PCF5270AB100 [FREESCALE]

32-bit Embedded Controller Division; 32位嵌入式控制器事业部
PCF5270AB100
型号: PCF5270AB100
厂家: Freescale    Freescale
描述:

32-bit Embedded Controller Division
32位嵌入式控制器事业部

控制器
文件: 总56页 (文件大小:1096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF5271EC  
Rev. 1.2, 12/2004  
Freescale Semiconductor  
Hardware Specification  
MCF5271 Integrated  
Microprocessor  
Hardware Specification  
32-bit Embedded Controller Division  
Table of Contents  
The MCF5271 family is a highly integrated  
implementation of the ColdFire family of reduced  
®
1
2
3
4
5
6
7
8
9
MCF5271 Family Configurations..................... 2  
Block Diagram ................................................. 2  
Features .......................................................... 4  
Signal Descriptions........................................ 12  
Modes of Operation....................................... 16  
Design Recommendations ............................ 19  
Mechanicals/Pinouts and Part Numbers ....... 27  
Preliminary Electrical Characteristics............ 32  
Documentation .............................................. 55  
instruction set computing (RISC) microprocessors. This  
document describes pertinent features and functions of  
the MCF5271 family. The MCF5271 family includes the  
MCF5271 and MCF5270 microprocessors. The  
differences between these parts are summarized below in  
Table 1. This document is written from the perspective of  
the MCF5271 and unless otherwise noted, the  
information applies also to the MCF5270.  
The MCF5271 family combines low cost with high  
integration on the popular version 2 ColdFire core with  
over 96 (Dhrystone 2.1) MIPS at 100MHz. Positioned  
for applications requiring a cost-sensitive 32-bit  
solution, the MCF5271 family features a 10/100 Ethernet  
MAC and optional hardware encryption to ensure the  
application can be connected and protected. In addition,  
the MCF5271 family features an enhanced Multiply  
Accumulate Unit (eMAC), large on-chip memory (64  
Kbytes SRAM, 8 Kbytes configurable cache), and a  
32-bit SDR SDRAM memory controller.  
Technical Data  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
MCF5271 Family Configurations  
1 MCF5271 Family Configurations  
Table 1. MCF5271 Family Configurations  
Module  
5270  
5271  
x
x
ColdFire V2 Core with EMAC and  
Hardware Divide  
100 MHz  
96  
System Clock  
Performance (Dhrystone/2.1 MIPS)  
Instruction/Data Cache  
Static RAM (SRAM)  
8 Kbytes  
64 Kbytes  
2
x
2
Interrupt Controllers (INTC)  
Edge Port Module (EPORT)  
External Interface Module (EIM)  
4-channel Direct-Memory Access (DMA)  
SDRAM Controller  
x
x
x
x
x
x
x
x
x
Fast Ethernet Controller (FEC)  
Hardware Encryption  
x
x
x
Watchdog Timer (WDT)  
Four Periodic Interrupt Timers (PIT)  
32-bit DMA Timers  
x
x
4
x
4
x
QSPI  
3
x
3
UART(s)  
I2C  
x
x
x
x
General Purpose I/O Module (GPIO)  
JTAG - IEEE 1149.1 Test Access Port  
Package  
x
160 QFP,  
196 MAPBGA 196 MAPBGA  
160 QFP,  
2 Block Diagram  
The superset device in the MCF5271 family comes in a 196 mold array plastic ball grid array (MAPBGA)  
package. Figure 1 shows a top-level block diagram of the MCF5271.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
2
Freescale Semiconductor  
Block Diagram  
SDRAMC  
QSPI  
EIM  
I2C_SDA  
I2C_SCL  
UnTXD  
CHIP  
SELECTS  
(To/From SRAM backdoor)  
UnRXD  
UnRTS  
EBI  
UnCTS  
TnOUT  
TnIN  
INTC0 INTC1  
Arbiter  
FEC  
FAST  
ETHERNET  
(To/From PADI)  
(To/From PADI)  
CONTROLLER  
(FEC)  
UART  
0
UART UART  
I2C  
QSPI  
1
2
SDRAMC  
D[31:0]  
A[23:0]  
DTIM  
3
DTIM DTIM  
DTIM  
0
4 CH DMA  
R/W  
1
2
CS[3:0]  
TA  
(To/From  
PADI)  
TSIZ[1:0]  
TEA  
DREQ[2:0]  
DACK[2:0]  
JTAG_EN  
V2 ColdFire CPU  
BS[3:0]  
EMAC  
DIV  
JTAG  
TAP  
64 Kbytes  
SRAM  
(8Kx16)x4  
8 Kbytes  
CACHE  
(1Kx32)x2  
PORTS  
(GPIO)  
CIM  
Watchdog  
Timer  
(To/From Arbiter)  
SKHA  
RNGA  
MDHA  
PLL  
CLKGEN  
PIT0  
PIT1  
PIT2  
PIT3  
(To/From INTC)  
Edge  
Port  
Cryptography  
Modules  
Figure 1. MCF5271 Block Diagram  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
3
Features  
3 Features  
This document contains information on a new product. Specifications and information herein are subject  
to change without notice.  
3.1 Feature Overview  
Version 2 ColdFire variable-length RISC processor core  
— Static operation  
— 32-bit address and data path on-chip  
— Processor core runs at twice the bus frequency  
— Sixteen general-purpose 32-bit data and address registers  
— Implements the ColdFire Instruction Set Architecture, ISA_A, with extensions to support the  
user stack pointer register, and 4 new instructions for improved bit processing  
— Enhanced Multiply-Accumulate (EMAC) unit with four 48-bit accumulators to support 32-bit  
signal processing algorithms  
— Illegal instruction decode that allows for 68K emulation support  
System debug support  
— Real time trace for determining dynamic execution path  
— Background debug mode (BDM) for in-circuit debugging  
— Real time debug support, with two user-visible hardware breakpoint registers (PC and address  
with optional data) that can be configured into a 1- or 2-level trigger  
On-chip memories  
— 8-Kbyte cache, configurable as instruction-only, data-only, or split I-/D-cache  
— 64-Kbyte dual-ported SRAM on CPU internal bus, accessible by core and non-core bus  
masters (e.g., DMA, FEC)  
Fast Ethernet Controller (FEC)  
— 10 BaseT capability, half duplex or full duplex  
— 100 BaseT capability, half duplex or full duplex  
— On-chip transmit and receive FIFOs  
— Built-in dedicated DMA controller  
— Memory-based flexible descriptor rings  
— Media independent interface (MII) to external transceiver (PHY)  
Three Universal Asynchronous Receiver Transmitters (UARTs)  
— 16-bit divider for clock generation  
— Interrupt control logic  
— Maskable interrupts  
— DMA support  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
4
Freescale Semiconductor  
Features  
— Data formats can be 5, 6, 7 or 8 bits with even, odd or no parity  
— Up to 2 stop bits in 1/16 increments  
— Error-detection capabilities  
— Modem support includes request-to-send (URTS) and clear-to-send (UCTS) lines for two  
UARTs  
— Transmit and receive FIFO buffers  
I2C Module  
— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads  
— Fully compatible with industry-standard I2C bus  
— Master or slave modes support multiple masters  
— Automatic interrupt generation with programmable level  
Queued Serial Peripheral Interface (QSPI)  
— Full-duplex, three-wire synchronous transfers  
— Up to four chip selects available  
— Master mode operation only  
— Programmable master bit rates  
— Up to 16 pre-programmed transfers  
Four 32-bit DMA Timers  
— 20-ns resolution at 50 MHz  
— Programmable sources for clock input, including an external clock option  
— Programmable prescaler  
— Input-capture capability with programmable trigger edge on input pin  
— Output-compare with programmable mode for the output pin  
— Free run and restart modes  
— Maskable interrupts on input capture or reference-compare  
— DMA trigger capability on input capture or reference-compare  
Four Periodic Interrupt Timers (PITs)  
— 16-bit counter  
— Selectable as free running or count down  
Software Watchdog Timer  
— 16-bit counter  
— Low power mode support  
Frequency Modulated Phase Locked Loop (PLL)  
— Crystal or external oscillator reference  
— 8 to 25 MHz reference frequency for normal PLL mode  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
5
Features  
— 24 to 50 MHz oscillator reference frequency for 1:1 mode  
— Separate clock output pin  
— Interrupt Controllers (x2)  
– Support for up to 41 interrupt sources organized as follows: 34 fully-programmable  
interrupt sources and 7 fixed-level external interrupt sources  
— Unique vector number for each interrupt source  
— Ability to mask any individual interrupt source or all interrupt sources (global mask-all)  
— Support for hardware and software interrupt acknowledge (IACK) cycles  
— Combinatorial path to provide wake-up from low power modes  
DMA Controller  
— Four fully programmable channels  
— Dual-address and single-address transfer support with 8-, 16- and 32-bit data capability along  
with support for 16-byte (4 x 32-bit) burst transfers  
— Source/destination address pointers that can increment or remain constant  
— 24-bit byte transfer counter per channel  
— Auto-alignment transfers supported for efficient block movement  
— Bursting and cycle steal support  
— Software-programmable connections between the 12 DMA requesters in the UARTs (3),  
32-bit timers (4), plus external logic (4), and the four DMA channels (4)  
External Bus Interface  
— Glueless connections to external memory devices (e.g., SRAM, Flash, ROM, etc.)  
— SDRAM controller supports 8-, 16-, and 32-bit wide memory devices  
— Support for n-1-1-1 burst fetches from page mode Flash  
— Glueless interface to SRAM devices with or without byte strobe inputs  
— Programmable wait state generator  
— 32-bit bidirectional data bus  
— 24-bit address bus  
— Up to eight chip selects available  
— Byte/write enables (byte strobes)  
— Ability to boot from external memories that are 8, 16, or 32 bits wide  
Chip Configuration Module (CCM)  
— System configuration during reset  
— Selects one of four clock modes  
— Sets boot device and its data port width  
— Configures output pad drive strength  
— Unique part identification number and part revision number  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
6
Freescale Semiconductor  
Features  
— Reset  
– Separate reset in and reset out signals  
– Six sources of reset: Power-on reset (POR), External, Software, Watchdog, PLL loss of  
clock, PLL loss of lock  
– Status flag indication of source of last reset  
General Purpose I/O interface  
— Up to 61 bits of general purpose I/O  
— Bit manipulation supported via set/clear functions  
— Unused peripheral pins may be used as extra GPIO  
JTAG support for system level board testing  
3.2 V2 Core Overview  
The processor core is comprised of two separate pipelines that are decoupled by an instruction buffer. The  
two-stage Instruction Fetch Pipeline (IFP) is responsible for instruction-address generation and instruction  
fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting  
execution in the Operand Execution Pipeline (OEP). The OEP includes two pipeline stages. The first stage  
decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction  
execution and calculates operand effective addresses, if needed.  
The V2 core implements the ColdFire Instruction Set Architecture Revision A with added support for a  
separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the  
MCF5271 core includes the enhanced multiply-accumulate unit (EMAC) for improved signal processing  
capabilities. The EMAC implements a 4-stage execution pipeline, optimized for 32 x 32 bit operations,  
with support for four 48-bit accumulators. Supported operands include 16- and 32-bit signed and unsigned  
integers as well as signed fractional operands as well as a complete set of instructions to process these data  
types. The EMAC provides superb support for execution of DSP operations within the context of a single  
processor at a minimal hardware cost.  
3.3 Debug Module  
The ColdFire processor core debug interface is provided to support system debugging in conjunction with  
low-cost debug and emulator development tools. Through a standard debug interface, users can access  
real-time trace and debug information. This allows the processor and system to be debugged at full speed  
without the need for costly in-circuit emulators. The debug interface is a superset of the BDM interface  
provided on Freescale’s 683xx family of parts.  
The on-chip breakpoint resources include a total of 6 programmable registers—a set of address registers  
(with two 32-bit registers), a set of data registers (with a 32-bit data register plus a 32-bit data mask  
register), and one 32-bit PC register plus a 32-bit PC mask register. These registers can be accessed through  
the dedicated debug serial communication channel or from the processor’s supervisor mode programming  
model. The breakpoint registers can be configured to generate triggers by combining the address, data, and  
PC conditions in a variety of single or dual-level definitions. The trigger event can be programmed to  
