T1024RDBUG [FREESCALE]

QorIQ T1024 Reference Design Board;
T1024RDBUG
型号: T1024RDBUG
厂家: Freescale    Freescale
描述:

QorIQ T1024 Reference Design Board

文件: 总49页 (文件大小:549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QorIQ T1024 Reference Design Board  
User Guide  
Document Number: T1024RDBUG  
Rev. 0, 04/2015  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
2
Freescale Semiconductor, Inc.  
Contents  
Section number  
Title  
Page  
Chapter 1  
Overview  
1.1 Related documentation....................................................................................................................................................5  
1.2 Acronyms and abbreviations...........................................................................................................................................6  
1.3 T1024RDB board features.............................................................................................................................................. 7  
Chapter 2  
Architecture  
2.1 Processor.........................................................................................................................................................................9  
2.2 Power.............................................................................................................................................................................. 9  
2.3 Deep sleep control...........................................................................................................................................................12  
2.4 Reset................................................................................................................................................................................12  
2.5 Clocks............................................................................................................................................................................. 13  
2.6 DDR................................................................................................................................................................................ 14  
2.7 SerDes port......................................................................................................................................................................16  
2.7.1 PCI Express support...........................................................................................................................................17  
2.7.2 XFI support........................................................................................................................................................ 17  
2.7.3 SGMII support................................................................................................................................................... 18  
2.8 Ethernet controllers ........................................................................................................................................................18  
2.9 Ethernet Management Interface (EMI)...........................................................................................................................19  
2.10 I2C...................................................................................................................................................................................20  
2.11 SPI interface ...................................................................................................................................................................21  
2.12 IFC.................................................................................................................................................................................. 22  
2.12.1 Virtual banks......................................................................................................................................................23  
2.13 SDHC interface...............................................................................................................................................................23  
2.14 USB interface..................................................................................................................................................................24  
2.15 UART..............................................................................................................................................................................25  
2.16 TDM riser card interface.................................................................................................................................................27  
2.17 JTAG/COP port.............................................................................................................................................................. 27  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
3
Section number  
Title  
Page  
2.18 Connectors, Headers, Jumper, Push buttons, and LEDs.................................................................................................28  
2.18.1 Connectors......................................................................................................................................................... 29  
2.18.2 Headers...............................................................................................................................................................29  
2.18.3 Jumpers.............................................................................................................................................................. 29  
2.18.4 Push buttons....................................................................................................................................................... 30  
2.18.5 LEDs.................................................................................................................................................................. 30  
2.19 Temperature.................................................................................................................................................................... 30  
2.20 DIP switch definition...................................................................................................................................................... 31  
Chapter 3  
CPLD Specification  
3.1 CPLD Memory Map/Register Definition....................................................................................................................... 35  
3.1.1 Chip ID1 Register (CPLD_CHIPID1)............................................................................................................... 36  
3.1.2 Chip ID2 Register (CPLD_CHIPID2)............................................................................................................... 36  
3.1.3 Hardware Version Register (CPLD_HWVER)................................................................................................. 36  
3.1.4 Software Version Register (CPLD_SWVER)................................................................................................... 37  
3.1.5 Reset Control Register (CPLD_RSTCON)........................................................................................................37  
3.1.6 Reset Control Register (CPLD_RSTCON2)......................................................................................................38  
