V4  
Bidirectional  
RTS3  
(Optional: open-drain)  
L1RQB  
MII2-RXER  
RMII2-RXER  
PE26  
T1  
T3  
V8  
Bidirectional  
(Optional: open-drain)  
L1CLKOB  
MII2-RXDV  
RMII2-CRS_DV  
PE25  
RXD4  
MII2-RXD3  
L1ST2  
Bidirectional  
(Optional: open-drain)  
PE24  
Bidirectional  
SMRXD1  
BRGO1  
MII2-RXD2  
(Optional: open-drain)  
MPC885/MPC880 Hardware Specifications, Rev. 3  
85  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
PE23  
SMSYN2  
TXD4  
MII2-RXCLK  
L1ST1  
Pin Number  
Type  
Bidirectional  
V2  
V1  
V9  
(Optional: open-drain)  
PE22  
TOUT2  
MII2-RXD1  
RMII2-RXD1  
SDACK1  
Bidirectional  
(Optional: open-drain)  
PE21  
Bidirectional  
SMRXD2  
TOUT1  
(Optional: open-drain)  
MII2-RXD0  
RMII2-RXD0  
RTS3  
PE20  
R4  
Bidirectional  
L1RSYNCA  
SMTXD2  
CTS3  
(Optional: open-drain)  
MII2-TXER  
PE19  
T6  
Bidirectional  
L1TXDB  
(Optional: open-drain)  
MII2-TXEN  
RMII2-TXEN  
PE18  
R1  
W8  
Bidirectional  
(Optional: open-drain)  
L1TSYNCA  
SMTXD1  
MII2-TXD3  
PE17  
Bidirectional  
TIN3  
(Optional: open-drain)  
CLK5  
BRGO3  
SMSYN1  
MII2-TXD2  
PE16  
T7  
Bidirectional  
L1RCLKB  
CLK6  
(Optional: open-drain)  
TXD3  
MII2-TXCLK  
RMII2-REFCLK  
PE15  
W6  
Bidirectional  
TGATE1  
MII2-TXD1  
RMII2-TXD1  
MPC885/MPC880 Hardware Specifications, Rev. 3  
86  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
PE14  
Type  
Bidirectional  
V7  
RXD3  
MII2-TXD0  
RMII2-TXD0  
TMS  
V18  
T16  
Input  
Input  
TDI  
DSDI  
TCK  
U17  
Input  
DSCK  
TRST  
W18  
T17  
Input  
TDO  
Output  
DSDO  
MII1_CRS  
MII_MDIO  
T11  
P19  
T5  
Input  
Bidirectional  
Output  
MII1_TXEN  
RMII1_TXEN  
MII1_COL  
VSSSYN1  
VSSSYN  
VDDLSYN  
GND  
U12  
C2  
E4  
Input  
PLL analog VDD and GND  
Power  
Power  
B2  
G6, G7, G8, G9, G10, G11, G12, G13, H7, H8, H9, H10, H11, H12, H13, Power  
H14, J7, J8, J9, J10, J11, J12, J13, K7, K8, K9, K10, K11, K12, K13, L7,  
L8, L9, L10, L11, L12, L13, M7, M8, M9, M10, M11, M12, M13, N7, N8,  
N9, N10, N11, N12, N13, N14, P7, P13, R16  
VDDL  
E5, E6, E9, E11, E14, G15, H5, J5, J15, K15, L5, M15, N5, R6, R9, R10, Power  
R12, R15  
VDDH  
E7, E8, E10, E12, E13, E15, F5, F6, F7, F8, F9, F10, F11, F12, F13,  
F14, F15, G5, G14, H6, H15, J6, J14, K5, K6, K14, L6, L14, L15, M5,  
M6, M14, N6, N15, P5, P6, P8, P9, P10, P11, P12, P14, P15, R5, R7,  
R8, R11, R13, R14  
Power  
N/C  
N17  
No-connect  
1 ESAR mode only.  
MPC885/MPC880 Hardware Specifications, Rev. 3  
87  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
16.2 Mechanical Dimensions of the PBGA Package  
Figure 77 shows the mechanical dimensions of the PBGA package.  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M—1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package  
MPC885/MPC880 Hardware Specifications, Rev. 3  
88  
Freescale Semiconductor  
Document Revision History  
17 Document Revision History  
Table 40 lists significant changes between revisions of this hardware specification.  
Table 40. Document Revision History  
Revision  
Number  
Date  
Changes  
0
02/2003  
04/2003  
Initial revision.  
0.1  
Added pinout and pinout assignments table. Added the USB timing to Section 14. Added  
the Reduced MII to Section 15. Removed the Data Parity. Made some changes to the  
Features list.  
0.2  
05/2003  
Made the changes to the RMII Timing, Made sure all the VDDL, VDDH, and GND show up  
on the pinout diagram. Changed the SPI Master Timing Specs. 162 and 164.  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
05/2003  
5/2003  
5/2003  
6/2003  
7/2003  
8/2003  
Corrected the signals that had overlines on them.  
Changed the pin descriptions for PD8 and PD9.  
Changed some more typos, put in the phsel and phreq pins. Corrected the USB timing.  
Changed the pin descriptions per the June 22 spec.  
Added the RxClav and TxClav signals to PC15.  
Added the Reference to USB 2.0 to the Features list and removed 1.1 from USB on the  
block diagrams.  
0.9  
1.0  
8/2003  
9/2003  
Changed the USB description to full-/low-speed compatible.  
Added the DSP information in the Features list  
Fixed table formatting.  
Nontechnical edits.  
Released to the external web.  
2.0  
3.0  
12/2003  
Changed the maximum operating frequency to 133 MHz.  
Put in the orderable part numbers that are orderable.  
Put the timing in the 80 MHz column.  
Rounded the timings to hundredths in the 80 MHz column.  
Put the pin numbers in footnotes by the maximum currents in Table 6.  
Changed 22 and 41 in the Timing.  
Put in the Thermal numbers.  
7/22/2004  
• Added sentence to Spec B1A about EXTCLK and CLKOUT being in Alignment for  
Integer Values  
• Added a footnote to Spec 41 specifying that EDM = 1  
• Added RMII1_EN under M1II_EN in Table 36 Pin Assignments  
• Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL  
Max of the I2C Standard  
• Put the new part numbers in the Ordering Information Section  
MPC885/MPC880 Hardware Specifications, Rev. 3  
89  
Freescale Semiconductor  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC885/MPC880 Hardware Specifications, Rev. 3  
90  
Freescale Semiconductor  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC885/MPC880 Hardware Specifications, Rev. 3  
Freescale Semiconductor  
91  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
How to Reach Us:  
USA/Europe/Locations Not Listed:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405,  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals” must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
1-480-768-2130  
(800) 521-6274  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T. Hong Kong  
852-26668334  
Home Page:  
www.freescale.com  
Learn More: For more information about Freescale Semiconductor products, please visit  
www.freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described  
product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and  
used under license. All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004.  
MPC885EC  
Rev. 3  
07/2004  