generate a processor halt or initiate a debug interrupt exception.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
7
Features  
To support program trace, the Version 2 debug module provides processor status (PST[3:0]) and debug  
data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand  
data, and branch target addresses defining processor activity at the CPU’s clock rate.  
3.4 JTAG  
The MCF5271 supports circuit board test strategies based on the Test Technology Committee of IEEE and  
the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state  
controller, an instruction register, and three test registers (a 1-bit bypass register, a 330-bit boundary-scan  
register, and a 32-bit ID register). The boundary scan register links the device’s pins into one shift register.  
Test logic, implemented using static logic design, is independent of the device system logic.  
The MCF5271 implementation can do the following:  
Perform boundary-scan operations to test circuit board electrical continuity  
Sample MCF5271 system pins during operation and transparently shift out the result in the  
boundary scan register  
Bypass the MCF5271 for a given circuit board test by effectively reducing the boundary-scan  
register to a single bit  
Disable the output drive to pins during circuit-board testing  
Drive output pins to stable levels  
3.5 On-chip Memories  
3.5.1 Cache  
The 8-Kbyte cache can be configured into one of three possible organizations: an 8-Kbyte instruction  
cache, an 8-Kbyte data cache or a split 4-Kbyte instruction/4-Kbyte data cache. The configuration is  
software-programmable by control bits within the privileged Cache Configuration Register (CACR). In all  
configurations, the cache is a direct-mapped single-cycle memory, organized as 512 lines, each containing  
16 bytes of data. The memories consist of a 512-entry tag array (containing addresses and control bits) and  
a 8-Kbyte data array, organized as 2048 x 32 bits.  
If the desired address is mapped into the cache memory, the output of the data array is driven onto the  
ColdFire core's local data bus, completing the access in a single cycle. If the data is not mapped into the  
tag memory, a cache miss occurs and the processor core initiates a 16-byte line-sized fetch. The cache  
module includes a 16-byte line fill buffer used as temporary storage during miss processing. For all data  
cache configurations, the memory operates in write-through mode and all operand writes generate an  
external bus cycle.  
3.5.2 SRAM  
The SRAM module provides a general-purpose 64-Kbyte memory block that the ColdFire core can access  
in a single cycle. The location of the memory block can be set to any 64-Kbyte boundary within the  
4-Gbyte address space. The memory is ideal for storing critical code or data structures, for use as the  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
8
Freescale Semiconductor  
Features  
system stack, or for storing FEC data buffers. Because the SRAM module is physically connected to the  
processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing  
commands from the debug module.  
The SRAM module is also accessible by the DMA and FEC non-core bus masters. The dual-ported nature  
of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the  
processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.  
As an example, system performance can be increased significantly if Ethernet packets are moved from the  
FEC into the SRAM (rather than external memory) prior to any processing.  
3.6 Fast Ethernet Controller (FEC)  
The MCF5271’s integrated Fast Ethernet Controller (FEC) performs the full set of IEEE 802.3/Ethernet  
CSMA/CD media access control and channel interface functions. The FEC supports connection and  
functionality for the 10/100 Mbps 802.3 media independent interface (MII). It requires an external  
transceiver (PHY) to complete the interface to the media.  
3.7 UARTs  
The MCF5271 contains three full-duplex UARTs that function independently. The three UARTs can be  
clocked by the system bus clock, eliminating the need for an externally supplied clock. They can use DMA  
requests on transmit-ready and receive-ready as well as interrupt requests for servicing. Flow control is  
only available on two of the UARTs.  
3.8 I2C Bus  
The I2C bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data  
exchange, minimizing the interconnection between devices. This bus is suitable for applications requiring  
occasional communications over a short distance between many devices.  
3.9 QSPI  
The queued serial peripheral interface module provides a high-speed synchronous serial peripheral  
interface with queued transfer capability. It allows up to 16 transfers to be queued at once, eliminating CPU  
intervention between transfers.  
3.10 Cryptography  
The superset device, MCF5271, incorporates small, fast, dedicated hardware accelerators for random  
number generation, message digest and hashing, and the DES, 3DES, and AES block cipher functions  
allowing for the implementation of common Internet security protocol cryptography operations with  
performance well in excess of software-only algorithms.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
9
Features  
3.11 DMA Timers (DTIM0-DTIM3)  
There are four independent, DMA-transfer-generating 32-bit timers (DTIM[3:0]) on the MCF5271. Each  
timer module incorporates a 32-bit timer with a separate register set for configuration and control. The  
timers can be configured to operate from the system clock or from an external clock source using one of  
the DTINn signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further  
divided by a user-programmable 8-bit prescaler which clocks the actual timer counter register (TCRn).  
Each of these timers can be configured for input capture or reference compare mode. By configuring the  
internal registers, each timer may be configured to assert an external signal, generate an interrupt on a  
particular event or cause a DMA transfer.  
3.12 Periodic Interrupt Timers (PIT0-PIT3)  
The four periodic interrupt timers (PIT[3:0]) are 16-bit timers that provide precise interrupts at regular  
intervals with minimal processor intervention. Each timer can either count down from the value written in  
its PIT modulus register, or it can be a free-running down-counter.  
3.13 Software Watchdog Timer  
The watchdog timer is a 16-bit timer that facilitates recovery from runaway code. The watchdog counter  
is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must  
periodically restart the countdown.  
3.14 Clock Module and Phase Locked Loop (PLL)  
The clock module contains a crystal oscillator (OSC), frequency modulated phase-locked loop (PLL),  
reduced frequency divider (RFD), status/control registers, and control logic. To improve noise immunity,  
the PLL and OSC have their own power supply inputs, VDDPLL and VSSPLL. All other circuits are  
powered by the normal supply pins, VDD and VSS.  
3.15 Interrupt Controllers (INTC0/INTC1)  
There are two interrupt controllers on the MCF5271, each of which can support up to 63 interrupt sources  
each for a total of 126. Each interrupt controller is organized as 7 levels with 9 interrupt sources per level.  
Each interrupt source has a unique interrupt vector, and 56 of the 63 sources of a given controller provide  
a programmable level [1-7] and priority within the level.  
3.16 DMA Controller  
The Direct Memory Access (DMA) Controller Module provides an efficient way to move blocks of data  
with minimal processor interaction. The DMA module provides four channels (DMA0-DMA3) that allow  
byte, word, longword or 16-byte burst line transfers. These transfers are triggered by software explicitly  
setting a DCRn[START] bit. Other sources include the DMA timer, external sources via the DREQ signal,  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
10  
Freescale Semiconductor  
Features  
and UARTs. The DMA controller supports single or dual address to off-chip devices or dual address to  
on-chip devices.  
3.17 External Interface Module (EIM)  
The external bus interface handles the transfer of information between the core and memory, peripherals,  
or other processing elements in the external address space. Features have been added to support external  
Flash modules, for secondary wait states on reads and writes, and a signal to support Active-Low Address  
Valid (a signal on most Flash memories).  
Programmable chip-select outputs provide signals to enable external memory and peripheral circuits,  
providing all handshaking and timing signals for automatic wait-state insertion and data bus sizing.  
Base memory address and block size are programmable, with some restrictions. For example, the starting  
address must be on a boundary that is a multiple of the block size. Each chip select can be configured to  
provide read and write enable signals suitable for use with most popular static RAMs and peripherals. Data  
bus width (8-bit, 16-bit, or 32-bit) is programmable on all chip selects, and further decoding is available  
for protection from user mode access or read-only access.  
3.18 SDRAM Controller  
The SDRAM controller provides all required signals for glueless interfacing to a variety of  
JEDEC-compliant SDRAM devices. SD_SRAS/SD_SCAS address multiplexing is software configurable  
for different page sizes. To maintain refresh capability without conflicting with concurrent accesses on the  
address and data buses, SD_RAS, SD_SCAS, SD_WE, SD_CS[1:0] and SD_CKE are dedicated SDRAM  
signals.  
3.19 Reset  
The reset controller is provided to determine the cause of reset, assert the appropriate reset signals to the  
system, and keep track of what caused the last reset. The power management registers for the internal  
low-voltage detect (LVD) circuit are implemented in the reset module. There are six sources of reset:  
External  
Power-on reset (POR)  
Watchdog timer  
Phase locked-loop (PLL) loss of lock  
PLL loss of clock  
Software  
External reset on the RSTOUT pin is software-assertable independent of chip reset state. There are also  
software-readable status flags indicating the cause of the last reset.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
11  
Signal Descriptions  
3.20 GPIO  
Unused bus interface and peripheral pins on the MCF5271 can be used as discrete general-purpose inputs  
and outputs. These are managed by a dedicated GPIO module that logically groups all pins into ports  
located within a contiguous block of memory-mapped control registers.  
All of the pins associated with the external bus interface may be used for several different functions. Their  
primary function is to provide an external memory interface to access off-chip resources. When not used  
for this, all of the pins may be used as general-purpose digital I/O pins. In some cases, the pin function is  
set by the operating mode, and the alternate pin functions are not supported.  
The digital I/O pins on the MCF5271 are grouped into 8-bit ports. Some ports do not use all eight bits.  
Each port has registers that configure, monitor, and control the port pins.  
4 Signal Descriptions  
This section describes signals that connect off chip, including a table of signal properties. For a more  
detailed discussion of the MCF5271 signals, consult the MCF5235 Reference Manual (MCF5235RM).  
4.1 Signal Properties  
Table 2 lists all of the signals grouped by function. The “Dir” column is the direction for the primary  
function of the pin. Refer to Section 7, “Mechanicals/Pinouts and Part Numbers,” for package diagrams.  
NOTE  
In this table and throughout this document a single signal within a group is  
designated without square brackets (i.e., A24), while designations for  
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to  
include all signals within the two bracketed numbers when these numbers  
are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality.  
Pins that are muxed with GPIO will default to their GPIO functionality.  
Table 2. MCF5270 and MCF5271 Signal Information and Muxing  
MCF5270  
MCF5271  
160 QFP  
MCF5270  
MCF5271  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1 Alternate 2 Dir.1  
Reset  
RESET  
I
83  
82  
N13  
P13  
RSTOUT  
O
Clock  
EXTAL  
XTAL  
I
86  
85  
M14  
N14  
O
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
12  
Freescale Semiconductor  
 