3.1.7 Interrupt Status Register (CPLD_INTSR)......................................................................................................... 39  
3.1.8 Flash Control and Status Register (CPLD_FLHCSR).......................................................................................40  
3.1.9 Fan Control and Status Register (CPLD_FANCSR)......................................................................................... 40  
3.1.10 Panel LED Control and Status Register (CPLD_LEDCSR)..............................................................................41  
3.1.11 SDHC Card Status Register (CPLD_SDSR)..................................................................................................... 41  
3.1.12 Miscellanies Control and Status Register (CPLD_MISCCSR)......................................................................... 42  
3.1.13 Boot Configuration Override Register (CPLD_BOOTOR)...............................................................................42  
3.1.14 Boot Configuration Register 1 (CPLD_BOOTCFG1).......................................................................................43  
3.1.15 Boot Configuration Register 2 (CPLD_BOOTCFG2).......................................................................................43  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
4
Freescale Semiconductor, Inc.  
Chapter 1  
Overview  
The T1024 Reference Design Board (T1024RDB) is a high-performance computing  
evaluation, development, and test platform supporting the QorIQ T1024 Power  
Architecture® processor. The T1024RDB is optimized to support the high-bandwidth  
DDR3L memory and a full complement of high-speed SerDes ports.  
1.1 Related documentation  
The table below lists and explains the additional documents that you can refer to, for  
more information about T1024RDB.  
Some of the documents listed below may be available only under a non-disclosure  
agreement (NDA). To request access to these documents, contact your local field  
applications engineer or sales representative.  
Table 1-1. Useful references  
Document  
Description  
QorIQ T1024, T1014 Data Sheet  
(T1024EC)  
Provides specific data regarding bus timing, signal behavior, and AC, DC, and thermal  
characteristics, as well as other design considerations.  
QorIQ T1024 Reference Manual  
(T1024RM)  
Provides a detailed description on T1024 QorIQ multicore processor, and on some of  
its features, such as memory map, serial interfaces, power supply, chip features, and  
clock information. The T1024 QorIQ processor combines two 64-bit ISA Power  
Architecture® processor cores with high-performance datapath acceleration logic and  
network peripheral bus interfaces, required for networking and telecommunications.  
This chip can be used in applications, such as routers, switches, Internet access  
devices, firewall and other packet filtering processors, and general-purpose embedded  
computing. Its high-level integration offers significant performance benefits and greatly  
helps to simplify board design.  
T1024 Product Brief (T1024PB)  
Provides an overview of the T1024 features and its usage examples.  
QorIQ T1024 Reference Design  
Board User Guide  
Describes the features and operation of T1024 performance reference platform, which  
supports QorIQ Power Architecture® processors.  
(T1024RDBPAUG)  
Table continues on the next page...  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
5
Acronyms and abbreviations  
Document  
Table 1-1. Useful references (continued)  
Description  
QorIQ Data Path Acceleration  
Architecture (DPAA) Reference  
Manual (DPAARM)  
Describes the core set of DPAA functionality implemented in many QorIQ chips, and  
identifies those portions of the DPAA whose implementation varies from chip to chip.  
The QorIQ data path acceleration architecture (DPAA) provides the infrastructure to  
support simplified sharing of networking interfaces and accelerators by multiple CPU  
cores. These resources are abstracted into enqueue/dequeue operations by means of  
a common DPAA Queue Manager (QMan) driver.  
1.2 Acronyms and abbreviations  
The table below lists and explains the acronyms and abbreviations used in this document.  
Table 1-2. Acronyms and abbreviations  
Usage  
Description  
Common On-chip Processor  
COP  
CPC  
CoreNet Platform Cache  
CPLD  
DIMM  
DIP  
Complex Programmable Logic Device  
Dual In-Line Memory Module  
Dual In-Line Package  
DIU  
Display Interface Unit  
DMA  
DPAA  
DRAM  
DUT  
Direct Memory Access  
Data Path Acceleration Architecture  
Dynamic Random Access Memory  
Device Under Test  
EC  
Ethernet Controllers  
EDC  
Error Detection and Correction  
Electrically Erasable Programmable Read-Only Memory  
Ethernet Management Interfaces  
embedded MultiMediaCard  
enhanced Secure Digital Host Controller  
enhanced Serial Peripheral Interface  
Field Effect Transistor  
EEPROM  
EMI  
eMMC  
eSDHC  
eSPI  
FET  
HDLC  
I2C  
High-level Data Link Control  
Inter-Integrated Circuit  
IFC  
Integrated Flash Controller  
Joint Test Action Group  
JTAG  
MPIC  
PCIe/PEX  
PLD  
Multicore Programmable Interrupt Controller  
PCI Express  
Programmable Logic Device  
Power On Reset  
POR  
Table continues on the next page...  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
6
Freescale Semiconductor, Inc.  
Chapter 1 Overview  
Table 1-2. Acronyms and abbreviations (continued)  
Usage  
Description  
Serial Advanced Technology Attachment  
Secure Digital  
SATA  
SD  
SDRAM  
SDHC  
SerDes  
SGMII  
SPI  
Synchronous Dynamic Random-Access Memory  
Secure Digital High Capacity  
Serializer/Deserializer  
Serial Gigabit Media Independent Interface  
Serial Peripheral Interface  
SYSCLK  
TDM  
System Clock  
Time-Division Multiplexing  
UART  
VCC  
Universal Asynchronous Receiver/Transmitter  
Voltage for Circuit  
VTT  
Voltage for Terminal  
1.3 T1024RDB board features  
The T1024RDB board features are as follows:  
• SerDes connections  
• XFI  
• PCI Express x1: supports Gen 1 and Gen 2  
• Two mini PCI Express x1  
• SGMII 2.5G  
• DDR controller  
• Data rates of up to 1600 MHz are supported  
• One DDR3L DIMM of single, dual, or quad-rank types is supported  
• 1.35 V DDR power supply to all devices with automatic tracking of VTT  
• IFC  
• NAND flash: 8-bit, asynchronous, up to 1 GB  
• NOR flash: 16-bit, non-multiplexed, up to 128 MB; NOR devices support 8  
virtual banks  
• Ethernet  
• Two on-board RGMII 10/100/1G Ethernet ports; PHY #0 remains powered up  
during deep sleep  
• One on-board XFI 10G EDC for 10GBase-T port  
• One on-board SGMII 2.5G Ethernet port  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
7
T1024RDB board features  
NOTE  
Due to RCW limitations, SGMII 2.5G Ethernet port cannot  
work with XFI 10GBase-T port and MAC3 RGMII  
ethernet port in the same mode.  
• CPLD  
• Manages system power and reset sequencing  
• Configures DUT, board, and clock with dynamic shmoo  
• Reset and interrupt monitor and control  
• General fault monitoring and logging  
• Sleep mode control  
• Clocks  
• System and DDR clock or single differential clock  
• SerDes clocks: : Clocks are provided to all SerDes blocks and slots. Supported  
clock frequencies are:  
• 100 MHz  
• 125 MHz  
• 156.25 MHz  
• USB  
• Supports two USB 2.0 ports with integrated PHYs  
• SDHC  
• SDHC port connects directly to an adapter card slot  
• SPI  
• On-board support of two different devices  
• Other IO  
