RO4350B [FREESCALE]

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs; 射频功率场效应晶体管N - 沟道增强 - 模式横向的MOSFET
RO4350B
型号: RO4350B
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
射频功率场效应晶体管N - 沟道增强 - 模式横向的MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总13页 (文件大小:863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6V13250H  
Rev. 0, 6/2011  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
N--Channel Enhancement--Mode Lateral MOSFETs  
MRF6V13250HR3  
MRF6V13250HSR3  
RF Power transistors designed for applications operating at 1300 MHz.  
These devices are suitable for use in pulsed and CW applications.  
Typical Performance: VDD = 50 Volts, IDQ = 100 mA  
P
(W)  
f
G
(dB)  
η
(%)  
IRL  
(dB)  
out  
ps  
D
Signal Type  
(MHz)  
1300 MHz, 250 W, 50 V  
LATERAL N--CHANNEL  
RF POWER MOSFETs  
Pulsed (200 μsec,  
10% Duty Cycle)  
250 Peak  
1300  
22.7  
57.0  
-- 1 8  
Typical Performance: VDD = 50 Volts, IDQ = 10 mA, TC = 25°C  
P
(W)  
f
G
(dB)  
η
(%)  
IRL  
(dB)  
out  
ps  
D
Signal Type  
(MHz)  
CW  
230 CW  
1300  
21.0  
55.0  
-- 1 7  
Capable of Handling a Load Mismatch of 10:1 VSWR, @ 50 Vdc, 1300 MHz  
at all Phase Angles  
CASE 465--06, STYLE 1  
NI--780  
250 Watts Pulsed Peak Power, 10% Duty Cycle, 200 μsec  
MRF6V13250HR3  
CW Capable  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 50 VDD Operation  
Characterized from 20 V to 50 V for Extended Power Range  
Integrated ESD Protection  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
CASE 465A--06, STYLE 1  
NI--780S  
MRF6V13250HSR3  
RoHS Compliant  
In Tape and Reel. R3 Suffix = 250 Units, 56 mm Tape Width, 13 inch Reel.  
For R5 Tape and Reel options, see p. 12.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +120  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Total Device Dissipation @ T = 25°C  
P
476  
W
C
D
Derate above 25°C  
2.38  
W/°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
°C/W  
Pulsed: Case Temperature 65°C, 250 W Pulsed, 200 μsec Pulse Width, 10% Duty  
Cycle, 50 Vdc, I = 100 mA, 1300 MHz  
CW: Case Temperature 77°C, 235 W CW, 50 Vdc, I  
Z
R
θ
JC  
0.07  
0.42  
θ
DQ  
JC  
= 10 mA, 1300 MHz  
DQ  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2 (Minimum)  
B (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate--Source Leakage Current  
I
120  
1
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 50 mA)  
V
10  
20  
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
μAdc  
μAdc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
(V = 90 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 640 μAdc)  
V
V
1.0  
2.0  
0.1  
1.8  
2.4  
2.7  
3.0  
0.3  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 100 mAdc, Measured in Functional Test)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.58 Adc)  
V
0.25  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
1.2  
58  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
340  
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 100 mA, P = 250 W Peak (25 W Avg.), f = 1300 MHz  
DD  
DQ  
out  
Pulsed, 200 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
21.5  
53.5  
22.7  
57.0  
-- 1 8  
24.0  
dB  
%
ps  
D
Drain Efficiency  
η
Input Return Loss  
IRL  
-- 9  
dB  
Typical Performance (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 10 mA, P = 230 W CW, f = 1300 MHz, T = 25°C  
DD  
DQ  
out  
C
Power Gain  
G
21.0  
55.0  
-- 1 7  
dB  
%
ps  
Drain Efficiency  
Input Return Loss  
η
D
IRL  
dB  
Load Mismatch (In Freescale Application Test Fixture, 50 ohm system) V = 50 Vdc, I = 100 mA, P = 250 W Peak (25 W Avg.),  
DD  
DQ  
out  
f = 1300 MHz, Pulsed, 200 μsec Pulse Width, 10% Duty Cycle  
VSWR 10:1 at all Phase Angles  
Ψ
No Degradation in Output Power  
