SPC5642AF2MVZ3 [FREESCALE]

Qorivva MPC5642A Microcontroller;
SPC5642AF2MVZ3
型号: SPC5642AF2MVZ3
厂家: Freescale    Freescale
描述:

Qorivva MPC5642A Microcontroller

PC 微控制器 外围集成电路
文件: 总120页 (文件大小:1167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MPC5642A  
Rev. 3.1, 06/2012  
MPC5642A  
Qorivva MPC5642A  
Microcontroller Data Sheet  
208 MAPBGA  
(17 x 17 mm)  
176 LQFP  
(24 × 24 mm)  
324 TEPBGA  
(23 × 23 mm)  
• 150 MHz e200z4 Power Architecture core  
Variable length instruction encoding (VLE)  
– Superscalar architecture with 2 execution units  
– Up to 2 integer or floating point instructions per cycle  
– Up to 4 multiply and accumulate operations per cycle  
• Memory organization  
– 1 reaction module (6 channels with 3 outputs per  
channel)  
• 2 enhanced queued analog-to-digital converters (eQADCs)  
– Forty 12-bit input channels (multiplexed on 2 ADCs);  
expandable to 56 channels with external multiplexers  
– 6 command queues  
– 2 MB on-chip flash memory with ECC and  
read-while-write (RWW)  
– 128 KB on-chip SRAM with standby functionality (32  
KB) and ECC  
– Trigger and DMA support  
– 688 ns minimum conversion time  
• On-chip CAN/SCI Bootstrap loader with Boot Assist  
Module (BAM)  
– 8 KB instruction cache (with line locking), configurable  
as 2- or 4-way  
• Nexus: Class 3+ for core; Class 1 for eTPU  
• JTAG (5-pin)  
– 14 + 3 KB eTPU code and data RAM  
– 4 4 crossbar switch (XBAR)  
– 24-entry MMU  
• Development Trigger Semaphore (DTS)  
– EVTO pin for communication with external tool  
• Clock generation  
• Fail Safe Protection  
– On-chip 4–40 MHz main oscillator  
– On-chip FMPLL (frequency-modulated phase-locked  
loop)  
– 16-entry Memory Protection Unit (MPU)  
– CRC unit with 3 submodules  
– Junction temperature sensor  
• Interrupt  
• Up to 112 general purpose I/O lines  
– Individually programmable as input, output or special  
function  
– Programmable threshold (hysteresis)  
• Power reduction modes: slow, stop, and standby  
• Flexible supply scheme  
– Configurable interrupt controller (INTC) with  
non-maskable interrupt (NMI)  
– 64-channel eDMA  
• Serial channels  
– 3 eSCI modules  
– 3 DSPI modules (2 of which support downstream Micro  
Second Channel [MSC])  
– 5 V single supply with external ballast  
– Multiple external supply: 5 V, 3.3 V, and 1.2 V  
– 3 FlexCAN modules with 64 message buffers each  
– 1 FlexRay module (V2.1) up to 10 Mbit/s w/dual or  
single channel, 128 message objects, ECC  
• 1 eMIOS  
– 24 unified channels  
• 1 eTPU2 (second generation eTPU)  
—32 standard channels  
© Freescale Semiconductor, Inc., 2009, 2010, 2012. All rights reserved.  
Table of Contents  
1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2.5 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
1.1 Document overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.3 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.5.1 e200z4 core. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . .10  
1.5.3 Enhanced direct memory access (eDMA). . . . .10  
1.5.4 Interrupt controller (INTC) . . . . . . . . . . . . . . . . .11  
1.5.5 Memory protection unit (MPU). . . . . . . . . . . . . .11  
1.5.6 Frequency-modulated phase-locked loop  
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.1 Parameter classification. . . . . . . . . . . . . . . . . . . . . . . . 55  
3.2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.3.1 General notes for specifications at maximum  
junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
3.4 EMI (electromagnetic interference) characteristics . . . 61  
3.5 Electrostatic discharge (ESD) characteristics . . . . . . . 62  
3.6 Power management control (PMC) and power on  
reset (POR) electrical specifications . . . . . . . . . . . . . . 62  
3.6.1 Regulator example . . . . . . . . . . . . . . . . . . . . . . 65  
3.6.2 Recommended power transistors. . . . . . . . . . . 66  
3.7 Power up/down sequencing. . . . . . . . . . . . . . . . . . . . . 66  
3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 67  
3.9 I/O pad current specifications . . . . . . . . . . . . . . . . . . . 72  
3.9.1 I/O pad VRC33 current specifications . . . . . . . . 73  
3.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 74  
3.10 Oscillator and PLLMRFM electrical characteristics . . . 75  
3.11 Temperature sensor electrical characteristics . . . . . . . 77  
3.12 eQADC electrical characteristics. . . . . . . . . . . . . . . . . 77  
3.13 Configuring SRAM wait states. . . . . . . . . . . . . . . . . . . 79  
3.14 Platform flash controller electrical characteristics . . . . 80  
3.15 Flash memory electrical characteristics . . . . . . . . . . . 80  
3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
3.16.1 Pad AC specifications. . . . . . . . . . . . . . . . . . . . 82  
3.17 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
3.17.1 Reset and configuration pin timing. . . . . . . . . . 86  
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 86  
3.17.3 Nexus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
3.17.4 Calibration bus interface timing . . . . . . . . . . . . 95  
3.17.5 External interrupt timing (IRQ pin) . . . . . . . . . . 99  
3.17.6 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
3.17.7 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . 100  
3.17.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
3.17.9 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 107  
3.17.10FlexCAN system clock source. . . . . . . . . . . . 108  
Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 109  
4.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
4.1.2 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 112  
4.1.3 324 TEPBGA . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . 117  
(FMPLL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.5.7 System integration unit (SIU). . . . . . . . . . . . . . .12  
1.5.8 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.5.9 Static random access memory (SRAM) . . . . . .14  
1.5.10 Boot assist module (BAM). . . . . . . . . . . . . . . . .14  
1.5.11 Enhanced modular input/output system  
(eMIOS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.5.12 Second generation enhanced time processing  
unit (eTPU2) . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.5.13 Reaction module (REACM) . . . . . . . . . . . . . . . .16  
1.5.14 Enhanced queued analog-to-digital converter  
(eQADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
1.5.15 Deserial serial peripheral interface (DSPI) . . . .18  
1.5.16 Enhanced serial communications interface  
(eSCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
1.5.17 Controller area network (FlexCAN) . . . . . . . . . .19  
1.5.18 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.5.19 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.5.20 Software watchdog timer (SWT) . . . . . . . . . . . .21  
1.5.21 Cyclic redundancy check (CRC) module. . . . . .21  
1.5.22 Error correction status module (ECSM). . . . . . .22  
1.5.23 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . .22  
1.5.24 Calibration bus interface . . . . . . . . . . . . . . . . . .22  
1.5.25 Power management controller (PMC) . . . . . . . .22  
1.5.26 Nexus port controller (NPC) . . . . . . . . . . . . . . .23  
1.5.27 JTAG controller (JTAGC) . . . . . . . . . . . . . . . . . .23  
1.5.28 Development trigger semaphore (DTS). . . . . . .23  
Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.1 176 LQFP pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
2.2 208 MAP BGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . .25  
2.3 324 TEPBGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . . .26  
2.4 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4
2
5
6
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
2
Freescale Semiconductor  
Introduction  
1
Introduction  
1.1  
Document overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5642A series of  
microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical  
characteristics. For functional characteristics, refer to the device reference manual.  
1.2  
Description  
This microcontroller is a 32-bit system-on-chip (SoC) device intended for use in mid-range engine control and automotive  
transmission control applications.  
It is compatible with devices in Freescale’s MPC5600 family and offers performance and capabilities beyond the MPC5632M  
devices.  
®
The microcontroller’s e200z4 host processor core is built on the Power Architecture technology and designed specifically for  
embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal  
processing (DSP).  
The device has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by a 128 KB on-chip SRAM  
and a 2 MB internal flash memory.  
For development, the device includes a calibration bus that is accessible only when using the Freescale VertiCal Calibration  
System.  
1.3  
Device feature summary  
Table 1 summarizes the MPC5642A features and compares them to those of the MPC5644A.  
Table 1. MPC5642A device feature summary  
Feature  
MPC5642A  
MPC5644A  
Process  
Core  
90 nm  
e200z4  
SIMD  
Yes  
VLE  
Yes  
Cache  
8 KB instruction  
Non-Maskable Interrupt (NMI)  
NMI and Critical Interrupt  
24-entry  
MMU  
MPU  
16-entry  
Crossbar switch  
Core performance  
Windowing software watchdog  
Core Nexus  
4 4  
5 4  
0–150 MHz  
Yes  
Class 3+  
SRAM  
128 KB  
2 MB  
192 KB  
4 MB  
Flash  
Flash fetch accelerator  
4 128-bit  
4 256-bit  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
3
Introduction  
Table 1. MPC5642A device feature summary (continued)  
Feature  
MPC5642A  
MPC5644A  
External bus  
None  
16-bit (incl. 32-bit muxed)  
Calibration bus  
DMA  
16-bit (incl. 32-bit muxed)  
64 channels  
DMA Nexus  
Serial  
None  
3
eSCI_A  
eSCI_B  
eSCI_C  
CAN  
Yes (MSC uplink)  
Yes (MSC uplink)  
Yes  
3
CAN_A  
CAN_B  
CAN_C  
SPI  
64 message buffers  
64 message buffers  
64 message buffers  
3
Micro Second Channel (MSC) bus downlink  
Yes  
DSPI_A  
DSPI_B  
DSPI_C  
DSPI_D  
No  
Yes (with LVDS)  
Yes (with LVDS)  
Yes  
FlexRay  
Yes  
System timers  
5 PIT channels  
4 STM channels  
1 Software Watchdog  
eMIOS  
eTPU  
24 channels  
32-channel eTPU2  
Code memory  
14 KB  
Data memory  
Reaction module  
Interrupt controller  
ADC  
3 KB  
6 channels  
485 channels1  
40 channels  
ADC_0  
Yes  
Yes  
Yes  
Yes  
2
ADC_1  
Temperature sensor  
Variable gain amplifier  
Decimation filter  
Sensor diagnostics  
Yes  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
4
Freescale Semiconductor  
Introduction  
Table 1. MPC5642A device feature summary (continued)  
Feature  
MPC5642A  
MPC5644A  
CRC  
Yes  
Yes  
FMPLL  
VRC  
Yes  
Supplies  
Low-power modes  
5 V, 3.3 V2  
Stop mode  
Slow mode  
Packages  
176 LQFP3  
208 MAPBGA3,4  
324 TEPBGA5  
496-pin CSP6  
176 LQFP3  
208 MAPBGA3,4  
324 TEPBGA5  
496-pin CSP6  
1
2
3
4
5
197 interrupt vectors are reserved.  
5 V single supply only for 176 LQFP  
Pinout compatible with Freescale’s MPC5634M devices  
Pinout compatible with Freescale’s MPC5534  
Ballmap upwardly compatible with the standardized package ballmap used for various Freescale MPC563xM family  
members  
6
For Freescale VertiCal Calibration System only  
1.4  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5642A series.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
5
Introduction  
Debug  
JTAG  
Power Architecture  
Interrupt  
Controller  
e200z4  
SPE  
VLE  
Nexus  
IEEE-ISTO  
5001-2010  
MMU  
64-channel  
eDMA  
8 KB I-cache  
FlexRay  
M4  
M0  
M1  
M6  
S1  
Crossbar Switch  
S0  
MPU  
S7  
S2  
Analog PLL  
2 MB  
Flash  
128 KB  
SRAM  
Voltage Regulator  
RCOSC  
XOSC  
Standby  
Regulator  
with Switch  
ECSM  
I/O Bridge  
3 KB Data  
ADCi  
AMux  
DEC  
x2  
eTPU2  
eMIOS  
24  
Channel  
RAM  
14 KB Code  
RAM  
32  
Channel  
VGA  
LEGEND  
ADC  
– Analog to Digital Converter  
– ADC interface  
– Analog Multiplexer  
– Boot Assist Module  
– Cyclic Redundancy Check unit  
– Decimation Filter  
– Development Trigger Semaphore  
– Deserial/Serial Peripheral Interface  
– Error Correction Status Module  
– Enhanced Direct Memory Access  
JTAG  
– IEEE 1149.1 Test Controller  
– Memory Management Unit  
– Memory Protection Unit  
– Power Management Controller  
– Periodic Interrupt Timer  
ADCi  
AMux  
BAM  
CRC  
DEC  
DTS  
DSPI  
ECSM  
eDMA  
MMU  
MPU  
PMC  
PIT  
RCOSC – Low-speed RC Oscillator  
REACM – Reaction Module  
SIU  
– System Integration Unit  
– Signal Processing Extension  
SPE  
SRAM – Static RAM  
eMIOS – Enhanced Modular Input Output System  
eSCI – Enhanced Serial Communications Interface  
STM  
SWT  
– System Timer Module  
– Software Watchdog Timer  
eTPU2 – Second gen. Enhanced Time Processing Unit VGA  
– Variable Gain Amplifier  
FlexCAN – Controller Area Network  
VLE  
– Variable Length (instruction) Encoding  
FMPLL – Frequency-Modulated Phase-Locked Loop  
XOSC – XTAL Oscillator  
Figure 1. MPC5642A series block diagram  
Table 2 summarizes the functions of the blocks present on the MPC5642A series microcontrollers.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
6
Freescale Semiconductor  
Introduction  
Table 2. MPC5642A series block summary  
Function  
Block  
Boot assist module (BAM)  
Block of read-only memory containing executable code that searches  
for user-supplied boot code and, if none is found, executes the BAM  
boot code resident in device ROM  
Calibration bus interface  
Transfers data across the crossbar switch to/from peripherals attached  
to the calibration system connector  
Controller area network (FlexCAN)  
Crossbar switch (XBAR)  
Supports the standard CAN communications protocol  
Internal busmaster  
Cyclic redundancy check (CRC)  
Deserial serial peripheral interface (DSPI)  
CRC checksum generator  
Provides a synchronous serial interface for communication with  
external devices  
e200z4 core  
Executes programs and interrupt handlers  
Enhanced direct memory access (eDMA)  
Performs complex data movements with minimal intervention from the  
core.  
Enhanced modular input-output system  
(eMIOS)  
Provides the functionality to generate or measure events  
Enhanced queued analog-to-digital  
converter (eQADC)  
Provides accurate and fast conversions for a wide range of  
applications  
Enhanced serial communication interface  
(eSCI)  
Provides asynchronous serial communication capability with  
peripheral devices and other microcontroller units  
Enhanced time processor unit (eTPU2)  
Second-generation co-processor processes real-time input events,  
performs output waveform generation, and accesses shared data  
without host intervention  
Error Correction Status Module (ECSM)  
The Error Correction Status Module supports a number of  
miscellaneous control functions for the platform, and includes registers  
for capturing information on platform memory errors if error-correcting  
codes (ECC) are implemented  
Flash memory  
FlexRay  
Provides storage for program code, constants, and variables  
Provides high-speed distributed control for advanced automotive  
applications  
Frequency-modulated phase-locked loop  
(FMPLL)  
Generates high-speed system clocks and supports programmable  
frequency modulation  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while  
remaining transparent to system logic when not in test mode  
Memory protection unit (MPU)  
Nexus port controller (NPC)  
Provides hardware access control for all memory references  
generated  
Provides real-time development support capabilities in compliance  
with the IEEE-ISTO 5001-2010 standard  
Periodic interrupt timer (PIT)  
Reaction Module (REACM)  
Produces periodic interrupts and triggers  
Works in conjunction with the eQADC and eTPU2 to increase system  
performance by removing the CPU from the current control loop.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
7
Introduction  
Table 2. MPC5642A series block summary (continued)  
Function  
Block  
System Integration Unit (SIU)  
Controls MCU reset configuration, pad configuration, external  
interrupt, general purpose I/O (GPIO), internal peripheral multiplexing,  
and the system reset operation.  
Static random-access memory (SRAM)  
System timers  
Provides storage for program code, constants, and variables  
Includes periodic interrupt timer with real-time interrupt; output  
compare timer and system watchdog timer  
System watchdog timer (SWT)  
Temperature sensor  
Provides protection from runaway code  
Provides the temperature of the device as an analog value  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
8
Freescale Semiconductor  
Introduction  
1.5  
Feature details  
e200z4 core  
1.5.1  
MPC5642A devices have a high performance e200z4 core processor:  
32-bit Power Architecture technology programmer’s model  
Variable Length Encoding (VLE) enhancements  
Dual issue, 32-bit Power Architecture technology compliant CPU  
8 KB, 2/4-way set associative instruction cache  
Thirty-two 64-bit general purpose registers (GPRs)  
Memory Management Unit (MMU) with 24-entry fully-associative translation look-aside buffer (TLB)  
Harvard Architecture: Separate instruction bus and load/store bus  
Vectored interrupt support  
Non-maskable interrupt input  
Critical Interrupt input  
New ‘Wait for Interrupt’ instruction, to be used with new low power modes  
Reservation instructions for implementing read-modify-write accesses  
Signal processing extension (SPE) APU  
Single Precision Floating point (scalar and vector)  
Nexus Class 3+ debug  
Process ID manipulation for the MMU using an external tool  
In-order execution and retirement  
Precise exception handling  
Branch processing unit  
— Dedicated branch address calculation adder  
— Branch target prefetching using 8-entry BTB  
Supports independent instruction and data accesses to different memory subsystems, such as SRAM and flash memory  
via independent Instruction and Data BIUs  
Load/store unit  
— 2-cycle load latency  
— Fully pipelined  
— Big and Little endian support  
— Misaligned access support  
Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the 64-bit General Purpose  
Register file  
Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD single-precision floating-point operations,  
using the 64-bit General Purpose Register file  
Power management  
— Low power design – extensive clock gating  
— Power saving modes: wait  
— Dynamic power management of execution units, cache and MMU  
Testability  
— Synthesizeable, MuxD scan design  
— ABIST/MBIST for arrays  
— Built-in Parallel Signature Unit  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
9
Introduction  
Calibration support allowing an external tool to modify address mapping  
1.5.2  
Crossbar switch (XBAR)  
The XBAR multiport crossbar switch supports simultaneous connections between four master ports and four slave ports. The  
crossbar supports a 32-bit address bus width and a 64-bit data bus width.  
The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each master must access  
a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher  
priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher  
priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave  
port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following  
features:  
4 master ports  
— CPU instruction bus  
— CPU data bus  
— eDMA  
— FlexRay  
4 slave ports  
— Flash  
— Calibration bus interface  
— SRAM  
— Peripheral bridge  
32-bit internal address, 64-bit internal data paths  
1.5.3  
Enhanced direct memory access (eDMA)  
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data  
movements via 64 programmable channels, with minimal intervention from the host processor. The hardware  
micro-architecture includes a DMA engine which performs source and destination address calculations, and the actual data  
movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels.  
This implementation minimizes overall block size. The eDMA module provides the following features:  
All data movement via dual-address transfers: read from source, write to destination  
Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes  
Transfer control descriptor organized to support two-deep, nested transfer operations  
An inner data transfer loop defined by a “minor” byte transfer count  
An outer data transfer loop defined by a “major” iteration count  
Channel activation via one of three methods:  
— Explicit software initiation  
— Initiation via a channel-to-channel linking mechanism for continuous transfers  
— Peripheral-paced hardware requests (one per channel)  
Support for fixed-priority and round-robin channel arbitration  
Channel completion reported via optional interrupt requests  
1 interrupt per channel, optionally asserted at completion of major iteration count  
Error termination interrupts optionally enabled  
Support for scatter/gather DMA processing  
Ability to suspend channel transfers by a higher priority channel  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
10  
Freescale Semiconductor  
Introduction  
1.5.4  
Interrupt controller (INTC)  
The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time  
systems.  
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor  
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt  
request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that  
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of  
interrupt request, the priority of each interrupt request is software configurable.  
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority  
ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that  
all tasks which share the resource cannot preempt each other.  
The INTC provides the following features:  
9-bit vector addresses  
Unique vector for each interrupt request source  
Hardware connection to processor or read from register  
Each interrupt source can assigned a specific priority by software  
Preemptive prioritized interrupt requests to processor  
ISR at a higher priority preempts executing ISRs or tasks at lower priorities  
Automatic pushing or popping of preempted priority to or from a LIFO  
Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources  
Low latency—3 clocks from receipt of interrupt request from peripheral to interrupt request to processor  
This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic.  
1.5.5  
Memory protection unit (MPU)  
The Memory Protection Unit (MPU) provides hardware access control for all memory references generated in a device. Using  
preprogrammed region descriptors, which define memory spaces and their associated access rights, the MPU concurrently  
monitors all system bus transactions and evaluates the appropriateness of each transfer. Memory references with sufficient  
access control rights are allowed to complete; references that are not mapped to any region descriptor or have insufficient rights  
are terminated with a protection error response.  
The MPU has these major features:  
Support for 16 memory region descriptors, each 128 bits in size  
— Specification of start and end addresses provide granularity for region sizes from 32 bytes to 4 GB  
— MPU is invalid at reset, thus no access restrictions are enforced  
— 2 types of access control definitions: processor core bus master supports the traditional {read, write, execute}  
permissions with independent definitions for supervisor and user mode accesses; the remaining non-core bus  
masters (eDMA, FlexRay) support {read, write} attributes  
— Automatic hardware maintenance of the region descriptor valid bit removes issues associated with maintaining a  
coherent image of the descriptor  
— Alternate memory view of the access control word for each descriptor provides an efficient mechanism to  
dynamically alter the access rights of a descriptor only  