Signal Descriptions  
Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)  
MCF5270  
MCF5271  
160 QFP  
MCF5270  
MCF5271  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1 Alternate 2 Dir.1  
CLKOUT  
O
89  
K14  
Mode Selection  
CLKMOD[1:0]  
RCON  
I
I
20,21  
79  
G5,H5  
K10  
External Memory Interface and Ports  
A[23:21]  
A[20:0]  
PADDR[7:5]  
CS[6:4]  
O
O
126, 125, 124  
123:115,  
B11, C11, D11  
A12, B12, C12,  
112:106, 102:98 A13, B13, B14,  
C13, C14, D12,  
D13, D14, E11,  
E12, E13, E14,  
F12, F13, F14,  
G11, G12, G13  
D[31:16]  
O
22:30, 33:39  
G1, G2, H1, H2,  
H3, H4, J1, J2,  
J3, J4, K1, K2,  
K3, K4, L1, L2  
D[15:8]  
D[7:0]  
PDATAH[7:0]  
PDATAL[7:0]  
O
O
42:49  
M1, N1, M2, N2,  
P2, L3, M3, N3  
50:52, 56:60  
P3, M4, N4, P4,  
L5, M5, N5, P5  
BS[3:0]  
OE  
PBS[7:4]  
CAS[3:0]  
O
O
I
143:140  
62  
B6, C6, D7, C7  
PBUSCTL7  
PBUSCTL6  
PBUSCTL5  
PBUSCTL4  
PBUSCTL3  
PBUSCTL2  
PBUSCTL1  
PBUSCTL0  
N6  
H11  
J14  
J13  
P6  
TA  
96  
TEA  
R/W  
TSIZ1  
TSIZ0  
TS  
DREQ1  
I
O
O
O
O
O
95  
DACK1  
DACK0  
DACK2  
DREQ0  
P7  
97  
H13  
H12  
TIP  
Chip Selects  
CS[7:4]  
PCS[7:4]  
O
B9, A10, C10,  
A11  
CS[3:2]  
CS1  
PCS[3:2]  
PCS1  
SD_CS[1:0]  
O
O
O
132,131  
130  
A9, C9  
B10  
CS0  
129  
D10  
SDRAM Controller  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
13  
Signal Descriptions  
Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)  
MCF5270  
MCF5271  
160 QFP  
MCF5270  
MCF5271  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1 Alternate 2 Dir.1  
SD_WE  
SD_SCAS  
SD_SRAS  
SD_CKE  
PSDRAM5  
PSDRAM4  
PSDRAM3  
PSDRAM2  
O
O
O
O
O
92  
91  
K13  
K12  
90  
K11  
139  
E8  
SD_CS[1:0] PSDRAM[1:0]  
L12, L13  
External Interrupts Port  
IRQ[7:3]  
PIRQ[7:3]  
I
IRQ7=63  
IRQ4=64  
N7, M7, L7, P8,  
N8  
IRQ2  
IRQ1  
PIRQ2  
PIRQ1  
DREQ2  
I
I
M8  
L8  
65  
FEC  
EMDC  
EMDIO  
PFECI2C3  
I2C_SCL  
U2TXD  
U2RXD  
O
I/O  
I
151  
150  
9
D4  
PFECI2C2  
I2C_SDA  
D5  
ECOL  
E2  
ECRS  
I
8
E1  
ERXCLK  
ERXDV  
ERXD[3:0]  
ERXER  
ETXCLK  
ETXEN  
ETXER  
ETXD[3:0]  
I
7
D1  
I
6
D2  
I
5:2  
159  
158  
157  
156  
155:152  
D3, C1, C2, B1  
O
I
B2  
A2  
I
C3  
B3  
O
O
A3, A4, C4, B4  
I2C  
I2C_SDA  
I2C_SCL  
PFECI2C1  
PFECI2C0  
I/O  
I/O  
J12  
J11  
DMA  
DACK[2:0] and DREQ[2:0] do not have a dedicated bond  
pads. Please refer to the following pins for muxing:  
TS and DT2OUT for DACK2, TSIZ1and DT1OUT for DACK1,  
TSIZ0 and DT0OUT for DACK0, IRQ2 and DT2IN for DREQ2,  
TEA and DT1IN for DREQ1, and TIP and DT0IN for DREQ0.  
QSPI  
QSPI_CS1  
PQSPI4  
SD_CKE  
O
B7  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
14  
Freescale Semiconductor  
Signal Descriptions  
Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)  
MCF5270  
MCF5271  
160 QFP  
MCF5270  
MCF5271  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1 Alternate 2 Dir.1  
QSPI_CS0  
QSPI_CLK  
QSPI_DIN  
PQSPI3  
PQSPI2  
PQSPI1  
PQSPI0  
O
O
I
146  
147  
148  
149  
A6  
C5  
B5  
A5  
I2C_SCL  
I2C_SDA  
QSPI_DOUT  
O
UARTs  
U2TXD  
U2RXD  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
U0RTS  
U0TXD  
U0RXD  
PUARTH1  
PUARTH0  
PUARTL7  
PUARTL6  
PUARTL5  
PUARTL4  
PUARTL3  
PUARTL2  
PUARTL1  
PUARTL0  
O
I
A8  
A7  
B8  
C8  
D9  
D8  
F3  
G3  
F1  
F2  
U2CTS  
U2RTS  
I
136  
135  
133  
134  
12  
O
O
I
I
O
O
I
15  
14  
13  
DMA Timers  
DT3IN  
DT3OUT  
DT2IN  
PTIMER7  
PTIMER6  
PTIMER5  
PTIMER4  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
U2CTS  
U2RTS  
DREQ2  
DACK2  
DREQ1  
DACK1  
DREQ0  
DACK0  
I
O
I
66  
61  
10  
11  
H14  
G14  
M9  
L9  
DT2OUT  
DT2OUT  
DT1IN  
O
I
DT1OUT  
L6  
DT1OUT  
DT0IN  
O
I
M6  
E4  
DT0OUT  
O
F4  
BDM/JTAG2  
DSCLK  
PSTCLK  
BKPT  
TRST  
TCLK  
TMS  
TDI  
O
O
O
I
70  
68  
71  
73  
72  
78  
N9  
P9  
P10  
M10  
N10  
K9  
DSI  
DSO  
TDO  
O
I
JTAG_EN  
DDATA[3:0]  
O
M12, N12, P12,  
L11  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
15  
Modes of Operation  
Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)  
MCF5270  
MCF5271  
160 QFP  
MCF5270  
MCF5271  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1 Alternate 2 Dir.1  
PST[3:0]  
O
77:74  
M11, N11, P11,  
L10  
Test  
TEST  
I
I
19  
F5  
PLL_TEST  
Power Supplies  
VDDPLL  
VSSPLL  
OVDD  
I
I
I
87  
84  
M13  
L14  
1, 18, 32, 41, 55, E5, E7, E10, F7,  
69, 81, 94, 105, F9, G6, G8, H7,  
114, 128, 138, H8, H9, J6, J8,  
145  
J10, K5, K6, K8  
VSS  
I
17, 31, 40, 54, A1, A14, E6, E9,  
67, 80, 88, 93, F6, F8, F10, G7,  
104, 113, 127, G9, H6, J5, J7,  
137, 144, 160 J9, K7, P1, P14  
VDD  
I
16, 53, 103  
D6, F11, G4, L4  
NOTES:  
1
Refers to pin’s primary function. All pins which are configurable for GPIO have a pullup enabled  
in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO  
module is not responsible for assigning these pins.  
2
5 Modes of Operation  
5.1 Chip Configuration Mode—Device  
Operating Options  
Chip operating mode:  
— Master mode  
Boot device/size:  
— External device boot  
– 32-bit  
– 16-bit (Default)  
– 8-bit  
Output pad strength:  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
16  
Freescale Semiconductor  
Modes of Operation  
— Partial drive strength (Default)  
— Full drive strength  
Clock mode:  
— Normal PLL with external crystal  
— Normal PLL with external clock  
— 1:1 PLL Mode  
— External oscillator mode (no PLL)  
Chip Select Configuration:  
PADDR[7:5] configured as chip select(s) and/or address line(s)  
PADDR[7:5] configured as A23-A21 (default)  
PADDR configured as CS6, PADDR[6:5] as A22-A21  
PADDR[7:6] configured as CS[6:5], PADDR5 as A21  
PADDR[7:5] configured as CS[6:4]  
5.1.1 Chip Configuration Pins  
Table 3. Configuration Pin Descriptions  
Chip Configuration  
Function  
Pin  
Pin State/Meaning  
1 Disabled  
Comments  
RCON  
D16  
Chip configuration  
enable  
Active low: if asserted, then all  
configuration pins must be driven  
appropriately for desired operation  
0 Enabled  
Select chip  
1 Master  
operating mode  
0 Reserved  
D20, D19  
D21  
Select external boot 00,11 External (32-bit)  
device data port size 10 External (8-bit)  
01 External (16-bit)  
Value read defaults to 32-bit  
Select output pad  
drive strength  
1 Full  
0 Partial  
CLKMOD1,  
CLKMOD0  
Select clock mode  
00 External clock mode (no VDDPLL must be supplied if a PLL  
PLL)  
mode is selected  
01 1:1 PLL mode  
10 Normal PLL with  
external clock reference  
11 Normal PLL with crystal  
clock reference  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
17  
Modes of Operation  
Table 3. Configuration Pin Descriptions (continued)  
Chip Configuration  
Pin State/Meaning  
Function  
Pin  
Comments  
D25, D24  
Select chip select /  
address line  
00 PADDR[7:5] configured  
as A23-A21 (default)  
10 PADDR7 configured as  
CS6,  
PADDR[6:5] as A22-A21  
01 PADDR[7:6] configured  
as CS[6:5],  
PADDR5 as A21  
11 PADDR[7:5] configured  
as CS[6:4]  
JTAG_EN  
Selects BDM or  
JTAG mode  
0 BDM mode  
1 JTAG mode  
5.2 Low Power Modes  
The following features are available to support applications which require low power.  
Four modes of operation:  
— RUN  
WAIT  
— DOZE  
— STOP  
Ability to shut down most peripherals independently.  
Ability to shut down the external CLKOUT pin.  
There are four modes of operation: RUN, WAIT, DOZE, and STOP. The system enters a low power mode  
when the user programs the low power bits (LPMD) in the LPCR (Low Power Control Register) in the  
CIM before the CPU core executes a STOP instruction. This idles the CPU with no cycles active. The  
LPMD bits indicate to the system and clock controller to power down and stop the clocks appropriately.  
During STOP mode, the system clock is stopped low.  
A wakeup event is required to exit a low power mode and return back to RUN mode. Wakeup events  
consist of any of the following conditions. See the following sections for more details.  
1. Any type of reset.  
2. Assertion of the BKPT pin to request entry into Debug mode.  
3. Debug request bit in the BDM control register to request entry into debug mode.  
4. Any valid interrupt request.  
5.2.1 RUN Mode  
RUN mode is the normal system operating mode. Current consumption in this mode is related directly to  
the frequency chosen for the system clock.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
18  
Freescale Semiconductor  
Design Recommendations  
5.2.2 WAIT Mode  
WAIT mode is intended to be used to stop only the CPU core and memory clocks until a wakeup event is  
detected. In this mode, peripherals may be programmed to continue operating and can generate interrupts,  
which cause the CPU core to exit from WAIT mode.  
5.2.3 DOZE Mode  
DOZE mode affects the CPU core in the same manner as WAIT mode, but with a different code on the  
CIM LPMD bits, which are monitored by the peripherals. Each peripheral defines individual operational  
characteristics in DOZE mode. Peripherals which continue to run and have the capability of producing  
interrupts may cause the CPU to exit the DOZE mode and return to the RUN mode. Peripherals which are  
stopped will restart operation on exit from DOZE mode as defined for each peripheral.  
5.2.4 STOP Mode  
STOP mode affects the CPU core in the same manner as the WAIT and DOZE modes, but with a different  
