TBD [FREESCALE]

Quad Core Digital Signal Processor; 四核数字信号处理器
TBD
型号: TBD
厂家: Freescale    Freescale
描述:

Quad Core Digital Signal Processor
四核数字信号处理器

数字信号处理器
文件: 总80页 (文件大小:2306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Product Preview  
Document Number: MSC8144E  
Rev. 6, 12/2007  
MSC8144E  
FC-PBGA–783  
29 mm × 29 mm  
Quad Core Digital Signal  
Processor  
Four StarCore™ SC3400 DSP subsystems, each with an SC3400  
DSP core, 16 Kbyte L1 instruction cache, 32 Kbyte L1 data cache,  
memory management unit (MMU), extended programmable  
interrupt controller (EPIC), two general-purpose 32-bit timers,  
debug and profiling support, and low-power Wait and Stop  
processing modes.  
Chip-level arbitration and system (CLASS) that provides full  
fabric non-blocking arbitration between the processing elements  
and other initiators and the M2 memory, DDR SRAM controller,  
device configuration control and status registers, and other  
targets.  
128 Kbyte L2 shared instruction cache.  
512 Kbyte M2 memory for critical data and temporary data  
buffering.  
10 Mbyte 128-b8t wide M3 memory.  
96 Kbyte boot ROM.  
Three input clocks (shared, global, and differential).  
Four PLLs (system, core, global, and serial RapidIO).  
Security Engine (SEC0 optimized to process all the algorithms  
associated with IPSec, IKE, WTLS/WAP, SSL/TLS, and 3GPP  
using 4 crypto-channels with multi-command chains, integrated  
controller for assignment of the six execution units (PKEU, DEU,  
AESU, AFEU, MDEU, and KEU0) and the random number  
generator (RNG), and XOR engine to accelerate parity checking  
for RAID storage applications.  
DDR controller with up to a 200 MHz clock (400 MHz data rate),  
16/32 bit data bus, supporting up to 1 Gbyte in up to two banks  
and support for DDR1 and DDR2.  
DMA controller with 16 bidirectional channels with up to 1024  
buffer descriptors, and programmable priority, buffer, and  
multiplexing configuration.  
– The two Ethernet controllers support 10/100/1000 Mbps  
operations via MII/RMII/SMII/RGMII/SGMII and the SGMII  
protocol using a 4-pin SerDes interface at 1000 Mbps data rate  
only.  
– The ATM controller supports UTOPIA level II 8/16 bits at  
25/50 MHz in UTOPIA/POS mode with adaptation layer  
support AAL0, AAL2, and AAL5.  
PCI designed to comply with the PCI specification revision 2.2 at  
33 MHz or 66 MHz with access to all PCI address spaces.  
Serial RapidIO® 1x/4x endpoint corresponds to Specification 1.2  
of the RapidIO trade association, and supports read, write,  
messages, doorbells, and maintenance accesses in inbound mode,  
and messages and doorbells in outbound mode.  
I/O interrupt concentrator consolidates all chip maskable interrupt  
and non-maskable interrupt sources and routes them to  
INT_OUT, NMI_OUT, and the cores.  
UART that permits full-duplex operation with a bit rate of up to  
6.25 Mbps.  
Serial peripheral interface (SPI).  
Four timer modules, each with four configurable16-bit timers.  
Four software watchdog timer (SWT) modules.  
Up to 32 general-purpose input/output (GPIO) ports, 16 of which  
can be configured as maskable interrupt inputs.  
I2C interface that allows booting from EEPROM devices.  
Eight programmable hardware semaphores.  
Thirty two virtual maskable interrupts and one virtual NMI that  
can be generated by a simple write access.  
Optional booting via serial RapidIO port, PCI, I2C, SPI, or  
Ethernet interfaces.  
Note: This document supports mask set M31H.  
Up to eight independent TDM modules with programmable word  
size (2, 4, 8, or 16-bit), hardware-base A-law/μ-law conversion,  
up to 128 Mbps data rate for all channels, with glueless interface  
to E1 or T1 framers, and can interface with H-MVIP/H.110  
devices, TSI, and codecs such as AC-97.  