— For overlapping region descriptors, priority is given to permission granting over access denying as this approach  
provides more flexibility to system software  
Support for two XBAR slave port connections (SRAM and PBRIDGE)  
— For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every port access using  
the preprogrammed memory region descriptors  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
11  
Introduction  
— An access protection error is detected if a memory reference does not hit in any memory region or the reference  
is flagged as illegal in all memory regions where it does hit. In the event of an access error, the XBAR reference  
is terminated with an error response and the MPU inhibits the bus cycle being sent to the targeted slave device  
— 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes, and detail  
information  
1.5.6  
Frequency-modulated phase-locked loop (FMPLL)  
The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal oscillator or external clock  
generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication  
factor, output clock divider ratio are all software configurable. The PLL has the following major features:  
Input clock frequency from 4 MHz to 40 MHz  
Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock  
3 modes of operation  
— Bypass mode with PLL off  
— Bypass mode with PLL running (default mode out of reset)  
— PLL normal mode  
Each of the 3 modes may be run with a crystal oscillator or an external clock reference  
Programmable frequency modulation  
— Modulation enabled/disabled through software  
— Triangle wave modulation up to 100 kHz modulation frequency  
— Programmable modulation depth (0% to 2% modulation depth)  
— Programmable modulation frequency dependent on reference frequency  
Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to  
report loss of lock conditions  
Clock Quality Module  
— Detects the quality of the crystal clock and causes interrupt request or system reset if error is detected  
— Detects the quality of the PLL output clock; if error detected, causes system reset or switches system clock to  
crystal clock and causes interrupt request  
Programmable interrupt request or system reset on loss of lock  
Self-clocked mode (SCM) operation  
1.5.7  
System integration unit (SIU)  
The MPC5642A SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO),  
internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot  
configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block  
provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring  
of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core  
is via the crossbar switch. The SIU provides the following features:  
System configuration  
— MCU reset configuration via external pins  
— Pad configuration control for each pad  
— Pad configuration control for virtual I/O via DSPI serialization  
System reset monitoring and generation  
— Power-on reset support  
— Reset status register provides last reset source to software  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
12  
Freescale Semiconductor  
Introduction  
— Glitch detection on reset input  
— Software controlled reset assertion  
External interrupt  
— Rising or falling edge event detection  
— Programmable digital filter for glitch rejection  
— Critical Interrupt request  
— Non-Maskable Interrupt request  
GPIO  
— Centralized control of I/O and bus pins  
— Virtual GPIO via DSPI serialization (requires external deserialization device)  
— Dedicated input and output registers for setting each GPIO and Virtual GPIO pin  
Internal multiplexing  
— Allows serial and parallel chaining of DSPIs  
— Allows flexible selection of eQADC trigger inputs  
— Allows selection of interrupt requests between external pins and DSPI  
— From a set of eTPU output channels, allows selection of source signals for decimation filter integrators  
1.5.8  
Flash memory  
The MPC5642A provides 2 MB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used  
to store instructions or data, or both. The flash module includes a Fetch Accelerator that optimizes the performance of the flash  
array to match the CPU architecture. The flash module interfaces the system bus to a dedicated flash memory array controller.  
For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port, and  
128-bit read data interfaces to flash memory. The module contains a prefetch controller which prefetches sequential lines of  
data from the flash array into the buffers. Prefetch buffer hits allow no-wait responses.  
The flash memory provides the following features:  
Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword  
reads are supported. Only aligned word and doubleword writes are supported.  
Fetch Accelerator  
— Architected to optimize the performance of the flash  
— Configurable read buffering and line prefetch support  
— 4-entry 128-bit wide line read buffer  
— Prefetch controller  
Hardware and software configurable read and write access protections on a per-master basis  
Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses to proceed in parallel  
for pipelined flash array designs  
Configurable access timing usable in a wide range of system frequencies  
Multiple-mapping support and mapping-based block access timing (0–31 additional cycles) usable for emulation of  
other memory types  
Software programmable block program/erase restriction control  
Erase of selected block(s)  
Read page size of 128 bits (4 words)  
ECC with single-bit correction, double-bit detection  
Program page size of 128 bits (4 words) to accelerate programming  
ECC single-bit error corrections are visible to software  
Minimum program size is 2 consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
13  
Introduction  
Embedded hardware program and erase algorithm  
Erase suspend, program suspend and erase-suspended program  
Shadow information stored in non-volatile shadow block  
Independent program/erase of the shadow block  
1.5.9  
Static random access memory (SRAM)  
The SRAM provides 128 KB of general purpose system SRAM. The first 32 KB block of the SRAM is powered by its own  
power supply pin only during standby operation.  
The SRAM controller includes these features:  
128 KB data RAM implemented as eight 16 KB (2048 78 bits) blocks  
Each 16 KB block has 2 rows repairable (RAMs with internal repair feature)  
Supports read/write accesses mapped to the SRAM memory from any master  
32 KB block powered by separate supply for standby operation  
Byte, halfword, word and doubleword addressable  
ECC performs single bit correction, double bit detection  
1.5.10 Boot assist module (BAM)  
The BAM is a block of read-only memory that is programmed once by Freescale and is identical for all MPC5642A MCUs.  
The BAM program is executed every time the MCU is powered on or reset in normal mode. The BAM supports different modes  
of booting. They are:  
Booting from internal flash memory  
Serial boot loading (boot code is downloaded into RAM via eSCI or the FlexCAN and then executed)  
The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5642A  
hardware accordingly. The BAM provides the following features:  
Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with minimum address  
translation  
Sets up MMU to allow user boot code to execute as either Power Architecture technology code (default) or as Freescale  
VLE code  
Location and detection of user boot code  
Automatic switch to serial boot mode if internal flash is blank or invalid  
Supports user programmable 64-bit password protection for serial boot mode  
Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol  
Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing  
Supports serial bootloading of either Power Architecture technology code (default) or Freescale VLE code  
Supports booting from calibration bus interface  
Supports censorship protection for internal flash memory  
Provides an option to enable the core watchdog timer  
Provides an option to disable the system watchdog timer  
1.5.11 Enhanced modular input/output system (eMIOS)  
The eMIOS timer module provides the capability to generate or measure events in hardware.  
The eMIOS module features include:  
Twenty-four 24-bit wide channels  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
14  
Freescale Semiconductor  
Introduction  
3 channels’ internal timebases sharable between channels  
1 timebase from eTPU2 can be imported and used by the channels  
Global enable feature for all eMIOS and eTPU timebases  
Dedicated pin for each channel (not available on all package types)  
Each channel (0–23) supports the following functions:  
— General Purpose Input/Output (GPIO)  
— Single Action Input Capture (SAIC)  
— Single Action Output Compare (SAOC)  
— Output Pulse Width Modulation Buffered (OPWMB)  
— Input Period Measurement (IPM)  
— Input Pulse Width Measurement (IPWM)  
— Double Action Output Compare (DOAC)  
— Modulus Counter Buffered (MCB)  
— Output Pulse Width & Frequency Modulation Buffered (OPWFMB)  
Each channel has its own pin (not available on all package types)  
1.5.12 Second generation enhanced time processing unit (eTPU2)  
The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, the eTPU2  
processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host  
intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful  
timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler  
and documentation allows customers to develop their own functions on the eTPU2.  
MPC5642A devices feature the second generation of the eTPU, called eTPU2. Enhancements of the eTPU2 over the standard  
eTPU include:  
The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input  
[TCRCLK]) now have an option to run at full system clock speed or system clock / 2.  
Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this  
enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode.  
A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture  
characteristics of this channel mode can be programmed via microcode.  
Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can  
also be requested simultaneously at the same instruction.  
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.  
Channel digital filters can be bypassed.  
The eTPU2 includes these distinctive features:  
32 channels; each channel associated with one input and one output signal  
— Enhanced input digital filters on the input pins for improved noise immunity  
— Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned  
to more than one channel at a given time, so each signal can have any functionality.  
— Each channel has an event mechanism which supports single and double action functionality in various  
combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and  
equal-only comparators.  
— Input and output signal states visible from the host  
2 independent 24-bit time bases for channel synchronization:  
— First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by  
output of second time base prescaler  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
15  
Introduction  
— Second time base counter can work as a continuous angle counter, enabling angle based applications to match  
angle instead of time  
— Both time bases can be exported to the eMIOS timer module  
— Both time bases visible from the host  
Event-triggered microengine:  
— Fixed-length instruction execution in two-system-clock microcycle  
— 14 KB of code memory (SCM)  
— 3 KB of parameter (data) RAM (SPRAM)  
— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected  
combinations  
— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value,  
bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign  
extension and conditional execution  
— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations,  
and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands.  
Resource sharing features support channel use of common channel registers, memory and microengine time:  
— Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined,  
host-configured priority  
— Automatic channel context switch when a “task switch” occurs, that is, one function thread ends and another  
begins to service a request from other channel: channel-specific registers, flags and parameter base address are  
automatically loaded for the next serviced channel  
— SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or  
inter-channel  
— Hardware implementation of 4 semaphores support coherent parameter sharing between both eTPU engines  
— Dual-parameter coherency hardware support allows atomic access to 2 parameters by host  
Test and development support features:  
— Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware  
breakpoints and watchpoints on several conditions  
— Software breakpoints  
— SCM continuous signature-check built-in self test MISC (multiple input signature calculator), runs concurrently  
with eTPU2 normal operation  
1.5.13 Reaction module (REACM)  
The REACM provides the ability to modulate output signals to manage closed loop control without CPU assistance. It works  
in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current control loop.  
The REACM has the following features:  
6 reaction channels with peak and hold control blocks  
Each channel output is a bus of 3 signals, providing ability to control 3 inputs.  
Each channel can implement a peak and hold waveform, making it possible to implement up to six independent peak  
and hold control channels  
Target applications include solenoid control for direct injection systems and valve control in automatic transmissions.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
16  
Freescale Semiconductor  
Introduction  
1.5.14 Enhanced queued analog-to-digital converter (eQADC)  
The eQADC block provides accurate and fast conversions for a wide range of applications. The eQADC provides a parallel  
interface to two on-chip analog-to-digital converters (ADC), and a single master to single slave serial interface to an off-chip  
external device. Both on-chip ADCs have access to all the analog channels.  
The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to  
the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six  
result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having  
the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort  
a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a  
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger  
occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands  
from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result  
queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system  
memory, which is external to the eQADC.  
The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used  
in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for  
increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics.  
The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate,  
passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate  
results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band  
noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully  
process the digitized waveform.  
The eQADC provides the following features:  
Dual on-chip ADCs  
— 2 12-bit ADC resolution  
— Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit)  
12-bit conversion time – 938 ns (1M sample/s)  
10-bit conversion time – 813 ns (1.2M sample/s)  
8-bit conversion time – 688 ns (1.4M sample/s)  
— Up to 10-bit accuracy at 500K sample/s and 8-bit accuracy at 1M sample/s  
— Differential conversions  
— Single-ended signal range from 0 to 5 V  
— Sample times of 2 (default), 8, 64, or 128 ADC clock cycles  
— Provides time stamp information when requested  
— Allows time stamp information relative to eTPU clock sources, such as an angle clock  
— Parallel interface to eQADC command FIFOs (CFIFOs) and result FIFOs (RFIFOs)  
— Supports both right-justified unsigned and signed formats for conversion results  
40 single-ended input channels, expandable to 56 channels with external multiplexers (supports 4 external 8-to-1  
muxes)  
8 channels can be used as 4 pairs of differential analog input channels  
Differential channels include variable gain amplifier for improved dynamic range (1, 2, 4)  
Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics  
(200 k100 k5 k  
Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI voltages, etc.) inside the  
device  
An internal bandgap reference to allow absolute voltage measurements  
Silicon die temperature sensor  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
17  
Introduction  
— Provides temperature of silicon as an analog value  
— Read using an internal ADC analog channel  
— May be read with either ADC  
2 decimation filters  
— Programmable decimation factor (1 to 16)  
— Selectable IIR or FIR filter  
— Up to 4th order IIR or 8th order FIR  
— Programmable coefficients  
— Saturated or non-saturated modes  
— Programmable Rounding (Convergent; Two’s Complement; Truncated)  
— Prefill mode to precondition the filter before the sample window opens  
— Supports Multiple Cascading Decimation Filters to implement more complex filter designs  
— Optional Absolute Integrators on the output of Decimation Filters  
Full duplex synchronous serial interface (SSI) to an external device  
— Free-running clock for use by an external device  
— Supports a 26-bit message length  
Priority based queues  
— Supports 6 queues with fixed priority. When commands of distinct queues are bound for the same ADC, the higher  
priority queue is always served first  
— Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a  
deterministic time after the queue trigger  
— Supports software and hardware trigger modes to arm a particular queue  
— Generates interrupt when command coherency is not achieved  
External hardware triggers  
— Supports rising edge, falling edge, high level and low level triggers  
— Supports configurable digital filter  
1.5.15 Deserial serial peripheral interface (DSPI)  
The DSPI block provides a synchronous serial interface for communication between the MPC5642A MCU and external  
devices. The DSPI supports pin count reduction through serialization and deserialization of eTPU and eMIOS channels and  
memory-mapped registers. The channels and register content are transmitted using a SPI-like protocol. This SPI-like protocol  
is completely configurable for baud rate, polarity and phase, frame length, chip select assertion, etc. Each bit in the frame may  
be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be configured to serialize data  
to an external device that implements the Microsecond Bus protocol. There are three identical DSPI blocks on the MPC5642A  
MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation.  
DSPI module features include:  
Selectable LVDS pads working at 40 MHz for SOUT and SCK pins for DSPI_B and DSPI_C  
Support for downstream Micro Second Channel (MSC) with Timed Serial Bus (TSB) configuration on DSPI_B and  
DSPI_C  
3 sources of serialized data: eTPU_A, eMIOS output channels, and memory-mapped register in the DSPI  
4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request,  
memory-mapped register in the DSPI  
32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU  
or eMIOS bits for serialization  
The DSPI module can generate and check parity in a serial frame  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
18  
Freescale Semiconductor  
Introduction  
1.5.16 Enhanced serial communications interface (eSCI)  
Three eSCI modules provide asynchronous serial communications with peripheral devices and other MCUs, and include  
support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block provides the following features:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
13-bit baud rate selection  
Programmable 8-bit or 9-bit data format  
Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus  
standard  
Automatic parity generation  
LIN support  
— Compatible with LIN slaves from revisions 1.x and 2.0 of the LIN standard  
— Autonomous transmission of entire frames  
— Configurable to support all revisions of the LIN standard  
— Automatic parity bit generation  
— Double stop bit after bit error  
— 10- or 13-bit break support  
Separately enabled transmitter and receiver  
Programmable transmitter output parity  
2 receiver wake-up methods:  
— Idle line wake-up  
— Address mark wake-up  
Interrupt-driven operation with flags  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
DMA support for both transmit and receive data  
— Global error bit stored with receive data in system RAM to allow post processing of errors  
1.5.17 Controller area network (FlexCAN)  
The MPC5642A MCU includes three FlexCAN blocks. The FlexCAN module is a communication controller implementing the  
CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle  
serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment  
of a vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64 message buffers.  
The FlexCAN modules provide the following features:  
Based on and including all existing features of the Freescale TouCAN module  
Full Implementation of the CAN protocol specification, Version 2.0B  
— Standard data and remote frames  
— Extended data and remote frames  
— Zero to eight bytes data length  
— Programmable bit rate up to 1 Mbit/s  
Content-related addressing  
64 message buffers of 0 to 8 bytes data length  
Individual Rx Mask Register per message buffer  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
19  
Introduction  
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages  
Includes 1088 bytes of embedded memory for message buffer storage  
Includes 256-byte memory for storing individual Rx mask registers  
Full-featured Rx FIFO with storage capacity for 6 frames and internal pointer handling  
Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits)  
IDs, with individual masking capability  
Selectable backwards compatibility with previous FlexCAN versions  
Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock  
Listen only mode capability  
Programmable loop-back mode supporting self-test operation  
3 programmable Mask Registers  
Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority  
Time Stamp based on 16-bit free-running timer  
Global network time, synchronized by a specific message  
Maskable interrupts  
Warning interrupts when the Rx and Tx Error Counters reach 96  
Independent of the transmission medium (an external transceiver is assumed)  
Multi-master concept  
High immunity to EMI  
Short latency time due to an arbitration scheme for high-priority messages  
Low power mode, with programmable wakeup on bus activity  
1.5.18 FlexRay  
The MPC5642A includes one dual-channel FlexRay module that implements the FlexRay Communications System Protocol  
Specification, Version 2.1 Rev A. Features include:  
Single channel support  
FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported  
128 message buffers, each configurable as:  
— Receive message buffer  
— Single-buffered transmit message buffer  
— Double-buffered transmit message buffer (combines two single-buffered message buffers)  
2 independent receive FIFOs  
— 1 receive FIFO per channel  
— Up to 255 entries for each FIFO  
ECC support  
1.5.19 System timers  
The system timers include two distinct types of system timer:  
Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)  
Operating system task monitors using the System Timer Module (STM)  
1.5.19.1 Periodic interrupt timer (PIT)  
The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has  
no external input or output pins and is intended to provide system ‘tick’ signals to the operating system, as well as periodic  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
20  
Freescale Semiconductor  
Introduction  
triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the  
crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power  
stop mode.  
The following features are implemented in the PIT:  
5 independent timer channels  
Each channel includes 32-bit wide down counter with automatic reload  
4 channels clocked from system clock  
1 channel clocked from crystal clock (wake-up timer)  
Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined  
time-out period  
Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer  
reaches zero  
1.5.19.2 System timer module (STM)  
1
The STM is designed to implement the software task monitor as defined by AUTOSAR . It consists of a single 32-bit counter,  
clocked by the system clock, and four independent timer comparators. These comparators produce a CPU interrupt when the  
timer exceeds the programmed value.  
The following features are implemented in the STM:  
One 32-bit up counter with 8-bit prescaler  
Four 32-bit compare channels  
Independent interrupt source for each channel  
Counter can be stopped in debug mode  
1.5.20 Software watchdog timer (SWT)  
The SWT is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core.  
The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or  
interrupt request when the correct software key is not written within the required time window.  
The following features are implemented:  
32-bit modulus counter  
Clocked by system clock or crystal clock  
Optional programmable watchdog window mode  
Can optionally cause system reset or interrupt request on timeout  
Reset by writing a software key to memory mapped register  
Enabled out of reset  
Configuration is protected by a software key or a write-once register  
1.5.21 Cyclic redundancy check (CRC) module  
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:  
Support for CRC-16-CCITT (x25 protocol):  
16  
12  
5
x + x + x + 1  
Support for CRC-32 (Ethernet protocol):  
32  
26  
23  
22  
16  
12  
11  
10  
8
7
5
4
2
x + x + x + x + x + x + x + x + x + x + x + x + x + x + 1  
1. AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
21  
Introduction  
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency  
1.5.22 Error correction status module (ECSM)  
The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform  
configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes,  
and information on platform memory errors reported by error-correcting codes and/or generic access error information for  
certain processor cores.  
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes  
these features:  
Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented  
For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the  
MPC5642A.  
The sources of the ECC errors are:  
Flash memory  
SRAM  
Peripheral RAM (FlexRay, CAN, eTPU2 parameter RAM)  
1.5.23 Peripheral bridge (PBRIDGE)  
The PBRIDGE implements the following features:  
Duplicated periphery  
Master access privilege level per peripheral (per master: read access enable; write access enable)  
Write buffering for peripherals  
Checker applied on PBRIDGE output toward periphery  
Byte endianess swap capability  
1.5.24 Calibration bus interface  
The calibration bus interface controls data transfer across the crossbar switch to/from memories or peripherals attached to the  
VertiCal connector in the calibration address space. The calibration bus interface is only available in the VertiCal Calibration  
System.  
Features include:  
3.3 V ± 10% I/O (3.0 V to 3.6 V)  
Memory controller supports various memory types  
16-bit data bus, up to 22-bit address bus  
Pin muxing supports 32-bit muxed bus  
Selectable drive strength  
Configurable bus speed modes  
Bus monitor  
Configurable wait states  
1.5.25 Power management controller (PMC)  
The PMC contains circuitry to generate the internal 3.3 V supply and to control the regulation of 1.2 V supply with an external  
NPN ballast transistor. It also contains low voltage inhibit (LVI) and power-on reset (POR) circuits for the 1.2 V supply, the  
3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1), and the 5 V supply of the regulators (VDDREG).  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
22  
Freescale Semiconductor  
Pinout and signal description  
1.5.26 Nexus port controller (NPC)  
The NPC block provides real-time Nexus Class3+ development support capabilities for the MPC5642A Power Architecture  
technology-based MCU in compliance with the IEEE-ISTO 5001-2010 standard. MDO port widths of 4 pins and 12 pins are  
available in all packages.  
1.5.27 JTAG controller (JTAGC)  
The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent  
to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001  
standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant  
with the IEEE 1149.1-2001 standard and supports the following features:  
IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)  
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:  
— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP  
A 5-bit instruction register that supports the additional following public instructions:  
— ACCESS_AUX_TAP_NPC  
— ACCESS_AUX_TAP_ONCE  
— ACCESS_AUX_TAP_eTPU  
— ACCESS_CENSOR  
3 test data registers to support JTAG Boundary Scan mode  
— Bypass register  
— Boundary scan register  
— Device identification register  
A TAP controller state machine that controls the operation of the data registers, instruction register and associated  
circuitry  
Censorship Inhibit Register  
— 64-bit Censorship password register  
— If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash  
shadow row, Censorship is disabled until the next system reset.  
1.5.28 Development trigger semaphore (DTS)  
MPC5642A devices include a system development feature, the Development Trigger Semaphore (DTS) module, that enables  
user software to signal to an external tool—by driving a persistent (affected only by reset or an external tool) signal on an  
external device pin—that data is available. The DTS includes a register of semaphores (32-bits) and an identification register.  
There are a variety of ways this module can be used, including as a component of an external real-time data acquisition system.  
2
Pinout and signal description  
This section contains the pinouts for all production packages for the MPC5642A device. For pin signal descriptions, please refer  
to Table 3  
NOTE  
Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or  
voltage may cause unpredictable device behavior or damage.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
23  
Pinout and signal description  
2.1  
176 LQFP pinout  
AN[18]  
AN[17]  
VDD  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
TMS  
2
AN[16]  
TDI  
3
AN[11] / ANZ  
MDO5 / ETPUA4_O / GPIO[76]  
4
AN[9] / ANX  
TCK  
VSS  
5
VDDA  
6
VSSA  
MDO4 / ETPUA2_O / GPIO[75]  
7
AN[39]  
VDDEH7A  
8
AN[8] / ANW  
MDO11 / ETPUA29_O / GPIO[82]  
9
VDDREG  
TDO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VRCCTL  
GPIO[219]  
VSTBY  
JCOMP  
VRC33  
EVTO  
MCKO  
NC  
176-pin  
LQFP  
VSS  
MSEO[0]  
NC  
MSEO[1]  
MDO[0]  
EVTI  
MDO[1]  
VSS  
signal details:  
MDO[2]  
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]  
MDO[3]  
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]  
pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145]  
pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144]  
pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143]  
pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142]  
pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141]  
pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140]  
pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]  
pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138]  
pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137]  
pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136]  
pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135]  
pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134]  
pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133]  
pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132]  
pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131]  
pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130]  
pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129]  
pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128]  
(see signal details, pin 21)  
(see signal details, pin 22)  
(see signal details, pin 23)  
(see signal details, pin 24)  
(see signal details, pin 25)  
(see signal details, pin 26)  
(see signal details, pin 27)  
(see signal details, pin 28)  
VSS  
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]  
DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105]  
VDDEH6B  
DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106]  
VSS  
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]  
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]  
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]  
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]  
(see signal details, pin 30)  
VDDEH1A  
(see signal details, pin 32)  
VDD  
VDDF  
RSTOUT  
CAN_C_TX / DSPI_D_PCS[3] / GPIO[87]  
SCI_A_TX / EMIOS13 / GPIO[89]  
(see signal details, pin 34)  
(see signal details, pin 35)  
(see signal details, pin 36)  
(see signal details, pin 37)  
(see signal details, pin 38)  
(see signal details, pin 39)  
(see signal details, pin 40)  
VDDEH1B  
SCI_A_RX / EMIOS15 / GPIO[90]  
CAN_C_RX / DSPI_D_PCS[4] / GPIO[88]  
98  
RESET  
97  
VSS  
96  
VDDEH6A  
95  
VSS  
94  
XTAL  
93  
EXTAL  
92  
(see signal details, pin 42)  
VSS  
VDDPLL  
91  
VSS  
90  
NC  
CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86]  
89  
Note: Pin 96 (VSS) should be tied low.  
Figure 2. 176-pin LQFP pinout (top view)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
24  
Freescale Semiconductor  
2.2  
208 MAP BGA ballmap  
1
2
3
AN11  
4
VDDA1  
AN21  
AN17  
VSS  
5
6
7
AN5  
8
9
10  
11  
12  
13  
MDO2  
14  
MDO0  
MDO1  
VSS  
15  
16  
VSS  
A
B
C
D
VSS  
AN9  
VSSA1  
AN0  
AN1  
AN4  
AN16  
AN2  
VRH  
AN22  
AN7  
AN24  
VRL  
AN27  
AN28  
AN32  
AN31  
VSSA0  
VDDA0  
AN33  
AN12-SDS  
AN13-SDO  
AN14-SDI  
VDDEH7  
VRC33  
VSS  
A
B
C
D
E
F
VDD  
VSS  
AN8  
REFBYPC  
AN3  
AN25  
AN23  
AN30  
MDO3  
VDD  
VSTBY  
VRC33  
VDD  
VSS  
AN34  
AN18  
AN15-FCK  
VSS  
MSEO0  
EVTO  
EVTI  
TCK  
AN39  
VDD  
AN6  
AN35  
TMS  
TDI  
NC  
E
F
ETPUA30  
ETPUA28  
ETPUA24  
ETPUA31  
ETPUA29  
ETPUA27  
AN37  
VDD  
NC  
MSEO1  
JCOMP  
ETPUA26  
ETPUA25  
AN36  
ETPUA21  
VDDEH6AB  
TDO  
MCKO  
G
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DSPI_B_  
SOUT  
DSPI_B_ DSPI_B_SIN DSPI_B_  
PCS[3]  
G
PCS[0]  
H
J
ETPUA23  
ETPUA20  
ETPUA22  
ETPUA19  
ETPUA17  
ETPUA14  
ETPUA18  
ETPUA13  
GPIO[99]  
DSPI_B_  
PCS[4]  
DSPI_B_  
PCS[2]  
DSPI_B_  
PCS[1]  
H
J
DSPI_B_  
PCS[5]  
SCI_A_TX  
GPIO[98]  
DSPI_B_  
SCK  
K
L
ETPUA16  
ETPUA12  
ETPUA10  
ETPUA8  
ETPUA15  
ETPUA11  
ETPUA9  
ETPUA4  
ETPUA7  
ETPUA6  
ETPUA1  
ETPUA0  
VDDEH1AB  
TCRCLKA  
ETPUA5  
VSS  
CAN_C_TX SCI_A_RX  
RSTOUT  
VDDREG  
RESET  
VSS  
K
L
SCI_B_TX CAN_C_RX WKPCFG  
M
N
SCI_B_RX  
VSS  
PLLREF  
VRCCTL  
BOOTCFG1  
NC  
M
N
VDD  
GPIO[207]  
EMIOS4  
EMIOS1  
5
VRC33  
NC  
EMIOS2  
EMIOS6  
EMIOS9  
EMIOS10 VDDEH4AB EMIOS12  
MDO7_  
ETPUA19_O  
VRC33  
EXTAL  
P
R
T
ETPUA3  
NC  
ETPUA2  
VSS  
VDD  
2
VSS  
VDD  
NC  
3
VDD  
GPIO[206]  
EMIOS0  
4
EMIOS8  
EMIOS11  
EMIOS13  
8
MDO11_  
MDO4_  
MDO8_  
CAN_A_TX  
VDD  
VSS  
VDD  
NC  
VSS  
VDD  
15  
XTAL  
VDDPLL  
VSS  
P
R
T
ETPUA29_O ETPUA2_O ETPUA21_O  
EMIOS3  
GPIO[219]  
6
EMIOS14  
EMIOS15  
9
MDO10_  
ETPUA27_O  
EMIOS23  
CAN_A_RX CAN_B_RX  
VSS  
1
MDO9_  
ETPUA25_O  
MDO5_  
ETPUA4_O ETPUA13_O  
MDO6_  
CAN_B_TX  
VDDE12  
ENGCLK  
14  
7
10 11  
12  
13  
16  
Figure 3. 208-pin MAPBGA package ballmap (viewed from above)  
Pinout and signal description  
2.3  
324 TEPBGA ballmap  
1
2
VDD  
3
AN16  
VDD  
4
AN17  
5
6
7
8
9
10  
VRH  
11  
A
B
C
D
E
F
G
H
J
VSS  
VRC33  
AN11  
AN10  
AN8  
AN37  
AN36  
AN20  
VDD  
VDDA1  
AN21  
AN0  
VSSA1  
AN4  
AN23  
AN5  
AN6  
AN3  
AN25  
AN24  
AN7  
VRL  
VSS  
AN18  
REFBYPC  
AN27  
AN30  
AN29  
AN28  
AN9  
VSS  
VDD  
AN1  
AN39  
VSSA0  
VRCCTL  
MDO1  
NC  
AN38  
VDDA0  
MDO0  
MDO2  
NC  
VSS  
AN19  
AN2  
AN22  
AN26  
VSTBY  
VDDREG  
MDO3  
NC  
MCKO  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
ETPUA31  
ETPUA27  
NC  
NC  
VDDEH1AB  
ETPUA30  
ETPUA26  
ETPUA29  
Figure 4. 324-pin TEPBGA package ballmap (northwest, viewed from above)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
26  
Freescale Semiconductor  
Pinout and signal description  
M
N
ETPUA23  
NC  
ETPUA24  
NC  
ETPUA25  
ETPUA22  
GPIO[12]  
VDDE-EH  
NC  
ETPUA28  
ETPUA21  
GPIO[13]  
GPIO[16]  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDE12  
VRC33  
P
NC  
NC  
R
GPIO[14]  
GPIO[17]  
NC  
GPIO[15]  
NC  
T
U
NC  
NC  
NC  
V
NC  
VDDE-EH  
ETPUA19  
ETPUA16  
ETPUA14  
ETPUA13  
2
NC  
NC  
W
Y
ETPUA20  
ETPUA17  
ETPUA15  
VSS  
ETPUA18  
VSS  
VSS  
VDDE12  
NC  
NC  
NC  
NC  
NC  
6
NC  
NC  
NC  
NC  
7
VDDE12  
NC  
NC  
NC  
ENGCLK  
ETPUA8  
ETPUA7  
ETPUA6  
10  
ETPUA4  
ETPUA3  
ETPUA2  
ETPUA5  
11  
VDD  
AA  
AB  
VDD  
ETPUA10  
ETPUA11  
4
NC  
NC  
ETPUA9  
CLKOUT  
9
ETPUA12  
3
NC  
NC  
1
5
8
Figure 5. 324-pin TEPBGA package ballmap (southwest, viewed from above)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
27  
Pinout and signal description  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
VDD  
22  
VSS  
DSPI_A_  
PCS[5]  
DSPI_A_  
SOUT  
MDO8_  
ETPUA21_O ETPUA27_O  
MDO10_  
AN34  
AN33  
AN32  
AN31  
AN14-SDI  
AN13-SDO  
AN12-SDS  
AN35  
AN15-FCK  
GPIO[207]  
GPIO[206]  
GPIO[204]  
GPIO[203]  
GPIO[99]  
GPIO[98]  
VDDEH7  
VDD  
A
B
C
DSPI_A_  
PCS[4]  
MDO7_ MDO4_  
MDO5_  
ETPUA4_O  
DSPI_A_SIN  
DSPI_A_SCK  
VSS  
VSS  
VDDEH7  
VDD  
ETPUA19_O ETPUA2_O  
MDO6_ MDO11_  
DSPI_A_  
PCS[1]  
VSS  
VDDEH7  
ETPUA13_O ETPUA29_O  
DSPI_A_  
PCS[0]  
MDO9_  
VSS  
VDDEH7  
TMS  
TCK  
TDO  
TDI  
NC  
D
E
F
G
H
J
ETPUA25_O  
VDDEH7  
VDDEH7  
RDY  
JCOMP  
EVTO  
EVTI  
VSS  
NC  
MSEO0  
VSS  
MSEO1  
DSPI_B_SIN  
VDDEH7  
DSPI_B_  
SOUT  
DSPI_B_  
PCS[3]  
DSPI_B_  
PCS[0]  
DSPI_B_  
PCS[1]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDEH7  
VSS  
DSPI_B_  
PCS[4]  
DSPI_B_  
PCS[2]  
NC  
DSPI_B_SCK  
VSS  
K
L
DSPI_B_  
PCS[5]  
VSS  
NC  
NC  
Figure 6. 324-pin TEPBGA package ballmap (northeast, viewed from above)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
28  
Freescale Semiconductor  
Pinout and signal description  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VRC33  
NC  
NC  
SCI_A_TX  
SCI_A_RX  
NC  
NC  
VSS  
VDDEH6AB  
NC  
M
N
CAN_C_TX  
NC  
RSTOUT  
NC  
RSTCFG  
RESET  
VSS  
P
R
VSS  
BOOTCFG0  
PLLCFG1  
CAN_C_RX  
VDD  
VSS  
T
VDDEH6AB  
SCI_C_RX  
SCI_C_TX  
CAN_A_RX  
VDDEH4AB  
CAN_A_TX  
19  
BOOTCFG1  
PLLREF  
CAN_B_RX  
VDD  
EXTAL  
XTAL  
U
V
ETPUA1  
ETPUA0  
EMIOS0  
TCRCLKA  
12  
EMIOS1  
EMIOS2  
EMIOS3  
EMIOS4  
13  
VDDEH4AB  
EMIOS5  
EMIOS6  
EMIOS7  
14  
EMIOS8  
EMIOS9  
EMIOS10  
EMIOS11  
15  
EMIOS15  
EMIOS14  
EMIOS13  
EMIOS12  
16  
EMIOS16  
EMIOS17  
EMIOS18  
EMIOS19  
17  
EMIOS23  
EMIOS22  
EMIOS21  
EMIOS20  
18  
VDDPLL  
CAN_B_TX  
VDD  
W
Y
VSS  
WKPCFG  
SCI_B_RX  
20  
VSS  
AA  
AB  
SCI_B_TX  
21  
VSS  
22  
Figure 7. 324-pin TEPBGA package ballmap (southeast, viewed from above)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
29  
2.4  
Signal summary  
Table 3. MPC5642A signal properties  
8
Status  
Package pin No.  
208  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
324  
GPIO  
FR_A_TX  
GPIO[12]  
FlexRay transmit data channel A  
GPIO  
A1  
G
010  
000  
12  
13  
O
I/O  
VDDE-EH /  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
R4  
P5  
T6  
P3  
P4  
FR_A_TX_EN  
GPIO[13]  
FlexRay ch. A tx data enable  
GPIO  
A1  
G
010  
000  
O
I/O  
VDDE-EH /  
Medium  
FR_A_RX  
GPIO[14]  
FlexRay receive data ch. A  
GPIO  
A1  
G
010  
000  
14  
I
VDDE-EH /  
Medium  
R1  
R2  
R4  
T1  
I/O  
FR_B_TX  
GPIO[15]  
FlexRay transmit data ch. B  
GPIO  
A1  
G
010  
000  
15  
O
I/O  
VDDE-EH /  
Medium  
FR_B_TX_EN  
GPIO[16]  
FlexRay tx data enable for ch. B  
GPIO  
A1  
G
010  
000  
16  
O
I/O  
VDDE-EH /  
Medium  
FR_B_RX  
GPIO[17]  
FlexRay receive data channel B  
GPIO  
A1  
G
010  
000  
17  
I
VDDE-EH /  
Medium  
I/O  
9
GPIO[206] ETRIG0  
GPIO[207] ETRIG1  
GPIO[219]  
GPIO / eQADC Trigger Input  
GPIO / eQADC Trigger Input  
GPIO  
G
G
G
00  
206  
207  
I/O  
I/O  
VDDEH7 /  
143  
144  
122  
C14  
B14  
10  
Slow  
9
00  
VDDEH7 /  
Slow  
11  
000 219  
I/O  
VDDEH7 /  
MultV  
Reset / Configuration  
RESET  
External Reset Input  
External Reset Output  
P
P
I
VDDEH6 /  
Slow  
RESET / Up  
RESET / Up  
RSTOUT / Down  
PLLREF / Up  
97  
102  
83  
L16  
K15  
M14  
R22  
P21  
V21  
RSTOUT  
01  
230  
208  
O
VDDEH6 /  
Slow  
RSTOUT / Down  
— / Up  
PLLREF  
IRQ[4]  
ETRIG2  
GPIO[208]  
FMPLL Mode Selection  
External Interrupt Request  
eQADC Trigger Input  
GPIO  
P
A1  
A2  
G
001  
010  
100  
000  
I
I
I
VDDEH6 /  
Slow  
I/O  
12  
PLLCFG1  
IRQ[5]  
A1  
A2  
G
209  
210  
I
O
VDDEH6 /  
Medium  
— / Up  
— / Up  
U20  
P22  
External interrupt request  
DSPI D data output  
GPIO  
010  
100  
000  
DSPI_D_SOUT  
GPIO[209]  
I/O  
RSTCFG  
RSTCFG  
GPIO  
P
G
01  
00  
I
VDDEH6 /  
Slow  
— / Down  
GPIO[210]  
I/O  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
BOOTCFG[0]  
IRQ[2]  
GPIO[211]  
Boot Config. Input  
External Interrupt Request  
GPIO  
P
A1  
G
01  
10  
00  
211  
I
I
VDDEH6 /  
Slow  
— / Down  
BOOTCFG[0] /  
Down  
T20  
I/O  
BOOTCFG[1]  
IRQ[3]  
ETRIG3  
Boot Config. Input  
External Interrupt Request  
eQADC Trigger Input  
GPIO  
P
A1  
A2  
G
001  
010  
100  
000  
212  
213  
I
I
I
VDDEH6 /  
Slow  
— / Down  
— / Up  
BOOTCFG[1] /  
Down  
85  
86  
M15  
L15  
U21  
GPIO[212]  
I/O  
WKPCFG  
NMI  
DSPI_B_SOUT  
Weak Pull Config. Input  
Non-Maskable Interrupt  
DSPI B data output  
GPIO  
P
A1  
A2  
G
001  
010  
100  
000  
I
I
O
VDDEH6 /  
Medium  
WKPCFG / Up  
AA20  
GPIO[213]  
I/O  
Calibration Bus  
CAL_CS0  
Calibration chip select  
P
01  
336  
338  
O
VDDE12 /  
Fast  
— / —  
— / —  
CAL_CS2  
CAL_ADDR[10]  
CAL_WE[2]/BE[2]  
Calibration chip select  
Calibration address bus  
Calibration write/byte enable  
P
A1  
A2  
001  
010  
100  
O
I/O  
O
VDDE12 /  
Fast  
CAL_CS3  
CAL_ADDR[11]  
CAL_WE[3]/BE[3]  
Calibration chip select  
Calibration address bus  
Calibration write/byte enable  
P
A1  
A2  
001  
010  
100  
339  
O
I/O  
O
VDDE12 /  
Fast  
— / —  
CAL_ADDR[12]  
CAL_WE[2]/BE[2]  
Calibration address bus  
Calibration write/byte enable  
P
A1  
01  
10  
340  
340  
340  
340  
345  
345  
345  
345  
345  
345  
I/O  
O
VDDE12 /  
Fast  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
CAL_ADDR[13]  
CAL_WE[3]/BE[3]  
Calibration address bus  
Calibration write/byte enable  
P
A1  
01  
10  
I/O  
O
VDDE12 /  
Fast  
CAL_ADDR[14]  
CAL_DATA[31]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[15]  
CAL_ALE  
Calibration address bus  
Calibration address latch enable  
P
A1  
01  
10  
I/O  
O
VDDE12 /  
Fast  
CAL_ADDR[16]  
CAL_DATA[16]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[17]  
CAL_DATA[17]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[18]  
CAL_DATA[18]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[19]  
CAL_DATA[19]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[20]  
CAL_DATA[20]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[21]  
CAL_DATA[21]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
CAL_ADDR[22]  
CAL_DATA[22]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
345  
345  
345  
345  
345  
345  
345  
345  
345  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
I/O  
I/O  
VDDE12 /  
Fast  
— / —  
CAL_ADDR[23]  
CAL_DATA[23]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
CAL_ADDR[24]  
CAL_DATA[24]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[25]  
CAL_DATA[25]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[26]  
CAL_DATA[26]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[27]  
CAL_DATA[27]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[28]  
CAL_DATA[28]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[29]  
CAL_DATA[29]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_ADDR[30]  
CAL_DATA[30]  
Calibration address bus  
Calibration data bus  
P
A1  
01  
10  
I/O  
I/O  
VDDE12 /  
Fast  
CAL_DATA[0]  
CAL_DATA[1]  
CAL_DATA[2]  
CAL_DATA[3]  
CAL_DATA[4]  
CAL_DATA[5]  
CAL_DATA[6]  
CAL_DATA[7]  
CAL_DATA[8]  
CAL_DATA[9]  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
P
P
P
P
P
P
P
P
P
P
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDE12 /  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
CAL_DATA[10]  
CAL_DATA[11]  
CAL_DATA[12]  
CAL_DATA[13]  
CAL_DATA[14]  
CAL_DATA[15]  
CAL_RD_WR  
CAL_WE[0]  
Calibration data bus  
P
P
P
P
P
P
P
P
P
P
01  
341  
341  
341  
341  
341  
341  
342  
342  
342  
342  
343  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
VDDE12 /  
Fast  
— / Up  
— / Up  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration write enable  
Calibration write enable  
01  
01  
01  
01  
01  
01  
01  
01  
01  
VDDE12 /  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / —  
— / —  
— / —  
— / —  
— / —  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
O
VDDE12 /  
Fast  
CAL_WE[1]  
O
VDDE12 /  
Fast  
CAL_OE  
Calibration output enable  
O
VDDE12 /  
Fast  
CAL_TS  
CAL_ALE  
Calibration transfer start  
Address Latch Enable  
P
A1  
01  
10  
O
O
VDDE12 /  
Fast  
CAL_MDO[4]  
CAL_MDO[5]  
CAL_MDO[6]  
CAL_MDO[7]  
CAL_MDO[8]  
CAL_MDO[9]  
CAL_MDO[10]  
CAL_MDO[11]  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
Calibration Nexus Message Data Out  
P
P
P
P
P
P
P
P
01  
01  
01  
01  
01  
01  
01  
01  
O
O
O
O
O
O
O
O
VDDE12 /  
Fast  
CAL_MDO[4] / —  
CAL_MDO[5] / —  
CAL_MDO[6] / —  
CAL_MDO[7] / —  
CAL_MDO[8] / —  
CAL_MDO[9] / —  
CAL_MDO[10] / —  
CAL_MDO[11] / —  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
VDDE12 /  
Fast  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
208  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
324  
13  
NEXUS  
EVTI  
Nexus event in  
P
P
P
P
P
P
P
01  
01  
01  
01  
01  
01  
231  
I
VDDEH7 /  
MultiV  
— / Up  
EVTI / Up  
EVTO / —  
MCKO / —  
116  
120  
14  
E15  
D15  
F15  
A14  
B14  
A13  
B13  
P10  
H20  
G20  
F1  
14  
EVTO  
Nexus event out  
227  
O
O
O
O
O
O
VDDEH7 /  
MultiV  
ABR/Up  
11  
MCKO  
Nexus message clock out  
Nexus message data out  
Nexus message data out  
Nexus message data out  
Nexus message data out  
219  
VRC33 /  
Fast  
MDO[0]  
MDO[1]  
MDO[2]  
MDO[3]  
MDO[4]  
220  
221  
222  
223  
75  
VRC33 /  
Fast  
MDO[0] / —  
MDO[1] / —  
MDO[2] / —  
MDO[3] / —  
— / —  
17  
F3  
VRC33 /  
Fast  
18  
G2  
VRC33 /  
Fast  
19  
G3  
VRC33 /  
Fast  
20  
G4  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
126  
B19  
ETPUA2_O  
GPIO[75]  
MDO[5]  
ETPUA4_O  
GPIO[76]  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
76  
77  
78  
79  
80  
81  
82  
O
O
I/O  
VDDEH7 /  
MultiV  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
129  
135  
136  
137  
139  
134  
124  
T10  
T11  
N11  
P11  
T7  
B20  
C18  
B18  
A18  
D18  
A19  
C19  
MDO[6]  
ETPUA13_O  
GPIO[77]  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
MDO[7]  
ETPUA19_O  
GPIO[78]  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
MDO[8]  
ETPUA21_O  
GPIO[79]  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
MDO[9]  
ETPUA25_O  
PIO[80]  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
MDO[10]  
ETPUA27_O  
GPIO[81]  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
R10  
P9  
MDO[11]  
ETPUA29_O  
GPIO[82]  
Nexus message data out  
eTPU A channel (output only)  