• Two serial ports with RJ45 interface  
• Two I2C ports  
NOTE  
For details on T1024 silicon features and block diagram, see  
QorIQ T1024 Reference Manual.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
8
Freescale Semiconductor, Inc.  
Chapter 2  
Architecture  
This chapter explains the architecture of T1024RDB:  
Processor  
Power  
Reset  
Clocks  
DDR  
SerDes port  
Ethernet controllers  
Ethernet Management Interface (EMI)  
I2C  
SPI interface  
IFC  
SDHC interface  
USB interface  
UART  
JTAG/COP port  
Connectors, Headers, Jumper, Push buttons, and LEDs  
Temperature  
DIP switch definition  
2.1 Processor  
The T1024RDB supports many features of the T1024 processor, as detailed in the  
following sections. The boards and supporting hardware are all identical, but the ability  
to use various features depends on the device installed.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
9
Power  
2.2 Power  
The power supply system of the T1024RDB systems uses power from a standard ATX  
PSU to provide power to the numerous processor, CPLD, and peripheral devices. To  
meet the required power specifications, the following goals guide the power supply  
architecture:  
• Monolithic power supply for VCC (powering internal cores and platform logic).  
• DUT-specific power rails are instrumented for current measurement.  
• Automatic collection of voltage, current, and power is performed for critical supplies.  
• Mounting holes of sufficient size are provided, to allow on-board supplies to be  
replaced by bench supplies.  
• All power supplies can be sequenced as per hardware specifications.  
The following table indicates the total power consumption of the T1024RDB.  
The following figure shows the power supply architecture.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
10  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
ATX PS  
12V_SLP  
0.33ohm  
0.33ohm  
1V35  
1V8  
5V0_SLP  
AVDD_SD1_PLL1  
AVDD_SD1_PLL2  
AVDD_D1  
5V0_SLP  
5.1ohm  
VCORE_SLP (8A)  
VCORE  
IR3475  
VCORE_EN  
5V0_SLP  
5.1ohm  
5.1ohm  
(Switchable)  
VDD_EN  
1V8_SLP  
1V8  
AVDD_PLAT  
AVDD_CGA1  
AVDD_CGA2  
1V35  
1V35_SLP(4A)  
(Always_On)  
5.1ohm  
BEAT  
IR3475  
IR3473  
VCORE  
3V3  
DDRPWR_EN  
USB_SVDD[1:2]  
USB_HVDD[1:2]  
USB_OVDD[1:2]  
1V8  
3V3  
1V8_SLP(1.5A)  
(Always_On)  
IOPWR_EN  
BEAT  
BEAT  
5V0_SLP  
1V8  
BEAT  
5V0_SLP  
5V0_SLP  
3V3_SLP(9A)  
(Always_On)  
SVDD  
1V0S  
1V35  
IR3475  
IR3473  
S1VDD[1:7]  
X1VDD[1:4]  
BEAT  
XVDD  
IOPWR_EN  
2V5  
2V5_SLP(2A)  
(Always_On)  
T1024  
1V8_SLP  
IOPWR_EN  
O1VDD[1:3]  
MVREF  
MVREF_SLP  
1V35_SLP  
TPS51200  
1V8  
VTT  
OVDD[1:6]  
DDRPWR_EN  
VCORE_EN  
VDD_EN  
IOPWR_EN  
DDRPWR_EN  
EVDD_SEL  
1V8_SLP  
VDD_EN  
MVREF  
D1_MVREF  
1V0S  
CPLD  
MIC47100  
IR3473  
1V8  
J11  
TH_VDD  
FA_VL  
5V0_SLP  
1V5 (1.5A)  
VCORE  
1V8_SLP  
1V8  
IOPWR_EN  
J10  
J9  
(Switchable)  
VDD_SD  
PROG_MTR  
PROG_SFP  
3V3  
5V0_SLP  
0V85 (3A)  
(Switchable)  
EVDD  
3V3  
3V3  
IR3473  
IR3473  
IR3473  
EVDD1  
CVDD1  
DVDD[1:3]  
LVDD[1:2]  
L1VDD[1:2]  
1V35_SLP  
VDD  
VDD_SPD  
IOPWR_EN  
3V3  
DDR3 DIMM  
VTT  
5V0_SLP  
2V5  
VTT  
1V2 (3A)  
MREF_SLP  
3V3  
VREFCA(DQ)  
IOPWR_EN  
2V5_SLP  
1V35  
VCORE  
(Switchable)  
G1VDD[1:19]  
VDD[1:31]  
5V0_SLP  
VCC  
2V1 (3A)  
VCORE_SLP  
NOR FLASH  
JS28F00AM29EWHA  
IOPWR_EN  
VDDC[1:12]  
(Switchable)  
EVDD  
1V8  
1V8  
VIO  
VCC/VCCQ  
3V3  
1V8  
3V3  
VDD MAX3232*2  
VDD PCA9546  
NAND FLASH  
EVDD_EN  
12V_SLP  
MT29F8G08ABBAWP  
3V3  
3V3  
VCC  
3V3_SLP  
12V  
SPI FLASH  
AVDD/DVDD  
RTL8211E-VB  
U33  
MT25Q512ABA1ESF  
IOPWR_EN  
1V8_SLP  
2V5_SLP  
3V3  
VDD_SD  
5V0_SLP  
DVDD(15/21)  
VDD  
SD Card  
100M OSC  
Sys_refclk  
AVDD/DVDD  
RTL8211E-VB  
U36  
1V8  
66.67M OSC  
DDR_refclk  
2V5  
IN  
DVDD(15/21)  
USB: Max1558H  
3V3  
12V  
1V8_SLP  
24M OSC  
1V8_SLP  
3V3_SLP  
TDM Riser Card  
PCIEX1 SLOT  
USB_refclk  
EPM570  
3V3  
12V  
1V8_SLP  
IDT9FGV0641  
(CLK Buffer)  
1V2  
2V1  
0V85  
2V5  
3V3_SLP  
3V3  
DS1339  
(RTC)  
1V5  
3V3  
AQR105  
MINI PCIE SLOT*2  
FAN Conn *4  
AT24C256  
(I2C EEPROM)  
12V  
3V3  
ICS843002  
3V3_SLP  
ADT7461  
(Thermal sensor)  
Figure 2-1. Power supply  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
11  
Deep sleep control  
NOTE  
1. Set RGMII limits to LVDD=2.5 V.  
2. Supply PROG_SFP/PROG_MTR with 1.8 V only during  
the secure boot fuse programming.  
2.3 Deep sleep control  
The T1024 processor has the ability to enter into the deep-sleep mode. Once the  
processor has readied itself for the deep-sleep mode, setting the CPLD register  
PWR_CTL[SLP] = 1 causes the power sequencer to begin an orderly shutdown of several  
power supplies, while others remain active.  
Once ready, PWR_MSTAT[STATE] will indicate the system is asleep. However, the  
processor is already in the idle state, so this may not be needed by the system software.  
Perform the following steps to send the T1024 processor to the deep-sleep mode:  
• Prepare the CPLD to ignore the external signals. For example, some interrupt pins  
will power down, so the CPLD masks these pins from presenting valid interrupts.  
• Prepare the DDR subsystem for self-refresh by forcing RST_MEM_B high, forcing  
the CKE# “clamp” FETs low.  
• Gate the secondary powers to the DUT. Any power supply marked as “sleeps” in the  
power section diagrams are enable-disable, or can be gated.  
Once the above steps are completed, the system enters into the deep-sleep mode. The  
system software has the timers or interrupt controllers programmed such that important  
events can wake the processor (which will be powered only by VDDC) and can decide if  
situations warrant returning to sleep, or activating full power.  
2.4 Reset  
The CPLD manages the reset signals to and from the T1024 processor and other devices  
on the T1024RDB. The following figure shows an overview of the reset architecture.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
12  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
EC1_RST_N  
RGMII  
CPLD  
GE PHY1  
EC2_RST_N  
RGMII  
PWR_GODD  
ATX PS  
GE PHY2  
10GBASE-T  
PHY  
XGT2_RST_N  
XGT1_RST_N  
Soft reset register  
RSTCON1 & RSTCON2  
PWR_RST_N  
(AQR105)  
MIC811  
(Power-on RST)  
SW_RST  
7 6 5 4 3 2 1 0  
10GBASE-T  
PHY  
(AQR105)  
Push-Button  
GND  
TDMR_RST_N  
TDM Riser  
SLOT  
COP_SRST_N  
COP_HRST_N  
COP_ITF  
Reset  
Source  
select  
RST_CTL  
PEX_RST  
HESET_REQ_N  
HRSET_N  
PEX SLOT  
MPEX1_RST  
MPEX2_RST  
MINI PEX  
SLOT  
T1024  
PORESET_N  
MINI PEX  
SLOT  
NOR_RSTN  
DDR_RSTN  
NOR  
FLASH  
DDR3/  
DDR3L  
Figure 2-2. Reset architecture  
2.5 Clocks  
The clock circuitry provides the following clocks for the processor:  
• SYSCLK  
• DDRCLK (single-ended and differential)  
• SerDes clocks  
• Ethernet clocks  
• USB clock  
The architecture of the clock section is shown in the following figure.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
13  
DDR  
SYSCLK (100MHz)  
OSC-100MHz  
DDRCLK (100MHz)  
OSC-66.66MHz  
USB_REFCLK (24MHz)  
OSC-24MHz  
T1024  
SD_REFCLK1_P/N(156.25MHz or 125 MHz)  
IDT9FGV0641  
25MHz  
SYS_REFCLK_P/N(100M)  
SD_REFCLK1_P/N(100M)  
PEX_REFCLK_P/N(100M)  
M
I
N
I
M
I
N
I
IDT9FGV0641  
DIFSYSCLK_OE(CPLD)  
PEXCLK_OE(CPLD)  
P
E
X
MPEX1_REFCLK_P/N(100M)  
MPEX2_REFCLK_P/N(100M)  
P
E
X
P
E
X
S
L
O
T
S
L
O
T
S
L
O
T
25MHz  
Figure 2-3. Clock architecture  
2.6 DDR  
The T1024RDB supports high-speed DRAM, with an unbuffered DDR3 (240-pin) socket  