QUICC Engine™ technology subsystem with dual RISC  
processors, 48 Kbyte multi-master RAM, 48 Kbyte instruction  
RAM, supporting three communication controllers with one ATM  
and two Gigabit Ethernet interfaces, to offload scheduling tasks  
from the DSP cores.  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2007. All rights reserved.  
Table of Contents  
1
2
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .4  
1.1 FC-PBGA Ball Layout Diagrams. . . . . . . . . . . . . . . . . . .4  
1.2 Signal List By Ball Location. . . . . . . . . . . . . . . . . . . . . . .6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.2 Recommended Operating Conditions. . . . . . . . . . . . . .27  
2.3 Default Output Driver Characteristics . . . . . . . . . . . . . .27  
2.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .28  
2.5 Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .28  
2.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .29  
2.7 AC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . .64  
3.1 Start-up Sequencing Recommendations . . . . . . . . . . .64  
3.2 Power Supply Design Considerations. . . . . . . . . . . . . .65  
3.3 Clock and Timing Signal Board Layout Considerations 65  
3.4 Connectivity Guidelines . . . . . . . . . . . . . . . . . . . . . . . .66  
3.5 External DDR SDRAM Selection . . . . . . . . . . . . . . . . .74  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Figure 12.Differential V of Transmitter or Receiver . . . . . . . . . . 42  
Figure 13.Transmitter Output Compliance Mask . . . . . . . . . . . . . . 45  
PP  
Figure 14.Single Frequency Sinusoidal Jitter Limits . . . . . . . . . . . 47  
Figure 15.Receiver Input Compliance Mask . . . . . . . . . . . . . . . . . 48  
Figure 16.PCI AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 17.PCI Input AC Timing Measurement Conditions. . . . . . . 50  
Figure 18.PCI Output AC Timing Measurement Condition . . . . . . 50  
Figure 19.TDM Inputs Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 21.TDM Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 22.UART Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 23.UART Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 24.Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 25.MII Management Interface Timing. . . . . . . . . . . . . . . . . 54  
Figure 26.MII Transmit AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 27.AC Test Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 28.MII Receive AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 29.RMII Transmit and Receive AC Timing . . . . . . . . . . . . . 56  
Figure 30.AC Test Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 31.SMII Mode Signal Timing. . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 32.RGMII AC Timing and Multiplexing s. . . . . . . . . . . . . . . 58  
Figure 33.ATM/UTOPIA/POS AC Test Load . . . . . . . . . . . . . . . . . 59  
Figure 34.ATM/UTOPIAPOS AC Timing (External Clock). . . . . . . 59  
Figure 35.SPI AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 36.SPI AC Timing in Slave Mode (External Clock). . . . . . . 60  
Figure 37.SPI AC Timing in Master Mode (Internal Clock) . . . . . . 61  
Figure 38.Asynchronous Signal Timing . . . . . . . . . . . . . . . . . . . . . 61  
Figure 39.Test Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 40.Boundary Scan (JTAG) Timing . . . . . . . . . . . . . . . . . . . 62  
Figure 41.Test Access Port Timing . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 42.TRST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
3
4
5
6
7
List of Figures  
Figure 1. MSC8144E Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. StarCore SC3400 DSP Core Subsystem Block Diagram 3  
Figure 3. MSC8144E FC-PBGA Package, Top View . . . . . . . . . . . 4  
Figure 4. MSC8144E FC-PBGA Package, Bottom View . . . . . . . . 5  
Figure 5. SerDes Reference Clocks Input Stage . . . . . . . . . . . . . 31  
Figure 6. Overshoot/Undershoot Voltage for V and V . . . . . . . 34  
Figure 7. Start-Up Sequence with V Raised Before V  
IH  
IL  
with  
DD  
DDIO  
CLKIN Started with V  
. . . . . . . . . . . . . . . . . . . . . . . 35  
DDIO  
Figure 43.V  
, V  
and V  
Power-on Sequence . . . . . 64  
DDM3  
DDM3IO  
25M3  
Figure 8. Timing for a Reset Configuration Write. . . . . . . . . . . . . 38  
Figure 9. Timing for t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 45.MSC8144E Mechanical Information, 783-ball FC-PBGA  
Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DDKHMH  
Figure 10.DDR SDRAM Output Timing. . . . . . . . . . . . . . . . . . . . . 41  
Figure 11.DDR AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
2
Freescale Semiconductor  
DDR Interface 16/32-bit at 400 MHz data rate  
I/O-Interrupt  
10 Mbytes  
M3  
Memory  
512 Kbytes  
M2  
Memory  
Concentrator  
DDR  
Controller  
UART  
128-bit at  
400 MHz  
Clocks  
Timers  
CLASS  
Reset  
QUICC Engine™  
Subsystem  
Semaphores  
Ser. RapidIO  
Subsystem  
Dual RISC  
Processors  
Virtual  
Four DSP  
Subsystems  
128 Kbyte  
Interrupts  
L2  
RMU SRIO  
Boot ROM  
I2C  
ICache  
Ether-  
net  
Ether-  
net  
ATM SPI  
Other  
Modules  
JTAG  
Eight TDMs  
256-Channels each  
PCI 32-bit  
33/66 MHz  
SPI  
10/100/1000 Mbps  
10/100/1000 Mbps  
16-bit/8-bit  
UTOPIA  
1x/4x  
Note: The arrow direction indicates master or slave.  