GPIO[82]  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH7 /  
MultiV  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
MSEO[0]  
MSEO[1]  
RDY  
Nexus message start/end out  
Nexus message start/end out  
Nexus ready output  
P
P
P
01  
224  
225  
226  
O
O
O
VDDEH7 /  
MultiV  
MSEO[0] / —  
MSEO[1] / —  
118  
C15  
G21  
01  
01  
VDDEH7 /  
MultiV  
117  
E16  
G22  
G19  
VDDEH7 /  
MultiV  
JTAG  
TCK  
JTAG test clock input  
P
P
P
P
P
01  
01  
01  
01  
01  
232  
228  
I
I
VDDEH7 /  
MultiV  
TCK / Down  
TDI / Up  
TCK / Down  
TDI / Up  
128  
130  
123  
131  
121  
C16  
E14  
F14  
D14  
F16  
D21  
D22  
E21  
E20  
F20  
TDI  
JTAG test data input  
VDDEH7 /  
MultiV  
TDO  
TMS  
JCOMP  
JTAG test data output  
JTAG test mode select input  
JTAG TAP controller enable  
O
I
VDDEH7 /  
MultiV  
TDO / Up  
TMS / Up  
TDO / Up  
VDDEH7 /  
MultiV  
TMS / Up  
I
VDDEH7 /  
MultiV  
JCOMP / Down  
JCOMP / Down  
FlexCAN  
CAN_A_TX  
SCI_A_TX  
GPIO[83]  
FlexCAN A transmit  
eSCI A transmit  
GPIO  
P
A1  
G
01  
10  
00  
83  
84  
85  
O
O
I/O  
VDDEH6 /  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
81  
82  
88  
P12  
R12  
T12  
AB19  
Y19  
CAN_A_RX  
SCI_A_RX  
GPIO[84]  
FlexCAN A receive  
eSCI A receive  
GPIO  
P
A1  
G
01  
10  
00  
I
I
VDDEH6 /  
Slow  
I/O  
CAN_B_TX  
DSPI_C_PCS[3]  
SCI_C_TX  
FlexCAN B transmit  
DSPI C peripheral chip select  
eSCI C transmit  
P
A1  
A2  
G
001  
010  
100  
000  
O
O
O
VDDEH6 /  
Slow  
Y22  
GPIO[85]  
GPIO  
I/O  
CAN_B_RX  
DSPI_C_PCS[4]  
SCI_C_RX  
FlexCAN B receive  
DSPI C peripheral chip select  
eSCI C receive  
P
A1  
A2  
G
001  
010  
100  
000  
86  
I
O
I
VDDEH6 /  
Slow  
— / Up  
— / Up  
89  
R13  
W21  
GPIO[86]  
GPIO  
I/O  
CAN_C_TX  
DSPI_D_PCS[3]  
GPIO[87]  
FlexCAN C transmit  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
87  
88  
O
O
I/O  
VDDEH6 /  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
101  
98  
K13  
L14  
P19  
V20  
CAN_C_RX  
DSPI_D_PCS[4]  
GPIO[88]  
FlexCAN C receive  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6 /  
Slow  
eSCI  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
SCI_A_TX  
EMIOS13  
GPIO[89]  
eSCI A transmit  
eMIOS channel  
GPIO  
P
A1  
G
01  
10  
00  
89  
O
O
I/O  
VDDEH6 /  
Medium  
— / Up  
— / Up  
100  
J14  
N20  
15  
SCI_A_RX  
EMIOS15  
GPIO[90]  
eSCI A receive  
eMIOS channel  
GPIO  
P
A1  
G
01  
10  
00  
90  
91  
92  
I
O
I/O  
VDDEH6 /  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
99  
87  
84  
K14  
L13  
M13  
P20  
15  
SCI_B_TX  
DSPI_D_PCS[1]  
GPIO[91]  
eSCI B transmit  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH6 /  
Medium  
AB21  
SCI_B_RX  
DSPI_D_PCS[5]  
GPIO[92]  
eSCI B receive  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6 /  
Medium  
AB20  
SCI_C_TX  
GPIO[244]  
eSCI C transmit  
GPIO  
P
G
01  
00  
244  
245  
O
I/O  
VDDEH6 /  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
W19  
V19  
SCI_C_RX  
GPIO[245]  
eSCI C receive  
GPIO  
P
G
01  
00  
I
VDDEH6 /  
Medium  
I/O  
DSPI  
16  
DSPI_A_SCK  
A1  
G
10  
00  
93  
94  
95  
96  
97  
98  
99  
100  
O
I/O  
VDDEH7 /  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
C17  
B17  
A17  
D16  
C16  
C15  
DSPI_C_PCS[1]  
DSPI C peripheral chip select  
GPIO  
GPIO[93]  
16  
DSPI_A_SIN  
A1  
G
10  
00  
O
I/O  
VDDEH7 /  
Medium  
DSPI_C_PCS[2]  
GPIO[94]  
DSPI C peripheral chip select  
GPIO  
16  
DSPI_A_SOUT  
DSPI_C_PCS[5]  
GPIO[95]  
A1  
G
10  
00  
O
I/O  
VDDEH7 /  
Medium  
DSPI C peripheral chip select  
GPIO  
16  
DSPI_A_PCS[0]  
DSPI_D_PCS[2]  
GPIO[96]  
A1  
G
10  
00  
O
I/O  
VDDEH7 /  
Medium  
DSPI C peripheral chip select  
GPIO  
16  
DSPI_A_PCS[1]  
DSPI_B_PCS[2]  
GPIO[97]  
A1  
G
10  
00  
O
I/O  
VDDEH7 /  
Medium  
DSPI C peripheral chip select  
GPIO  
16  
16  
16  
DSPI_A_PCS[2]  
DSPI_D_SCK  
GPIO[98]  
A1  
G
10  
00  
I/O  
I/O  
VDDEH7 /  
Medium  
141  
142  
J15  
H13  
SPI clock pin for DSPI module  
GPIO  
DSPI_A_PCS[3]  
DSPI_D_SIN  
GPIO[99]  
A1  
G
10  
00  
I
I/O  
VDDEH7 /  
Medium  
B15  
DSPI D data input  
GPIO  
DSPI_A_PCS[4]  
DSPI_D_SOUT  
GPIO[100]  
A1  
G
10  
00  
O
I/O  
VDDEH7 /  
Medium  
B16  
DSPI D data output  
GPIO  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
16  
DSPI_A_PCS[5]  
DSPI_B_PCS[3]  
GPIO[101]  
A1  
G
10  
00  
101  
O
I/O  
VDDEH7 /  
Medium  
— / Up  
— / Up  
A16  
DSPI B peripheral chip select  
GPIO  
DSPI_B_SCK  
DSPI_C_PCS[1]  
GPIO[102]  
SPI clock pin for DSPI module  
DSPI B peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
102  
103  
104  
105  
106  
107  
108  
109  
110  
I/O  
O
I/O  
VDDEH6 /  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
106  
112  
113  
111  
109  
107  
114  
105  
104  
J16  
G15  
G13  
G16  
H16  
H15  
G14  
H14  
J13  
K21  
H22  
J19  
J21  
J22  
K22  
J20  
K20  
L19  
DSPI_B_SIN  
DSPI_C_PCS[2]  
GPIO[103]  
DSPI B data input  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6 /  
Medium  
DSPI_B_SOUT  
DSPI_C_PCS[5]  
GPIO[104]  
DSPI B data output  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH6 /  
Medium  
DSPI_B_PCS[0]  
DSPI_D_PCS[2]  
GPIO[105]  
DSPI B peripheral chip select  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH6 /  
Medium  
DSPI_B_PCS[1]  
DSPI_D_PCS[0]  
GPIO[106]  
DSPI B peripheral chip select  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDEH6 /  
Medium  
DSPI_B_PCS[2]  
DSPI_C_SOUT  
GPIO[107]  
DSPI B peripheral chip select  
DSPI C data output  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH6 /  
Medium  
DSPI_B_PCS[3]  
DSPI_C_SIN  
GPIO[108]  
DSPI B peripheral chip select  
DSPI C data input  
GPIO  
P
A1  
G
01  
10  
00  
O
I
I/O  
VDDEH6 /  
Medium  
DSPI_B_PCS[4]  
DSPI_C_SCK  
GPIO[109]  
DSPI B peripheral chip select  
SPI clock pin for DSPI module  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDEH6 /  
Medium  
DSPI_B_PCS[5]  
DSPI_C_PCS[0]  
GPIO[110]  
DSPI B peripheral chip select  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDEH6 /  
Medium  
eQADC  
AN0  
DAN0+  
Single Ended Analog Input  
Positive Terminal Differential Input  
P
P
P
I
VDDA /  
Analog  
Pull-up/down  
I / —  
I / —  
I / —  
AN[0] / —  
AN[1] / —  
AN[2] / —  
172  
171  
170  
B5  
A6  
D6  
C6  
C7  
D7  
AN1  
DAN0  
Single Ended Analog Input  
Negative Terminal Differential Input  
I
I
VDDA /  
Analog  
Pull-up/down  
AN2  
DAN1+  
Single Ended Analog Input  
Positive Terminal Differential Input  
VDDA /  
Analog  
Pull-up/down  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
P
I
I
I
I
I
VDDA /  
Analog  
Pull-up/down  
I / —  
AN[3] / —  
169  
C7  
D8  
AN3  
DAN1  
Single Ended Analog Input  
Negative Terminal Differential Input  
P
P
P
P
VDDA /  
Analog  
Pull-up/down  
I / —  
I / —  
I / —  
I / —  
AN[4] / —  
AN[5] / —  
AN[6] / —  
AN[7] / —  
168  
167  
166  
165  
B6  
A7  
D7  
C8  
B7  
B8  
C8  
C9  
AN4  
DAN2+  
Single Ended Analog Input  
Positive Terminal Differential Input  
VDDA /  
Analog  
Pull-up/down  
AN5  
DAN2  
Single Ended Analog Input  
Negative Terminal Differential Input  
VDDA /  
Analog  
Pull-up/down  
AN6  
DAN3+  
Single Ended Analog Input  
Positive Terminal Differential Input  
VDDA /  
Analog  
AN7  
Single Ended Analog Input  
DAN3  
Negative Terminal Differential Input  
Pull-up/down  
AN8  
ANW  
Single-ended Analog Input  
Multiplexed Analog Input  
P
P
P
P
01  
01  
01  
01  
I
I
I
I
VDDA /  
Analog  
I / —  
I / —  
I / —  
I / —  
I / —  
AN[8] / —  
AN[9] / —  
AN[10] / —  
AN[11] / —  
AN[12] / —  
9
5
B3  
A2  
E1  
C2  
AN9  
ANX  
Single-ended Analog Input  
External Multiplexed Analog Input  
VDDA /  
Analog  
AN10  
ANY  
Single-ended Analog Input  
Multiplexed Analog Input  
VDDA /  
Analog  
4
D1  
AN11  
ANZ  
Single-ended Analog Input  
Multiplexed Analog Input  
VDDA /  
Analog  
A3  
C1  
AN12 - SDS  
MA0  
ETPUA19_O  
Single-ended Analog Input  
MUX Address 0  
eTPU A channel (output only)  
P
A1  
A2  
G
001  
010  
100  
000  
215  
I
O
O
I/O  
VDDEH7 /  
Medium  
148  
A12  
C13  
SDS  
eQADC Serial Data Select  
AN13 - SDO  
MA1  
ETPUA21_O  
SDO  
Single-ended Analog Input  
MUX Address 1  
eTPU A channel (output only)  
eQADC Serial Data Out  
P
A1  
A2  
G
001  
010  
100  
000  
216  
217  
218  
I
VDDEH7 /  
Medium  
I / —  
I / —  
I / —  
AN[13] / —  
AN[14] / —  
AN[15] / —  
147  
146  
145  
B12  
C12  
C13  
B13  
A13  
A14  
O
O
O
AN14 - SDI  
MA2  
ETPUA27_O  
SDI  
Single-ended Analog Input  
MUX Address 2  
eTPU A channel (output only)  
eQADC Serial Data In  
P
A1  
A2  
G
001  
010  
100  
000  
I
VDDEH7 /  
Medium  
O
O
I
AN15 - FCK  
FCK  
ETPUA29_O  
Single-ended Analog Input  
eQADC Free Running Clock  
eTPU A channel (output only)  
P
A1  
A2  
001  
010  
100  
I
O
O
VDDEH7 /  
Medium  
AN16  
Single-ended Analog Input  
P
P
I
I
VDDA /  
Analog  
I / —  
I / —  
AN[16] / —  
AN[17] / —  
3
2
C6  
C4  
A3  
A4  
AN17  
Single-ended Analog Input  
VDDA /  
Analog  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
VDDA /  
Analog  
I / —  
AN[18] / —  
1
D5  
B4  
VDDA /  
Analog  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
AN[19] / —  
AN[20] / —  
AN[21] / —  
AN[22] / —  
AN[23] / —  
AN[24] / —  
AN[25] / —  
AN[26] / —  
AN[27] / —  
AN[28] / —  
AN[29] / —  
AN[30] / —  
AN[31] / —  
AN[32] / —  
AN[33] / —  
AN[34] / —  
AN[35] / —  
AN[36] / —  
D6  
C5  
VDDA /  
Analog  
VDDA /  
Analog  
173  
161  
160  
159  
158  
B4  
B6  
VDDA /  
Analog  
B8  
D9  
VDDA /  
Analog  
C9  
A8  
VDDA /  
Analog  
D8  
B9  
VDDA /  
Analog  
B9  
A9  
VDDA /  
Analog  
D10  
C10  
D11  
C11  
B11  
D12  
C12  
B12  
A12  
D13  
B5  
VDDA /  
Analog  
157  
156  
A10  
B10  
VDDA /  
Analog  
VDDA /  
Analog  
VDDA /  
Analog  
155  
154  
153  
152  
151  
150  
174  
D9  
VDDA /  
Analog  
D10  
C10  
C11  
C5  
VDDA /  
Analog  
VDDA /  
Analog  
VDDA /  
Analog  
VDDA /  
Analog  
D11  
F4  
VDDA /  
Analog  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
AN37  
AN38  
AN39  
VRH  
VRL  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Voltage Reference High  
Voltage Reference Low  
P
P
P
P
P
P
I
I
I
I
I
I
VDDA /  
Analog  
I / —  
AN[37] / —  
175  
E3  
A5  
VDDA /  
Analog  
I / —  
I / —  
I / —  
I / —  
I / —  
AN[38] / —  
8
D2  
A8  
A9  
B7  
D3  
D2  
VDDA /  
Analog  
AN[39] / —  
VDDA /  
163  
162  
164  
A10  
A11  
B10  
VDDA /  
REFBYBC  
Reference Bypass Capacitor  
Input  
VDDA /  
Analog  
eTPU2  
TCRCLKA  
IRQ[7]  
GPIO[113]  
eTPU A TCR clock  
External interrupt request  
GPIO  
P
A1  
G
01  
10  
00  
113  
114  
I
I
VDDEH4 /  
Slow  
— / Up  
— / Up  
L4  
AB12  
Y12  
I/O  
ETPUA0  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
61  
N3  
ETPUA12_O  
ETPUA19_O  
GPIO[114]  
eTPU A channel (output only)  
eTPU A channel (output only)  
GPIO  
I/O  
ETPUA1  
ETPUA13_O  
GPIO[115]  
eTPU A channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
115  
116  
117  
118  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
60  
59  
58  
56  
M3  
P2  
P1  
N2  
W12  
AA11  
Y11  
ETPUA2  
ETPUA14_O  
GPIO[116]  
eTPU A channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
ETPUA3  
ETPUA15_O  
GPIO[117]  
eTPU A channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— / WKPCFG  
GPIO / WKPCFG  
ETPUA4  
ETPUA16_O  
FR_B_TX  
GPIO[118]  
eTPU A channel  
eTPU A channel (output only)  
FlexRay transmit data channel B  
GPIO  
P
0001  
0010  
1000  
0000  
I/O  
O
O
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
W11  
A1  
A2  
A3  
G
ETPUA5  
ETPUA17_O  
DSPI_B_SCK_LVDS  
FR_B_TX_EN  
GPIO[119]  
eTPU A channel  
P
0001  
0010  
0100  
1000  
0000  
119  
I/O  
O
O
O
I/O  
VDDEH4 /  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
54  
M4  
AB11  
eTPU A channel (output only)  
LVDS negative DSPI clock  
FlexRay tx data enable for ch. B  
GPIO  
A1  
A2  
A3  
G
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
ETPUA6  
ETPUA18_O  
DSPI_B_SCK_LVDS+  
FR_B_RX  
eTPU A channel  
P
0001  
0010  
0100  
1000  
0000  
120  
I/O  
O
O
VDDEH4 /  
Medium +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
53  
L3  
AB10  
eTPU A channel (output only)  
LVDS positive DSPI clock  
FlexRay receive data channel B  
GPIO  
A1  
A2  
A3  
G
I
GPIO[120]  
I/O  
ETPUA7  
ETPUA19_O  
eTPU A channel  
eTPU A channel (output only)  
P
0001  
0010  
0100  
1000  
0000  
121  
I/O  
O
O
O
I/O  
VDDEH4 /  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
52  
K3  
AA10  
A1  
A2  
A3  
G
DSPI_B_SOUT_LVDSLVDS negative DSPI data out  
ETPUA6_O  
GPIO[121]  
eTPU A channel (output only)  
GPIO  
ETPUA8  
ETPUA20_O  
eTPU A channel  
eTPU A channel (output only)  
P
A1  
A2  
G
001  
010  
100  
000  
122  
123  
124  
125  
126  
I/O  
O
O
VDDEH4 /  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
51  
50  
49  
48  
47  
N1  
M2  
M1  
L2  
Y10  
AA9  
AA4  
AB4  
AB3  
DSPI_B_SOUT_LVDS+ LVDS positive DSPI data out  
GPIO[122]  
GPIO  
I/O  
ETPUA9  
ETPUA21_O  
RCH1_B  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
eTPU A channel (output only)  
Reaction channel 1B  
GPIO  
GPIO[123]  
I/O  
ETPUA10  
ETPUA22_O  
RCH1_C  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
eTPU A channel (output only)  
Reaction channel 1C  
GPIO  
GPIO[124]  
I/O  
ETPUA11  
ETPUA23_O  
RCH4_B  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
eTPU A channel (output only)  
Reaction channel 4B  
GPIO  
GPIO[125]  
I/O  
ETPUA12  
DSPI_B_PCS[1]  
RCH4_C  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
L1  
DSPI B peripheral chip select  
Reaction channel 4C  
GPIO  
GPIO[126]  
I/O  
ETPUA13  
DSPI_B_PCS[3]  
GPIO[127]  
eTPU A channel  
DSPI B peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
127  
128  
I/O  
O
I/O  
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
46  
42  
J4  
J3  
AB2  
AA2  
ETPUA14  
eTPU A channel  
P
0001  
0010  
0100  
1000  
0000  
I/O  
O
O
O
I/O  
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_B_PCS[4]  
ETPUA9_O  
RCH0_A  
DSPI B peripheral chip select  
eTPU A channel (output only)  
Reaction channel 0A  
GPIO  
A1  
A2  
A3  
G
GPIO[128]  
ETPUA15  
DSPI_B_PCS[5]  
RCH1_A  
GPIO[129]  
eTPU A channel  
DSPI B peripheral chip select  
Reaction channel 1A  
GPIO  
P
A1  
A2  
G
001  
010  
100  
000  
129  
130  
I/O  
O
O
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
40  
39  
K2  
K1  
AA1  
Y2  
I/O  
ETPUA16  
DSPI_D_PCS[1]  
RCH2_A  
GPIO[130]  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI D peripheral chip select  
Reaction channel 2A  
GPIO  
I/O  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
ETPUA17  
DSPI_D_PCS[2]  
RCH3_A  
GPIO[131]  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
131  
I/O  
O
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
38  
H3  
Y1  
DSPI D peripheral chip select  
Reaction channel 3A  
GPIO  
I/O  
ETPUA18  
DSPI_D_PCS[3]  
RCH4_A  
GPIO[132]  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
132  
133  
134  
I/O  
O
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
37  
36  
35  
H4  
J2  
J1  
W3  
W2  
W1  
DSPI D peripheral chip select  
Reaction channel 4A  
GPIO  
I/O  
ETPUA19  
DSPI_D_PCS[4]  
RCH5_A  
GPIO[133]  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI D peripheral chip select  
Reaction channel 5A  
GPIO  
I/O  
ETPUA20  
IRQ[8]  
RCH0_B  
FR_A_TX  
GPIO[134]  
eTPU A channel  
P
0001  
0010  
0100  
1000  
0000  
I/O  
I
O
O
I/O  
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
External interrupt request  
Reaction channel 0B  
FlexRay transmit data channel A  
GPIO  
A1  
A2  
A3  
G
ETPUA21  
IRQ[9]  
RCH0_C  
FR_A_RX  
GPIO[135]  
eTPU A channel  
P
0001  
0010  
0100  
1000  
0000  
135  
I/O  
I
O
I
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
34  
G4  
N4  
External interrupt request  
Reaction channel 0C  
FlexRay receive channel A  
GPIO  
A1  
A2  
A3  
G
I/O  
ETPUA22  
IRQ[10]  
ETPUA17_O  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
136  
137  
I/O  
I
O
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
32  
30  
H2  
H1  
N3  
M1  
External interrupt request  
eTPU A channel (output only)  
GPIO  
GPIO[136]  
I/O  
ETPUA23  
IRQ[11]  
ETPUA21_O  
FR_A_TX_EN  
GPIO[137]  
eTPU A channel  
P
0001  
0010  
0100  
1000  
0000  
I/O  
I
O
O
I/O  
VDDEH1 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
External interrupt request  
eTPU A channel (output only)  
FlexRay ch. A transmit enable  
GPIO  
A1  
A2  
A3  
G
ETPUA24  
IRQ[12]  
DSPI_C_SCK_LVDS  
GPIO[138]  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
138  
139  
140  
I/O  
I
O
VDDEH1 /  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
28  
27  
26  
G1  
G3  
F3  
M2  
M3  
L2  
External interrupt request  
LVDS negative DSPI clock  
GPIO  
I/O  
ETPUA25  
IRQ[13]  
DSPI_C_SCK_LVDS+  
GPIO[139]  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
I
O
VDDEH1 /  
Medium +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
External interrupt request  
LVDS positive DSPI clock  
GPIO  
I/O  
ETPUA26  
IRQ[14]  
eTPU A channel  
External interrupt request  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
I
O
VDDEH1 /  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_C_SOUT_LVDSLVDS negative DSPI data out  
GPIO[140] GPIO  
I/O  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
ETPUA27  
IRQ[15]  
DSPI_C_SOUT_LVDS+ LVDS positive DSPI data out  
eTPU A channel  
External interrupt request  
P
0001  
0010  
0100  
1000  
0000  
141  
I/O  
I
O
O
I/O  
VDDEH1 /  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
25  
G2  
L1  
A1  
A2  
A3  
G
DSPI_B_SOUT  
GPIO[141]  
DSPI B data output  
GPIO  
ETPUA28  
DSPI_C_PCS[1]  
RCH5_B  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
142  
143  
144  
145  
I/O  
O
O
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
24  
23  
22  
21  
F1  
F2  
E1  
E2  
M4  
L3  
L4  
K1  
DSPI C peripheral chip select  
Reaction channel 5B  
GPIO  
GPIO[142]  
I/O  
ETPUA29  
DSPI_C_PCS[2]  
RCH5_C  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI C peripheral chip select  
Reaction channel 5C  
GPIO  
GPIO[143]  
I/O  
ETPUA30  
eTPU A channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_C_PCS[3]  
ETPUA11_O  
GPIO[144]  
DSPI C peripheral chip select  
eTPU A channel (output only)  
GPIO  
I/O  
ETPUA31  
eTPU A channel  
P
001  
010  
100  
000  
I/O  
O
O
VDDEH1 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_C_PCS[4]  
ETPUA13_O  
GPIO[145]  
DSPI C peripheral chip select  
eTPU A channel (output only)  
GPIO  
A1  
A2  
G
I/O  
eMIOS  
EMIOS0  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
179  
I/O  
O
O
VDDEH4 /  
Slow  
— / Up  
— / Up  
63  
T4  
AA12  
ETPUA0_O  
ETPUA25_O  
GPIO[179]  
eTPU A channel (output only)  
eTPU A channel (output only)  
GPIO  
I/O  
EMIOS1  
ETPUA1_O  
GPIO[180]  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
180  
181  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
64  
65  
T5  
N7  
W13  
Y13  
EMIOS2  
ETPUA2_O  
RCH2_B  
GPIO[181]  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Slow  
eTPU A channel (output only)  
Reaction channel 2B  
GPIO  
I/O  
EMIOS3  
ETPUA3_O  
GPIO[182]  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
182  
183  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
66  
67  
R6  
R5  
AA13  
AB13  
EMIOS4  
ETPUA4_O  
RCH2_C  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
eTPU A channel (output only)  
Reaction channel 2C  
GPIO  
GPIO[183]  
I/O  
EMIOS5  
ETPUA5_O  
GPIO[184]  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
184  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
Y14  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
EMIOS6  
ETPUA6_O  
GPIO[185]  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
185  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— / Down  
— / Down  
68  
P7  
AA14  
EMIOS7  
ETPUA7_O  
GPIO[186]  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
186  
187  
I/O  
O
I/O  
VDDEH4 /  
Slow  
— / Down  
— / Up  
— / Down  
— / Up  
69  
70  
AB14  
W15  
EMIOS8  
eMIOS channel  
eTPU A channel (output only)  
eSCI B transmit  
GPIO  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Slow  
P8  
ETPUA8_O  
SCI_B_TX  
GPIO[187]  
I/O  
EMIOS9  
eMIOS channel  
eTPU A channel (output only)  
eSCI B receive  
GPIO  
P
A1  
A2  
G
001  
010  
100  
000  
188  
189  
190  
191  
I/O  
O
I
VDDEH4 /  
Slow  
— / Up  
— / Up  
71  
73  
75  
76  
R7  
N8  
Y15  
ETPUA9_O  
SCI_B_RX  
GPIO[188]  
I/O  
EMIOS10  
DSPI_D_PCS[3]  
RCH3_B  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
AA15  
AB15  
AB16  
DSPI D peripheral chip select  
Reaction channel 3B  
GPIO  
GPIO[189]  
I/O  
EMIOS11  
DSPI_D_PCS[4]  
RCH3_C  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
R8  
DSPI D peripheral chip select  
Reaction channel 3C  
GPIO  
GPIO[190]  
I/O  
EMIOS12  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
O
O
VDDEH4 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
N10  
DSPI_C_SOUT  
ETPUA27_O  
GPIO[191]  
DSPI C data output  
eTPU A channel (output only)  
GPIO  
I/O  
EMIOS13  
DSPI_D_SOUT  
GPIO[192]  
eMIOS channel  
DSPI D data output  
GPIO  
P
A1  
G
01  
10  
00  
192  
193  
I/O  
O
I/O  
VDDEH4 /  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
77  
78  
T8  
R9  
AA16  
Y16  
EMIOS14  
IRQ[0]  
ETPUA29_O  
GPIO[193]  
eMIOS channel  
P
A1  
A2  
G
001  
010  
100  
000  
I/O  
I
O
VDDEH4 /  
Slow  
— / Down  
— / Down  
— / Down  
— / Down  
External interrupt request  
eTPU A channel (output only)  
GPIO  
I/O  
EMIOS15  
IRQ[1]  
GPIO[194]  
eMIOS channel  
External interrupt request  
GPIO  
P
A1  
G
01  
10  
00  
194  
I/O  
I
I/O  
VDDEH4 /  
Slow  
79  
T9  
W16  
EMIOS16  
GPIO[195]  
eMIOS channel  
GPIO  
P
G
01  
00  
195  
196  
197  
198  
I/O  
I/O  
VDDEH4 /  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
W17  
Y17  
EMIOS17  
GPIO[196]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4 /  
Slow  
EMIOS18  
GPIO[197]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4 /  
Slow  
AA17  
AB17  
EMIOS19  
GPIO[198]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
208  
324  
EMIOS20  
GPIO[199]  
eMIOS channel  
GPIO  
P
G
01  
00  
199  
200  
201  
202  
203  
204  
I/O  
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
AB18  
EMIOS21  
GPIO[200]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4 /  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
80  
AA18  
Y18  
EMIOS22  
GPIO[201]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4 /  
Slow  
— / Down  
— / Down  
— / Down  
— / Down  
— / Down  
— / Down  
— / Down  
— / Down  
EMIOS23  
GPIO[202]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4 /  
Slow  
R11  
W18  
A15  
15  
EMIOS14  
GPIO[203]  
eMIOS channel  
GPIO  
P
G
01  
00  
O
I/O  
VDDEH7 /  
Slow  
15  
EMIOS15  
GPIO[204]  
eMIOS channel  
GPIO  
P
G
01  
00  
O
I/O  
VDDEH7 /  
Slow  
D14  
Clock Synthesizer  
XTAL  
Crystal oscillator output  
Crystal oscillator input  
System clock output  
P
P
P
P
01  
01  
01  
01  
O
I
VDDEH6 /  
Analog  
93  
92  
P16  
N16  
V22  
U22  
AB9  
W10  
EXTAL  
VDDEH6 /  
Analog  
CLKOUT  
ENGCLK  
229  
214  
O
O
VDDE12 /  
Fast  
CLKOUT  
ENGCLK  
Engineering clock output  
VDDE12 /  
Fast  
T14  
Power / Ground  
VDDREG  
VRCCTL  
Voltage regulator supply  
I
5 V  
I / —  
VDDREG  
VRCCTL  
10  
11  
K16  
N14  
F4  
F2  
Voltage regulator control output  
O
O / —  
VRC3317  
Internal regulator output  
O
I
3.3 V  
3.3 V  
I/O / —  
VRC33  
13  
A15,  
D1, N6, M19,  
N12 P11  
B1,  
Input for external 3.3 V supply  
VDDA  
eQADC high reference voltage  
eQADC ground/low reference voltage  
FMPLL supply voltage  
I
I
I
I
5 V  
I / —  
I / —  
I / —  
I / —  
VDDA  
VSSA  
6
7
A4, B11  
E3, A6  
VSSA  
A5, A11  
R16  
A7, E2  
W22  
E4  
VDDPLL  
VSTBY  
1.2 V  
VDDPLL  
VSTBY  