(UDIMM) that features single-, dual-, and quad-rank support. The memory interface  
includes all the necessary termination and I/O power, and it is routed to achieve  
maximum performance by the memory bus, as shown in the following figure.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
14  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
DIMM  
DDR_DQ[0:63]  
DDR_ECC[0:7]  
DDR_MA[0:15]  
DDR_MDQS[0:8]  
DDR_MDM[0:8]  
DDR_MBA[0:2]  
DDR_MDOT[0:1],DDR_MAPAR_OUT,DDR_MPAR_ERR  
DDR_MCS[0:3]  
DDR_MCK_P[0:1]_P/N  
T1024  
DDR_CAS,DDR_RAS,DDR_WE  
DDR_MCKE[0:1]  
1V35_SLP  
CKE_ISO_EN(CPLD)  
1V35_SLP  
D1_MDIC1  
D1_MDIC0  
DDR_RST_N  
(CPLD)  
For T1040:R-162Ohm  
For T2081:R-187Ohm  
(SPD_ADDR=0X51)  
I2C1_SCL,I2C1_SDA  
MV_REF  
TPS  
51200  
VTT  
IR3475  
1V35_SLP  
Figure 2-4. Memory interface  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
15  
SerDes port  
Although the platforms support all types, ranks, and speeds of DIMMs, but not all the  
combinations of these three exist in the memory market. Hence, the system is shipped  
with a “representative” DIMM, as noted in the below table. Other suitable memory  
DIMMs can be purchased and installed if needed. However, Freescale only supplies the  
device shown in the below table.  
Table 2-1. Freescale supported DIMM  
Platform  
T1024RDB  
Type  
Speeds  
1600 MT/s  
Ranks  
Dual  
DIMM  
Micron MT18KSF51272AZ-1G6K1  
4GB, x72, CL=10  
DDR3L  
2.7 SerDes port  
The T1024 SerDes block provides a four high-speed serial communication lanes,  
supporting a variety of protocols, including:  
• XFI 1X 10.3125G bit/s  
• PCI Express (PEX) Gen 1 1X 2.5 Gbit/s  
• PCI Express (PEX) Gen 2 1X 5 Gbit/s  
• SGMII 2.5G bit/s  
An overview of the SerDes protocols supported on the T1024RDB is shown in Table 2-2.  
Table 2-2. SerDes protocols  
SRDS_PRT  
CL_S1  
A
B
C
D
EC1  
EC2  
Per lane PLL mapping  
0X095  
XFI1(MAC1) PEXc x1 PEXb x1 PEXa x1  
RGMII  
(MAC4)  
RGMII  
(MAC3)  
1222  
1211  
0X135  
Aurora  
2.5  
PEXb x1 PEXa x1  
RGMII  
N/A  
SGMII  
(MAC3)  
(MAC4)  
To comply with the T1024 application, some multiplexers are used to re-route and group  
the SerDes lanes as shown in the below figure.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
16  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
XFI_RX/TX[0]_P/N(AQR105)  
AQR105  
SD1_RX/TX[0:3]_P/N(PEX[0:3])  
PCIe SLOT  
T1024  
SGMII  
SD1_RX/TX[4]_P/N(MPEX[1])  
SD1_RX/TX[5]_P/N(MPEX[2])  
Mini_PCIe  
SLOT  
Mini_PCIe  
SLOT  
Figure 2-5. SerDes distribution of T1024RDB  
2.7.1 PCI Express support  
The T1024 processor supports evaluation of PCI Express using any standard PCI Express  
Gen 1 or Gen 2.  
2.7.2 XFI support  
The T1024 processor only supports the evaluation of the XFI protocol using Aquantia  
AQR105 single port 10GBase-T PHY. 10G data is carried over the XFI interface. The  
below figure shows the connectivity of the XFI interface.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
17  
Ethernet controllers  
XFI  
AQR105  
10G Base-T  
PHY  
MDI  
T1024  
Magnetics  
RJ46  
EMI2  
Figure 2-6. XFI interface  
2.7.3 SGMII support  
The T1024 processor supports evaluation of the 2.5G SGMII protocol for serialized  
Ethernet PHYs using Aquantia AQR105 PHY. Ethernet data is carried over the SGMII  
interface.  
The below figure shows the connectivity of the SGMII interface.  
T1024  
SGMII  
SGMII  
AQR105  
Transformer  
MDIO/MDC  
EMI2  
RJ-46 Port  
Figure 2-7. SGMII interface  
2.8 Ethernet controllers  
The T1024 processor supports two Ethernet Controllers (EC), which can connect to  
Ethernet PHYs using MII or RGMII protocols. On the T1024RDB, the EC1 and EC2  
ports only operate in the RGMII mode. Both ports are connected to Realtek RTL8211  
PHYs. The T1024RDB supports Energy Efficient Ethernet (EEE) on EC1 and sleep  
mode on EC2.  
The below figure shows the connectivity of the EC1/EC2 interface.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
18  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
RGMII  
RGMII  
RTL8211E_VB  
Transformer  
MDIO/MDC  
RJ-45 Port  
T1024  
RGMII  
RGMII  
RTL8211E_VB  
Transformer  
MDIO/MDC  
EMI1  
(MAC3)  
RJ-45 Port  
Figure 2-8. EC1/EC2 interface connectivity  
2.9 Ethernet Management Interface (EMI)  
The T1024 processor has two Ethernet Management Interfaces (EMI), EMI1 and EMI2.  
EMI2 is only used with 10G Base-T PHY and 2.5G SGMII PHY, which uses 1.2 V pull-  
up. EMI1 is used with RGMII PHYs. There are two working modes in the T1024RDB-  
PC. The following tables represents the configurations for 10GBase-T and 2.5G SGMII  
working modes:  
Working  
mode  
Image in  
Flash  
SW3 [1:8]  
On = 0  
SerDes  
Protocal  
ETH0  
ETH1  
ETH2  
ETH3  
PCIe Slot  
10GBase-T Bank 0  
(Default)  
00100001  
0x95  
0x135  
1G/100M  
1G/100M  
1G/100M  
Disable  
10G/  
2.5G/1G  
Disable  
2.5G  
Enable  
Disable  
2.5G SGMII Bank4  
01101001  
Disable  
Working  
mode  
SerDes  
Protocal  
Lane A  
Lane B  
PEXc  
Lane C  
Lane D  
EC1  
EC2  
10GBase-T  
2.5G SGMII  
0x95  
0x135  
XFI (MAC1)  
Aurora  
PEXb  
PEXb  
PEXa  
PEXa  
MAC4  
MAC4  
MAC3  
N/A  
SGMII  
(MAC3)  
The below figure shows the EMI hardware block diagram.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
19  
I2C  
2V5_SLP  
EMI1_MDC_SLP  
EMI1_MDIO_SLP  
EMI1_MDC  
EMI1_MDIO  
RTL8211E-VL  
(RGMII PHY)  
PHY_ADDR=0X02  
(MAC4)  
2V5  
OE  
74LVC1G66*2  
RTL8211E-VL  
(RGMII PHY)  
T1024  
PHY_ADDR=0X06  
(MAC3)  
IV2  
EMI2_MDC  
EMI2_MDIO  
AQR105  
(10G BASE-T PHY)  
EMI2_MDC  
EMI2_MDIO  
PHY_ADDR=0X01  
(MAC1)  
AQR105  
(2.5G SGMII PHY)  
PHY_ADDR=0X02  
(MAC3)  
Figure 2-9. EMI hardware block  
2.10 I2C  
The T1024 devices supports up to four I2C buses, to make the I2C resources equally  
available to both local and remote systems. The T1024RDB uses I2C1 port to access on-  
board devices, such as DDR3 DIMM, thermal sensor (ADT7461), EEPROM, RTC, and  
clock PLL. The I2C2 bus uses multiplexers to partition the I2C bus into several channels.  
Two mini PCIe slots use channels 0 and 1, and the PCIe slot uses channel 3.  
The following figure shows the I2C subsystem.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
20  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
3V3  
I2C1_SCL  
I2C1_SDA  
I2C1  
AT24C256  
I2C_ADDR-0X50  
3V3_SLP  
FET Isolation  
(IRLML6346)  
I2C1_SCL_SLP  
I2C1_SDA_SLP  
DDR3 DIMM  
I2C_ADDR-0X51  
ADT7461  
(Thermal Sensor)  
I2C_ADDR=0X4C  
T1024  
DS1339U  
RTC  
I2C_ADDR=0X68  
I2C_ADDR=0X6A  
IDT9FGV0641  
I2C2_MPEX1_SCL  
I2C2_MPEX1_SDA  
Mini_PCIe SLOT  
Mini_PCIe SLOT  
Channel 0  
3V3  
I2C2_MPEX2_SCL  
I2C2_MPEX2_SDA  
Channel 1  
PCA9546  
I2C1_SCL  
I2C1_SDA  
I2C2  
Channel 2  
I2C2_PEX_SCL  
I2C2_PEX_SDA  
PCIe SLOT  
Channel 3  
I2C_ADDR=0X77  
Figure 2-10. I2C subsystem  
2.11 SPI interface  
The T1024 Serial Peripheral Interface (SPI) pins are used for the following purposes:  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
21  
IFC  
• On-board SPI device accessing various SPI memory devices  
• Off-board TDM riser card plug-in on J43 slot  
SPI_CS0 is used to access a SPI memory device, with the remaining chip selects used to  
select additional on-board SPI devices, and a TDM device present on the TDM riser card.  
The below figure shows the overall connections of the SPI portion.  
SPI_MOSI/MISO_CLK  
MT25QL512  
SPI  
(64MB FLASH)  
SPI_CS0  
T1024  
TDM Riser card connector  
TDMR_SPI_CS0/CS1  
Figure 2-11. SPI interface  
2.12 IFC  