code on the CCM LPMD bits. In this mode, all clocks to the system are stopped and the peripherals cease  
operation.  
STOP mode must be entered in a controlled manner to ensure that any current operation is properly  
terminated. When exiting STOP mode, most peripherals retain their pre-stop status and resume operation.  
5.2.5 Peripheral Shut Down  
Most peripherals may be disabled by software in order to cease internal clock generation and remain in a  
static state. Each peripheral has its own specific disabling sequence (refer to each peripheral description  
for further details). A peripheral may be disabled at anytime and will remain disabled during any low  
power mode of operation.  
6 Design Recommendations  
6.1 Layout  
Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power  
and ground planes for the MCF5271.  
See application note AN1259 System Design and Layout Techniques for Noise Reduction in  
processor-Based Systems.  
Match the PC layout trace width and routing to match trace length to operating frequency and  
board impedance. Add termination (series or therein) to the traces to dampen reflections.  
Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do  
cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6  
mils trace and separation. Clocks get extra separation and more precise balancing.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
19  
Design Recommendations  
6.2 Power Supply  
33 µF, .1 µF and .01 µF across each power supply  
6.3 Decoupling  
Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of  
the package.  
.1 µF and .01 µF at each supply input  
6.4 Buffering  
Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses  
when excessive loading is expected. See Section 8, “Preliminary Electrical Characteristics.”  
6.5 Pull-up Recommendations  
Use external pull-up resistors on unused inputs. See pin table.  
6.6 Clocking Recommendations  
Use a multi-layer board with a separate ground plane.  
Place the crystal and all other associated components as close to the EXTAL and XTAL  
(oscillator pins) as possible.  
Do not run a high frequency trace around crystal circuit.  
Ensure that the ground for the bypass capacitors is connected to a solid ground trace.  
Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop  
currents in the vicinity of the crystal.  
Tie the ground pin to the most solid ground in the system.  
Do not connect the trace that connects the oscillator and the ground plane to any other circuit  
element. This tends to make the oscillator unstable.  
Tie XTAL to ground when an external oscillator is clocking the device.  
6.7 Interface Recommendations  
6.7.1 SDRAM Controller  
6.7.1.1 SDRAM Controller Signals in Synchronous Mode  
Table 4 shows the behavior of SDRAM signals in synchronous mode.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
20  
Freescale Semiconductor  
Design Recommendations  
Table 4. Synchronous DRAM Signal Connections  
Description  
Signal  
SD_SRAS  
Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be  
latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM  
SD_SRAS. Do not confuse SD_SRAS with the DRAM controller’s SD_CS[1:0], which should not  
be interfaced to the SDRAM SD_SRAS signals.  
SD_SCAS  
DRAMW  
Synchronous column address strobe. Indicates a valid column address is present and can be  
latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled  
SD_SCAS on the SDRAM.  
DRAM read/write. Asserted for write operations and negated for read operations.  
SD_CS[1:0] Row address strobe. Select each memory block of SDRAMs connected to the MCF5271. One  
SD_CS signal selects one SDRAM block and connects to the corresponding CS signals.  
SD_CKE  
Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of  
SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can  
enter a power-down mode where operations are suspended or they can enter self-refresh mode.  
SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing,  
setting COC allows SD_CKE to provide command-bit functionality.  
BS[3:0]  
Column address strobe. For synchronous operation, BS[3:0] function as byte enables to the  
SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.  
CLKOUT  
Bus clock output. Connects to the CLK input of SDRAMs.  
6.7.1.2 Address Multiplexing  
Table 5 shows the generic address multiplexing scheme for SDRAM configurations. All possible address  
connection configurations can be derived from this table.  
Table 5. Generic Address Multiplexing Scheme  
Address Pin Row Address Column Address  
Notes Related to Port Sizes  
8-bit port only  
8- and 16-bit ports only  
17  
16  
15  
14  
13  
12  
11  
10  
9
17  
16  
15  
14  
13  
12  
11  
10  
9
0
1
2
3
4
5
6
7
8
17  
18  
17  
18  
16  
17  
32-bit port only  
16-bit port only or 32-bit port with only 8  
column address lines  
19  
20  
19  
20  
18  
19  
16-bit port only when at least 9 column  
address lines are used  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
21  
Design Recommendations  
Table 5. Generic Address Multiplexing Scheme (continued)  
Address Pin Row Address Column Address Notes Related to Port Sizes  
21  
22  
23  
24  
25  
21  
22  
23  
24  
25  
20  
21  
22  
23  
24  
The following tables provide a more comprehensive, step-by-step way to determine the correct address  
line connections for interfacing the MCF5271 to SDRAM. To use the tables, find the one that corresponds  
to the number of column address lines on the SDRAM and to the port size as seen by the MCF5271, which  
is not necessarily the SDRAM port size. For example, if two 1M x 16-bit SDRAMs together form a  
2M x 32-bit memory, the port size is 32 bits. Most SDRAMs likely have fewer address lines than are  
shown in the tables, so follow only the connections shown until all SDRAM address lines are connected.  
Table 6. MCF5271 to SDRAM Interface (8-Bit Port, 9-Column Address Lines)  
MCF5271 A17 A16 A15 A14 A13 A12 A11 A10 A9 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
17 16 15 14 13 12 11 10  
9
8
18 19 20 21 22 23 24 25 26 27 28 29 30 31  
Column  
0
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22  
Pins  
Table 7. MCF5271MCF5271 to SDRAM Interface (8-Bit Port,10-Column Address Lines)  
MCF5271 A17 A16 A15 A14 A13 A12 A11 A10 A9 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
17 16 15 14 13 12 11 10  
9
8
19 20 21 22 23 24 25 26 27 28 29 30 31  
18  
Column  
0
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21  
Pins  
Table 8. MCF5271MCF5271 to SDRAM Interface (8-Bit Port,11-Column Address Lines)  
MCF5271 A17 A16 A15 A14 A13 A12 A11 A10 A9 A19 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
17 16 15 14 13 12 11 10  
9
8
19 21 22 23 24 25 26 27 28 29 30 31  
18 20  
Column  
0
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20  
Pins  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
22  
Freescale Semiconductor  
Design Recommendations  
Table 9. MCF5271MCF5271 to SDRAM Interface (8-Bit Port,12-Column Address Lines)  
MCF5271 A17 A16 A15 A14 A13 A12 A11 A10 A9 A19 A21 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
17 16 15 14 13 12 11 10  
9
8
19 21 23 24 25 26 27 28 29 30 31  
18 20 22  
Column  
0
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19  
Pins  
Table 10. MCF5271MCF5271 to SDRAM Interface (8-Bit Port,13-Column Address Lines)  
MCF5271 A17 A16 A15 A14 A13 A12 A11 A10 A9 A19 A21 A23 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
17 16 15 14 13 12 11 10  
9
8
19 21 23 25 26 27 28 29 30 31  
18 20 22 24  
Column  
0
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18  
Pins  
Table 11. MCF5271MCF5271 to SDRAM Interface (16-Bit Port, 8-Column Address Lines)  
MCF5271 A16 A15 A14 A13 A12 A11 A10 A9 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
16 15 14 13 12 11 10  
9
8
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
Column  
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22  
Pins  
Table 12. MCF5271MCF5271 to SDRAM Interface (16-Bit Port, 9-Column Address Lines)  
MCF5271 A16 A15 A14 A13 A12 A11 A10 A9 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
16 15 14 13 12 11 10  
9
8
18 19 20 21 22 23 24 25 26 27 28 29 30 31  
17  
Column  
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21  
Pins  
Table 13. MCF5271MCF5271 to SDRAM Interface (16-Bit Port, 10-Column Address Lines)  
MCF5271 A16 A15 A14 A13 A12 A11 A10 A9 A18 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
16 15 14 13 12 11 10  
9
8
18 20 21 22 23 24 25 26 27 28 29 30 31  
17 19  
Column  
1
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20  
Pins  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
23  
Design Recommendations  
Table 14. MCF5271MCF5271 to SDRAM Interface (16-Bit Port, 11-Column Address Lines)  
MCF5271 A16 A15 A14 A13 A12 A11 A10 A9 A18 A20 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
16 15 14 13 12 11 10  
9
8
18 20 22 23 24 25 26 27 28 29 30 31  
17 19 21  
Column  
1
2
3
4
5
6
7
SDRAM  
Pins  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19  
Table 15. MCF5271MCF5271 to SDRAM Interface (16-Bit Port, 12-Column Address Lines)  
MCF5271 A16 A15 A14 A13 A12 A11 A10 A9 A18 A20 A22 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