91  
12  
Power supply for standby RAM  
0.9 V – 6 V  
C1  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
208 324  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
VDD  
Core supply for input or decoupling  
I
1.2 V  
I / —  
VDD  
33, 45, 62, B1, B16, A2, A20,  
103, 132,  
C2, D3, A21, B3,  
E4, N5, C4, C22,  
P4, P13, D5, W20,  
R3, R14, Y4, Y21,  
T2, T15 AA3, AA22  
149, 176  
VDDE12  
VDDE5  
External supply input for calibration bus  
interfaces  
I
I
3.0 V – 3.6 V  
3.0 V – 3.6 V  
I / —  
I / —  
VDDE12  
VDDE5  
External supply input for ENGCLK and  
CLKOUT  
T13  
N11, W5,  
W8  
VDDE-EH  
VDDEH1A  
VDDEH1B  
External supply for EBI interfaces  
I/O supply input  
I
I
I
I
I
I
I
I
3.0 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
VDDE-EH  
31  
41  
55  
74  
K4  
N9  
R3, V2  
18  
18  
18  
VDDEH1A  
VDDEH1B  
18  
I/O supply input  
18  
18  
VDDEH1AB  
I/O supply input  
VDDEH1AB  
K4  
19  
19  
VDDEH4  
I/O supply input  
VDDEH4  
19  
19  
19  
VDDEH4A  
VDDEH4B  
VDDEH4AB  
I/O supply input  
VDDEH4A  
VDDEH4B  
19  
I/O supply input  
19  
19  
I/O supply input  
VDDEH4AB  
W14,  
AA19  
20  
20  
VDDEH6  
I/O supply input  
I/O supply input  
I/O supply input  
I/O supply input  
I
I
I
I
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
3.3 V – 5.0 V  
I / —  
I / —  
I / —  
I / —  
VDDEH6  
95  
20  
20  
20  
VDDEH6A  
VDDEH6B  
VDDEH6AB  
VDDEH6A  
VDDEH6B  
20  
110  
20  
20  
VDDEH6AB  
F13  
M22, U19  
Table 3. MPC5642A signal properties (continued)  
8
Status  
Package pin No.  
208 324  
PCR  
PA  
field  
6
I/O  
type  
Voltage /  
1
2
3
5
Name  
Function  
P / A / G  
PCR  
7
Pad type  
4
During reset  
After reset  
176  
21  
VDDEH7  
I/O supply input  
I
3.3 V – 5.0 V  
I / —  
VDDEH7  
D12  
B22, C21,  
D15, D20,  
E19, F19,  
H19, J14  
21  
VDDEH7A  
VDDEH7B  
VSS  
I/O supply input  
I/O supply input  
Ground  
I
I
I
3.3 V – 5.0 V  
3.3 V – 5.0 V  
I / —  
I / —  
I / —  
VDDEH7A  
VDDEH7B  
VSS  
125  
138  
21  
15, 29, 43, A1, A16, A1, A22,  
57, 72, 90, B2, B15, B2, B21,  
94, 96,  
C3, C14, C3, C20,  
108, 115, D4, D13, D4, D17,  
127, 133,  
140  
G7, G8, D19, F21,  
G9, G10, H21, J9,  
H7, H8, J10, J11,  
H9, H10, J12, J13,  
J7, J8, J9, K9, K10,  
J10, K7, K11, K12,  
K8, K9, K13, K14,  
K10, M16, L9, L10,  
N4, N13, L11, L12,  
P3, P14, L13, L14,  
R2, R15, L21, M11,  
T1, T16 M12, M13,  
M14, N9,  
N10, N12,  
N13, N14,  
N21, P9,  
P10, P12,  
P13, P14,  
T19, T21,  
T22, W4,  
Y3, Y20,  
AA21,  
AB1, AB22  
1
2
The suffix “_O” identifies an output-only eTPU channel  
For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or secondary  
function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal.  
3
The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. Signals are  
selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 -  
0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the  
appropriate number of leading zeroes from these values.  
4
5
The Pad Configuration Register (PCR) PA field is used by software to select pin function.  
Values in the PCR column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. For  
example, PCR[190] refers to the SIU register named SIU_PCR190.  
6
The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V to 5.0 V  
range (10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/10%).  
7
8
See Table 4 for details on pad types.  
The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is O (output),  
I (input), Up (weak pull up enabled), Down (weak pull down enabled), Low (output driven low), High (output driven high). A dash for the function in this column  
denotes that both the input and output buffer are turned off. The signal name to the left or right of the slash indicates the pin is enabled.  
9
When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output.  
10 Maximum frequency is 50 kHz  
11 PCR219 controls two different pins: MCKO and GPIO[219]. Please refer to Pad Configuration Register 219 section in SIU chapter of device reference manual  
for details.  
12 On 176 LQFP and 208 MAPBGA packages, this pin is tied low internally.  
13 These pins are selected by asserting JCOMP and configuring the NPC. SIU values have no effect on the function of this pin once enabled.  
14 The BAM uses this pin to select if auto baud rate is on or off.  
15 Output only  
16 This signal name is used to support legacy naming.  
17 Do not use VRC33 to drive external circuits.  
18 VDDEH1A, VDDEH1B and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support legacy  
naming, however they should be considered as the same signal in this document.  
19 VDDEH4, VDDEH4A, VDDEH4B and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present to support  
legacy naming, however they should be considered as the same signal in this document.  
20 VDDEH6, VDDEH6A, VDDEH6B and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present to support  
legacy naming, however they should be considered as the same signal in this document.  
21 VDDEH7, VDDEH7A and VDDE7B are shorted together in all production packages. The separation of the signal names is present to support legacy naming,  
however they should be considered as the same signal in this document.  
Pinout and signal description  
Table 4. Pad types  
Name  
Pad Type  
I/O Voltage Range  
Slow  
Medium  
Fast  
pad_ssr_hv  
pad_msr_hv  
pad_fc  
3.0V - 5.5 V  
3.0 V - 5.5 V  
3.0 V - 3.6 V  
MultiV1,2  
pad_multv_hv  
3.0 V - 5.5 V (high swing mode)  
3.0 V - 3.6 V (low swing mode)  
Analog  
LVDS  
pad_ae_hv  
pad_lo_lv  
0.0 - 5.5 V  
1
2
Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function  
is selected, otherwise they are high swing.  
VDDEH7 supply cannot be below 4.5 V when in low-swing mode.  
2.5  
Signal details  
Table 5. Signal details  
Module or function  
Signal  
Description  
CLKOUT  
ENGCLK  
EXTAL  
Clock Generation  
Clock Generation  
Clock Generation  
MPC5642A clock output for the calibration bus interface  
Clock for external ASIC devices  
Input pin for an external crystal oscillator or an external clock  
source based on the value driven on the PLLREF pin at reset  
PLLREF  
Clock Generation  
Reset/Configuration  
PLLREF is used to select whether the oscillator operates in  
xtal mode or external reference mode from reset. PLLREF = 0  
selects external reference mode. On the 324 TEPBGA  
package, PLLREF is bonded to the ball used for PLLCFG[0]  
for compatibility with MPC55xx devices.  
For the 176-pin QFP and 208-ball BGA packages:  
0: External reference clock is selected  
1: XTAL oscillator mode is selected  
For the 324-ball BGA package:  
If RSTCFG is 0:  
0: External reference clock is selected  
1: XTAL oscillator mode is selected  
If RSTCFG is 1, XTAL oscillator mode is selected.  
Crystal oscillator input  
XTAL  
Clock Generation  
DSPI  
DSPI_B_SCK_LVDS  
LVDS pair used for DSPI_B TSB mode transmission  
DSPI_B_SCK_LVDS+  
DSPI_B_SOUT_LVDSDSPI  
LVDS pair used for DSPI_B TSB mode transmission  
DSPI_B_SOUT_LVDS+  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
49  
Pinout and signal description  
Signal  
Table 5. Signal details (continued)  
Module or function  
DSPI  
Description  
DSPI_C_SCK_LVDS  
DSPI_C_SCK_LVDS+  
LVDS pair used for DSPI_C TSB mode transmission  
LVDS pair used for DSPI_C TSB mode transmission  
DSPI_C_SOUT_LVDSDSPI  
DSPI_C_SOUT_LVDS+  
DSPI_B_PCS[0]  
DSPI_C_PCS[0]  
DSPI_D_PCS[0]  
DSPI_B – DSPI_D  
Peripheral chip select when device is in master mode—slave  
select when used in slave mode  
DSPI_B_PCS[1:5]  
DSPI_C_PCS[1:5]  
DSPI_D_PCS[1:5]  
DSPI_B – DSPI_D  
DSPI_B – DSPI_D  
DSPI_B – DSPI_D  
DSPI_B – DSPI_D  
Peripheral chip select when device is in master mode—not  
used in slave mode  
DSPI_B_SCK  
DSPI_C_SCK  
DSPI_D_SCK  
DSPI clock—output when device is in master mode; input  
when in slave mode  
DSPI_B_SIN  
DSPI_C_SIN  
DSPI_D_SIN  
DSPI data in  
DSPI_B_SOUT  
DSPI_C_SOUT  
DSPI_D_SOUT  
DSPI data out  
eMIOS[0:23]  
AN[0:39]  
eMIOS  
eQADC  
eQADC  
eMIOS I/O channels  
Single-ended analog inputs for analog-to-digital converter  
AN[0:7]/DAN+  
Differential analog input pair for analog-to-digital converter  
with pull-up/pull-down functionality  
AN[0:7]/DAN  
eQADC  
Differential analog input pair for analog-to-digital converter  
with pull-up/pull-down functionality  
FCK  
eQADC  
eQADC  
eQADC free running clock for eQADC SSI  
MA[0:2]  
These three control bits are output to enable the selection for  
an external Analog Mux for expansion channels.  
REFBYPC  
SDI  
eQADC  
Bypass capacitor input  
Serial data in  
eQADC  
SDO  
eQADC  
Serial data out  
SDS  
eQADC  
Serial data select  
VRH  
eQADC  
Voltage reference high input  
Voltage reference low input  
eSCI receive  
VRL  
eQADC  
SCI_A_RX  
SCI_B_RX  
SCI_C_RX  
eSCI_A – eSCI_C  
SCI_A_TX  
SCI_B_TX  
SCI_C_TX  
eSCI_A – eSCI_C  
eTPU  
eSCI transmit  
ETPU_A[0:31]  
eTPU I/O channel  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
50  
Freescale Semiconductor  
Pinout and signal description  
Table 5. Signal details (continued)  
Module or function  
eTPU2  
Signal  
RCH0_[A:C]  
RCH1_[A:C]  
RCH2_[A:C]  
RCH3_[A:C]  
RCH4_[A:C]  
RCH5_[A:C]  
Description  
eTPU2 reaction channels. Used to control external actuators,  
e.g., solenoid control for direct injection systems and valve  
control in automatic transmissions  
Reaction Module  
TCRCLKA  
eTPU2  
Input clock for TCR time base  
CAN_A_TX  
CAN_B_TX  
CAN_C_TX  
FlexCAN_A – FlexCAN_C FlexCAN transmit  
CAN_A_RX  
CAN_B_RX  
CAN_C_RX  
FlexCAN_A – FlexCAN_C FlexCAN receive  
FR_A_RX  
FR_B_RX  
FlexRay  
FlexRay  
FlexRay  
FlexRay receive (Channels A, B)  
FR_A_TX_EN  
FR_B_TX_EN  
FlexRay transmit enable (Channels A, B)  
FlexRay transmit (Channels A, B)  
FR_A_TX  
FR_B_TX  
JCOMP  
TCK  
JTAG  
JTAG  
JTAG  
JTAG  
JTAG  
Nexus  
Enables the JTAG TAP controller  
Clock input for the on-chip test logic  
TDI  
Serial test instruction and data input for the on-chip test logic  
Serial test data output for the on-chip test logic  
Controls test mode operations for the on-chip test logic  
TDO  
TMS  
EVTI  
EVTI is an input that is read on the negation of RESET to  
enable or disable the Nexus Debug port. After reset, the EVTI  
pin is used to initiate program synchronization messages or  
generate a breakpoint.  
EVTO  
Nexus  
Nexus  
Nexus  
Output that provides timing to a development tool for a single  
watchpoint or breakpoint occurrence  
MCKO  
MCKO is a free running clock output to the development tools  
which is used for timing of the MDO and MSEO signals.  
MDO[0:11]  
Trace message output to development tools. This pin also  
indicates the status of the crystal oscillator clock following a  
power-on reset, when MDO[0] is driven high until the crystal  
oscillator clock achieves stability and is then negated.  
MSEO[0:1]  
RDY  
Nexus  
Nexus  
Output pin—Indicates the start or end of the variable length  
message on the MDO pins  
Nexus Ready Output (RDY)—Indicates to the development  
tools that data is ready to be read from or written to the Nexus  
read/write access registers.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
51  
Pinout and signal description  
Table 5. Signal details (continued)  
Module or function  
SIU – Configuration  
Signal  
Description  
BOOTCFG[0:1]  
Two BOOTCFG signals are implemented in MPC5642A  
MCUs.  
The BAM program uses the BOOTCFG0 bit to determine  
where to read the reset configuration word, and whether to  
initiate a FlexCAN or eSCI boot.  
The BOOTCFG1 pin is sampled during the assertion of the  
RSTOUT signal, and the value is used to update the RSR and  
the BAM boot mode.  
See reference manual section “Reset Configuration Half Word  
(RCHW)” for details on the RCHW. The table “Boot Modes” in  
reference manual section “BAM Program Operation” defines  
the boot modes specified by the BOOTCFG1 pin.  
The following values are for BOOTCFG[0:1}:  
00: Boot from internal flash memory  
01: FlexCAN/eSCI boot  
10: Boot from external memory using calibration bus  
11: Reserved  
Note: For the 176-pin QFP and 208-ball BGA packages  
BOOTCFG[0] is always 0 since the EBI interface is not  
available.  
WKPCFG  
SIU – Configuration  
The WKPCFG pin is applied at the assertion of the internal  
reset signal (assertion of RSTOUT), and is sampled four clock  
cycles before the negation of the RSTOUT pin.  
The value is used to configure whether the eTPU and eMIOS  
pins are connected to internal weak pull up or weak pull down  
devices after reset. The value latched on the WKPCFG pin at  
reset is stored in the Reset Status Register (RSR), and is  
updated for all reset sources except the Debug Port Reset and  
Software External Reset.  
0: Weak pulldown applied to eTPU and eMIOS pins at reset  
1: Weak pullup applied to eTPU and eMIOS pins at reset  
ETRIG[2:3]  
SIU – eQADC Triggers  
SIU – eQADC Triggers  
External signal eTRIGx triggers eQADC CFIFOx  
External signal eTRIGx triggers eQADC CFIFOx  
GPIO[206] ETRIG0  
(Input)  
GPIO[207] ETRIG1  
(Input)  
SIU – eQADC Triggers  
External signal eTRIGx triggers eQADC CFIFOx  
IRQ[0:5]  
IRQ[7:15]  
SIU – External Interrupts The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX  
Select Register 1 is used to select the IRQ[0:15] pins as inputs  
to the IRQs.  
See reference manual section “External IRQ Input Select  
Register (SIU_EIISR)” for more information.  
NMI  
SIU – External Interrupts Non-Maskable Interrupt  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
52  
Freescale Semiconductor  
Pinout and signal description  
Table 5. Signal details (continued)  
Signal  
GPIO[12:17]  
GPIO[75:110]  
GPIO[113:145]  
GPIO[179:204]  
GPIO[206:213]  
GPIO[219]  
Module or function  
Description  
SIU – GPIO  
Configurable general purpose I/O pins. Each GPIO input and  
output is separately controlled by an 8-bit input (GPDI) or  
output (GPDO) register. Additionally, each GPIO pin is  
configured using a dedicated SIU_PCR register.  
The GPIO pins are generally multiplexed with other I/O pin  
functions.  
GPIO[244:245]  
See the following reference manual sections for more  
information:  
• “Pad Configuration Registers (SIU_PCR)”  
• “GPIO Pin Data Output Registers (SIU_GPDO0_3 –  
SIU_GPDO412_413)”  
• “GPIO Pin Data Input Registers (SIU_GPDI0_3 –  
SIU_GPDI_232)”  
RESET  
SIU – Reset  
SIU – Reset  
SIU – Reset  
The RESET pin is an active low input. The RESET pin is  
asserted by an external device during a power-on or external  
reset. The internal reset signal asserts only if the RESET pin  
asserts for 10 clock cycles. Assertion of the RESET pin while  
the device is in reset causes the reset cycle to start over.  
The RESET pin has a glitch detector which detects spikes  
greater than two clock cycles in duration that fall below the  
switch point of the input buffer logic of the VDDEH input pins.  
The switch point lies between the maximum VIL and minimum  
VIH specifications for the VDDEH input pins.  
RSTCFG  
Used to enable or disable the PLLREF and the  
BOOTCFG[0:1] configuration signals.  
0: Get configuration information from BOOTCFG[0:1] and  
PLLREF  
1: Use default configuration of booting from internal flash with  
crystal clock source  
Note: For the 176-pin QFP and 208-ball BGA packages  
RSTCFG is always 0, so PLLREF and BOOTCFG  
signals are used.  
RSTOUT  
The RSTOUT pin is an active low output that uses a push/pull  
configuration. The RSTOUT pin is driven to the low state by  
the MCU for all internal and external reset sources. There is a  
delay between initiation of the reset and the assertion of the  
RSTOUT pin. See reference manual section “RSTOUT” for  
details.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
53  
Pinout and signal description  
Power segment  
Table 6. Power/ground segmentation  
I/O pins powered by segment  
Voltage  
VDDE5  
3.0 V – 3.6 V DATA[0:15], CLKOUT, ENGCLK  
VDDE12  
3.0 V – 3.6 V CAL_CS0, CAL_CS2, CAL_CS3, CAL_ADDR[12:30], CAL_DATA[0:15],  
CAL_RD_WR, CAL_WE0, CAL_WE1, CAL_OE, CAL_TS  
VDDE-EH  
VDDEH1  
VDDEH4  
VDDEH6  
3.0 V – 5.5 V FR_A_TX, FR_A_TX_EN, FR_A_RX, FR_B_TX, FR_B_TX_EN, FR_B_RX  
3.3 V – 5.5 V ETPUA[10:31]  
3.3 V – 5.5 V EMIOS[0:23], TCRCLKA, ETPUA[0:9]  
3.3 V – 5.5 V RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG, BOOTCFG0, BOOTCFG1,  
WKPCFG, CAN_A_TX, CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX,  
CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_B_RX, SCI_C_TX,  
SCI_C_RX, DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT, DSPI_B_PCS[0:5],  
EXTAL, XTAL  
VDDEH7  
3.3 V – 5.5 V EMIOS14, EMIOS15, GPIO[98:99], GPIO[203:204], GPIO[206], GPIO[207],  
GPIO[219], EVTI, EVTO, MDO[4:11], MSEO0, MSEO1, RDY, TCK, TDI, TDO,  
TMS, JCOMP, DSPI_A_SCK, DSPI_A_SIN, DSPI_A_SOUT, DSPI_A_PCS[0:1],  
DSPI_A_PCS[4:5], AN12-SDS, AN13-SDO, AN14-SDI, AN15-FCK  
VDDA  
5.0 V  
3.3 V  
AN[0:11], AN[16:39], VRH, VRL, REFBYBC  
MCKO, MDO[0:3]  
VRC33  
Other power segments  
VDDREG  
VRCCTL  
VDDPLL  
VSTBY  
VSS  
5.0 V  
1.2 V  
0.9 V – 6.0 V  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
54  
Freescale Semiconductor  
Electrical characteristics  
3
Electrical characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications for the MPC5642A series of MCUs.  
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon  
these specifications will be met. Finalized specifications will be published after complete characterization and device  
qualifications have been completed.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
3.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 7. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
55  
Electrical characteristics  
3.2  
Maximum ratings  
1
Table 8. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VDD  
VFLASH  
VSTBY  
VDDPLL  
VRC33  
VDDA  
SR 1.2 V core supply voltage2  
SR Flash core voltage3,4  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.32  
3.6  
V
V
V
V
V
V
V
V
V
SR SRAM standby voltage5  
SR Clock synthesizer voltage3  
SR Voltage regulator control input voltage4  
SR Analog supply voltage5  
SR I/O supply voltage4,6  
6.0  
1.32  
3.6  
Reference to VSSA  
5.5  
VDDE  
3.6  
VDDEH  
VIN  
SR I/O supply voltage5,7  
5.5  
SR DC input voltage8  
VDDEH powered I/O pads  
–1.010  
VDDEH +  
0.3 V9  
VDDE powered I/O pads  
–1.014  
VDDE +  
0.3 V10  
VDDA powered I/O pads  
Reference to VRL  
–1.0  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–0.1  
–3  
5.5  
5.5  
5.5  
0.1  
5.5  
0.3  
0.1  
3
VDDREG  
VRH  
SR Voltage regulator supply voltage  
SR Analog reference high voltage  
V
V
V
SS – VSSA SR VSS differential voltage  
VRH – VRL SR VREF differential voltage  
VRL – VSSA SR VRL to VSSA differential voltage  
SSPLL – VSS SR VSSPLL to VSS differential voltage  
V
V
V
V
V
IMAXD  
IMAXA  
TJ  
SR Maximum DC digital input current11  
Per pin, applies to all digital  
pins  
mA  
SR Maximum DC analog input current12 Per pin, applies to all analog  
pins  
513  
mA  
oC  
SR Maximum operating temperature  
range — die junction temperature  
–40.0  
150.0  
TSTG  
TSDR  
MSL  
SR Storage temperature range  
SR Maximum solder temperature14  
SR Moisture sensitivity level15  
–55  
150  
260  
3
°C  
°C  
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
2
3
Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V + 10%  
The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration package  
devices only.  
4
5
Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V + 10%  
Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V + 10%  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
56  
Freescale Semiconductor  
Electrical characteristics  
6
7
8
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH  
.
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.  
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of  
60 hours over the complete lifetime of the device (injection current not limited for this duration).  
9
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if  
the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage  
specifications.  
10 Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if  
the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage  
specifications.  
11 Total injection current for all pins (including both digital and analog) must not exceed 25 mA.  
12 Total injection current for all analog input pins must not exceed 15 mA.  
13 Lifetime operation at these specification limits is not guaranteed.  
14 Solder profile per IPC/JEDEC J-STD-020D  
15 Moisture sensitivity per JEDEC test method A112  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
57  
Electrical characteristics  
3.3  
Thermal characteristics  
1
Table 9. Thermal characteristics for 176-pin LQFP  
Symbol  
C
Parameter  
Conditions  
Value Unit  
RJA CC D Junction-to-ambient, natural convection2  
RJA CC D Junction-to-ambient, natural convection2  
RJMA CC D Junction-to-moving-air, ambient2  
CC D  
Single-layer board – 1s  
38 °C/W  
31 °C/W  
30 °C/W  
25 °C/W  
20 °C/W  
Four-layer board – 2s2p  
at 200 ft./min., single-layer board – 1s  
at 200 ft./min., four-layer board – 2s2p  
RJB CC D Junction-to-board3  
RJCtop CC D Junction-to-case4  
5
2
°C/W  
°C/W  
JT CC D Junction-to-package top, natural convection5  
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package.  
3
4
5
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JT.  
1,  
Table 10. Thermal characteristics for 208-pin MAPBGA  
Symbol  
C
Parameter  
Conditions  
Value Unit  
RJA CC D Junction-to-ambient, natural convection2  
CC D  
Single layer board – 1s3  
39 °C/W  
24 °C/W  
31 °C/W  
20 °C/W  
13 °C/W  
Four layer board – 2s2p4  
RJMA CC D Junction-to-moving-air, ambient2  
CC D  
at 200 ft./min., single-layer board – 1s4  
at 200 ft./min., four-layer board – 2s2p  
Four-layer board – 2s2p  
RJB CC D Junction-to-board5  
RJC CC D Junction-to-case6  
6
2
°C/W  
°C/W  
JT CC D Junction-to-package top natural convection7  
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
3
4
5
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal  
Per JEDEC JESD51-6 with the board horizontal  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
6
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
58  
Freescale Semiconductor  
Electrical characteristics  
7
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
1
Table 11. Thermal characteristics for 324-pin TEPBGA  
Symbol  
C
Parameter  
Conditions  
Value Unit  
RJA CC D Junction-to-ambient, natural convection2  
Single-layer board – 1s  
29 °C/W  
19 °C/W  
23 °C/W  
16 °C/W  
10 °C/W  
CC D  
Four-layer board – 2s2p  
RJMA CC D Junction-to-moving-air, ambient2  
CC D  
at 200 ft./min., single-layer board – 1s  
at 200 ft./min., four-layer board – 2s2p  
RJB CC D Junction-to-board3  
RJCtop CC D Junction-to-case4  
7
2
°C/W  
°C/W  
JT CC D Junction-to-package top, natural convection5  
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package.  
3
4
5
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JT.  
3.3.1  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from Equation 1:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
JA  
P = power dissipation in the package (W)  
D
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for  
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a  
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance  
is not a constant. The thermal resistance depends on the:  
Construction of the application board (number of planes)  
Effective size of the board which cools the component  
Quality of the thermal and electrical connections to the planes  
Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package  
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance  
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
59  
Electrical characteristics  
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit  