The T1024 Integrated Flash Controller (IFC) supports 32-bit addressing and 8- or 16-bit  
data widths for a variety of devices to effectively manage all the resources with  
maximum performance and flexibility. The below figure shows an overview of the IFC  
bus.  
ADDR,DATA,Control  
NAND Flash  
(MT29F8G08ABABAWP)  
(1.8 V)  
T1024  
CPLD  
NAND_CS  
Cfg_vbank[0:2]  
XORs  
IFC_A5-A7  
IFC_VA5-A7  
NOR Flash  
(JS28F00AM29EWHA)  
Figure 2-12. IFC bus  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
22  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
2.12.1 Virtual banks  
The virtual bank feature is available when the NOR flash is connected to IFC_CS0_N. In  
that case, the value of VBANK[0:2] will be driven into three XOR gates, which toggle  
the MSB's of the NOR address, as shown in the below figure.  
NOR flash  
A[0:22]  
DUT  
B_IFC  
IFC_A[30:8]  
IFC_A[7:5]  
A[23:25]  
cfg_vbank[0:2]  
Figure 2-13. Virtual bank interface  
When VBANK[0:2]=000, the IFC_A[7:5] is not altered, and the NOR flash behaves  
normally. If VBANK[0:2]=100, the LB_A[5] is toggled and effectively swaps the top  
and bottom halves of the NOR flash. If program "A" was stored in the bottom half and  
program "B" in the top half then, while selecting different VBANK settings, “A” and “B”  
will get their VBANKs changed as given in the below table.  
Table 2-3. Virtual bank settings  
NOR zones  
VBANK  
(1/8 of 128  
MB)  
000  
A
001  
B
010  
C
011  
D
100  
E
101  
F
110  
G
H
111  
H
A
B
C
D
E
F
B
A
D
C
F
E
G
F
C
D
A
B
G
H
H
E
D
C
B
A
G
B
F
E
E
F
G
H
H
A
C
D
F
E
G
F
B
A
D
C
G
H
G
H
H
E
C
D
A
B
G
F
E
D
C
B
A
NOTE  
In the above table, the NOR flash has been partitioned into  
eight 16 MB zones, which can be arranged under the control of  
VBANK.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
23  
USB interface  
2.13 SDHC interface  
The enhanced SD Host Controller (eSDHC) provides an interface between host system  
and SD/MMC cards. The Secure Digital (SD) card is specifically designed to meet the  
security, capacity, performance, and environmental requirements, inherent in emerging  
audio and video consumer electronic devices. Booting from eSDHC interface is  
supported using the processor’s on-chip ROM.  
On the T1024RDB, a single connector is used for both SD and MMC memory cards, as  
shown in the below figure.  
1.8 V or 3.3 V  
3.3 V  
Clamping  
Diodes  
WP  
CD  
SD_WP  
SD_CD  
T1024  
SDHC_CLK  
CMD  
CLK  
SD Card  
CMD  
DAT[0:3]  
DAT[0:3]  
Figure 2-14. SDHC interface  
2.14 USB interface  
The T1024RDB systems have two integrated USB 2.0 controllers (USB1 and USB2), that  
allow direct connection to USB ports with appropriate protection circuitry and power  
supplies.  
The board features are:  
• High-speed (480 Mbit/s), full-speed (12 Mbit/s), and low-speed (1.5 Mbit/s)  
operations  
• Host mode  
• Dual-stacked Type A connection  
Each USB ports are connected to a standard Type A connector for compatibility with  
most USB peripherals.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
24  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
Power to the USB ports is provided by a MAX1558H switch, which supplies 5 V at up to  
1 A per port. The power enable and power-fault-detect pins are directly connected to the  
T1024 processor for individual port management.  
The below figure shows how the USB connectivity is implemented on the T1024RDB.  
T1024  
INSTALLED: Host Mode (default)  
90 OHm diff.imp.  
USB1_UID  
USB Type A  
USB1_UDP,UDM  
USB1_VBUSCLMP  
USB1_PWRFAULT  
5V0  
CMHD3595  
USB1_DRVVBUS  
USB2_PWRFAULT  
USB2_DRVVBUS  
USB2_VBUSCLMP  
MAX1558H  
USB Type A  
CMHD3595  
90 OHm diff.imp.  
USB2_UDP,UDM  
USB2_UID  
INSTALLED: Host Mode (default)  
IBIAS_REXT  
10K  
1%  
T1024  
24MHz  
USB CLK  
USB_CLKIN  
Figure 2-15. USB connectivity implementation  
2.15 UART  
The T1024 processor has two UART controllers, which provides a RS-232 standard  
interconnection between the board and an external host. The serial connection is typically  
configured to run at 11.5 Kbit/s.  
Each UART supports:  
• Full-duplex operation  
• Software-programmable baud generators  
• Clear-to-send (CTS) and ready-to-send (RTS) modem control functions  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
25  
UART  
• Software-selectable serial interface data format that includes:  
• Data length  
• Parity  
• 1/1.5/2 STOP bit  
• Baud rate  
• Overrun, parity, and framing error detection  
The UART ports are routed to the RJ45 connectors, as shown in the below figure.  
Figure 2-16. UART ports, routed to RJ45 connectors  
The below table shows the connection settings for the UART RJ45 connector to the DB9  
female cable connection.  
Table 2-4. RJ45 to DB9 connection settings  
RJ45 pin number  
RS-232 signal  
DB9 female pin number  
1
2
3
4
5
6
7
8
RTS  
NC  
8
2
TXD  
GND  
GND  
RXD  
NC  
5
3
CTS  
7
Before powering up the T1024RDB card, configure the serial port of the attached  
computer with the following values:  
• Data rate: 115200 bit/s  
• Number of data bits: 8  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
26  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
• Parity: None  
• Number of stop bits: 1  
• Flow control: Hardware/None  
2.16 TDM riser card interface  
The T1024RDB can support TDM riser card. The below figure shows the TDM riser card  
connector.  
Figure 2-17. TDM Riser card connector  
2.17 JTAG/COP port  
The common on-chip processor (COP) is a part of the T1024 processor’s JTAG module,  
and it is implemented as a set of additional instructions and logic. This port can connect  
to a dedicated emulator for extensive system debugging. Several third-party emulators in  
the market can connect to the host computer through the Ethernet port, USB port, parallel  
port, or RS-232. A setup using a USB port emulator is shown in the below figure.  
T1024RDB  
COP Port  
PC  
USB  
Emulator  
USB Port  
Figure 2-18. USB port emulator setup  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
27  
Connectors, Headers, Jumper, Push buttons, and LEDs  
The 16-pin generic header connector carries the COP/JTAG signals and additional  
signals for system debugging. The pin-out of this connector is shown in the below figure.  
Figure 2-19. 16-pin connector  
The table below displays the connections made from T1024RDB COP connector.  
Table 2-5. Connections made from the T1024RDB COP connector  
Pin number  
Signal name  
TDO  
Connection  
Connected directly between the processor and JTAG/COP connector.  
Not connected.  
1
2
NC  
3
TDI  
Connected directly between the processor and JTAG/COP connector.  
Routed to the RESET PLD. TRST to the processor is generated from the PLD.  
Not connected.  
4
TRST  
5
NC  
6
VDD_SENSE  
TCK  
Pulled to 3.3 V using a 10 Ohm resistor.  
7
Connected directly between the processor and JTAG/COP connector.  
Connected directly between the processor and JTAG/COP connector.  
Connected directly between the processor and JTAG/COP connector.  
Not connected.  
8
CKSTP_IN  
TMS  
9
10  
11  
12  
13  
14  
15  
16  
NC  
SRESET  
GND  
Routed to the RESET PLD. SRESET to the processor is generated from the PLD.  
Connected to ground.  
HRESET  
NC  
Routed to the RESET PLD. HRESET to the processor is generated from the PLD.  
Not connected.  
CKSTP_OUT  
GND  
Connected directly between the processor and JTAG/COP connector.  
Connected to ground.  
2.18 Connectors, Headers, Jumper, Push buttons, and LEDs  