16 15 14 13 12 11 10  
9
8
18 20 22 24 25 26 27 28 29 30 31  
17 19 21 23  
Column  
1
2
3
4
5
6
7
SDRAM  
Pins  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18  
Table 16. MCF5271MCF5271 to SDRAM Interface (16-Bit Port, 13-Column-Address Lines)  
MCF5271 A16 A15 A14 A13 A12 A11 A10 A9 A18 A20 A22 A24 A26 A27 A28 A29 A30 A31  
Pins  
Row  
16  
1
15  
2
14  
3
13  
4
12  
5
11  
6
10  
7
9
8
18  
17  
20  
19  
22  
21  
24  
23  
26  
25  
27  
28  
29  
30  
31  
Column  
SDRAM  
Pins  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17  
Table 17. MCF5271MCF5271 to SDRAM Interface (32-Bit Port, 8-Column Address Lines)  
MCF5271 A15 A14 A13 A12 A11 A10 A9 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
15 14 13 12 11 10  
9
8
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
16  
Column  
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21  
Pins  
Table 18. MCF5271MCF5271 to SDRAM Interface (32-Bit Port, 9-Column Address Lines)  
MCF5271 A15 A14 A13 A12 A11 A10 A9 A17 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
15 14 13 12 11 10  
9
8
17 19 20 21 22 23 24 25 26 27 28 29 30 31  
16 18  
Column  
2
3
4
5
6
7
SDRAM A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20  
Pins  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
24  
Freescale Semiconductor  
Design Recommendations  
Table 19. MCF5271MCF5271 to SDRAM Interface (32-Bit Port, 10-Column Address Lines)  
MCF5271 A15 A14 A13 A12 A11 A10 A9 A17 A19 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
15 14 13 12 11 10  
9
8
17 19 21 22 23 24 25 26 27 28 29 30 31  
16 18 20  
Column  
2
3
4
5
6
7
SDRAM  
Pins  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19  
Table 20. MCF5271MCF5271 to SDRAM Interface (32-Bit Port, 11-Column Address Lines)  
MCF5271 A15 A14 A13 A12 A11 A10 A9 A17 A19 A21 A23 A24 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
15 14 13 12 11 10  
9
8
17 19 21 23 24 25 26 27 28 29 30 31  
16 18 20 22  
Column  
2
3
4
5
6
7
SDRAM  
Pins  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18  
Table 21. MCF5271MCF5271 to SDRAM Interface (32-Bit Port, 12-Column Address Lines)  
MCF5271 A15 A14 A13 A12 A11 A10 A9 A17 A19 A21 A23 A25 A26 A27 A28 A29 A30 A31  
Pins  
Row  
15  
2
14  
3
13  
4
12  
5
11  
6
10  
7
9
8
17  
16  
19  
18  
21  
20  
23  
22  
25  
24  
26  
27  
28  
29  
30  
31  
Column  
SDRAM  
Pins  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17  
6.7.1.3 SDRAM Interfacing Example  
The tables in the previous section can be used to configure the interface in the following example. To  
interface one 2M 32-bit 4 bank SDRAM component (8 columns) to the MCF5271, the connections would  
be as shown in Table 22.  
Table 22. SDRAM Hardware Connections  
SDRAM  
Pins  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10 = CMD  
A20  
BA0  
A21  
BA1  
A22  
MCF5271 A15 A14 A13 A12 A11 A10 A9 A17 A18 A19  
Pins  
6.7.2 Ethernet PHY Transceiver Connection  
The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10  
Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3  
standard defines and the FEC module supports 18 signals. These are shown in Table 23.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
25  
Design Recommendations  
Table 23. MII Mode  
Signal Description  
Transmit clock  
MCF5271 Pin  
ETXCLK  
Transmit enable  
Transmit data  
Transmit error  
Collision  
ETXEN  
ETXD[3:0]  
ETXER  
ECOL  
Carrier sense  
Receive clock  
Receive enable  
Receive data  
Receive error  
ECRS  
ERXCLK  
ERXDV  
ERXD[3:0]  
ERXER  
EMDC  
Management channel clock  
Management channel serial data  
EMDIO  
The serial mode interface operates in what is generally referred to as AMD mode. The MCF5271  
configuration for seven-wire serial mode connections to the external transceiver are shown in Table 24.  
Table 24. Seven-Wire Mode Configuration  
Signal Description  
Transmit clock  
MCF5271 Pin  
ETXCLK  
ETXEN  
ETXD[0]  
ECOL  
Transmit enable  
Transmit data  
Collision  
Receive clock  
ERXCLK  
ERXDV  
ERXD[0]  
ERXER  
ECRS  
Receive enable  
Receive data  
Unused, configure as PB14  
Unused input, tie to ground  
Unused, configure as PB[13:11]  
Unused output, ignore  
Unused, configure as PB[10:8]  
Unused, configure as PB15  
Input after reset, connect to ground  
ERXD[3:1]  
ETXER  
ETXD[3:1]  
EMDC  
EMDIO  
Refer to the M5271EVB evaluation board user’s manual for an example of how to connect an external  
PHY. Schematics for this board are accessible at the MCF5271 site by navigating to:  
http://www.freescale.com.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
26  
Freescale Semiconductor  
Mechanicals/Pinouts and Part Numbers  
6.7.3 BDM  
Use the BDM interface as shown in the M5271EVB evaluation board user’s manual. The schematics for  
this board are accessible at the MCF5271 site by navigating from: http://www.freescale.com following the  
32-bit Embedded Processors, 68K/ColdFire, MCF5xxx, MCF5271 and M5271EVB links.  
7 Mechanicals/Pinouts and Part Numbers  
This section contains drawings showing the pinout and the packaging and mechanical characteristics of  
the MCF5271 devices. See Table 2 for a list the signal names and pin locations for each device.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
27  
Mechanicals/Pinouts and Part Numbers  
7.1 Pinout—196 MAPBGA  
Figure 2 shows a pinout of the MCF5270/71CVMxxx package.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
QSPI_  
DOUT  
A
B
C
D
E
F
VSS  
ETXCLK  
ETXD3  
ETXD2  
QSPI_CS0 U2RXD  
U2TXD  
CS3  
CS6  
CS4  
A20  
A17  
VSS  
A
B
C
D
E
F
G
H
J
ERXD0  
ERXD2  
ERXCLK  
ECRS  
ERXER  
ERXD1  
ERXDV  
ECOL  
ETXER  
ETXEN  
ERXD3  
NC  
ETXD0 QSPI_DIN  
BS3  
BS2  
QSPI_CS1 U1CTS  
CS7  
CS2  
CS1  
CS5  
A23  
A22  
A21  
A9  
A19  
A18  
A12  
A8  
A16  
A14  
A11  
A7  
A15  
A13  
ETXD1  
EMDC  
TIN0  
QSCK  
EMDIO  
VDD  
BS0  
BS1  
RTS1  
U1RXD1  
SD_CKE  
VSS  
Core  
VDD_4  
U1TXD  
VSS  
CS0  
A10  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
IRQ5  
IRQ6  
IRQ7  
VDD  
A6  
Core  
VDD_3  
U0TXD  
Data31  
DATA29  
DATA25  
DATA21  
DATA17  
DATA15  
DATA14  
U0RXD  
DATA30  
DATA28  
DATA24  
DATA20  
DATA16  
DATA13  
DATA12  
U0CTS  
U0RTS  
DATA27  
DATA23  
DATA19  
DATA10  
DATA9  
DATA8  
DTOUT0  
TEST  
VDD  
VSS  
A5  
A4  
A3  
Core  
VDD_1  
CLK  
MOD1  
G
H
J
VDD  
VDD  
VSS  
NC  
A2  
TA  
A1  
A0  
DTOUT3  
DTIN3  
TEA  
CLK  
MOD0  
DATA26  
DATA22  
DATA18  
VSS  
VDD  
VDD  
NC  
TIP  
TS  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
I2C_SCL I2C_SDA  
R/W  
K
L
VDD  
VDD  
JTAG_EN  
DTOUT2  
DTIN2  
RCON  
PST0  
TDI/DSI  
TDO/DSO  
SD_ RAS SD_ CAS SD_ WE CLKOUT  
DDATA0 SD_ CS1 SD_ CS0 VSSPLL  
K
L
Core  
VDD_2  
DATA3  
DATA2  
DATA1  
DTIN1  
DTOUT1  
OE  
IRQ1  
M
N
P
DATA6  
IRQ2  
PST3  
PST2  
DDATA3  
DDATA2  
VDDPLL  
RESET  
EXTAL  
XTAL  
M
TRST/  
DSCLK  
DATA5  
IRQ3  
N
P
TCLK/  
PSTCLK  
TMS/  
BKPT  
VSS  
DATA11  
DATA7  
DATA4  
DATA0  
TSIZ1  
TSIZ0  
IRQ4  
PST1  
DDATA1 RSTOUT  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 2. MCF5270/71CVMxxx Pinout (196 MAPBGA)  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
28  
Freescale Semiconductor  
Mechanicals/Pinouts and Part Numbers  
7.2 Package Dimensions—196 MAPBGA  
Figure 3 shows MCF5270/71CVMxxx package dimensions.  
NOTES:  
D
X
Y
1. Dimensions are in millimeters.  
2. Interpretdimensionsandtolerances  
per ASME Y14.5M, 1994.  
3. Dimension B is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
4. Datum Z (seating plane) is defined  
bythesphericalcrownsofthesolder  
balls.  
Laser mark for pin 1  
identification in  
this area  
M
K
5. Parallelism measurement shall  
exclude any effect of mark on top  
surface of package.  
Millimeters  
DIM Min Max  
A 1.32 1.75  
A1 0.27 0.47  
A2 1.18 REF  
E
b
D
E
e
0.35 0.65  
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
M
0.20  
13X e  
S
Metalized mark for  
pin 1 identification  
in this area  
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
13X e  
A2  
A
G
H
J
A1  
0.15 Z  
4
Z
K
L
Detail K  
Rotated 90 Clockwise  
°
M
N
P
3
196X  
b
View M-m  
0.30 Z X Y  
0.10 Z  
Figure 3. 196 MAPBGA Package Dimensions (Case No. 1128A-01)  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
29  
Mechanicals/Pinouts and Part Numbers  
7.3 Pinout—160 QFP  
Figure 4 shows a pinout of the MCF5271CABxxx package.  
O-VDD  
ERXD0  
ERXD1  
ERXD2  
ERXD3  
ERXDV  
ERXCLK  
ECRS  
1
2
3
4
5
6
7
8
9
120  
119  
A17  
A16  
A15  
A14  
A13  
A12  
O-VDD  
VSS  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
O-VDD  
VSS  
Core_Vdd_3  
A4  
A3  
A2  
A1  
A0  
TS  
TA  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
ECOL  
U0TIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
U0TOUT  
U0CTS  
U0RXD  
U0TXD  
U0RTS  
Core VDD_1  
VSS  
O-VDD  
TEST  
CLKMOD1  
CLKMOD0  
DATA31  
DATA30  
DATA29  
DATA28  
DATA27  
DATA26  
DATA25  
DATA24  
DATA23  
VSS  
O-VDD  
DATA22  
DATA21  
DATA20  
DATA19  
DATA18  
DATA17  
DATA16  
VSS  
MCF5271  
R/W  
O-VDD  
VSS  
SD_WE  
SD_SCAS  
SD_SRAS  
CLKOUT  
VSS  
VDDPLL  
EXTAL  
XTAL  
VSSPLL  
RESET  
RSTOUT  
O-VDD  
82  
81  
Figure 4. MCF5270/71CABxxx Pinout (160 QFP)  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
30  
Freescale Semiconductor  
 