相关型号:

MPC885CZP66

Hardware Specifications
FREESCALE

MPC885CZP66

PowerQUICC, 32 Bit Power Architecture, 66MHz, Communications Processor, -40 to 100C
NXP

MPC885EC

MPC885/MPC880 PowerQUICC Hardware Specifications
NXP

MPC885VR133

32-BIT, 133MHz, RISC PROCESSOR, PBGA357, LEAD FREE, PLASTIC, BGA-357
ROCHESTER

MPC885VR133

32-BIT, 133MHz, RISC PROCESSOR, PBGA357, LEAD FREE, PLASTIC, BGA-357
NXP

MPC885VR66

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, LEAD FREE, PLASTIC, BGA-357
ROCHESTER

MPC885VR80

32-BIT, 80MHz, RISC PROCESSOR, PBGA357, LEAD FREE, PLASTIC, BGA-357
ROCHESTER

MPC885ZP133

Hardware Specifications
FREESCALE

MPC885ZP133

PowerQUICC, 32 Bit Power Architecture, 133MHz, Communications Processor, 0 to 95C
NXP

MPC885ZP66

Hardware Specifications
FREESCALE

MPC885ZP80

Hardware Specifications
FREESCALE

MPC885ZP80

PowerQUICC, 32 Bit Power Architecture, 80MHz, Communications Processor, 0 to 95C
NXP