1. Part internally input matched.  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
2
Z19  
Z10  
R1  
V
V
SUPPLY  
BIAS  
+
+
+
C7  
C8  
C9  
C10 C11  
C12  
C1  
C2  
C3  
Z4  
C4  
Z7  
Z18  
RF  
OUTPUT  
Z9  
Z11  
Z12  
Z13  
Z14  
Z15 Z16  
Z17  
RF  
INPUT  
C6  
Z1  
Z2  
Z3  
Z5  
Z6  
Z8  
C5  
DUT  
Z20  
Z21  
V
SUPPLY  
+
C18  
C17 C16 C15 C14  
C13  
Z1  
0.447x 0.063Microstrip  
0.030x 0.084Microstrip  
0.120x 0.063Microstrip  
0.855x 0.293Microstrip  
0.369x 0.825Microstrip  
0.203x 0.516Microstrip  
0.105x 0.530Microstrip  
0.105x 0.530Microstrip  
0.116x 0.050Microstrip  
0.122x 0.050Microstrip  
Z11  
Z12  
Z13  
Z14  
Z15  
Z16  
Z17  
Z18, Z20  
Z19*, Z21*  
0.162x 1.160Microstrip  
0.419x 1.160Microstrip  
0.468x 0.994Microstrip  
0.131x 0.472Microstrip  
0.264x 0.222Microstrip  
0.500x 0.111Microstrip  
0.291x 0.063Microstrip  
0.105x 0.388Microstrip  
0.854x 0.052Microstrip  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
Z9*  
Z10  
*Line length includes microstrip bends.  
Figure 1. MRF6V13250HR3(HSR3) Test Circuit Schematic — 1300 MHz  
Table 5. MRF6V13250HR3(HSR3) Test Circuit Component Designations and Values — 1300 MHz  
Part  
Description  
22 μF, 35 V Tantalum Capacitors  
0.1 μF, 50 V Chip Capacitors  
100 pF Chip Capacitors  
Part Number  
Manufacturer  
Kemet  
C1, C2  
T491X226K035AT  
C3, C11, C14  
C4, C6, C7, C18  
C5  
CDR33BX104AKWS  
ATC800B101JT500XT  
ATC100B4R7CT500XT  
ATC100B102JT50XT  
ATC700B102FT50XT  
ATC200B103KT50XT  
MCGPR63V477M13X26--RH  
CRCW120615R0FKEA  
RO4350B  
AVX  
ATC  
4.7 pF Chip Capacitor  
ATC  
C8, C17  
C9, C16  
C10, C15  
C12, C13  
R1  
1000 pF Chip Capacitors  
1000 pF Chip Capacitors  
10K pF Chip Capacitors  
ATC  
ATC  
ATC  
470 μF, 63 V Electrolytic Capacitors  
15 , 1/4 W Chip Resistor  
Multicomp  
Vishay  
Rogers  
PCB  
0.030, ε = 3.50  
r
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
3
C7  
C9 C11  
C3  
C4  
C12  
R1  
C1 C2  
C8 C10  
C5  
C6  
C17 C15  
C18  
C13  
MRF6V13250H/HS  
Rev 3  
C16 C14  
Figure 2. MRF6V13250HR3(HSR3) Test Circuit Component Layout — 1300 MHz  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS — PULSED  
1000  
100  
10  
60  
V
= 50 Vdc, I = 100 mA, f = 1300 MHz  
DQ  
DD  
Ideal  
Pulse Width = 200 μsec, Duty Cycle = 10%  
59  
58  
57  
C
iss  
P3dB = 55.4 dBm  
(345 W)  
C
oss  
P2dB = 55.1 dBm  
(326 W)  
56  
55  
P1dB = 54.7 dBm  
(293 W)  
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
Actual  
V
GS  
C
rss  
54  
53  
1
0
10  
20  
30  
40  
50  
30  
31  
32  
33  
34  
35  
36  
37  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
P , INPUT POWER (dBm) PULSED  
in  
DS  
Figure 3. Capacitance versus Drain--Source Voltage  
Figure 4. Pulsed Output Power versus  
Input Power  
24  
23  
70  
60  
25  
23  
V
= 50 Vdc, I = 100 mA, f = 1300 MHz  
DQ  
DD  
Pulse Width = 200 μsec Duty Cycle = 10%  
21  
19  
22  
21  
50  
40  
V
= 50 V  
DD  
45 V  
G
ps  
40 V  
30  
20  
17  
20  
19  
35 V  
200  
30 V  
150  
15  
13  
11  
η
D
I
= 100 mA, f = 1300 MHz  
Pulse Width = 200 μsec  
DQ  
25 V  
10  
0
18  
17  
Duty Cycle = 10%  
20 V  
100  
1
10  
100  
500  
0
50  
250  
300  
350  
400  
P
, OUTPUT POWER (WATTS) PULSED  
P , OUTPUT POWER (WATTS) PULSED  
out  
out  
Figure 6. Pulsed Power Gain versus  
Output Power  
Figure 5. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
24  
23  
70  
70  
-- 3 0 _C  
V
= 50 Vdc  
= 100 mA  
DD  
V
= 50 V  
DD  
45 V  
I
DQ  
40 V  
60  
50  
60  
50  
35 V  
f = 1300 MHz  
Pulse Width = 200 μsec  
Duty Cycle = 10%  
G
ps  
30 V  
22  
21  
20  
19  
25 V  
40  
30  
20 V  
85_C  
25_C  
40  
30  
20  
10  
T
= --30_C  
C
η
D
20  
25_C  
I
= 100 mA, f = 1300 MHz  
Pulse Width = 200 μsec  
DQ  