Mechanicals/Pinouts and Part Numbers  
7.4 Package Dimensions—160 QFP  
Figure 5 shows MCF5270/71CAB80 package dimensions.  
Y
L
–A–, –B–, –D–  
–B–  
–A–  
B
B
L
B
V
P
DETAIL A  
G
DETAIL A  
Z
A
BASE  
METAL  
0.20 (0.008)  
0.20 (0.008)  
M
C
A-B  
A-B  
S
D
S
A-B  
N
J
S
M
S
S
D
0.20 (0.008)  
C
F
DETAIL C  
–H–  
D
0.13 (0.005)  
M
S
S
D
C
A-B  
SECTION B–B  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
M×  
TOP &  
BOTTOM  
A
27.90 28.10 1.098 1.106  
27.90 28.10 1.098 1.106  
B
C
D
E
F
G
H
J
3.35  
3.85 0.132 1.106  
NOTES  
0.22  
3.20  
0.22  
0.38 0.009 0.015  
3.50 0.126 0.138  
0.33 0.009 0.013  
1. DIMENSIONING AND TOLERINCING PER ANSI  
Y14.5M, 1982.  
U×  
0.65 BSC  
0.026 REF  
2. CONTROLLING DIMENSION: MILLIMETER  
0.25  
0.11  
0.70  
0.35 0.010 0.014  
0.23 0.004 0.009  
0.90 0.028 0.035  
T
E
C
3. DATUM PLAN -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
–H–  
K
R
25.35 BSC  
0.998 REF  
5° 16°  
0.19 0.004 0.007  
0.013 REF  
0° 7°  
0.30 0.005 0.012  
L
M
N
P
Q
R
S
T
U
V
W
X
5°  
16°  
Q×  
0.11  
4. DATUMS -A-, -B-, AND -D- TO BE DETERMINED AT  
DATUM PLANE -H-.  
0.325 BSC  
0°  
7°  
W
–C–  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE -C-.  
0.13  
K
31.00 31.40 1.220 1.236  
H
0.13  
0°  
0.005  
0°  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE -H-.  
X
0.110 (0.004)  
31.00 31.40 1.220 1.236  
0.4 0.016  
1.60 REF  
1.33 REF  
1.33 REF  
0.063 REF  
0.052 REF  
0.052 REF  
Y
Z
DETAIL C  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT.  
Case 864A-03  
Figure 5. 160 QFP Package Dimensions  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
31  
Preliminary Electrical Characteristics  
7.5 Ordering Information  
Table 25. Orderable Part Numbers  
Freescale Part  
Number  
Description  
Speed  
Temperature  
PCF5270AB100  
PCF5270VM100  
PCF5271CAB100  
PCF5271CVM100  
MCF5270 RISC Microprocessor, 160 QFP  
MCF5270 RISC Microprocessor, 196 MAPBGA  
MCF5271 RISC Microprocessor, 160 QFP  
MCF5271 RISC Microprocessor, 196 MAPBGA  
100MHz  
100MHz  
100MHz  
100MHz  
0° to +70° C  
0° to +70° C  
-40° to +85° C  
-40° to +85° C  
8 Preliminary Electrical Characteristics  
This chapter contains electrical specification tables and reference timing diagrams for the MCF5271  
microcontroller unit. This section contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications of MCF5271.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however  
for production silicon these specifications will be met. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this processor document supersede any values  
found in the module specifications.  
8.1 Maximum Ratings  
1, 2  
Table 26. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
Pad Supply Voltage  
VDD  
OVDD  
VDDPLL  
VIN  
– 0.5 to +2.0  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to + 4.0  
25  
V
V
Clock Synthesizer Supply Voltage  
Digital Input Voltage 3  
V
V
Instantaneous Maximum Current  
ID  
mA  
Single pin limit (applies to all pins) 3,4,5  
Operating Temperature Range (Packaged)  
TA  
(TL - TH)  
– 40 to 85  
°C  
°C  
Storage Temperature Range  
N1 OTES:  
Tstg  
– 65 to 150  
Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum  
Ratings are stress ratings only, and functional operation at the maxima is not guaranteed.  
Continued operation at these levels may affect device reliability or cause permanent damage  
to the device.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application of  
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,  
either VSS or OVDD).  
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
then use the larger of the two values.  
2
3
4
5
All functional non-supply pins are internally clamped to VSS and OVDD  
.
Power supply must maintain regulation within operating OVDD range during instantaneous  
and operating maximum current conditions. If positive injection current (Vin > OVDD) is greater  
than IDD, the injection current may flow out of OVDD and could result in external power supply  
going out of regulation. Insure external OVDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the processor is not consuming power  
(ex; no clock).Power supply must maintain regulation within operating OVDD range during  
instantaneous and operating maximum current conditions.  
8.2 Thermal Characteristics  
Table 27 lists thermal resistance values  
Table 27. Thermal Characteristics  
196  
MAPBGA  
Characteristic  
Symbol  
160QFP Unit  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Junction to board  
Four layer board (2s2p)  
Four layer board (2s2p)  
θJMA  
θJMA  
θJB  
θJC  
Ψjt  
321,2  
295,6  
205  
403,4  
365,6  
256  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
107  
108  
Junction to top of package  
Maximum operating junction temperature  
N1 OTES:  
25,9  
25,10  
Tj  
104  
105  
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Motorola recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware that  
device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in the  
customer’s system using the Ψjt parameter, the device power dissipation, and the method described in  
EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Motorola recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware that  
device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in the  
customer’s system using the Ψjt parameter, the device power dissipation, and the method described in  
EIA/JESD Standard 51-2.  
4
5
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.  
Board temperature is measured on the top surface of the board near the package.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.  
Board temperature is measured on the top surface of the board near the package.  
6
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
7
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written in conformance with Psi-JT.  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written in conformance with Psi-JT.  
8
9
10  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
(1)  
)
TJ = TA + (PD × ΘJMA  
Where:  
T = Ambient Temperature, °C  
A
Θ
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
JMA  
P = P  
+ P  
I/O  
D
INT  
P
P
= I × V , Watts - Chip Internal Power  
DD  
INT DD  
= Power Dissipation on Input and Output Pins — User Determined  
I/O  
For most applications P < P  
and can be ignored. An approximate relationship between P  
D
I/O  
INT  
and T (if P is neglected) is:  
J
I/O  
PD = K ÷ (TJ + 273°C)  
(2)  
Solving equations 1 and 2 for K gives:  
2
(3)  
K = PD × (TA + 273 °C) + ΘJMA × PD  
where K is a constant pertaining to the particular part. K can be determined from equation (3)  
by measuring P (at equilibrium) for a known T . Using this value of K, the values of P and  
D
A
D
T can be obtained by solving equations (1) and (2) iteratively for any value of T .  
J
A
8.3 DC Electrical Specifications  
1
Table 28. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Core Supply Voltage  
Pad Supply Voltage  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
VDD  
OVDD  
VIH  
1.35  
3
1.65  
3.6  
V
V
0.7 OVDD  
VSS – 0.3  
0.06 OVDD  
–1.0  
3.65  
V
VIL  
0.35 OVDD  
V
VHYS  
Iin  
mV  
µA  
Input Leakage Current  
1.0  
Vin = VDD or VSS, Input-only pins  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 28. DC Electrical Specifications (continued)  
1
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
High Impedance (Off-State) Leakage Current  
Vin = VDD or VSS, All input/output and output pins  
IOZ  
–1.0  
1.0  
µA  
Output High Voltage (All input/output and all output pins)  
VOH  
VOL  
OVDD - 0.5  
__  
__  
0.5  
V
V
I
OH = –5.0 mA  
Output Low Voltage (All input/output and all output pins)  
I
OL = 5.0mA  
Weak Internal Pull Up Device Current, tested at VIL Max.2  
IAPU  
Cin  
–10  
– 130  
µA  
Input Capacitance 3  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
Load Capacitance4  
Low drive strength  
High drive strength  
pF  
CL  
IDD  
25  
50  
Core Operating Supply Current 5  
Master Mode  
135  
150  
mA  
Pad Operating Supply Current  
Master Mode  
Low Power Modes  
OIDD  
100  
TBD  
mA  
µA  
3, 6, 7, 8  
DC Injection Current  
IIC  
mA  
VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3  
Single Pin Limit  
Total processor Limit, Includes sum of all stressed pins  
–1.0  
–10  
1.0  
10  
NOTES:  
1
Refer to Table 29 for additional PLL specifications.  
Refer to the MCF5271 signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require  
transmission line analysis to determine proper drive strength and termination. See High Speed Signal Propagation:  
Advanced Black Magic by Howard W. Johnson for design guidelines.  
Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.  
All functional non-supply pins are internally clamped to VSS and their respective VDD  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Insure external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system  
clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock  
is not present during the power-up sequence until the PLL has attained lock.  
2
3
4
5
6
7
.
8
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
35  
Preliminary Electrical Characteristics  
8.4 Oscillator and PLLMRFM Electrical Characteristics  
1
Table 29. HiP7 PLLMRFM Electrical Specifications  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
1
PLL Reference Frequency Range  
Crystal reference  
MHz  
fref_crystal  
fref_ext  
fref_1:1  
8
8
24  
25  
25  
50  
External reference  
1:1 mode (NOTE: fsys/2 = 2 × fref_1:1  
)
2
Core frequency  
fsys  
100  
50  
50  
MHz  
MHZ  
MHz  
CLKOUT Frequency 2  
External reference  
On-Chip PLL Frequency  
0
fsys/2  
fref / 32  
3
4
5
6
7
8
Loss of Reference Frequency 3, 5  
Self Clocked Mode Frequency 4, 5  
Crystal Start-up Time 5, 6  
fLOR  
fSCM  
tcst  
100  
10.25  
1000  
15.25  
10  
kHz  
MHz  
ms  
XTAL Load Capacitance5  
5
30  
pF  
PLL Lock Time 5, 7,13  
tlpll  
750  
µs  
Power-up To Lock Time 5, 6,8  
tlplk  
With Crystal Reference (includes 5 time)  
11  
750  
ms  
µs  
Without Crystal Reference9  
9
1:1 Mode Clock Skew (between CLKOUT  
and EXTAL) 10  
tskew  
–1  
1
ns  
10  
11  
12  
13  
Duty Cycle of reference 5  
Frequency un-LOCK Range  
Frequency LOCK Range  
tdc  
fUL  
fLCK  
Cjitter  
40  
60  
4.1  
2.0  
%
–3.8  
–1.7  
% fsys/2  
% fsys/2  
CLKOUT Period Jitter, 5, 6, 8,11, 12  
Measured at fsys/2 Max  
Peak-to-peak Jitter (Clock edge to clock  
edge)  
5.0  
.01  
% fsys/2  
Long Term Jitter (Averaged over 2 ms  
interval)  
14  
Frequency Modulation Range Limit13 14  
(fsys/2 Max must not be exceeded)  
,
Cmod  
0.8  
48  
2.2  
75  
%fsys/2  
MHz  
15  
15  
ICO Frequency. fico = fref * 2 * (MFD+2)  
fico  
N1 OTES:  
All values given are initial design targets and subject to change.  
All internal registers retain data at 0 Hz.  
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL  
into self clocked mode.  
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls  
below fLOR with default MFD/RFD settings.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
2
3
4
5
6
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
36  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
This specification applies to the period required for the PLL to relock after changing the MFD frequency  
7
8
control bits in the synthesizer control register (SYNCR).  
Assuming a reference is available at power up, lock time is measured from the time VDD and VDDSYN are  
valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the  
crystal start up time must be added to the PLL lock time to determine the total start-up time.  
tlpll = (64 * 4 * 5 + 5 τ) T , where Tref = 1/Fref_crystal = 1/Fref_ext = 1/Fref_1:1, and τ = 1.57x10-6 2(MFD +  
9
ref  
2).  
10  
11  
PLL is operating in 1:1 PLL mode.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at  
maximum fsys/2. Measurements are made with the device powered by filtered supplies and clocked by a  
stable external clock signal. Noise injected into the PLL circuitry via VDDSYN and VSSSYN and variation in  
crystal oscillator frequency increase the Cjitter percentage for a given interval.  
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of  
Cjitter+Cmod.  
12  
13  
14  
Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz.  
Modulation rate selected must not result in fsys/2 value greater than the fsys/2 maximum specified value.  
Modulation range determined by hardware design.  
fsys/2 = fico / (2 * 2RFD  
)
15  
8.5 External Interface Timing Characteristics  
Table 30 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and  
output delay with respect to the rising edge of a reference clock. The  
reference clock is the CLKOUT output.  
All other timing relationships can be derived from these values.  
Table 30. Processor Bus Input Timing Specifications  
Name  
Characteristic1  
Symbol  
Min Max Unit  
freq  
B0  
System bus frequency  
CLKOUT period  
fsys/2  
tcyc  
50  
50 MHz  
1/50  
ns  
Control Inputs  
B1a  
B1b  
B2a  
B2b  
Control input valid to CLKOUT high2  
BKPT valid to CLKOUT high3  
tCVCH  
tBKVCH  
tCHCII  
9
9
0
0
ns  
ns  
ns  
ns  
CLKOUT high to control inputs invalid2  
CLKOUT high to asynchronous control input BKPT invalid3  
tBKNCH  
Data Inputs  
B4  
Data input (D[31:0]) valid to CLKOUT high  
CLKOUT high to data input (D[31:0]) invalid  
tDIVCH  
tCHDII  
4
0
ns  
ns  
B5  
N1 OTES:  
Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line  
environment..  
2
3
TEA and TA pins are being referred to as control inputs.  
Refer to figure A-19.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
37  
Preliminary Electrical Characteristics  
Timings listed in Table 30 are shown in Figure 6 & Figure A-3.  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
CLKOUT(75MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
trise  
tfall  
Vh = VIH  
Input Rise Time  
Vl = VIL  
Vh = VIH  
Vl = VIL  
Input Fall Time  
CLKOUT  
Inputs  
B4  
B5  
Figure 6. General Input Timing Requirements  
8.6 Processor Bus Output Timing Specifications  
Table 31 lists processor bus output timings.  
Table 31. External Bus Output Timing Specifications  
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Control Outputs  
B6a  
CLKOUT high to chip selects valid 1  
tCHCV  
tCHBV  
tCHOV  
0.5tCYC +5  
0.5tCYC +5  
0.5tCYC +5  
ns  
ns  
ns  
B6b  
B6c  
CLKOUT high to byte enables (BS[3:0]) valid2  
CLKOUT high to output enable (OE) valid3  
B7  
CLKOUT high to control output (BS[3:0], OE) invalid  
CLKOUT high to chip selects invalid  
tCHCOI  
tCHCI  
0.5tCYC+1.5  
0.5tCYC+1.5  
ns  
ns  
B7a  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 31. External Bus Output Timing Specifications (continued)  
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Address and Attribute Outputs  
B8  
CLKOUT high to address (A[23:0]) and control (TS,  
TSIZ[1:0], TIP, R/W) valid  
tCHAV  
9
ns  
ns  
B9  
CLKOUT high to address (A[23:0]) and control (TS,  
TSIZ[1:0], TIP, R/W) invalid  
tCHAI  
1.5  
Data Outputs  