This section explains:  
Connectors  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
28  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
Headers  
Jumpers  
Push buttons  
LEDs  
2.18.1 Connectors  
The below table lists the various connectors on the T1024RDB platform.  
Table 2-6. Connectors on the T2080RDB-PB platform  
Reference designators  
J37  
Used for  
Notes  
ATX power  
SD card  
J2  
J18  
PCIe x1 card  
Mini PCIe cards  
TDM riser card  
Ethernet ports  
10G Ethernet ports  
Dual Type A USB  
UART  
Intended use is for PCIe cards that are 25 W or less  
J19, J20  
J43  
J14 (two ports)  
RGMII -> Copper  
J50  
10G Base-T Ethernet port  
J41 (two ports)  
J13 (two ports)  
J49  
Battery holder  
UDIMM  
J1  
J34  
CPU fan  
J33, J44-J46  
J47  
Shelf fan  
Remote reset switch  
Remote power switch  
J48  
2.18.2 Headers  
The below table lists the various headers on the T1024RDB platform.  
Table 2-7. Headers on T1024RDB platform  
Reference designators  
J26  
J3  
Used for  
Altera header  
COP/JTAG  
Notes  
Used for programming the Altera CPLD devices  
Used for debugging the T1024 devices  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
29  
Temperature  
2.18.3 Jumpers  
The below table describes how the Jumpers are used on the T1024RDB platform.  
Table 2-8. Jumpers on T1024RDB platform  
Reference  
designator  
Description  
Status 1  
Status 2  
J9  
PROG_SFP selection  
PROG_MTR selection  
FA_VAL selection  
Mounted: Fuse programming  
Mounted: Fuse programming  
-
Un-mounted: Normally operate  
Un-mounted: Normally operate  
Un-mounted: Normally operate  
J10  
J11  
J35  
FAN_FULL_SPEED  
1-2: For full speed on fan  
No: Fan can be adjusted by  
CPLD  
J53  
VDD_SD  
1-2: VDD_SD uses 3.3 V  
2-3: VDD_SD uses 1.8 V  
2.18.4 Push buttons  
The following table describes how the push buttons are used on the T1024RDB platform.  
Table 2-9. Push buttons on T1024RDB platform  
Reference designators  
SW4  
Used for  
Reset  
Power on/off  
Notes  
Used for resetting the whole board  
Used for turning the power on or off on the board  
SW5  
2.18.5 LEDs  
The below table lists all the LEDs on the T1024RDB front plate.  
Table 2-10. LEDs on the T1024RDB front plate  
LEDs  
Used for  
Controlled by  
D44  
D43  
Power on  
Status  
+3.3 V rail  
CPLD  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
30  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
2.19 Temperature  
The T1024 processor has a thermal diode attached to the die for direct temperature  
measurement. The diode pins are connected to a two-channel ADT7461 thermal monitor,  
which allows direct reading of the temperature of the die and it is accurate to 1 ꢀC. The  
second channel of the ADT7461 measures the ambient (board) temperature.  
The ADT7461 temperature warning and alarm signals are connected to the CPLD for  
monitoring. The CPLD uses these signals to adjust CPU fan speed and protect the CPU  
from over-temperature failure.  
I2C BUS  
T1024  
Thermal Sensor  
(ADT7461)  
DXP1  
TEMP_ANODE  
TEMP_CATHODE  
DXN  
OVER ALARM  
ALERT/THERM2  
THERM  
THERM ALARM  
PWM  
FAN_Power  
CPLD  
Figure 2-20. Temperature  
2.20 DIP switch definition  
The T1024RDB board has user selectable switches, for evaluating different boot  
configurations and other special configurations for this device.  
This configuration allows either the switch or the CPLD register to set the POR pin. The  
CPLD register allows software to override the pin remotely when the board is in the  
board farm.  
To use the CPLD override option, software sets an override bit, which allows the CPLD  
to override the switch setting during power on reset.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
31  
DIP switch definition  
CPLD  
POR & Override  
T1024  
CPLD Register  
cfg_xxx  
switch  
Figure 2-21. DIP switch definition  
The table below shows how POR configuration is done through switches.  
Table 2-11. POR configuration through switches  
Switch  
SW1[1:8]  
Signal name  
Pin name  
Signal meaning  
Setting  
cfg_rcw_src[0:7]  
IFC_AD[8:15]  
Reset configuration word source  
For details, see T1024 QorIQ  
Integrated Multicore  
Communications Processor  
Data Sheet.  
SW2[1]  
SW2[2]  
cfg_rcw_src[8]  
cfg_ifc_te  
IFC_CLE  
IFC_TE  
Reset configuration word source  
For details, see T1024 QorIQ  
Integrated Multicore  
Communications Processor  
Data Sheet.  
IFC external transceiver enable  
polarity select  
0: IFC drives logic 1 for TE  
assertion  
1: IFC drives logic 0 for TE  
assertion  
SW2[3]  
cfg_pll_config_sel IFC_A18  
_b  
Reserved  
Reserved  
SW2[4]  
SW2[5:6]  
SW2[7]  
SW2[8]  
SW3[1]  
SW3[2]  
cfg_por_ainit  
cfg_svr[0:1]  
IFC_A19  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
IFC_A[16:17]  
IFC_A21  
Reserved  
cfg_dram_type  
cfg_rsp_dis  
DRAM type selection  
Reserved  
IFC_AVD  
IFC_WE0  
IFC_OE_N  
cfg_eng_use0  
cfg_eng_use1  
Sys_clock selection  
ON (0): Choose 10G working  
mode  
OFF (1): Choose 2.5G working  
mode  
SW3[3]  
SW3[4]  
cfg_eng_use2  
IFC_WP_N  
-
Reserved  
BOOT_FLASH_S  
EL  
Boot flash selection  
0: NOR flash connects to CS0,  
NAND flash connects to CS1  
1:NOR flash connects to CS1,  
NAND flash connects to CS0  
SW3[5:7]  
CFG_VBANK[0:2]  
-
NOR flash bank select  
000: boot from VBANK0 with  
RCW 0x095 for 10G XFI mode  
Table continues on the next page...  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
32  
Freescale Semiconductor, Inc.  
Chapter 2 Architecture  
Setting  
Table 2-11. POR configuration through switches  
(continued)  
Switch  
Signal name  
Pin name  
Signal meaning  
100: boot from VBANK4 with  
RCW 0x135 for 2.5G SGMII  
mode  
See note1  
SW3[8]  
TEST_SEL_N  
TEST_SEL_B  
-
1. SW3[5:7] can be used to change the starting address for the memory banks. The NOR flash memory is divided into eight  
memory banks with 16 MB size each. Eight different U-Boot images can be programmed into each memory bank. When  
NOR flash is selected as boot flash, different U-Boot images can be selected to boot up the board, by setting SW3[5:7].  
NOTE  
For other DIP switch settings and definitions, see T1024 QorIQ  
Integrated Multicore Communications Processor Data Sheet.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
33  
DIP switch definition  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
34  
Freescale Semiconductor, Inc.  
Chapter 3  
CPLD Specification  
This section explains the CPLD registers.  
3.1 CPLD Memory Map/Register Definition  
The table below shows the memory map for CPLD registers.  
CPLD memory map  
Offset  
address  
(hex)  
Width  
(in bits)  
Section/  
page  
Register name  
Access Reset value  
0
Chip ID1 Register (CPLD_CHIPID1)  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
R
55h  
AAh  
3.1.1/36  
3.1.2/36  
3.1.3/36  
3.1.4/37  
3.1.5/37  
3.1.6/38  
3.1.7/39  
3.1.8/40  
3.1.9/40  
3.1.10/41  
3.1.11/41  
3.1.12/42  
3.1.13/42  
3.1.14/43  
3.1.15/43  
1
Chip ID2 Register (CPLD_CHIPID2)  
R
2
Hardware Version Register (CPLD_HWVER)  
Software Version Register (CPLD_SWVER)  
Reset Control Register (CPLD_RSTCON)  
R
See section  
See section  
00h  
3
R
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
19  
w1c  
w1c  
R
Reset Control Register (CPLD_RSTCON2)  
00h  
Interrupt Status Register (CPLD_INTSR)  
00h  
Flash Control and Status Register (CPLD_FLHCSR)  
Fan Control and Status Register (CPLD_FANCSR)  
Panel LED Control and Status Register (CPLD_LEDCSR)  