Figure 1. MSC8144E Block Diagram  
Two Internal Buses  
(128 bits wide each)  
Interrupts  
EPIC  
Timer  
Bus Interface  
IQBus  
DQBus  
TWB  
Task  
Protection  
Write-  
Through  
Buffer  
Write-  
Back  
Buffer  
Debug Support  
OCE30 DPU  
Instruction  
Cache  
Data  
Cache  
Address  
Translation  
(WBB)  
(WTB)  
MMU  
P-bus  
Xa-bus  
Xb-bus  
SC3400  
Core  
Figure 2. StarCore SC3400 DSP Core Subsystem Block Diagram  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
3
Pin Assignments and Reset States  
1
Pin Assignments and Reset States  
This section includes diagrams of the MSC8144E package ball grid array layouts and tables showing how the pinouts are  
allocated for the package.  
1.1  
FC-PBGA Ball Layout Diagrams  
Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.  
Top View  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
MSC8144E  
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
Figure 3. MSC8144E FC-PBGA Package, Top View  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
4
Freescale Semiconductor  
Bottom View  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
M S C 8 1 4  
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
28  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
Figure 4. MSC8144E FC-PBGA Package, Bottom View  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
5
1.2  
Signal List By Ball Location  
Table 1 presents the signal list sorted by ball number. The functionality of multi-functional (multiplexed) pins is separated for  
each mode. When designing a board, make sure that the reference supply for each signal is appropriately considered. The  
specified reference supply must be tied to the voltage level specified in this document if any of the related signal functions are  
used (active).  
Table 1. Signal List by Ball Number  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
A2  
A3  
GND  
GE2_RX_ER/PCI_AD31  
GND  
Ethernet 2  
PCI  
Ethernet 2  
V
V
V
V
V
DDGE2  
DDGE2  
DDGE2  
DDGE2  
A4  
V
DDGE2  
A5  
GE2_RX_DV/PCI_AD30  
GE2_TD0/PCI_CBE0  
SRIO_IMP_CAL_RX  
Ethernet 2  
Ethernet 2  
PCI  
PCI  
Ethernet 2  
Ethernet 2  
A6  
A7  
DDSXC  
1
A8  
Reserved  
1
A9  
Reserved  
1
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
Reserved  
1
Reserved  
SRIO_RXD0  
V
V
V
V
V
DDSXC  
DDSXC  
DDSXC  
DDSXC  
DDSXC  
V
DDSXC  
SRIO_RXD1  
V
DDSXC  
SRIO_REF_CLK  
V
GND  
RIOPLL  
DDRIOPLL  
GND  
GND  
SXC  
SXC  
SRIO_RXD2/  
GE1_SGMII_RX  
SGMII support on SERDES is enabled by Reset Configuration Word  
SGMII support on SERDES is enabled by Reset Configuration Word  
V
DDSXC  
A20  
A21  
V
V
V
DDSXC  
DDSXC  
DDSXC  
SRIO_RXD3/  