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:  
One oz. (35 micron nominal thickness) internal planes  
Components that are well separated  
2
Overall power dissipation on the board is less than 0.02 W/cm  
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the  
ambient temperature varies widely within the application. For many natural convection and especially closed-box applications,  
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the  
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using Equation 2:  
T = T + (R  
* P )  
Eqn. 2  
J
B
JB  
D
where:  
T = board temperature for the package perimeter (°C)  
B
R
= junction-to-board thermal resistance (°C/W) per JESD51-8S  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction  
temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to  
a board with internal planes.  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal  
resistance:  
R
= R  
+ R  
CA  
Eqn. 3  
JA  
JC  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case to ambient thermal resistance (°C/W)  
JA  
JC  
CA  
R
is device-related and is not affected by other factors. The thermal environment can be controlled to change the  
JC  
case-to-ambient thermal resistance, R  
. For example, change the air flow around the device, add a heat sink, change the  
CA  
mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding  
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat  
sink to ambient. For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the  
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a  
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the  
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple  
estimations and for computational fluid dynamics (CFD) thermal models.  
To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization  
parameter () to determine the junction temperature by measuring the temperature at the top center of the package case using  
JT  
Equation 4:  
T = T + (x P )  
Eqn. 4  
J
T
JT  
D
where:  
T = thermocouple temperature on top of the package (°C)  
T
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
60  
Freescale Semiconductor  
Electrical characteristics  
= thermal characterization parameter (°C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests  
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from  
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling  
effects of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
USA  
Phone (+1) 408-943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications available from Global Engineering Documents (phone (+1)  
800-854-7179 or (+1) 303-397-7956)  
JEDEC specifications available on the Web at http://www.jedec.org  
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic  
Packaging and Production, pp. 53-58, March 1998.  
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application  
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
3.4  
EMI (electromagnetic interference) characteristics  
1
Table 12. EMI testing specifications  
Level  
(max)  
Symbol  
Parameter  
Conditions  
VDD = 5.25 V;  
f
OSC/fBUS  
Frequency  
Unit  
VRE_TEM Radiated emissions,  
electric field  
16 MHz crystal  
40 MHz bus  
No PLL frequency  
modulation  
150 kHz–50 MHz  
50–150 MHz  
150–500 MHz  
500–1000 MHz  
IEC Level  
20  
20  
26  
26  
K
dBµV  
TA = +25 °C  
150 kHz–30 MHz —  
RBW 9 kHz, step size  
5 kHz  
30 MHz–1 GHz —  
RBW 120 kHz, step  
size 80 kHz  
SAE Level  
3
16 MHz crystal  
40 MHz bus  
2% PLL frequency  
modulation  
150 kHz–50 MHz  
50–150 MHz  
150–500 MHz  
500–1000 MHz  
IEC Level  
13  
13  
11  
13  
L
dBµV  
SAE Level  
2
1
EMI testing and I/O port waveforms per standard IEC 61967-2.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
61  
Electrical characteristics  
3.5  
Electrostatic discharge (ESD) characteristics  
1,2  
Table 13. ESD ratings  
Symbol  
SR ESD for Human Body Model (HBM)  
R1 SR HBM circuit description  
Parameter  
Conditions  
Value Unit  
2000  
1500  
100  
500  
750  
1
V
C
SR  
pF  
V
SR ESD for Field Induced Charge Model (FDCM)  
All pins  
Corner pins  
SR Number of pulses per pin  
Positive pulses (HBM)  
Negative pulses (HBM)  
1
SR Number of pulses  
1
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification  
requirements, which includes the complete DC parametric and functional testing at room temperature and hot  
temperature.”  
3.6  
Power management control (PMC) and power on reset (POR)  
electrical specifications  
Table 14. PMC operating conditions and external regulators supply voltage  
Value  
ID  
Name  
C
Parameter  
Unit  
Min Typ Max  
1
TJ  
SR — Junction temperature  
–40  
27  
5
150 °C  
2 VDDREG SR — PMC 5 V supply voltage VDDREG  
4.75  
5.25  
V
V
3
VDD CC C Core supply voltage 1.2 V VDD when external regulator is used  
without disabling the internal regulator (PMC unit turned on, LVI  
monitor active)1  
1.262 1.3 1.32  
3a  
CC C Core supply voltage 1.2 V VDD when external regulator is used with a 1.14 1.2 1.32  
disabled internal regulator (PMC unit turned-off, LVI monitor disabled)  
V
4
5
IVDD CC C Voltage regulator core supply maximum required DC output current  
400  
mA  
V
VDD33 CC C Regulated 3.3 V supply voltage when external regulator is used  
without disabling the internal regulator (PMC unit turned-on, internal  
3.3V regulator enabled, LVI monitor active)3  
3.3 3.45 3.6  
5a  
6
CC C Regulated 3.3 V supply voltage when external regulator is used with a  
disabled internal regulator (PMC unit turned-off, LVI monitor disabled)  
3
3.3  
3.6  
V
CC C Voltage regulator 3.3 V supply maximum required DC output current  
80  
mA  
1
2
3
An internal regulator controller can be used to regulate the core supply.  
The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V.  
An internal regulator can be used to regulate the 3.3 V supply.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
62  
Freescale Semiconductor  
Electrical characteristics  
Table 15. PMC electrical characteristics  
Value  
Typ  
ID  
Name  
C
Parameter  
Min  
Unit  
Max  
1
VBG  
CC C Nominal bandgap voltage reference  
CC C Untrimmed bandgap reference voltage  
1.219  
VBG  
V
V
V
1a  
1b  
VBG %  
VBG + 6%  
CC C Trimmed bandgap reference voltage (5 V,  
27 °C)  
VBG  
10mV  
VBG  
VBG  
+ 10mV  
1c  
1d  
2
CC C Bandgap reference temperature variation  
CC C Bandgap reference supply voltage variation  
100  
3000  
1.28  
ppm/°C  
ppm/V  
V
VDD  
CC C Nominal VDD core supply internal regulator  
target DC output voltage1  
2a  
2b  
2c  
CC C Nominal VDD core supply internal regulator VDD 6%  
target DC output voltage variation at  
power-on reset  
VDD  
VDD + 10%  
VDD + 3%  
V
V
CC C Nominal VDD core supply internal regulator VDD 10%2  
target DC output voltage variation after  
power-on reset  
VDD  
CC C Trimming step VDD  
20  
mV  
mA  
2d IVRCCTL CC C Voltage regulator controller for core supply  
maximum DC output current  
20  
3
Lvi1p2  
CC C Nominal LVI for rising core supply3  
1.160  
1.200  
V
V
3a  
CC C Variation of LVI for rising core supply at  
power-on reset4  
1.120  
1.280  
3b  
CC C Variation of LVI for rising core supply after  
power-on reset4  
Lvi1p2  
3%  
Lvi1p2  
Lvi1p2  
+ 3%  
V
3c  
CC C Trimming step LVI core supply  
20  
40  
mV  
mV  
V
3d Lvi1p2_h CC C LVI core supply hysteresis  
4
Por1.2V_r CC C POR 1.2 V rising  
CC C POR 1.2 V rising variation  
0.709  
4a  
Por1.2V_r Por1.2V_r Por1.2V_r  
V
35%  
+ 35%  
4b Por1.2V_f CC C POR 1.2 V falling  
0.638  
V
V
4c  
VDD33  
CC C POR 1.2 V falling variation  
Por1.2V_f Por1.2V_f Por1.2V_f  
35%  
+ 35%  
5
CC C Nominal 3.3 V supply internal regulator DC  
output voltage  
3.39  
V
V
V
5a  
5b  
CC C Nominal 3.3 V supply internal regulator DC  
output voltage variation at power-on reset  
VDD33  
8.5%  
VDD33  
VDD33  
VDD33 + 7%  
VDD33 + 7%  
CC C Nominal 3.3 V supply internal regulator DC  
output voltage variation after power-on  
reset5  
VDD33  
7.5%  
5c  
CC C Voltage regulator 3.3 V output impedance at  
maximum DC load  
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
63  
Electrical characteristics  
Table 15. PMC electrical characteristics (continued)  
Value  
ID  
Name  
C
Parameter  
Unit  
Min  
Typ  
Max  
5d  
Idd3p3  
CC C Voltage regulator 3.3 V maximum DC output  
current  
80  
mA  
5e Vdd33 ILim CC C Voltage regulator 3.3 V DC current limit  
130  
mA  
V
6
Lvi3p3  
CC C Nominal LVI for rising 3.3 V supply6  
3.090  
Lvi3p3  
6a  
CC C Variation of LVI for rising 3.3 V supply at  
power-on reset7  
Lvi3p3  
6%  
Lvi3p3  
+ 6%  
V
6b  
CC C Variation of LVI for rising 3.3 V supply after  
power-on reset7  
Lvi3p3  
3%  
Lvi3p3  
Lvi3p3  
+ 3%  
V
6c  
CC C Trimming step LVI 3.3 V  
20  
60  
mV  
mV  
V
6d Lvi3p3_h CC C LVI 3.3 V hysteresis  
7
Por3.3V_r CC C Nominal POR for rising 3.3 V supply8  
2.07  
7a  
CC C Variation of POR for rising 3.3 V supply  
Por3.3V_r Por3.3V_r Por3.3V_r  
V
35%  
+ 35%  
7b Por3.3V_f CC C Nominal POR for falling 3.3 V supply  
1.95  
V
V
7c  
CC C Variation of POR for falling 3.3 V supply  
Por3.3V_f Por3.3V_f Por3.3V_f  
35%  
+ 35%  
8
Lvi5p0  
CC C Nominal LVI for rising 5 V VDDREG supply  
4.290  
V
V
8a  
CC C Variation of LVI for rising 5 V VDDREG  
supply at power-on reset  
Lvi5p0  
6%  
Lvi5p0  
Lvi5p0  
+ 6%  
8b  
8c  
CC C Variation of LVI for rising 5 V VDDREG  
supply power-on reset  
Lvi5p0  
3%  
Lvi5p0  
Lvi5p0  
+ 3%  
V
CC C Trimming step LVI 5 V  
20  
60  
mV  
mV  
V
8d Lvi5p0_h CC C LVI 5 V hysteresis  
9
Por5V_r CC C Nominal POR for rising 5 V VDDREG supply  
2.67  
9a  
CC C Variation of POR for rising 5 V VDDREG  
supply  
Por5V_r  
35%  
Por5V_r  
Por5V_r  
+ 35%  
V
9b Por5V_f CC C Nominal POR for falling 5 V VDDREG  
supply  
2.47  
V
V
9c  
CC C Variation of POR for falling 5 V VDDREG  
supply  
Por5V_f  
35%  
Por5V_f  
Por5V_f  
+ 35%  
1
2
3
4
Using external ballast transistor.  
Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset.  
LVI for falling supply is calculated as LVI rising – LVI hysteresis.  
Lvi1p2 tracks DC target variation of internal VDD regulator. Minimum and maximum Lvi1p2 correspond to minimum  
and maximum VDD DC target respectively.  
5
6
7
With internal load up to Idd3p3  
The Lvi3p3 specs are also valid for the VDDEH LVI  
Lvi3p3 tracks DC target variation of internal VDD33 regulator. Minimum and maximum Lvi3p3 correspond to  
minimum and maximum VDD33 DC target respectively.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
64  
Freescale Semiconductor  
Electrical characteristics  
8
The 3.3V POR specs are also valid for the VDDEH POR  
3.6.1  
Regulator example  
In designs where the MPC5642A microcontroller’s internal regulators are used, a ballast is required for generation of the 1.2 V  
internal supply. No ballast is required when an external 1.2 V supply is used.  
The resistor may or may not be  
required. This depends on the  
VDDREG  
allowable power dissipation of  
the npn bypass transistor  
device. The resistor may be  
Creg  
Rc  
used to limit the in-rush current  
at power on.  
The bypass transistor  
MUST be operated out  
of saturation region.  
T1  
Cc  
VRCCTL  
MCU  
Rb  
Keep parasitic inductance  
under 20nH  
Re  
VDD  
Mandatory decoupling  
capacitor network  
Cb  
VSS  
Ce  
Cd  
VRCCTL capacitor and resistor is required  
Figure 8. Core voltage regulator controller external components preferred configuration  
Table 16. MPC5642A External network specification  
External Network  
Min  
Typ  
Max  
Comment  
Parameter  
T1  
NJD2873 or BCP68  
only  
Cb  
Ce  
1.1 F  
3*2.35F+5F  
2.2F  
3*4.7F+10F  
2.97F  
3*6.35F+13.5F  
50m  
X7R,-50%/+35%  
X7R, -50%/+35%  
Equivalent ESR of 5m  
Ce capacitors  
Cd  
Rb  
4*50nF  
9  
4*100nF  
4*135nF  
X7R, -50%/+35%  
+/-10%  
10  
11  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
65  
Electrical characteristics  
Table 16. MPC5642A External network specification (continued)  
External Network  
Parameter  
Min  
Typ  
Max  
Comment  
Re  
0.252  
0.280  
10F  
0.308  
+/-10%  
Creg  
It depends on  
external Vreg.  
Cc  
Rc  
5F  
10F  
13.5F  
5.6  
X7R, -50%/+35%  
1.1  
May or may not be  
required. It depends  
on the allowable  
power dissipation of  
T1.  
3.6.2  
Recommended power transistors  
The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON Semiconductor™  
BCP68T1 or NJD2873 as well as Philips Semiconductor™ BCP68. The collector of the external transistor is preferably  
connected to the same voltage supply source as the output stage of the regulator.  
Table 17. Transistor recommended operating characteristics  
Symbol  
Parameter  
DC current gain (Beta)  
Absolute minimum power dissipation  
Value  
Unit  
hFE ()  
60–550  
W
PD  
>1.0  
(1.5 preferred)  
ICMaxDC Minimum peak collector current  
1.0  
A
mV  
V
VCESAT Collector-to-emitter saturation voltage  
200–6001  
VBE  
Base-to-emitter voltage  
0.4–1.0  
1
Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT  
3.7  
Power up/down sequencing  
There is no power sequencing required among power sources during power up and power down, in order to operate within  
specification.  
Although there are no power up/down sequencing requirements to prevent issues such as latch-up or excessive current spikes,  
the state of the I/O pins during power up/down varies according to Table 18 for all pins with pad type fast, and Table 19 for all  
pins with pad type medium, slow, and multi-voltage.  
Table 18. Power sequence pin states—Fast type pads  
VDDE  
VRC33  
VDD  
Pin state  
Low  
VDDE  
VDDE  
VDDE  
X
X
Low  
High  
Low  
X
VRC33  
VRC33  
Low  
VDD  
High impedance  
Functional  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
66  
Freescale Semiconductor  
Electrical characteristics  
Table 19. Power sequence pin states—Medium, slow and multi-voltage type pads  
VDDEH  
VDD  
Pin state  
Low  
X
Low  
VDDEH  
VDDEH  
Low  
VDD  
High impedance  
Functional  
3.8  
DC electrical specifications  
1
Table 20. DC electrical specifications  
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VDD  
VDDE  
SR  
SR  
SR  
SR  
SR  
SR  
SR  
SR  
SR  
P
P
P
P
P
P
C
D
D
Core supply voltage  
I/O supply voltage  
1.14  
3.0  
1.32  
3.6  
V
V
VDDEH  
VDDE-EH  
VRC33  
I/O supply voltage  
3.0  
5.25  
V
I/O supply voltage  
3.0  
5.25  
V
3.3 V regulated voltage2  
Analog supply voltage  
Analog input voltage  
VSS differential voltage  
3.0  
3.6  
V
VDDA  
4.753  
5.25  
V
VINDC  
VSSA  
0.3  
VDDA + 0.3  
100  
V
VSS – VSSA  
VRL  
–100  
VSSA  
mV  
V
Analog reference low  
voltage  
VSSA + 0.1  
V
RL – VSSA  
SR  
SR  
D
D
VRL differential voltage  
–100  
100  
mV  
V
VRH  
Analog reference high  
voltage  
VDDA  
0.1  
VDDA  
V
RH – VRL  
SR  
SR  
SR  
SR  
P
P
P
C
VREF differential voltage  
Flash operating voltage4  
Flash read voltage  
4.75  
1.14  
3.0  
5.25  
1.32  
3.6  
V
V
V
V
VDDF  
5
VFLASH  
Unregulated mode  
Regulated mode  
VSTBY  
SRAM standby voltage  
0.95  
2.0  
1.2  
5.5  
VDDREG  
SR  
SR  
P
P
D
Voltage regulator supply  
voltage6  
4.75  
5.25  
V
V
VDDPLL  
Clock synthesizer  
operating voltage  
1.14  
1.32  
100  
V
SSPLL – VSS SR  
VSSPLL to VSS differential  
voltage  
–100  
mV  
V
VIL_S  
SR  
SR  
P
P
P
P
Slow/medium I/O input low Hysteresis enabled  
voltage  
VSS  
0.3  
0.35 * VDDEH  
0.40 * VDDEH  
0.35 * VDDE  
0.40 * VDDE  
Hysteresis disabled  
VSS  
VSS  
VSS  
0.3  
0.3  
0.3  
VIL_F  
Fast I/O input low voltage Hysteresis enabled  
Hysteresis disabled  
V
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
67  
Electrical characteristics  
1
Table 20. DC electrical specifications (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VIL_LS  
SR  
SR  
P
P
Multi-voltage I/O pad input Hysteresis enabled  
VSS  
0.3  
0.8  
0.9  
V
low voltage in  
Hysteresis disabled  
Low-swing-mode7,8,9,10  
VSS  
0.3  
VIL_HS  
P
P
Multi-voltage pad I/O input Hysteresis enabled  
VSS  
VSS  
0.3  
0.3  
0.35 VDDEH  
0.4 VDDEH  
V
low voltage in  
Hysteresis disabled  
high-swing-mode  
VIH_S  
SR  
SR  
SR  
P
P
P
P
P
P
Slow/medium pad I/O input Hysteresis enabled  
0.65 VDDEH  
0.55 VDDEH  
0.65 VDDE  
0.58 VDDE  
2.5  
VDDEH + 0.3  
VDDEH + 0.3  
VDDE + 0.3  
VDDE + 0.3  
VDDE + 0.3  
VDDE + 0.3  
V
V
V
high voltage  
Hysteresis disabled  
VIH_F  
Fast I/O input high voltage Hysteresis enabled  
Hysteresis disabled  
VIH_LS  
Multi-voltage pad I/O input Hysteresis enabled  
high voltage in  
Hysteresis disabled  
low-swing-mode7,8,9,10  
2.2  
VIH_HS  
SR  
P
P
P
Multi-voltage I/O input high Hysteresis enabled  
0.65 VDDEH  
0.55 VDDEH  
VDDEH + 0.3  
VDDEH + 0.3  
0.2 * VDDEH  
V
voltage in high-swing-mode  
Hysteresis disabled  
VOL_S  
VOL_F  
VOL_LS  
CC  
CC  
CC  
Slow/medium pad I/O  
output low voltage11  
V
V
V
P
P
Fast I/O output low  
voltage11  
0.2 * VDDE  
0.6  
Multi-voltage pad I/O  
output low voltage in  
low-swing mode7,8,9,10,11  
VOL_HS  
CC  
P
Multi-voltage pad I/O  
output low voltage in  
high-swing mode11  
0.2 VDDEH  
V
VOH_S  
VOH_F  
VOH_LS  
CC  
CC  
CC  
P
P
P
Slow/medium I/O output  
high voltage11  
0.8 VDDEH  
0.8 VDDE  
2.3  
V
V
V
Fast pad I/O output high  
voltage11  
Multi-voltage pad I/O  
output high voltage in  
low-swing mode7,8,9,10,11  
3.1  
3.7  
VOH_HS  
CC  
CC  
P
P
Multi-voltage pad I/O  
output high voltage in  
high-swing mode11  
0.8 VDDEH  
V
V
VHYS_S  
Slow/medium/multi-voltage  
I/O input hysteresis  
0.1 * VDDEH  
VHYS_F  
CC  
CC  
P
C
Fast I/O input hysteresis  
0.1 * VDDE  
0.25  
V
v
VHYS_LS  
Low-swing-mode  
multi-voltage I/O input  
hysteresis  
Hysteresis enabled  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
68  
Freescale Semiconductor  
Electrical characteristics  
1
Table 20. DC electrical specifications (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
IDD+IDDPLL CC  
P
P
P
Operating current 1.2 V  
supplies  
VDD @1.32 V  
@ 80 MHz  
300  
360  
400  
100  
110  
90  
mA  
mA  
mA  
A  
A  
A  
VDD @ 1.32 V  
@ 120 MHz  
VDD @ 1.32 V  
@ 150 MHz  
IDDSTBY  
CC T Operating current  
0.95-1.2 V  
VSTBY at 55 oC  
35  
45  
25  
T
Operating current  
2–5.5 V  
V
STBY at 55 oC  
IDDSTBY27 CC P Operating current  
0.95-1.2 V  
VSTBY 27 oC  
P
Operating current  
2-5.5 V  
V
STBY 27 oC  
35  
100  
A  
IDDSTBY150 CC P Operating current  
0.95-1.2 V  
VSTBY 150 oC  
790  
760  
2000  
2000  
15  
A  
A  
P
Operating current  
2–5.5 V  
VSTBY at 150 oC  
IDDPLL  
CC P Operating current 1.2 V VDDPLL, 80 MHz,  
mA  
mA  
supplies  
VDD=1.2 V  
Slow mode12  
Stop mode13  
IDDSLOW  
IDDSTOP  
CC  
C
C
P
VDD low-power mode  
operating current @ 1.32 V  
191  
190  
60  
2
IDD33  
CC  
CC  
Operating current 3.3 V  
supplies  
VRC33  
mA  
mA  
IDDA  
IREF  
IDDREG  
P
P
Operating current 5.0 V  
supplies  
VDDA  
30.0  
1.0  
Analog reference  
supply current  
(transient)  
P
P
P
P
P
P
P
P
VDDREG  
VDDEH1  
VDDEH4  
VDDEH6  
VDDEH7  
VDDE7  
7014  
15  
IDDH1  
IDDH4  
IDDH6  
IDDH7  
IDD7  
CC  
Operating current VDDE  
supplies  
See note 15  
mA  
IDDH9  
IDD12  
VDDEH9  
VDDE12  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
69  
Electrical characteristics  
1
Table 20. DC electrical specifications (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
IACT_S  
CC  
CC  
P
P
P
P
P
C
Slow/medium I/O weak  
pull-up/down current16  
3.0 V  
3.6 V  
15  
35  
36  
34  
42  
10  
95  
µA  
4.75 V  
5.25 V  
1.98 V  
2.75 V  
200  
120  
139  
158  
75  
IACT_F  
Fast I/O weak pull-up/down 1.62 V  
µA  
µA  
current16  
2.25 V  
3.0 V–  
3.6 V  
IACT_MV_PU  
CC  
CC  
Multi-voltage pad weak  
pull-up current  
VDDE = 3.0 – 3.6 V7,  
multi-voltage,  
high swing mode  
only  
C
C
4.75 V  
5.25 V  
25  
10  
175  
60  
IACT_MV_PD  
Multi-voltage pad weak  
pull-down current  
VDDE = 3.0 – 3.6 V7,  
multi-voltage,  
µA  
all process corners,  
high swing mode  
only  
C
P
T
4.75 V  
5.25 V  
25  
200  
2.5  
1.0  
IINACT_D  
IIC  
CC  
SR  
I/O input leakage current17  
–2.5  
–1.0  
µA  
DC injection current (per  
pin)  
mA  
IINACT_A  
SR P Analog input current,  
channel off, AN[0:7]18  
–250  
–150  
250  
150  
nA  
P Analog input current,  
channel off, all other  
analog pins18  
CL  
CC  
D
D
D
D
D
D
D
C
Load capacitance (fast  
I/O)19  
DSC(PCR[8:9]) =  
0b00  
10  
20  
30  
50  
7
pF  
DSC(PCR[8:9]) =  
0b01  
DSC(PCR[8:9]) =  
0b10  
DSC(PCR[8:9]) =  
0b11  
CIN  
CC  
CC  
CC  
SR  
Input capacitance (digital  
pins)  
pF  
pF  
pF  
CIN_A  
Input capacitance (analog  
pins)  
10  
12  
280  
CIN_M  
Input capacitance (digital  
and analog pins20  
)
RPUPD200K  
Weak pull-up/down  
resistance21, 200 k  
option  
130  
k  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
70  
Freescale Semiconductor  
Electrical characteristics  
1
Table 20. DC electrical specifications (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
RPUPD100K  
SR  
SR  
C
Weak pull-up/down  
resistance21, 100 k  
option  
65  
140  
k
RPUPD5K  
C
C
Weak pull-up/down  
5 V 10% supply  
3.3 V 10% supply  
5 V 5% supply  
1.4  
1.7  
1.4  
5.2  
7.7  
7.5  
k
resistance21, 5 k  
option  
RPUPD5K  
SR C Weak Pull-Up/Down  
k  
Resistance21  
,
5 kOption  
RPUPDMTCH  
CC  
C
Pull-up/Down  
Pull-up and  
–2.5  
2.5  
%
Resistance matching  
ratios (100K/200K)  
pull-down  
resistances both  
enabled and  
settings are equal.  
TA (TL to TH) SR  
P
D
Operating temperature  
range - ambient  
(packaged)  
–40.0  
125.0  
25  
°C  
SR  
Slew rate on power supply  
pins  
V/ms  
1
2
3
These specifications are design targets and subject to change per device characterization.  
These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0).  
ADC is functional with 4 V VDDA 4.75 V but with derated accuracy. This means the ADC will continue to function  
at full speed with no undesirable behavior, but the accuracy will be degraded.  
4
The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package  
devices only.  
5
6
7
8
9
VFLASH is available in the calibration package only.  
Regulator is functional, with derated performance, with supply voltage down to 4.0 V  
Multi-voltage power supply cannot be below 4.5 V when in low-swing mode  
The slew rate (SRC) setting must be 0b11 when in low-swing mode.  
While in low-swing mode there are no restrictions in transitioning to high-swing mode.  
10 Pin in low-swing mode can accept a 5 V input  
11 All VOL/VOH values 100% tested with 2 mA load except where otherwise noted  
12 Bypass mode, system clock @ 1 MHz (using system clock divider), PLL shut down, CPU running simple executive  
code, 4 x ADC conversion every 10 ms, 2 x PWM channels @ 1 kHz, all other modules stopped.  
13 Bypass mode, system clock @ 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules  
stopped  
14 If 1.2V and 3.3V internal regulators are on,then iddreg=70mA  
If supply is external that is 3.3V internal regulator is off, then iddreg=15mA  
15 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on  
a particular I/O segment, and the voltage of the I/O segment. See Table 21 for values to calculate power dissipation  
for specific operation. The total power consumption of an I/O segment is the sum of the individual power  
consumptions for each pin on the segment.  
16 Absolute value of current, measured at VIL and VIH  
17 Weak pull-up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to all digital pad types.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
71  
Electrical characteristics  
18 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately  
one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads.  
19 Applies to CLKOUT, external bus pins, and Nexus pins  
20 Applies to the FCK, SDI, SDO, and SDS pins  
21 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor  
diagnostics.  
3.9  
I/O pad current specifications  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption  
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 21 based on  