SDHC Card Status Register (CPLD_SDSR)  
Miscellanies Control and Status Register (CPLD_MISCCSR)  
Boot Configuration Override Register (CPLD_BOOTOR)  
Boot Configuration Register 1 (CPLD_BOOTCFG1)  
Boot Configuration Register 2 (CPLD_BOOTCFG2)  
R/W  
R/W  
R/W  
R
See section  
0Fh  
00h  
See section  
See section  
00h  
R/W  
R/W  
R/W  
R/W  
00h  
00h  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
35  
CPLD Memory Map/Register Definition  
3.1.1 Chip ID1 Register (CPLD_CHIPID1)  
Address: 0h base + 0h offset = 0h  
Bit  
0
1
2
3
4
5
6
7
Read  
CHIPID1  
Write  
Reset  
0
1
0
1
0
1
0
1
CPLD_CHIPID1 field descriptions  
Field  
Description  
0–7  
Chip ID1.  
CHIPID1  
3.1.2 Chip ID2 Register (CPLD_CHIPID2)  
Address: 0h base + 1h offset = 1h  
Bit  
0
1
2
3
4
5
6
7
Read  
CHIPID2  
Write  
Reset  
1
0
1
0
1
0
1
0
CPLD_CHIPID2 field descriptions  
Field  
Description  
0–7  
Chip ID2.  
CHIPID2  
3.1.3 Hardware Version Register (CPLD_HWVER)  
Address: 0h base + 2h offset = 2h  
Bit  
0
1
2
3
4
5
6
7
Read  
HW_VER  
Write  
Reset  
x*  
x*  
x*  
x*  
x*  
x*  
x*  
x*  
* Notes:  
• x depends on actual board setting.x = Undefined at reset.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
36  
Freescale Semiconductor, Inc.  
Chapter 3 CPLD Specification  
CPLD_HWVER field descriptions  
Field  
Description  
0–7  
Hardware version. The version field of the hardware board.  
HW_VER  
3.1.4 Software Version Register (CPLD_SWVER)  
Address: 0h base + 3h offset = 3h  
Bit  
0
1
2
3
4
5
6
7
Read  
SW_VER  
Write  
Reset  
x*  
x*  
x*  
x*  
x*  
x*  
x*  
x*  
* Notes:  
• x depends on actual board setting.x = Undefined at reset.  
CPLD_SWVER field descriptions  
Field  
Description  
0–7  
SW_VER  
3.1.5 Reset Control Register (CPLD_RSTCON)  
Address: 0h base + 10h offset = 10h  
Bit  
0
1
2
3
4
5
6
7
Read SW_RST  
DDR_RST  
EC1_RST  
EC2_RST  
XGT1_RST XGT2_RST  
Reserved  
w1c  
0
w1c  
0
Write  
w1c  
0
w1c  
0
w1c  
0
w1c  
0
Reset  
0
0
CPLD_RSTCON field descriptions  
Field  
Description  
0
0
1
No reset occurs  
SW_RST  
Write a logic 1 will produce whole board reset# signal, this bit can auto clear.  
1
0
1
No reset occurs  
DDR_RST  
Write a logic 1 will produce DDR3 reset# signal, this bit can auto clear.  
2
0
1
No reset occurs.  
EC1_RST  
Write a logic 1 will produce RGMII PHY1(RTL82111E-VB) reset# signal, this bit can auto clear.  
3
0
1
No reset occurs.  
EC2_RST  
Write a logic 1 will produce RGMII PHY2(RTL82111E-VB) reset# signal, this bit can auto clear.  
Table continues on the next page...  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
37  
CPLD Memory Map/Register Definition  
CPLD_RSTCON field descriptions (continued)  
Field  
Description  
4–5  
-
This field is reserved.  
6
0
1
No reset occurs.  
XGT1_RST  
Write a logic 1 will produce 10G BASE-T PHY(AQR105) reset# signal, this bit can auto clear.  
7
0
1
No reset occurs.  
XGT2_RST  
Write a logic 1 will produce 2.5G SGMII PHY(AQR105) reset# signal, this bit can auto clear.  
3.1.6 Reset Control Register (CPLD_RSTCON2 )  
Address: 0h base + 11h offset = 11h  
Bit  
0
1
2
3
4
5
6
7
MPEX1_  
RST  
MPEX2_  
RST  
Read  
TDMR_RST PEX_RST  
Reserved  
w1c  
0
w1c  
0
w1c  
0
Write  
w1c  
0
Reset  
0
0
0
0
CPLD_RSTCON2 field descriptions  
Field  
Description  
0–3  
-
This field is reserved.  
4
0
0
No reset occurs.  
TDMR_RST  
Write a logic 1 will produce TDM riser card reset# signal, this bit can auto clear.  
5
0
1
No reset occurs.  
PEX_RST  
Write a logic 1 will produce PCIe x4 slot reset# signal, this bit can auto clear.  
6
0
1
No reset occurs.  
MPEX1_RST  
Write a logic 1 will produce miniPCIe card1 reset# signal, this bit can auto clear.  
7
0
1
No reset occurs.  
MPEX2_RST  
Write a logic 1 will produce miniPCIe card2 reset# signal, this bit can auto clear.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
38  
Freescale Semiconductor, Inc.  
Chapter 3 CPLD Specification  
3.1.7 Interrupt Status Register (CPLD_INTSR)  
NOTE  
INTSR register is related with system IRQ0(CPLD_INT1_N)  
signal, when interrupt occurs, IRQ0 will be logic 0 until all  
interrupts of INTSR register clear.  
Address: 0h base + 12h offset = 12h  
Bit  
0
1
2
3
4
5
6
7
Read THERM_INT RTC_INT  
Write  
XGT1_INT XGT2_INT  
TDMR1_INT TDMR2_INT  
Reserved  
Reset  
0
0
0
0
0
0
0
0
CPLD_INTSR field descriptions  
Field  
Description  
0
0
No interrupt occurs.  
THERM_INT  
1
Board over temperature interrupt occurs.  
1
0
1
No interrupt occurs.  
RTC interrupt occurs.  
RTC_INT  
2
0
1
No reset occurs.  
XGT1_INT  
10G BASE-T PHY1(AQR105) interrupt occurs.  
3
0
1
No reset occurs.  
XGT2_INT  
2.5G SGMII PHY1(AQR105) interrupt occurs.  
4–5  
-
This field is reserved.  
6
0
1
No reset occurs.  
TDMR1_INT  
TDM riser card interrupt 1 occurs.  
7
0
1
No reset occurs.  
TDMR2_INT  
TDM riser card interrupt 2 occurs.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
39  
CPLD Memory Map/Register Definition  
3.1.8 Flash Control and Status Register (CPLD_FLHCSR)  
Address: 0h base + 13h offset = 13h  
Bit  
0
1
2
3
4
5
6
7
SW_BANK_ SW_BANK_ SW_BANK_  
Read BOOT_SEL  
Write  
BANK_  
SEL0  
BANK_  
SEL1  
BANK_  
SEL2  
SEL0  
SEL1  
SEL2  
BANK_OR  
Reset  
x*  
0
x*  
x*  
x*  
0
0
0
* Notes:  
• x depends DIP switch setting.x = Undefined at reset.  
CPLD_FLHCSR field descriptions  
Field  
Description  
0
0
1
Boot from 16bit NOR flash.  
BOOT_SEL  
Boot from 8bit NAND flash.  
1
0
0
NOR flash bank select from CPLD override disable.  
NOR flash bank select from CPLD override enable.  
BANK_OR  
2
0
1
NOR flash bank select bit0 of switch status is 0.  
NOR flash bank select bit0 of switch status is 1.  
SW_BANK_SEL0  
3
0
1
NOR flash bank select bit1 of switch status is 0.  
NOR flash bank select bit1 of switch status is 1.  
SW_BANK_SEL1  
4
0
1
NOR flash bank select bit2 of switch status is 0.  
NOR flash bank select bit2 of switch status is 1.  
SW_BANK_SEL2  
5
0
1
NOR flash bank select bit0 set 0.  
NOR flash bank select bit0 set 1.  
BANK_SEL0  
6
0
1
NOR flash bank select bit1 set 0.  
NOR flash bank select bit1 set 1.  
BANK_SEL1  
7
0
1
NOR flash bank select bit2 set 0.  
NOR flash bank select bit2 set 1.  
BANK_SEL2  
3.1.9 Fan Control and Status Register (CPLD_FANCSR)  
Address: 0h base + 14h offset = 14h  
Bit  
0
1
2
3
4
5
6
7
Read  
Write  
Reserved  
FAN_PWM  
Reset  
0
0
0
0
1
1
1
1
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
40  
Freescale Semiconductor, Inc.  
Chapter 3 CPLD Specification  
CPLD_FANCSR field descriptions  
Field  
Description  
0–3  
-
This field is reserved.  
4–7  
FAN_PWM  
0000  
0001~1110 PWM duty cycle is 6.7%~93.3%, fan speed control.  
1111 PWM duty cycle is 100%, fan full speed.  
PWM duty cycle is 0%, fan stop running.  
3.1.10 Panel LED Control and Status Register (CPLD_LEDCSR)  
Address: 0h base + 15h offset = 15h  
Bit  
0
1
2
3
4
5
6
7
Read  
Write  
STS_LED  
Reserved  
Reset  
0
0
0
0
0
0
0
0
CPLD_LEDCSR field descriptions  
Field  
Description  
0
Light emitting device.  
STS_LED  
0
1
Panel LED is on  
Panel LED flashes at 0.5 s  
1–7  
-
This field is reserved.  
Reserved.  
3.1.11 SDHC Card Status Register (CPLD_SDSR )  
Address: 0h base + 16h offset = 16h  
Bit  
0
1
2
3
4
5
6
7
Read  
SD_VDD  
Reserved  
Write  
Reset  
0
0
0
0
0
0
0
x*  
* Notes:  
• x depends Jumper setting.x = Undefined at reset.  
CPLD_SDSR field descriptions  
Field  
Description  
0–6  
-
This field is reserved.  
7
0
1
SDHC card VDD voltage is 1.8V.  