CLKOUT high to data output (D[31:0]) valid  
CLKOUT high to data output (D[31:0]) invalid  
B11  
B12  
B13  
tCHDOV  
tCHDOI  
1.5  
9
9
ns  
ns  
ns  
CLKOUT high to data output (D[31:0]) high impedance tCHDOZ  
NOTES:  
1
CS transitions after the falling edge of CLKOUT.  
BS transitions after the falling edge of CLKOUT.  
OE transitions after the falling edge of CLKOUT.  
2
3
Read/write bus timings listed in Table 31 are shown in Figure 7, Figure 8, and Figure 9.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
39  
Preliminary Electrical Characteristics  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
S2  
S3  
S4  
S5  
CLKOUT  
CSn  
B7a  
B7a  
B6a  
B6a  
B8  
B8  
B9  
B9  
A[23:0]  
TSIZ[1:0]  
TS  
B8  
B9  
B9  
B8  
TIP  
B8  
B6c  
B0  
B7  
OE  
B9  
(H)  
B8  
R/W  
B6b  
B6b  
B7  
BS[3:0]  
D[31:0]  
B7  
B11  
B12  
B13  
B4  
B5  
(H)  
TA  
(H)  
TEA  
Figure 7. Read/Write (Internally Terminated) SRAM Bus Timing  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
40  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Figure 8 shows a bus cycle terminated by TA showing timings listed in Table 31.  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
CLKOUT  
CSn  
B6a  
B7a  
B8  
B9  
A[23:0]  
TSIZ[1:0]  
B8  
TS  
B9  
B8  
B9  
TIP  
OE  
B6c  
B7  
B7  
(H)  
R/W  
B6b  
BS[3:0]  
B5  
B4  
D[31:0]  
TA  
B2a  
B1a  
TEA  
(H)  
Figure 8. SRAM Read Bus Cycle Terminated by TA  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
41  
Preliminary Electrical Characteristics  
Figure 9 shows an SRAM bus cycle terminated by TEA showing timings listed in Table 31.  
S4  
S1  
S2  
S5  
S0  
S1  
S0  
S3  
CLKOUT  
CSn  
B6a  
B7a  
B8  
B9  
A[23:0]  
TSIZ[1:0]  
B8  
TS  
B9  
B8  
TIP  
OE  
B9  
B6c  
B7  
(H)  
R/W  
B6b  
B7  
BS[3:0]  
D[31:0]  
TA  
(H)  
B1a  
TEA  
B2a  
Figure 9. SRAM Read Bus Cycle Terminated by TEA  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
42  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Figure 10 shows an SDRAM read cycle.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SD_CKE  
D3  
D1  
Row  
Column  
A[23:0]  
D2  
D4  
RAS  
D4  
D2  
CAS 1  
D2  
D4  
SDWE  
D[31:0]  
D6  
D5  
D2  
RAS[1:0]  
D2  
D4  
CAS[3:0]  
NOP  
ACTV  
NOP  
READ  
NOP  
PALL  
1 DACR[CASL] = 2  
Figure 10. SDRAM Read Cycle  
Table 32. SDRAM Timing  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
D1  
D2  
D3  
D4  
D5  
D6  
CLKOUT high to SDRAM address valid  
CLKOUT high to SDRAM control valid  
CLKOUT high to SDRAM address invalid  
CLKOUT high to SDRAM control invalid  
SDRAM data valid to CLKOUT high  
CLKOUT high to SDRAM data invalid  
tCHDAV  
tCHDCV  
tCHDAI  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9
1.5  
1.5  
4
9
tCHDCI  
tDDVCH  
tCHDDI  
tCHDDVW  
tCHDDIW  
1.5  
D71 CLKOUT high to SDRAM data valid  
D82 CLKOUT high to SDRAM data invalid  
1.5  
N1 OTES:  
D7 and D8 are for write cycles only.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
43  
Preliminary Electrical Characteristics  
Figure 11 shows an SDRAM write cycle.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
SD_CKE  
D3  
D1  
Row  
Column  
A[23:0]  
D4  
D2  
SD_SRAS  
SD_SCAS1  
SD_WE  
D2  
D4  
D2  
D7  
D[31:0]  
D2  
D8  
RAS[1:0]  
D2  
D4  
CAS[3:0]  
ACTV  
NOP  
WRITE  
NOP  
PALL  
1 DACR[CASL] = 2  
Figure 11. SDRAM Write Cycle  
8.7 General Purpose I/O Timing  
1
Table 33. GPIO Timing  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1 CLKOUT High to GPIO Output Valid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
G2  
CLKOUT High to GPIO Output Invalid  
G3 GPIO Input Valid to CLKOUT High  
G4  
CLKOUT High to GPIO Input Invalid  
1.5  
N1 OTES:  
GPIO pins include: INT, UART, and Timer pins.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
44  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
CLKOUT  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 12. GPIO Timing  
8.8 Reset and Configuration Override Timing  
Table 34. Reset and Configuration Override Timing  
(VDD = 2.7 to 3.6 V, VSS = 0 V, TA = TL to TH)1  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to CLKOUT High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 CLKOUT High to RESET Input invalid  
R3 RESET Input valid Time 2  
tRIVT  
tCYC  
ns  
R4 CLKOUT High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
N1 OTES:  
All AC timing is shown with respect to 50% VDD levels unless otherwise noted.  
2
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the  
system. Thus, RESET must be held a minimum of 100 ns.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
45  
Preliminary Electrical Characteristics  
CLKOUT  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins])  
Figure 13. RESET and Configuration Override Timing  
* Refer to the Coldfire Integration Module (CIM) section for more information.  
8.9 I2C Input/Output Timing Specifications  
2
Table 35 lists specifications for the I C input timing parameters shown in Figure 14.  
2
Table 35. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 36 lists specifications for the I C output timing parameters shown in Figure 14.  
2
Table 36. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I11  
6
tcyc  
tcyc  
µs  
I2 1 Clock low period  
10  
I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to  
VIH = 2.4 V)  
I4 1 Data hold time  
7
3
tcyc  
ns  
I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to  
VIL = 0.5 V)  
I6 1 Clock high time  
10  
tcyc  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
46  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 36. I C Output Timing Specifications between I2C_SCL and I2C_SDA (continued)  
2
Num  
I7 1 Data setup time  
Characteristic  
Min  
Max  
Units  
2
tcyc  
tcyc  
I8 1 Start condition setup time (for repeated start  
condition only)  
20  
I9 1 Stop condition setup time  
10  
tcyc  
N1 OTES:  
Note: Output numbers depend on the value programmed into the IFDR; an IFDR  
programmed with the maximum frequency (IFDR = 0x20) results in minimum output  
timings as shown in Table 36. The I2C interface is designed to scale the actual data  
transition time to move it to the middle of the I2C_SCL low period. The actual position is  
affected by the prescale and division values programmed into the IFDR; however, the  
numbers given in Table 36 are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can  
only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on  
external signal capacitance and pull-up resistor values.  
Specified at a nominal 50-pF load.  
Figure 14 shows timing for the values in Table 35 and Table 36.  
I2  
I6  
I5  
I2C_SCL  
I3  
I1  
I4  
I8  
I9  
I7  
I2C_SDA  
2
Figure 14. I C Input/Output Timings  
8.10 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
8.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and  
ERXCLK)  
The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
ERXCLK frequency.  
Table 37 lists MII receive channel timings.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
47  
Preliminary Electrical Characteristics  
Num  
Table 37. MII Receive Signal Timing  
Characteristic Min  
Max  
Unit  
M1  
M2  
M3  
M4  
ERXD[3:0], ERXDV, ERXER to ERXCLK setup  
ERXCLK to ERXD[3:0], ERXDV, ERXER hold  
ERXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
ERXCLK period  
ERXCLK period  
ERXCLK pulse width low  
Figure 15 shows MII receive signal timings listed in Table 37.  
M3  
ERXCLK (input)  
M4  
ERXD[3:0] (inputs)  
ERXDV  
ERXER  
M1  
M2  
Figure 15. MII Receive Signal Timing Diagram  
8.10.2 MII Transmit Signal Timing (ETXD[3:0], ETXEN,  
ETXER, ETXCLK)  
Table 38 lists MII transmit channel timings.  
The transmitter functions correctly up to a ETXCLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the  
ETXCLK frequency.  
The transmit outputs (ETXD[3:0], ETXEN, ETXER) can be programmed to transition from either the  
rising or falling edge of ETXCLK, and the timing is the same in either case. This options allows the use  
of non-compliant MII PHYs.  
Refer to the Ethernet chapter for details of this option and how to enable it.  
Table 38. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
ETXCLK to ETXD[3:0], ETXEN, ETXER invalid  
ETXCLK to ETXD[3:0], ETXEN, ETXER valid  
ETXCLK pulse width high  
5
25  
ns  
ns  
35%  
35%  
65%  
65%  
ETXCLK period  
ETXCLK period  
ETXCLK pulse width low  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
48  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Figure 16 shows MII transmit signal timings listed in Table 38.  
M7  
ETXCLK (input)  
M5  
M8  
ETXD[3:0] (outputs)  
ETXEN  
ETXER  
M6  
Figure 16. MII Transmit Signal Timing Diagram  
8.10.3 MII Async Inputs Signal Timing (ECRS and ECOL)  
Table 39 lists MII asynchronous inputs signal timing.  
Table 39. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
ECRS, ECOL minimum pulse width  
1.5  
ETXCLK period  
Figure 17 shows MII asynchronous input timings listed in Table 39.  
ECRS, ECOL  
M9  
Figure 17. MII Async Inputs Timing Diagram  
8.10.4 MII Serial Management Channel Timing (EMDIO and EMDC)  
Table 40 lists MII serial management channel timings. The FEC functions correctly with a maximum  
MDC frequency of 2.5 MHz.  
Table 40. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
M10 EMDC falling edge to EMDIO output invalid (minimum propagation  
delay)  
0
ns  
M11 EMDC falling edge to EMDIO output valid (max prop delay)  
M12 EMDIO (input) to EMDC rising edge setup  
M13 EMDIO (input) to EMDC rising edge hold  
M14 EMDC pulse width high  
10  
0
25  
ns  
ns  
ns  
40% 60% MDC period  
40% 60% MDC period  
M15 EMDC pulse width low  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
49  
Preliminary Electrical Characteristics  
Figure 18 shows MII serial management channel timings listed in Table 40.  
M14  
M15  
EMDC (output)  
M10  
EMDIO (output)  
M11  
EMDIO (input)  
M12  
M13  
Figure 18. MII Serial Management Channel Timing Diagram  
8.11 32-Bit Timer Module AC Timing Specifications  
Table 41 lists timer module AC timings.  
Table 41. Timer Module AC Timing Specifications  
0–66 MHz  
Name  
Characteristic  
Unit  
Min  
Max  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
8.12 QSPI Electrical Specifications  
Table 42 lists QSPI timings.  
Table 42. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[1:0] to QSPI_CLK  
1
2
510  
10  
tcyc  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
50  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
The values in Table 42 correspond to Figure 19.  
QS1  
QSPI_CS[1:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QS3  
QS4  
QS5  
QSPI_DIN  
Figure 19. QSPI Timing  
8.13 JTAG and Boundary Scan Timing  
Table 43. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
-
fsys/2  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
-
TCLK Rise and Fall Times  
tJCRF  
3
-
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
ns  
26  
0
-
ns  
33  
33  
-
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10  
0
-
ns  
26  
8
-
ns  
J12 TCLK Low to TDO High Z  
0
ns  
J13 TRST Assert Time  
100  
10  
ns  
J14 TRST Setup Time (Negation) to TCLK High  
-
ns  
N1 OTES:  
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
51  
Preliminary Electrical Characteristics  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
J4  
VIL  
J4  
Figure 20. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 21. Boundary Scan (JTAG) Timing  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
52  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 22. Test Access Port Timing  
TCLK  
J14  
TRST  
J13  
Figure 23. TRST Timing  
8.14 Debug AC Timing Specifications  
Table 44 lists specifications for the debug AC timing parameters shown in Figure 25.  
Table 44. Debug AC Timing Specification  
150 MHz  
Num  
Characteristic  
Units  
Min  
Max  
DE0  
PSTCLK cycle time  
0.5  
tcyc  
ns  
DE1  
DE2  
DE3  
DE4  
PST valid to PSTCLK high  
PSTCLK high to PST invalid  
DSCLK cycle time  
4
1.5  
5
ns  
tcyc  
tcyc  
DSI valid to DSCLK high  
1
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
53  
Preliminary Electrical Characteristics  
Table 44. Debug AC Timing Specification (continued)  
150 MHz  
Num  
Characteristic  
Units  
Min  
Max  
DE5 1  
DE6  
DSCLK high to DSO invalid  
4
4
tcyc  
ns  
BKPT input data setup time to  
CLKOUT Rise  
DE7  
CLKOUT high to BKPT high Z  
0
10  
ns  
NOTES:  
1
DSCLK and DSI are synchronized internally. D4 is measured from the  
synchronized DSCLK input relative to the rising edge of CLKOUT.  
Figure 24 shows real-time trace timing for the values in Table 44.  
PSTCLK  
DE0  
DE1  
DE2  
PST[3:0]  
DDATA[3:0]  
Figure 24. Real-Time Trace AC Timing  
Figure 25 shows BDM serial port AC timing for the values in Table 44.  
CLKOUT  
DE6  
DE7  
BKPT  
DE5  
DSCLK  
DSI  
DE3  
Current  
Past  
Next  
DE4  
DSO  
Current  
Figure 25. BDM Serial Port AC Timing  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
54  
Freescale Semiconductor  
Documentation  
9 Documentation  
Table 45 lists the documents that provide a complete description of the MCF5271 and their development  
support tools. Documentation is available from a local Freescale distributor, a Freescale semiconductor  
sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address  
at http://www.freescale.com.  
Table 45. MCF5271 Documentation  
Freescale  
Document  
Number  
Title  
Revision  
Status  
MCF5271EC  
MCF5271 RISC Microprocessor Hardware  
Specifications  
Rev. 1.2  
This document  
MCF5271RM  
MCF5271PB  
MCF5271 Reference Manual  
MCF5271 Product Brief  
MCF5271 Fact Sheet  
1.1  
0
Available  
Available  
In Process  
MCF5271FS  
0
CFPRODFACT/D  
The ColdFire Family of 32-Bit Microprocessors  
Family Overview and Technology Roadmap  
Available under  
NDA  
MCF5xxxWP  
MCF5xxxWP WHITE PAPER: Motorola ColdFire  
VL RISC Processors  
0
Available under  
NDA  
MAPBGAPP  
CFPRM/D  
MAPBGA 4-Layer Example  
0
2
Available  
Available  
ColdFire Family Programmer's Reference Manual  
9.1 Document Revision History  
Table 46 provides a revision history for this document.  
Table 46. Document Revision History  
Rev. No.  
Substantive Change(s)  
0
Initial release  
1
- Fixed several clock values.  
- Updated Signal List table  
1.1  
1.2  
- Removed duplicate information in the module description sections. The information is all in the  
Signals Description Table.  
- Removed detailed signal description section. This information can be found in the MCF5235RM  
Chapter 2.  
- Removed detailed feature list. This information can be found in the MCF5235RM Chapter 1.  
- Changed instances of Motorola to Freescale  
- Added values for ‘Maximum operating junction temperature’ in Table 27.  
- Added typical values for ‘Core operating supply current (master mode)’ in Table 28.  
- Added typical values for ‘Pad operating supply current (master mode)’ in Table 28.  
- Removed unnecessary PLL specifications, #6-9, in Table 29.  
MCF5271 Integrated Microprocessor Hardware Specification, Rev. 1.2  
Freescale Semiconductor  
55  
 