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load  
parameters that fall outside the values given in Table 21.  
1
Table 21. I/O pad average I  
specifications  
DDE  
Period  
(ns)  
Load2  
(pF)  
VDDE Drive/Slew IDDE Avg IDDE RMS  
Pad type  
Symbol  
C
(V)  
rate select  
(mA)3  
(mA)  
Slow  
IDRV_SSR_HV CC D  
37  
130  
650  
840  
24  
50  
50  
50  
200  
50  
50  
50  
200  
50  
30  
20  
10  
50  
30  
20  
10  
50  
50  
50  
200  
30  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
11  
01  
00  
00  
11  
10  
01  
00  
11  
10  
01  
00  
11  
01  
00  
00  
11  
9
CC D  
2.5  
0.5  
1.5  
14  
CC D  
CC D  
Medium  
Fast  
IDRV_MSR_HV CC D  
CC D  
62  
5.3  
1.1  
3
CC D  
317  
425  
10  
CC D  
IDRV_FC  
CC D  
CC D  
CC D  
CC D  
CC D  
CC D  
CC D  
CC D  
22.7  
12.1  
8.3  
4.44  
12.5  
7.3  
5.42  
2.84  
9
68.3  
41.1  
27.7  
14.3  
31  
10  
3.6  
10  
3.6  
10  
3.6  
10  
1.98  
1.98  
1.98  
1.98  
5.25  
5.25  
5.25  
5.25  
5.25  
10  
18.6  
12.6  
6.4  
10  
10  
MultiV  
(High swing mode)  
IDRV_MULTV_HV CC D  
CC D  
20  
30  
6.1  
2.3  
5.8  
3.4  
CC D  
117  
212  
30  
CC D  
MultiV  
IDRV_MULTV_HV CC D  
(Low swing mode)  
1
2
3
Numbers from simulations at best case process, 150 °C  
All loads are lumped.  
Average current is for pad configured as output only  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
72  
Freescale Semiconductor  
Electrical characteristics  
3.9.1  
I/O pad VRC33 current specifications  
The power consumption of the V  
supply is dependent on the usage of the pins on all I/O segments. The power consumption  
RC33  
is the sum of all input and output pin V  
currents for all I/O segments. The output pin V  
current can be calculated from  
RC33  
RC33  
Table 22 based on the voltage, frequency, and load on all fast pins. The input pin V  
current can be calculated from Table 22  
RC33  
based on the voltage, frequency, and load on all medium pins. Use linear scaling to calculate pin currents for voltage, frequency,  
and load parameters that fall outside the values given in Table 22.  
1
Table 22. I/O pad V  
average I  
specifications  
RC33  
DDE  
Period  
(ns)  
Load2  
(pF)  
Drive  
select  
IDD33 Avg  
(µA)  
IDD33 RMS  
(µA)  
Pad type  
Symbol  
C
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
D
D
100  
200  
800  
800  
40  
50  
50  
11  
01  
00  
00  
11  
01  
00  
00  
11  
01  
00  
00  
11  
0.8  
0.04  
0.06  
0.009  
2.75  
0.11  
0.02  
0.01  
33.4  
33.4  
33.4  
33.4  
33.4  
235.7  
87.4  
47.4  
47  
Slow  
IDRV_SSR_HV  
50  
200  
50  
258  
100  
500  
500  
20  
50  
76.5  
56.2  
56.2  
35.4  
34.8  
33.8  
33.7  
33.7  
Medium  
IDRV_MSR_HV  
50  
200  
50  
MultiV3  
(High swing mode)  
30  
50  
IDRV_MULTV_HV  
117  
212  
30  
50  
200  
30  
MultiV4  
(Low swing mode)  
IDRV_MULTV_HV  
1
2
3
4
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
All loads are lumped.  
Average current is for pad configured as output only  
In low swing mode, multi-voltage pads must operate in highest slew rate setting, ipp_sre0 = 1, ipp_sre1 = 1.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
73  
Electrical characteristics  
1
Table 23. V  
pad average DC current  
RC33  
Period  
(ns)  
Load2  
(pF)  
VRC33  
(V)  
VDDE  
(V)  
Drive  
select  
IDD33 Avg IDD33 RMS  
Pad type  
Symbol  
C
(µA)  
(µA)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
10  
10  
10  
10  
10  
10  
10  
10  
50  
30  
20  
10  
50  
30  
20  
10  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
11  
10  
01  
00  
11  
10  
01  
00  
2.35  
1.75  
1.41  
1.06  
1.75  
1.32  
1.14  
0.95  
6.12  
4.3  
3.6  
3.43  
2.9  
3.6  
Fast  
IDRV_FC  
1.98  
1.98  
1.98  
1.98  
4.56  
3.44  
2.95  
2.62  
1
2
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
All loads are lumped.  
3.9.2  
LVDS pad specifications  
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI  
module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz.  
Table 24. DSPI LVDS pad specification  
Value  
Symbol  
C
Parameter  
Condition  
Unit  
Min  
Typ  
Max  
Data rate  
fLVDSCLK  
CC D Data frequency  
50  
MHz  
mV  
Driver specifications  
SRC = 0b00 or  
VOD  
CC P Differential output voltage  
150  
400  
0b11  
CC P  
SRC = 0b01  
90  
160  
1.06  
1.2  
2
320  
480  
1.39  
CC P  
SRC = 0b10  
VOC  
CC P Common mode voltage (LVDS), VOS  
CC D Rise/Fall time  
V
TR/TF  
TPLH  
TPHL  
tPDSYNC  
TDZ  
ns  
ns  
ns  
ns  
ns  
CC D Propagation delay (Low to High)  
CC D Propagation delay (High to Low)  
CC D Delay (H/L), sync mode  
CC D Delay, Z to Normal (High/Low)  
4
4
4
500  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
74  
Freescale Semiconductor  
Electrical characteristics  
Table 24. DSPI LVDS pad specification (continued)  
Value  
Symbol  
C
Parameter  
Condition  
Unit  
Max  
Min  
Typ  
TSKEW  
CC D Differential skew Itphla-tplhbI or  
Itplhb-tphlaI  
0.5  
ns  
Termination  
CC D Transmission line (differential Zo)  
CC D Temperature  
95  
100  
105  
150  
W
–40  
C  
3.10 Oscillator and PLLMRFM electrical characteristics  
1
Table 25. PLLMRFM electrical specifications  
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
fref_crystal CC P PLL reference frequency range2  
Crystal reference  
External reference  
4
4
4
40  
80  
16  
MHz  
fref_ext  
P
fpll_in  
CC D Phase detector input frequency range  
(after pre-divider)  
MHz  
fvco  
fsys  
fsys  
CC D VCO frequency range  
CC T On-chip PLL frequency2  
CC T System frequency in bypass mode3  
T
256  
16  
4
512  
150  
40  
MHz  
MHz  
MHz  
Crystal reference  
External reference  
0
80  
tCYC  
CC D System clock period  
1.6  
24  
1.2  
–5  
1 / fsys  
3.7  
ns  
fLORL CC D Loss of reference frequency window4  
Lower limit  
Upper limit  
MHz  
fLORH  
D
CC P Self-clocked mode frequency5,6  
CJITTER CC C CLKOUT period Peak-to-peak (clock  
56  
fSCM  
72.25  
5
MHz  
fSYS maximum  
% fCLKOUT  
jitter7,8,9,10  
edge to clock edge)  
C
Long-term jitter (avg.  
over 2 ms interval)  
–6  
6
ns  
tcst  
CC T Crystal start-up time11,12  
10  
ms  
V
VIHEXT CC D EXTAL input high voltage  
Crystal mode13  
Vxtal  
+ 0.4  
T
External  
VRC33/2 VRC33  
+ 0.4  
reference13,14  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
75  
Electrical characteristics  
1
Table 25. PLLMRFM electrical specifications  
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VILEXT CC D EXTAL input low voltage  
T
Crystal mode13  
Vxtal  
– 0.4  
V
External  
0
VRC33/2  
– 0.4  
reference13,14  
CC T XTAL load capacitance  
CC C XTAL load capacitance11  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
40 MHz  
5
5
30  
30  
26  
23  
19  
16  
8
pF  
pF  
5
5
5
5
5
tlpll  
tdc  
fLCK  
fUL  
fCS  
CC P PLL lock time11,15  
CC D Duty cycle of reference  
CC D Frequency LOCK range  
CC D Frequency un-LOCK range  
CC D Modulation depth  
D
40  
–6  
–18  
0.25  
–0.5  
200  
60  
6
µs  
%
% fsys  
% fsys  
% fsys  
18  
4.0  
–8.0  
100  
Center spread  
Down spread  
fDS  
fMOD  
CC D Modulation frequency16  
kHz  
1
2
3
4
All values given are initial design targets and subject to change.  
Considering operation with PLL not bypassed  
All internal registers retain data at 0 Hz.  
“Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked  
mode.  
5
6
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside  
the fLOR window.  
fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in  
enhanced mode.  
7
8
This value is determined by the crystal manufacturer and board design.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the CJITTER percentage for a given interval.  
9
Proper PC board layout procedures must be followed to achieve specifications.  
10 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and  
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).  
11 This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for  
this PLL, load capacitors should not exceed these limits.  
12 Proper PC board layout procedures must be followed to achieve specifications.  
13 This parameter is guaranteed by design rather than 100% tested.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
76  
Freescale Semiconductor  
Electrical characteristics  
14  
V
cannot exceed VRC33 in external reference mode.  
IHEXT  
15 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
16 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.  
3.11 Temperature sensor electrical characteristics  
Table 26. Temperature sensor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
CC C Temperature  
monitoring range  
–40  
150  
°C  
CC C Sensitivity  
CC C Accuracy  
6.3  
mV/°C  
°C  
TJ = –40 to 150 °C  
–10  
10  
3.12 eQADC electrical characteristics  
Table 27. eQADC conversion specifications (operating)  
Value  
Unit  
Symbol  
C
Parameter  
min  
max  
fADCLK  
SR  
CC  
CC  
SR  
D
ADC clock (ADCLK) frequency  
Conversion cycles  
2
2+13  
16  
128+14  
10  
MHz  
CC  
TSR  
ADCLK cycles  
C
Stop mode recovery time1  
s  
fADCLK  
ADC clock (ADCLK) frequency  
2
16  
mV  
1
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to  
the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.  
Table 28. eQADC single ended conversion specifications (operating)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
OFFNC  
CC  
CC  
CC  
C
C
C
C
T
Offset error without calibration  
0
–4  
160  
4
Counts  
Counts  
Counts  
Counts  
mA  
OFFWC  
GAINNC  
Offset error with calibration  
Full scale gain error without calibration  
Full scale gain error with calibration  
Disruptive input injection current 1, 2, 3, 4  
Incremental error due to injection current5,6  
Total unadjusted error (TUE) at 8 MHz  
Total unadjusted error at 16 MHz  
–160  
–4  
0
GAINWC CC  
4
IINJ  
EINJ  
CC  
CC  
CC  
CC  
–3  
3
T
–4  
4
Counts  
Counts  
Counts  
TUE8  
TUE16  
C
C
–4  
46  
–8  
8
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
77  
Electrical characteristics  
1
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog  
inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive  
conditions.  
2
3
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions  
within the limit do not affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting  
resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use  
the larger of the calculated values.  
4
5
6
Condition applies to two adjacent pins at injection limits.  
Performance expected with production silicon.  
All channels have same 10 k< Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX INJMIN  
,I  
Table 29. eQADC differential ended conversion specifications (operating)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
GAINVGA11  
GAINVGA21  
GAINVGA41  
CC  
CC  
Variable gain amplifier accuracy (gain=1)2  
C
INL  
8 MHz  
ADC  
–4  
–8  
4
8
Counts  
3
CC  
CC  
CC  
C
C
C
16 MHz  
ADC  
Counts  
Counts  
Counts  
DNL  
8 MHz  
ADC  
–34  
–34  
34  
34  
16 MHz  
ADC  
CC  
CC  
Variable gain amplifier accuracy (gain=2)2  
D
INL  
8 MHz  
ADC  
–5  
–8  
–3  
–3  
5
8
3
3
Counts  
Counts  
Counts  
Counts  
CC  
CC  
CC  
D
D
D
16 MHz  
ADC  
DNL  
8 MHz  
ADC  
16 MHz  
ADC  
CC  
CC  
Variable gain amplifier accuracy (gain=4)2  
D
INL  
8 MHz  
ADC  
–7  
–8  
–4  
–4  
7
8
4
4
Counts  
Counts  
Counts  
Counts  
CC  
CC  
CC  
D
D
D
16 MHz  
ADC  
DNL  
8 MHz  
ADC  
16 MHz  
ADC  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
78  
Freescale Semiconductor  
Electrical characteristics  
Table 29. eQADC differential ended conversion specifications (operating) (continued)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
DIFFmax  
CC  
CC  
CC  
CC  
C
Maximum  
differential voltage set to 1X  
(DANx+ - DANx-) or  
(DANx- - DANx+)5  
PREGAIN  
(VRH - VRL)/2  
V
setting  
DIFFmax2  
DIFFmax4  
DIFFcmv  
C
C
C
PREGAIN  
set to 2X  
setting  
(VRH - VRL)/4  
(VRH - VRL)/8  
V
V
V
PREGAIN  
set to 4X  
setting  
Differential input  
Common mode  
voltage (DANx- +  
DANx+)/25  
(VRH + VRL)/2 - 5% (VRH + VRL)/2 + 5%  
1
2
Applies only to differential channels.  
Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or 4.  
Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.  
3
4
5
At VRH – VRL = 5.12 V, one LSB = 1.25 mV.  
Guaranteed 10-bit mono tonicity.  
Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the  
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode  
voltage of the differential signal violates the Differential Input common mode voltage specification.  
3.13 Configuring SRAM wait states  
Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the device SRAM. By default, no  
wait state is added.  
Table 30. Cutoff frequency for additional SRAM wait state  
1
SWSC Value  
98  
0
1
153  
1
Max frequencies including 2% PLL FM.  
Please see the device reference manual for details.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
79  
Electrical characteristics  
3.14 Platform flash controller electrical characteristics  
Table 31. APC, RWSC, WWSC settings vs. frequency of operation  
Max. Flash Operating  
1
APC3  
RWSC3  
WWSC  
Frequency (MHz)2  
20 MHz  
61 MHz  
90 MHz  
123 MHz  
153 MHz  
0b000  
0b001  
0b010  
0b011  
0b100  
0b000  
0b001  
0b010  
0b011  
0b100  
0b01  
0b01  
0b01  
0b01  
0b01  
1
APC, RWSC and WWSC are fields in the flash memory BIUCR register used to  
specify wait states for address pipelining and read/write accesses. Illegal  
combinations exist—all entries must be taken from the same row.  
2
3
Max frequencies including 2% PLL FM.  
APC must be equal to RWSC.  
3.15 Flash memory electrical characteristics  
1
Table 32. Flash program and erase specifications  
Value  
#
Symbol  
C
Parameter  
Unit  
Initial  
Min  
Typ  
Max3  
max2  
1
2
3
5
Tdwprogram CC C Double Word (64 bits) Program Time  
Tpprogram CC C Page Program Time4  
30  
40  
500  
500  
µs  
µs  
160  
T16kpperase CC C 16 KB Block Pre-program and Erase Time  
T64kpperase CC C 64 KB Block Pre-program and Erase Time  
250  
450  
800  
1,400  
1,000  
1,800  
2,600  
5,000 ms  
5,000 ms  
7,500 ms  
6 T128kpperase CC C 128 KB Block Pre-program and Erase Time  
7 T256kpperase CC C 256 KB Block Pre-program and Erase Time  
5,200 15,000 ms  
8
9
Tpsrt  
Tesrt  
SR —  
SR —  
Program suspend request rate5  
Erase suspend request rate 6  
100  
10  
s  
ms  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage, 80 MHz minimum system  
frequency.  
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is  
characterized but not guaranteed.  
4
5
6
Page size is 128 bits (4 words)  
Time between program suspend resume and the next program suspend request.  
Time between erase suspend resume and the next erase suspend request.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
80  
Freescale Semiconductor  
Electrical characteristics  
Table 33. Flash EEPROM module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ  
Min  
P/E  
CC  
CC  
D
Number of program/erase  
cycles per block for 16 KB,  
48 KB, and 64 KB blocks over  
the operating temperature  
range (TJ)  
100,000  
cycles  
P/E  
D
Number of program/erase  
cycles per block for 128 KB and  
256 KB blocks over the  
operating temperature range  
(TJ)  
1,000  
100,000 cycles  
Retention CC  
D
D
D
Minimum data retention at  
85 °C  
Blocks with 0 – 1,000  
P/E cycles  
20  
10  
5
years  
Blocks with 10,000 P/E  
cycles  
Blocks with 100,000 P/E  
cycles  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
81  
Electrical characteristics  
3.16 AC specifications  
3.16.1 Pad AC specifications  
1
Table 34. Pad AC specifications (V  
= 4.75 V)  
DDE  
Output delay (ns)2,3  
Low-to-High /  
Rise/Fall edge (ns)3,4  
SRC/DSC  
MSB, LSB  
Drive load  
(pF)  
Name  
C
High-to-Low  
Min  
Max  
Min  
Max  
Medium5,6,7  
CC D  
4.6/3.7  
12/12  
2.2/2.2  
12/12  
50  
118  
109  
01  
CC D  
CC D  
CC D  
12/13  
69/71  
28/34  
152/165  
19/18  
5.6/6  
34/35  
4.4/4.3  
15/15  
74/74  
20/20  
50  
50  
50  
00  
Slow7,10  
7.3/5.7  
118  
109  
01  
CC D  
CC D  
CC D  
26/27  
137/142  
4.1/3.6  
61/69  
13/13  
72/74  
34/34  
164/164  
8/8  
50  
50  
50  
320/330  
10.3/8.9  
00  
MultiV11  
(High Swing Mode)  
3.28/2.98  
118  
109  
01  
CC D 8.38/6.11  
CC D 61.7/10.4  
CC D 2.31/2.34  
16/12.9  
92.2/24.3  
7.62/6.33  
5.48/4.81  
42.0/12.2  
1.26/1.67  
11/11  
63/63  
50  
50  
30  
00  
MultiV  
6.5/4.4  
118  
(Low Swing Mode)  
Fast12  
Standalone input CC D  
buffer13  
0.5/0.5  
1.9/1.9  
0.3/0.3  
1.5/1.5  
0.5  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are  
simulated at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH.  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
In high swing mode, high/low swing pad VOL and VOH values are the same as those of the slew controlled output  
pads.  
6
7
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.  
Output delay is shown in Figure 9 and Figure 10. Add a maximum of one system clock to the output delay for delay  
with respect to system clock.  
8
9
Can be used on the tester  
This drive select value is not supported. If selected, it will be approximately equal to 11.  
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.  
11 Selectable high/low swing I/O pad with selectable slew in high swing mode only  
12 Fast pads are 3.3 V pads.  
13 Also has weak pull-up/pull-down.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
82  
Freescale Semiconductor  
Electrical characteristics  
1
Table 35. Pad AC specifications (V  
Output delay (ns)2,3  
= 3.0 V)  
DDE  
Low-to-High /  
High-to-Low  
Rise/Fall edge (ns)3,4  
SRC/DSC  
Drive load  
Pad type  
C
(pF)  
Min  
Max  
Min  
Max  
MSB,LSB  
Medium5,6,7  
CC  
CC  
D
D
5.8/4.4  
16/13  
18/17  
46/49  
2.7/2.1  
10/10  
34/34  
50  
118  
11.2/8.6  
200  
109  
01  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
14/16  
27/27  
37/45  
69/82  
6.5/6.7  
15/13  
38/38  
53/46  
5.5/4.1  
21/16  
19/19  
43/43  
50  
200  
50  
83/86  
200/210  
270/285  
27/28  
86/86  
00  
11  
113/109  
9.2/6.9  
30/23  
120/120  
20/20  
200  
50  
Slow7,10  
81/87  
63/63  
200  
109  
01  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
31/31  
58/52  
162/168  
216/205  
80/90  
144/155  
415/415  
533/540  
3.7/3.1  
46/49  
15.4/15.4  
32/26  
80/82  
106/95  
42/42  
82/85  
50  
200  
50  
190/190  
250/250  
10/10  
00  
200  
30  
MultiV7,11  
(High Swing Mode)  
118  
42/42  
200  
109  
01  
CC  
CC  
CC  
CC  
D
D
D
D
32  
72  
15/15  
46/46  
50  
200  
50  
210  
295  
100/100  
134/134  
00  
200  
MultiV  
Not a valid operational mode  
(Low Swing Mode)  
Fast  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
2.5/2.5  
2.5/2.5  
2.5/2.5  
2.5/2.5  
3/3  
1.2/1.2  
1.2/1.2  
1.2/1.2  
1.2/1.2  
1.5/1.5  
10  
20  
30  
50  
0.5  
00  
01  
10  
118  
Standalone input  
buffer12  
0.5/0.5  
0.4/0.4  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are  
simulated at VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH.  
2
3
4
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
83  
Electrical characteristics  
5
In high swing mode, high/low swing pad VOL and VOH values are the same as those of the slew controlled output  
pads.  
6
7
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.  
Output delay is shown in Figure 9 and Figure 10. Add a maximum of one system clock to the output delay for delay  
with respect to system clock.  
8
9
Can be used on the tester.  
This drive select value is not supported. If selected, it will be approximately equal to 11.  
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.  
11 Selectable high/low swing I/O pad with selectable slew in high swing mode only.  
12 Also has weak pull-up/pull-down.  
VDDE/2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
Pad  
Output  
VOL  
Figure 9. Pad output delay—Fast pads  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
84  
Freescale Semiconductor  
Electrical characteristics  
VDDE/2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
Pad  
Output  
VOL  
Figure 10. Pad output delay—Slew rate controlled fast, medium, and slow pads  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
85  
Electrical characteristics  
3.17 AC timing  
3.17.1 Reset and configuration pin timing  
1
Table 36. Reset and configuration pin timing  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
Max  
1
2
3
4
tRPW  
tGPW  
tRCSU  
tRCH  
RESET Pulse Width  
10  
2
tCYC  
tCYC  
tCYC  
tCYC  
RESET Glitch Detect Pulse Width  
PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid  
PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid  
10  
0
1
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH.  
2
RESET  
1
RSTOUT  
3
BOOTCFG  
WKPCFG  
4
Figure 11. Reset and configuration pin timing  
3.17.2 IEEE 1149.1 interface timing  
1
Table 37. JTAG pin AC electrical characteristics  
Value  
#
Symbol  
C
Characteristic  
Unit  
Min  
Max  
1
2
3
tJCYC  
tJDC  
CC D TCK Cycle Time  
100  
40  
60  
3
ns  
ns  
ns  
CC D TCK Clock Pulse Width  
tTCKRISE  
CC D TCK Rise and Fall Times (40%–70%)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
86  
Freescale Semiconductor  
Electrical characteristics  
1
Table 37. JTAG pin AC electrical characteristics (continued)  
Value  
#
Symbol  
C
Characteristic  
Unit  
Min  
Max  
4
5
tTMSS, TDIS  
t
CC D TMS, TDI Data Setup Time  
10  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTMSH, tTDIH CC D TMS, TDI Data Hold Time  
6
tTDOV  
tTDOI  
CC D TCK Low to TDO Data Valid  
222  
7
CC D TCK Low to TDO Data Invalid  
0
8
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
CC D TCK Low to TDO High Impedance  
CC D JCOMP Assertion Time  
22  
9
100  
40  
10  
11  
12  
13  
14  
15  
CC D JCOMP Setup Time to TCK Low  
CC D TCK Falling Edge to Output Valid  
50  
50  
50  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
CC D TCK Falling Edge to Output Valid out of High Impedance  
CC D TCK Falling Edge to Output High Impedance  
CC D Boundary Scan Input Valid to TCK Rising Edge  
CC D TCK Rising Edge to Boundary Scan Input Invalid  
253  
253  
1
JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V with multi-voltage pads programmed to  
Low-Swing mode, TA = TL to TH, CL = 30 pF, SRC = 0b11. These specifications apply to JTAG boundary scan only.  
See Table 38 for functional specifications.  
2
3
Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay.  
For 20 MHz TCK.  
NOTE  
The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a  
read access) or the write to the Read/Write Access Data Register (RWD) (to begin a write  
access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG  
Update-DR state. This prevents the access from being performed and therefore will not  
signal its completion via the READY (RDY) output unless the JTAG controller receives an  
additional TCK. In addition, EVTI is not latched into the device unless there are clock  
transitions on TCK.  
The tool/debugger must provide at least one TCK clock for the EVTI signal to be  
recognized by the MCU. When using the RDY signal to indicate the end of a Nexus  
read/write access, ensure that TCK continues to run for at least one TCK after leaving the  
Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or  
by continuing with the next Nexus/JTAG command. Expect the effect of EVTI and RDY  
to be delayed by edges of TCK.  
RDY is not available in all device packages.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
87  
Electrical characteristics  
TCK  
2
3
3
2
1
Figure 12. JTAG test clock input timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 13. JTAG test access port timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
88  
Freescale Semiconductor  
Electrical characteristics  
TCK  
10  
JCOMP  
9
Figure 14. JTAG JCOMP timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
89  
Electrical characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 15. JTAG boundary scan timing  
3.17.3 Nexus timing  
1
Table 38. Nexus debug port timing  
Value  
Min Max  
#
Symbol  
C