GE2_SGMII_RX  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
B1  
V
V
V
DDSXC  
DDSXC  
DDSXP  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
SRIO_IMP_CAL_TX  
MDQ28  
V
V
V
V
V
MDQ29  
MDQ30  
MDQ31  
MDQS3  
DDDDR  
1
Reserved  
B2  
GE2_TD1/PCI_CBE1  
GE2_TX_EN/PCI_CBE2  
GE_MDIO  
Ethernet 2  
Ethernet 2  
PCI  
PCI  
Ethernet 2  
Ethernet 2  
V
V
V
DDGE2  
DDGE2  
DDGE2  
B3  
B4  
Ethernet  
B5  
GND  
GND  
B6  
GE_MDC  
Ethernet  
V
DDGE2  
B7  
GND  
GND  
SXC  
SXC  
1
1
B8  
Reserved  
Reserved  
B9  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
6
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
1
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
Reserved  
1
Reserved  
SRIO_RXD0  
GND  
V
DDSXC  
GND  
SXC  
SXC  
SRIO_RXD1  
GND  
V
DDSXC  
GND  
SXC  
SXC  
SRIO_REF_CLK  
V
DDSXC  
1
Reserved  
V
V
V
DDSXC  
DDSXC  
DDSXC  
SRIO_RXD2/  
GE1_SGMII_RX  
SGMII support on SERDES is enabled by Reset Configuration Word  
SGMII support on SERDES is enabled by Reset Configuration Word  
B20  
B21  
GND  
GND  
SXC  
SXC  
SRIO_RXD3/  
V
DDSXC  
GE2_SGMII_RX  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
C1  
GND  
GND  
GND  
GND  
SXC  
SXP  
SXC  
SXP  
MDQ27  
V
V
DDDDR  
V
DDDDR  
DDDDR  
GND  
GND  
V
V
V
DDDDR  
DDDDR  
MDQS3  
DDDDR  
1
Reserved  
C2  
GE2_RX_CLK/PCI_AD29  
Ethernet 2  
PCI  
Ethernet 2  
V
V
V
DDGE2  
DDGE2  
DDGE2  
C3  
V
DDGE2  
C4  
TDM7RSYN/GE2_TD2/  
PCI_AD2/UTP_TER  
TDM  
TDM  
PCI  
PCI  
Ethernet 2  
Ethernet 2  
UTOPIA  
UTOPIA  
C5  
TDM7RCLK/GE2_RD2/  
PCI_AD0/UTP_RVL  
V
DDGE2  
DDGE2  
C6  
V
V
V
DDGE2  
C7  
GE2_RD0/PCI_AD27  
Ethernet 2  
PCI  
Ethernet 2  
DDGE2  
1
C8  
Reserved  
1
C9  
Reserved  
1
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
Reserved  
1
Reserved  
V
V
V
V
V
DDSXP  
DDSXP  
DDSXP  
DDSXP  
DDSXP  
SRIO_TXD0  
V
DDSXP  
SRIO_TXD1  
GND  
GND  
GND  
SXC  
SXC  
GND  
RIOPLL  
1
RIOPLL  
Reserved  
V
V
V
DDSXP  
DDSXP  
DDSXP  
SRIO_TXD2/GE1_SGMII_T  
X
SGMII support on SERDES is enabled by Reset Configuration Word  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
7
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
C21  
C22  
V
V
V
DDSXP  
DDSXP  
SRIO_TXD3/GE2_SGMII_T  
X
SGMII support on SERDES is enabled by Reset Configuration Word  
DDSXP  
C23  
C24  
C25  
C26  
C27  
C28  
D1  
V
V
DDSXP  
DDSXP  
DDDDR  
DDDDR  
MDQ26  
MDQ25  
MDM3  
V
V
V
DDDDR  
GND  
GND  
MDQ24  
Reserved  
V
DDDDR  
1
D2  
GE2_RD1/PCI_AD28  
GND  
Ethernet 2  
PCI  
Ethernet 2  
V
DDGE2  
D3  
GND  
D4  
TDM7TDAT/GE2_TD3/  
PCI_AD3/UTP_TMD  
TDM  
TDM  
PCI  
PCI  
PCI  
PCI  
Ethernet 2  
Ethernet 2  
UTOPIA  
UTOPIA  
V
DDGE2  
DDGE2  