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
HOW TO REACH US:  
USA/Europe/Locations not listed:  
Freescale Semiconductor Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals” must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor H.K. Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T. Hong Kong  
852-26668334  
Learn More:  
For more information about Freescale  
Semiconductor products, please visit  
http://www.freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004.  
MCF5271EC  
Rev. 1.2, 12/2004  

相关型号:

PCF5270VM100

32-bit Embedded Controller Division
FREESCALE

PCF5271CAB100

32-bit Embedded Controller Division
FREESCALE

PCF5271CVM100

32-bit Embedded Controller Division
FREESCALE

PCF5CT52A102K

ceramic fixed power type leaded resistor
KOA

PCF5CT52R102K

ceramic fixed power type leaded resistor
KOA

PCF5CT52R102M

ceramic fixed power type leaded resistor
KOA

PCF5CT631R102K

ceramic fixed power type leaded resistor
KOA

PCF5CT631R102M

ceramic fixed power type leaded resistor
KOA

PCF600

Analog IC
ETC

PCF6294W

N 沟道,快速开关,PowerTrench® MOSFET,30V,13A,11.3mΩ
ONSEMI

PCF7900

IC TRANSPONDER IMMOBILIZER PLLMC Security and convenience
NXP

PCF7921

IC TRANSPONDER IMMOBILIZER PLLMC Security and convenience
NXP