SDHC card VDD voltage is 3.3V.  
SD_VDD  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
41  
CPLD Memory Map/Register Definition  
3.1.12 Miscellanies Control and Status Register  
(CPLD_MISCCSR)  
Address: 0h base + 17h offset = 17h  
Bit  
0
1
2
3
4
5
6
7
TEST_SEL_  
N
Read  
TDMR_PRS PEX_PRS  
Reserved SLEEP_EN  
REQ_MD  
Reserved  
Write  
Reset  
0
0
1
1
x*  
x*  
0
x*  
* Notes:  
• x depends on whether TDM or PCIe card is plugged in.x = Undefined at reset.  
CPLD_MISCCSR field descriptions  
Field  
Description  
0
-
This field is reserved.  
Deep sleep enable bit  
1
SLEEP_EN  
0
1
Normal operation.  
Before enter deep sleep mode, set ‘1’ to this bit, after exit deep sleep mode, set ‘0’ to this bit.  
2–3  
REQ_MD  
00 No reset occurs when HRESET_REQ triggered.  
01 HRESET occurs when HRESET_REQ triggered.  
10 NA  
11 PORESET occurs when HRESET_REQ triggered.  
4
0
1
TDM riser card not present.  
TDM riser card present.  
TDMR_PRS  
5
0
1
PCIe x1 card not present.  
PCIe x1 card present.  
PEX_PRS  
6
-
This field is reserved.  
7
0
0
TEST_SEL_N pin status is 0.  
TEST_SEL_N pin status is 1.  
TEST_SEL_N  
3.1.13 Boot Configuration Override Register (CPLD_BOOTOR)  
Address: 0h base + 18h offset = 18h  
Bit  
0
1
2
3
Read  
Write  
Reserved  
Reset  
0
0
0
0
4
5
6
7
Bit  
Read  
Write  
Reserved  
PCIE_2.5G_OR  
BOOT_OR  
Reset  
0
0
0
0
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
42  
Freescale Semiconductor, Inc.  
Chapter 3 CPLD Specification  
CPLD_BOOTOR field descriptions  
Field  
Description  
0–5  
-
This field is reserved.  
6
0
1
PCIe and SGMII 2.5G configuration from CPLD override disable.  
PCIe and SGMII 2.5G configuration from CPLD override enable.  
PCIE_2.5G_OR  
7
0
1
Boot configuration from CPLD override disable.  
Boot configuration from CPLD override enable.  
BOOT_OR  
3.1.14 Boot Configuration Register 1 (CPLD_BOOTCFG1)  
NOTE  
For more information on BOOTCFG1 register, refer to QorIQ  
T1024 datasheet.  
Address: 0h base + 19h offset = 19h  
Bit  
0
1
2
3
4
5
6
7
Read  
Write  
cfg_rcw_src[0:7]  
Reset  
0
0
0
0
0
0
0
0
CPLD_BOOTCFG1 field descriptions  
Field  
Description  
0–7  
Configure RCW source  
cfg_rcw_src[0:7]  
3.1.15 Boot Configuration Register 2 (CPLD_BOOTCFG2)  
NOTE  
For more information on BOOTCFG2 register, refer to QorIQ  
T1024 datasheet.  
Address: 0h base + 19h offset = 19h  
Bit  
0
1
2
3
4
5
6
7
Read  
cfg_rcw_  
src8  
Reserved  
cfg_svr[0:1]  
Reserved  
cfg_eng_use[0:2]  
Write  
Reset  
0
0
0
0
0
0
0
0
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
43  
CPLD Memory Map/Register Definition  
CPLD_BOOTCFG2 field descriptions  
Field  
Description  
0
Configure RCW source  
cfg_rcw_src8  
1
-
This field is reserved.  
2–3  
cfg_svr[0:1]  
These bit fields overrides SVR register.  
This field is reserved.  
4
-
5–7  
These bits are defined by engineers for special use.  
cfg_eng_use[0:2]  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
44  
Freescale Semiconductor, Inc.  
Appendix A  
How to use AQ_API in U-Boot to Flash Firmware for  
Aquantia PHY  
This appendix describes the steps required to use AQ_API in U-Boot to flash firmware  
for Aquantia PHY. The prerequisites are given below:  
• The AQ_API version is 2.1.0  
• The U-Boot is for T1024RDB  
• The U-Boot source code is from SDK1.7 and later versions  
Perform the following steps to use AQ_API in U-Boot:  
1. Apply the following three patches to the U-Boot tree:  
added-source-codes-of-API-2.1.0.patch: Adds the source code of AQ_API 2.1.0. It  
copies all the AQ_API source code (*.c, *.h) into one folder in U-Boot.  
AQ_API-fix-compile-error-for-API-2.1.0.patch: Fixes the compilation issues that  
occurred in the original source code while building U-Boot.  
mdio-added-flash-command.patch: Adds an MDIO flash command for U-Boot. This  
command will call a function in AQ_API to perform the actual flash  
programming.  
2. Build and update a new U-Boot on the T1024RDB board.  
The Aquantia AQR105 PHY firmware has been programmed to PHY when shipping the  
board to customers, there is no need to update PHY firmware. If it is still required to  
update the PHY firmware, follow the instructions given below:  
• Program AQR105 PHY firmware for 10G XFI (using RCW 0x95):  
=> tftp 1000000 AQ28nm-FW_2.0.B9_Freescale_T1024RDB_012115.cld  
Using FM1@DTSEC4 device  
Filename 'AQ28nm-FW_2.0.B9_Freescale_T1024RDB_012115.cld'.  
Load address: 0x1000000  
Loading: #############################  
2.4 MiB/s  
done  
Bytes transferred = 287746 (46402 hex)  
=> mdio list  
FSL_MDIO0:  
2 - RealTek RTL8211E <--> FM1@DTSEC4  
6 - RealTek RTL8211E <--> FM1@DTSEC3  
FM_TGEC_MDIO:  
1 - Aquantia AQR105 <--> FM1@TGEC1  
=> mii dev FM_TGEC_MDIO  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
45  
=> mdio flash FM1@TGEC1 0x1000000 0x46402  
flashing firmware for AQR105  
Device burned and verified  
• Program AQR105 PHY firmware for 2.5G SGMII (using RCW 0x135):  
=> tftp 1000000 AQ28nm-FW_2.0.B3_Freescale_T1024RDB_120514.cld  
Using FM1@DTSEC4 device  
Filename 'AQ28nm-FW_2.0.B3_Freescale_T1024RDB_120514.cld'.  
Load address: 0x1000000  
Loading: #############################  
2.2 MiB/s  
done  
Bytes transferred = 287746 (46402 hex)  
=> mdio list  
FSL_MDIO0:  
2 - RealTek RTL8211E <--> FM1@DTSEC4  
FM_TGEC_MDIO:  
2 - Aquantia AQR105 <--> FM1@DTSEC3  
=> mii dev FM_TGEC_MDIO  
=> mdio flash FM1@DTSEC3 0x1000000 0x46402  
flashing firmware for AQR105  
Device burned and verified  
=> mdio read FM1@DTSEC3 0x1e.0xc885  
Reading from bus FM_TGEC_MDIO  
PHY at address 2:  
30.51333 - 0xb3  
The AQR105 PHY is connected to EMI2 bus and FM_TGEC_MDIO. The syntax of the  
MDIO flash command is:  
mdio flash <port_name> <firmware_address> <firmware_size>  
After flash programming, the firmware version can be read out from registers 0x1e.0x20  
and 0x1e.0xc885.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
46  
Freescale Semiconductor, Inc.  
Appendix B  
Revision History  
The below table summarizes the revisions to this document.  
Table B-1. Revision history  
Revision  
Rev. 0  
Date  
04/2015  
Topic cross-reference  
Change description  
Initial public release.  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
Freescale Semiconductor, Inc.  
47  
QorIQ T1024 Reference Design Board User Guide, Rev. 0, 04/2015  
48  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks  
of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other  
product or service names are the property of their respective owners.  
The Power Architecture and Power.org word marks and the Power and  
Power.org logos and related marks are trademarks and service marks  
licensed by Power.org.  
© 2015 Freescale Semiconductor, Inc. All rights reserved.  
Document Number T1024RDBUG  
Revision 0, 04/2015  

相关型号:

T102J1ABE2

Subminiature Rocker Switches
ITT

T102J1AE2

Subminiature Rocker Switches
CK-COMPONENTS

T102J1AGE2

Subminiature Rocker Switches
ITT

T102J1AKE2

Subminiature Rocker Switches
ITT

T102J1APE2

Subminiature Rocker Switches
ITT

T102J1AQE2

Subminiature Rocker Switches
ITT

T102J1AVBE2

Subminiature Rocker Switches
ITT

T102J1AVGE2

Subminiature Rocker Switches
ITT

T102J1AVKE2

Subminiature Rocker Switches
ITT

T102J1AVLE2

Rocker Switch, SPST, On-on-on, Horizontal, 2A, 28VDC, 3 PCB Hole Cnt, Wire Wrap Terminal, Rocker Actuator, Through Hole-right Angle
ITT

T102J1AVPE2

Subminiature Rocker Switches
ITT

T102J1AVQE2

Subminiature Rocker Switches
ITT