10  
0
18  
17  
Duty Cycle = 10%  
85_C  
3
10  
100  
500  
0
50  
100  
150  
200  
250  
300  
350  
400  
P
, OUTPUT POWER (WATTS) PULSED  
P
, OUTPUT POWER (WATTS) PULSED  
out  
out  
Figure 7. Pulsed Efficiency versus  
Output Power  
Figure 8. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — CW  
24  
23  
60  
55  
50  
22  
21  
20  
19  
45  
40  
G
ps  
35  
30  
25  
20  
15  
10  
18  
17  
16  
η
D
V
= 50 Vdc  
= 10 mA  
DD  
I
DQ  
f = 1300 MHz  
= 25°C  
15  
14  
T
C
10  
100  
, OUTPUT POWER (WATTS) CW  
400  
P
out  
Figure 9. CW Power Gain and Drain Efficiency versus Output Power  
60  
55  
25  
24  
23  
10 mA  
100 mA  
I
= 700 mA  
DQ  
50  
45  
40  
350 mA  
500 mA  
500 mA  
350 mA  
22  
21  
20  
19  
18  
I
= 700 mA  
DQ  
35  
30  
25  
100 mA  
10 mA  
V
= 50 Vdc  
V
= 50 Vdc  
DD  
DD  
20  
15  
10  
f = 1300 MHz  
= 25°C  
f = 1300 MHz  
T = 25°C  
C
17  
16  
T
C
10  
100  
, OUTPUT POWER (WATTS) CW  
400  
10  
100  
, OUTPUT POWER (WATTS) CW  
400  
P
P
out  
out  
Figure 11. CW Efficiency versus Output Power  
Figure 10. CW Power Gain versus Output Power  
9
10  
8
10  
7
10  
6
10  
5
10  
4
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 230 W CW, and η = 55%.  
DD  
out  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 12. MTTF versus Junction Temperature — CW  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
6
Z = 10 Ω  
o
Z
source  
Z
load  
f = 1300 MHz  
f = 1300 MHz  
V
= 50 Vdc, I = 100 mA, P = 250 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1300  
5.32 + j4.11  
1.17 + j1.48  
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
Z
load  
=
Test circuit impedance as measured from  
drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 13. Series Equivalent Source and Load Impedance — Pulsed  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
8
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
9
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
10  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
11  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents and software to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
.s2p File  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
R5 TAPE AND REEL OPTION  
R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel.  
The R5 tape and reel option for MRF6V13250H and MRF6V13250HS parts will be available for 2 years after release of  
MRF6V13250H and MRF6V13250HS. Freescale Semiconductor, Inc. reserves the right to limit the quantities that will be  
delivered in the R5 tape and reel option. At the end of the 2 year period customers who have purchased these devices in the R5  
tape and reel option will be offered MRF6V13250H and MRF6V13250HS in the R3 tape and reel option.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
June 2011  
Initial Release of Data Sheet  
MRF6V13250HR3 MRF6V13250HSR3  
RF Device Data  
Freescale Semiconductor  
12  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2011. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6V13250H  
Rev. 0, 6/2011  

相关型号:

RO48D12

Analog IC
ETC

RO48D15

Analog IC
ETC

RO48D5

Analog IC
ETC

RO48D512

Analog IC
ETC

RO4910NF

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE

RO4910NM

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE

RO503D-02

Rectifier Diode, 1 Phase, 5A, Silicon, TO-220AB, TO-220FD, 3 PIN
ROHM

RO5210NF

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE

RO5210NM

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE

RO5410NF

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE

RO5410NM

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE

RO5805NF

All NMO mount antennas listed in this catalog section require the NMOHF-style
PULSE