Characteristic  
Unit  
1
tMCYC CC D MCKO Cycle Time  
22,3  
254  
40  
8
tCYC  
ns  
1a tMCYC CC D Absolute Minimum MCKO Cycle Time  
60  
2
3
4
6
7
tMDC  
CC D MCKO Duty Cycle  
%
tMDOV CC D MCKO Low to MDO Data Valid5  
tMSEOV CC D MCKO Low to MSEO Data Valid5  
tEVTOV CC D MCKO Low to EVTO Data Valid5  
tEVTIPW CC D EVTI Pulse Width  
0.1 0.35 tMCYC  
0.1 0.35 tMCYC  
0.1 0.35 tMCYC  
4.0  
tTCYC  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
90  
Freescale Semiconductor  
Electrical characteristics  
1
Table 38. Nexus debug port timing (continued)  
Value  
Unit  
#
Symbol  
C
Characteristic  
Min Max  
8
9
tEVTOPW CC D EVTO Pulse Width  
tTCYC CC D TCK Cycle Time  
1
46,7  
1008  
40  
tMCYC  
tCYC  
ns  
9a tTCYC CC D Absolute Minimum TCK Cycle Time  
10 tTDC CC D TCK Duty Cycle  
60  
%
11 tNTDIS CC D TDI Data Setup Time  
12 tNTDIH CC D TDI Data Hold Time  
13 tNTMSS CC D TMS Data Setup Time  
14 tNTMSH CC D TMS Data Hold Time  
10  
ns  
25  
ns  
10  
ns  
25  
ns  
15  
16  
CC D TDO propagation delay from falling edge of TCK  
19.5  
ns  
CC D TDO hold time wrt TCK falling edge (minimum TDO propagation delay) 5.25  
ns  
1
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing  
specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V with multi-voltage pads programmed to Low-Swing  
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
3
4
Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum  
setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.  
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the  
Absolute minimum MCKO period specification.  
This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on  
the actual system frequency being used.  
5
6
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that  
is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system  
frequency being used.  
7
8
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the  
Absolute minimum TCK period specification.  
This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability  
of the design (system frequency / 4) depending on the actual system frequency being used.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
91  
Electrical characteristics  
1
2
MCKO  
3
4
6
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 16. Nexus output timing  
TCK  
EVTI  
EVTO  
7
7
8
9
8
Figure 17. Nexus event trigger and test clock timings  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
92  
Freescale Semiconductor  
Electrical characteristics  
TCK  
11  
13  
12  
14  
TMS, TDI  
15  
16  
TDO  
Figure 18. Nexus TDI, TMS, TDO timing  
N
Table 39. Nexus debug port operating frequency  
Nexus Pin Usage  
Max. Operating  
Frequency  
Package Nexus Width Nexus Routing  
CAL_MDO[4:1  
1]  
MDO[0:3]  
MDO[4:11]  
176 LQFP Reducedport Route to MDO2 Nexus Data Out  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
40 MHz3  
40 MHz5,6  
40 MHz3  
40 MHz5,6  
40 MHz3  
208 BGA mode1  
[0:3]  
324 BGA  
Full port  
Route to MDO2 Nexus Data Out Nexus Data Out  
mode4  
[0:3]  
[4:11]  
GPIO  
496 CSP Reducedport Route to MDO2 Nexus Data Out  
mode1  
[0:3]  
Full port  
mode4  
Route to MDO2 Nexus Data Out Nexus Data Out  
[0:3]  
[4:11]  
GPIO  
Route to  
Cal Nexus Data  
Out [0:3]  
Cal Nexus Data  
Out [4:11]  
CAL_MDO7  
1
2
NPC_PCR[FPM] = 0  
NPC_PCR[NEXCFG] = 0  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
93  
Electrical characteristics  
3
The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is  
greater than 40 MHz.  
4
5
NPC_PCR[FPM] = 1  
Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive.  
Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz.  
6
7
Pad restrictions limit the Maximum Operation Frequency in these configurations  
NPC_PCR[NEXCFG] = 1  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
94  
Freescale Semiconductor  
Electrical characteristics  
3.17.4 Calibration bus interface timing  
Table 40. Calibration bus interface maximum operating frequency  
Pin usage  
Multiplexed  
mode  
Max. operating  
frequency  
Port width  
CAL_ADDR[12:15] CAL_ADDR[16:30]  
CAL_DATA[0:15]  
16-bit  
Yes  
GPIO  
GPIO  
CAL_ADDR[12:30]  
CAL_DATA[0:15]  
66 MHz1  
16-bit  
32-bit  
No  
CAL_ADDR[12:15] CAL_ADDR[16:30]  
CAL_DATA[0:15]  
66 MHz1  
66 MHz1  
Yes  
CAL_WE/BE[2:3]  
CAL_DATA[31]  
CAL_ADDR[16:30]  
CAL_DATA[16:30]  
CAL_ADDR[0:15]  
CAL_DATA[0:15]  
1
Set SIU_ECCR[EBDF] to either divide by two or divide by four if the system frequency is greater than 66 MHz.  
1
Table 41. Calibration bus operation timing  
66 MHz2  
#
Symbol  
C
Characteristic  
Unit  
Min  
Max  
1
2
3
4
5
TC CC P CLKOUT period3  
tCDC CC T CLKOUT duty cycle  
tCRT CC T CLKOUT rise time  
tCFT CC T CLKOUT fall time  
15.2  
45%  
ns  
TC  
ns  
ns  
ns  
55%  
4
4
tCOH CC P CLKOUT Posedge to Output Signal Invalid or High Z (Hold Time)  
1.3  
CAL_ADDR[12:30]  
CAL_CS[0], CAL_CS[2:3]  
CAL_DATA[0:15]  
CAL_OE  
CAL_RD_WR  
CAL_TS  
CAL_WE[0:3]/BE[0:3]  
6
tCOV CC P CLKOUT Posedge to Output Signal Valid (Output Delay)  
9
ns  
CAL_ADDR[12:30]  
CAL_CS[0], CAL_CS[2:3]  
CAL_DATA[0:15]  
CAL_OE  
CAL_RD_WR  
CAL_TS  
CAL_WE[0:3]/BE[0:3]  
7
8
9
tCIS CC P Input Signal Valid to CLKOUT Posedge (Setup Time)  
6.0  
1.0  
ns  
ns  
DATA[0:31]  
tCIH CC P CLKOUT Posedge to Input Signal Invalid (Hold Time)  
DATA[0:31]  
tAPW CC P ALE Pulse Width5  
6.5  
ns  
ns  
10 tAAI CC P ALE Negated to Address Invalid5  
1.56  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
95  
Electrical characteristics  
1
Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V  
(unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
The calibration bus is limited to half the speed of the internal bus. The maximum calibration bus frequency is  
66 MHz. The bus division factor should be set accordingly based on the internal frequency being used.  
3
4
5
6
Signals are measured at 50% VDDE  
Refer to fast pad timing in Table 34 and Table 35 (different values for 1.8 V vs. 3.3 V).  
Measured at 50% of ALE  
When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns.  
VOH_F  
VDDE/2  
VOL_F  
CLKOUT  
2
3
2
4
1
Figure 19. CLKOUT timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
96  
Freescale Semiconductor  
Electrical characteristics  
VDDE/2  
CLKOUT  
6
5
VDDE/2  
5
OUTPUT  
BUS  
VDDE/2  
6
5
5
OUTPUT  
SIGNAL  
VDDE/2  
6
OUTPUT  
SIGNAL  
VDDE/2  
Figure 20. Synchronous output timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
97  
Electrical characteristics  
CLKOUT  
VDDE/2  
7
8
INPUT  
BUS  
VDDE/2  
7
8
INPUT  
SIGNAL  
VDDE/2  
Figure 21. Synchronous input timing  
System clock  
CLKOUT  
ALE  
TS  
A/D  
DATA  
ADDR  
9
10  
Figure 22. ALE signal timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
98  
Freescale Semiconductor  
Electrical characteristics  
3.17.5 External interrupt timing (IRQ pin)  
1
Table 42. External interrupt timing  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
Max  
1
2
3
tIPWL  
tIPWH  
tICYC  
IRQ Pulse Width Low  
3
3
6
tCYC  
tCYC  
tCYC  
IRQ Pulse Width High  
IRQ Edge to Edge Time2  
1
2
IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V,  
TA = TL to TH.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
IRQ  
2
1
3
Figure 23. External interrupt timing  
3.17.6 eTPU timing  
1
Table 43. eTPU timing  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
Max  
1
2
tICPW  
eTPU Input Channel Pulse Width  
4
2
tCYC  
tCYC  
tOCPW eTPU Output Channel Pulse Width2  
1
2
eTPU timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V,  
TA = TL to TH, and CL = 50 pF with SRC = 0b00.  
This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include  
the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
99  
Electrical characteristics  
3.17.7 eMIOS timing  
1
Table 44. eMIOS timing  
Value  
#
Symbol  
C
Characteristic  
Unit  
Min  
Max  
1
2
tMIPW  
CC  
CC  
D
D
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
4
1
tCYC  
tCYC  
tMOPW  
1
eMIOS timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH, and CL = 50 pF with  
SRC = 0b00.  
3.17.8 DSPI timing  
DSPI channel frequency support for the MPC5642A MCU is shown in Table 45. Timing specifications are in Table 46.  
Table 45. DSPI channel frequency support  
System clock  
(MHz)  
Maximum usable  
frequency (MHz)  
DSPI Use Mode  
Notes  
150  
LVDS  
Non-LVDS  
LVDS  
37.5  
18.75  
40  
Use sysclock /4 divide ratio  
Use sysclock /8 divide ratio  
120  
Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI  
configuration DBR = 0b1 (double baud rate), BR = 0b0000  
(scaler value 2) and PBR = 0b01 (prescaler value 3).  
Non-LVDS  
LVDS  
20  
40  
20  
Use sysclock /6 divide ratio  
Use sysclock /2 divide ratio  
Use sysclock /4 divide ratio  
80  
Non-LVDS  
1,2  
Table 46. DSPI timing  
#
Symbol  
C
Characteristic  
SCK Cycle Time3,4,5  
PCS to SCK Delay6  
Condition  
Min.  
Max.  
Unit  
1
2
3
4
5
tSCK  
tCSC  
tASC  
tSDC  
tA  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
24.4 ns  
227  
2.9 ms  
ns  
ns  
ns  
ns  
After SCK Delay8  
219  
SCK Duty Cycle  
(½tSC) 2 (½tSC) + 2  
Slave Access Time (SS active to  
SOUT driven)  
25  
6
tDIS  
CC  
D
Slave SOUT Disable Time (SS inactive  
to SOUT High-Z or invalid)  
25  
ns  
7
8
tPCSC CC  
tPASC CC  
D
D
PCSx to PCSS time  
PCSS to PCSx time  
410  
511  
ns  
ns  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
100  
Freescale Semiconductor  
Electrical characteristics  
1,2  
Table 46. DSPI timing (continued)  
#
Symbol  
tSUI CC  
C
Characteristic  
Condition  
Min.  
Max.  
Unit  
9
Data Setup Time for Inputs  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
D
D
D
D
D
D
Master (MTFE = 0)  
20  
22  
2
ns  
Slave  
Master (MTFE = 1, CPHA = 0)12  
8
Master (MTFE = 1, CPHA = 1)  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
20  
22  
10  
11  
tHI  
CC  
CC  
Data Hold Time for Inputs  
D
D
D
D
Master (MTFE = 0)  
4  
7
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)12  
21  
4  
Master (MTFE = 1, CPHA = 1)  
tSUO  
Data Valid (after SCK edge)  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
D
D
D
D
D
D
D
Master (MTFE = 0)  
Slave  
5
6.3  
25  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
25.7  
21  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
5
6.3  
12  
tHO  
CC  
Data Hold Time for Outputs  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
D
D
D
D
D
D
Master (MTFE = 0)  
5  
6.3  
5.5  
3
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
VDDEH=4.75–5.25 V  
VDDEH=3–3.6 V  
5  
6.3  
1
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type pad_msr. DSPI signals using pad type of  
pad_ssr have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0 to 3.6 V, TA = TL to TH,  
and CL = 50 pF with SRC = 0b11.  
2
3
Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation).  
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated  
based on two MPC5642A devices communicating over a DSPI link.  
4
5
The actual minimum SCK cycle time is limited by pad performance.  
For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output,  
maximum SCK frequency is 20 MHz. Appropriate clock division must be applied.  
6
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
101  
Electrical characteristics  
7
Timing met when PCSSCK = 3 (01), and CSSCK = 2 (0000)  
8
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].  
9
Timing met when ASC = 2 (0000), and PASC = 3 (01)  
10 Timing met when PCSSCK = 3  
11 Timing met when ASC = 3  
12 This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 24. DSPI classic SPI timing (master, CPHA = 0)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
102  
Freescale Semiconductor  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 25. DSPI classic SPI timing (master, CPHA = 1)  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 26. DSPI classic SPI timing (slave, CPHA = 0)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
103  
Electrical characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 27. DSPI classic SPI timing (slave, CPHA = 1)  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Figure 28. DSPI modified transfer format timing (master, CPHA = 0)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
104  
Freescale Semiconductor  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 29. DSPI modified transfer format timing (master, CPHA = 1)  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 30. DSPI modified transfer format timing (slave, CPHA = 0)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
105  
Electrical characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 31. DSPI modified transfer format timing (slave, CPHA = 1)  
8
7
PCSS  
PCSx  
Figure 32. DSPI PCS strobe (PCSS) timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
106  
Freescale Semiconductor  
Electrical characteristics  
3.17.9 eQADC SSI timing  
1
Table 47. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)  
CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.  
Value  
#
Symbol  
C
Rating  
Unit  
Min  
Typ  
Max  
1
1
2
3
fFCK CC D FCK Frequency 2,3  
1/17  
12  
fSYS_CLK  
tSYS_CLK  
ns  
tFCK CC D FCK Period (tFCK = 1/ fFCK  
tFCKHT CC D Clock (FCK) High Time  
tFCKLT CC D Clock (FCK) Low Time  
)
2
tSYS_CLK 6.5  
tSYS_CLK 6.5  
7.5  
17  
9 * tSYS_CLK + 6.5  
8 * tSYS_CLK + 6.5  
7.5  
ns  
4 tSDS_LL CC D SDS Lead/Lag Time  
5 tSDO_LL CC D SDO Lead/Lag Time  
ns  
7.5  
7.5  
ns  
6
tDVFE CC D Data Valid from FCK Falling Edge  
(tFCKLT + tSDO_LL  
1
ns  
)
7
8
tEQ SU CC D eQADC Data Setup Time (Inputs)  
22  
1
ns  
ns  
_
tEQ_HO CC D eQADC Data Hold Time (Inputs)  
1
SSI timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH, and CL =  
50 pF with SRC = 0b00.  
2
3
Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.  
FCK duty is not 50% when it is generated through the division of the system clock by an odd number.  
1
2
3
FCK  
SDS  
4
5
4
5
25th  
6
1st (MSB)  
2nd  
26th  
SDO  
External Device Data Sample at  
FCK Falling Edge  
8
7
1st (MSB)  
2nd  
25th  
26th  
SDI  
eQADC Data Sample at  
FCK Rising Edge  
Figure 33. eQADC SSI timing  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
107  
Electrical characteristics  
3.17.10 FlexCAN system clock source  
Table 48. FlexCAN engine system clock divider threshold  
#
Symbol  
Characteristic  
Value  
Unit  
1
fCAN_TH  
FlexCAN engine system clock threshold  
100  
MHz  
Table 49. FlexCAN engine system clock divider  
System frequency  
Required SIU_SYSDIV[CAN_SRC] value  
fCAN_TH  
01,2  
12,3  
> fCAN_TH  
1
2
3
Divides system clock source for FlexCAN engine by 1  
System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1  
Divides system clock source for FlexCAN engine by 2  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
108  
Freescale Semiconductor  
Packages  
4
Packages  
4.1  
4.1.1  
Package mechanical data  
176 LQFP  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
109  
Packages  
Figure 34. 176 LQFP package mechanical drawing (part 1)  
Figure 35. 176 LQFP package mechanical drawing (part 2)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
110  
Freescale Semiconductor  
Packages  
Figure 36. 176 LQFP package mechanical drawing (part 3)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
111  
Packages  
4.1.2  
208 MAPBGA  
Figure 37. 208 MAPBGA package mechanical drawing (part 1)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
112  
Freescale Semiconductor  
Packages  
Figure 38. 208 MAPBGA package mechanical drawing (part 2)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
113  
Packages  
4.1.3  
324 TEPBGA  
Figure 39. 324 BGA package mechanical drawing (part 1)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
114  
Freescale Semiconductor  
Packages  
Figure 40. 324 BGA package mechanical drawing (part 2)  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
115  
Ordering information  
5
Ordering information  
Table 50 shows the orderable part numbers for the MPC5642A series.  
Table 50. Orderable part number summary  
Part number  
Flash/SRAM  
Package  
Speed (MHz)  
SPC5642AF2MLU1  
SC667201MMG1  
SPC5642AF2MVZ1  
SPC5642AF2MLU2  
SC667201MMG2  
SPC5642AF2MVZ2  
SPC5642AF2MLU3  
SC667201MMG3  
SPC5642AF2MVZ3  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
2 MB/128 KB  
176 LQFP (Pb free)  
208 MAPBGA (Pb free)  
324 TEPBGA  
150  
176 LQFP (Pb free)  
208 MAPBGA (Pb free)  
324 TEPBGA  
120  
80  
176 LQFP (Pb free)  
208 MAPBGA (Pb free)  
324 TEPBGA  
Figure 41. Product code structure  
Example code:  
MPC  
5642A  
F0  
M
VZ  
1
Qualification Status  
Product Family  
ATMC Fab and Mask Revision  
Temperature Range  
Package  
Maximum Frequency  
Qualification Status  
MPC = Industrial qualified  
SPC = Automotive qualified  
PC = Prototype  
Fab and Mask Revision  
F = ATMC  
0 = Revision  
Package Code  
LU = 176 LQFP  
MG = 208 MAPBGA  
VZ = 324 TEPBGA  
Temperature spec.  
Product  
5642A = MPC5642A family  
M = –40 °C to 125 °C  
Maximum Frequency  
1 = 150 MHz  
2 = 120 MHz  
3 = 80 MHz  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
116  
Freescale Semiconductor  
Document revision history  
6
Document revision history  
Table 51 summarizes customer facing revisions to this document.  
Table 51. Revision history  
Substantive changes  
Date  
Revision  
05 Oct 2010  
26 Mar 2012  
1
2
Initial release  
Figure 1 (MPC5642A series block diagram), added ECSM block and its definition in the  
elegend.  
Table 2 (MPC5642A series block summary), added the following blocks: REACN, SIU,  
ECSM, FMPLL, PIT and SWT.  
Updated Table 8 (Absolute maximum ratings)  
In 3, Electrical characteristics, deleted the “Recommended operating conditions”  
subsection.  
Table 14 (PMC operating conditions and external regulators supply voltage), removed  
minimum value of VDDREG and its footnote.  
Updated Table 15 (PMC electrical characteristics)  
Updated Section 3.6.1, Regulator example  
Updated Table 20 (DC electrical specifications)  
Figure 8 (Core voltage regulator controller external components preferred  
configuration), added “T1” label to indicate the transistor.  
Table 20 (DC electrical specifications), changed maximum value of VIL_LS to 0.9, was  
1.1  
Table 21 (I/O pad average IDDE specifications), in the VDDE column changed all 5.5 to  
5.25  
Table 24 (DSPI LVDS pad specification):  
Renamed VOC, was VOD  
Updated minimum and maximum value of VOC  
deleted all footnote  
Table 26 (Temperature sensor electrical characteristics), updated minimum and  
maximum value of accuracy  
Updated Section 3.12, eQADC electrical characteristics  
Added Section 3.13, Configuring SRAM wait states  
Updated Table 31 (APC, RWSC, WWSC settings vs. frequency of operation)  
Updated Table 32 (Flash program and erase specifications)  
Table 31 (APC, RWSC, WWSC settings vs. frequency of operation), changed all values  
in the WWSC column to 0b01.  
Updated Table 32 (Flash program and erase specifications)  
Table 33 (Flash EEPROM module life):  
updated temperature value in the Retention description (was 150 C, is 85 C)  
added values for Retention  
Table 34 (Pad AC specifications (VDDE = 4.75 V)):  
changed maximum value of Medium to 12/12  
changed maximum value of Slow to 20/20  
Updated Table 35 (Pad AC specifications (VDDE = 3.0 V))  
Table 37 (JTAG pin AC electrical characteristics):  
changed all parameter classification to D  
changed minumum value of tTMSS, tTDIS to 10  
Updated Table 38 (Nexus debug port timing)  
Added Table 39 (Nexus debug port operating frequency)  
Table 39 (Nexus debug port operating frequency), added a footnote near the value of  
tAAI  
Table 44 (eMIOS timing):  
changed minumum value of tMOPW to 1  
removed the footnote of tMOPW  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
117  
Document revision history  
Table 51. Revision history (continued)  
Substantive changes  
Date  
Revision  
26 Mar 2012  
2
Merged “DSPI timing (VDDEH = 3.0 to 3.6 V)” and “DSPI timing (VDDEH = 4.5 to 5.5V)”  
tables into Table 46 (DSPI timing,) and changed all parameter classification to D  
Table 47 (eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)) changed all  
parameter classification to D  
(cont’d)  
04 May 2012  
3
Minor editorial changes and improvements throughout.  
In Section 2.4, Signal summary, Table 3 (MPC5642A signal properties), updated the  
following properties for the Nexus pins:  
• Added a footnote to the “Nexus” title for this pin group.  
• Added a footnote to the “Name” entry for EVTO.  
• Updated the “Status During reset” entry for EVTO.  
In Section 3.2, Maximum ratings, Table 8 (Absolute maximum ratings), removed the  
“TBD - To be defined” footnote.  
In Section 3.6, Power management control (PMC) and power on reset (POR) electrical  
specifications, removed the “Voltage regulator controller (VRC) electrical  
specifications” subsection.  
In Section 3.8, DC electrical specifications, Table 20 (DC electrical specifications),  
removed the “TBD - To be defined” footnote.  
In Section 3.9, I/O pad current specifications, Table 21 (I/O pad average IDDE  
specifications):  
• Updated values and replaced TBDs with numerical data.  
• Removed the “TBD - To be defined” footnote.  
In Section 3.9.1, I/O pad VRC33 current specifications, Table 22 (I/O pad VRC33 average  
IDDE specifications):  
• Updated values and replaced TBDs with numerical data.  
• Removed the “TBD - To be defined” footnote.  
In Section 3.14, Platform flash controller electrical characteristics, Table 31 (APC,  
RWSC, WWSC settings vs. frequency of operation), removed the “TBD - To be  
defined” footnote.  
In Section 5, Ordering information, Table 50 (Orderable part number summary):  
• Changed all part numbers from “MPC5642AF0...“ to “SPC5642AF2...“.  
• Changed “MPC5642AF0MMG1“ to “SC667201MMG1“.  
• Changed “MPC5642AF0MMG2“ to “SC667201MMG2“.  
• Changed “MPC5642AF0MMG3“ to “SC667201MMG3“.  
In Table 51 (Revision history), removed several erroneous items from the Revision 2  
entry.  
29 Jun 2012  
3.1  
No content changes, technical or editorial, were made in this revision.  
Removed the “preliminary” footers throughout.  
Changed “Data Sheet: Advance Information” to “Data Sheet: Technical Data” on page 1.  
Removed the “product under development” disclaimer on page 1.  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
118  
Freescale Semiconductor  
Document revision history  
MPC5642A Microcontroller Data Sheet, Rev. 3.1  
Freescale Semiconductor  
119  
Document revision history  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address:http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm  
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,  
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,  
QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,  
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC  
Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are  
trademarks of Freescale Semiconductor, Inc. All other product or service names are  
the property of their respective owners. The Power Architecture and Power.org word  
marks and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2009, 2010, 2012 Freescale Semiconductor, Inc.  
Document Number: MPC5642A  
Rev. 3.1  
06/2012  

相关型号:

SPC5643AF0MLU1

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MLU2

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MLU3

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MMG1

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MMG2

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MMG3

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MVZ1

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MVZ2

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643AF0MVZ3

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5643LF0MLQ1

MPC5643L Microcontroller Data Sheet
FREESCALE

SPC5643LF0MLQ1R

MPC5643L Microcontroller Data Sheet
FREESCALE

SPC5643LF0MLQ8

MPC5643L Microcontroller Data Sheet
FREESCALE