DDGE1  
DDGE2  
D5  
D6  
D7  
TDM7RDAT/GE2_RD3/  
PCI_AD1/UTP_STA  
V
V
V
GE1_RD0/UTP_RD2/  
PCI_CBE2  
UTOPIA  
TDM  
Ethernet 1  
UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 2 UTOPIA  
TDM7TCLK/GE2_TCK/  
PCI_IDS/UTP_RER  
1
D8  
Reserved  
1
D9  
Reserved  
1
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
Reserved  
1
Reserved  
GND  
GND  
SXP  
SXP  
SRIO_TXD0  
GND  
V
DDSXP  
GND  
SXP  
SXP  
SRIO_TXD1  
V
DDSXP  
V
V
DDSXC  
DDSXC  
1
1
Reserved  
Reserved  
GND  
GND  
SXP  
SXP  
SRIO_TXD2/GE1_SGMII_T  
X
SGMII support on SERDES is enabled by Reset Configuration Word  
SGMII support on SERDES is enabled by Reset Configuration Word  
V
DDSXP  
D21  
D22  
GND  
GND  
SXP  
SXP  
SRIO_TXD3/GE2_SGMII_T  
X
V
DDSXP  
D23  
D24  
D25  
D26  
D27  
D28  
E1  
GND  
GND  
SXP  
SXP  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
MDQ23  
V
V
V
V
V
V
DDDDR  
MDQ22  
MDQ21  
MDQS2  
Reserved  
DDDDR  
1
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
8
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
E2  
E3  
E4  
E5  
GE1_RX_CLK/UTP_RD6/  
PCI_PAR  
UTOPIA  
UTOPIA  
UTOPIA  
UTOPIA  
Ethernet 1  
Ethernet 1  
Ethernet 1  
Ethernet 1  
PCI  
PCI  
PCI  
PCI  
UTOPIA  
UTOPIA  
UTOPIA  
UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 1 UTOPIA  
V
V
V
V
DDGE1  
DDGE1  
DDGE1  
DDGE1  
GE1_RD2/UTP_RD4/  
PCI_FRAME  
GE1_RD1/UTP_RD3/  
PCI_CBE3  
GE1_RD3/UTP_RD5/  
PCI_IRDY  
E6  
E7  
V
V
V
DDGE1  
DDGE1  
GE1_TX_EN/UTP_TD6/  
PCI_CBE0  
UTOPIA  
Ethernet 1  
PCI  
UTOPIA  
Ethernet 1 UTOPIA  
DDGE1  
1
E8  
Reserved  
1
E9  
Reserved  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
F1  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
V
DDDDR  
DDDDR  
MDQ20  
GND  
DDDDR  
GND  
V
V
V
DDDDR  
DDDDR  
GND  
GND  
MDQS2  
Reserved  
DDDDR  
1
F2  
GE1_TX_CLK/UTP_RD0/  
PCI_AD31  
UTOPIA  
Ethernet 1  
PCI  
UTOPIA  
Ethernet 1 UTOPIA  
V
DDGE1  
F3  
F4  
V
V
V
DDGE1  
DDGE1  
GE1_TD3/UTP_TD5/  
PCI_AD30  
UTOPIA  
UTOPIA  
Ethernet 1  
Ethernet 1  
PCI  
PCI  
UTOPIA  
UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 1 UTOPIA  
DDGE1  
F5  
GE1_TD1/UTP_TD3/  
PCI_AD28  
V
DDGE1  
F6  
F7  
GND  
GND  
GE1_TD0/UTP_TD2/  
PCI_AD27  
UTOPIA  
Ethernet 1  
PCI  
UTOPIA  
Ethernet 1 UTOPIA  
V
DDGE1  
F8  
F9  
V
V
DDGE1  
DDGE1  
GND  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
9
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
G1  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
1
Reserved  
V
V
DDDDR  
DDDDR  
GND  
GND  
MDQ19  
MDQ18  
MDM2  
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
MDQ17  
MDQ16  
Reserved  
DDDDR  
1
4
G2  
SRESET  
GND  
V
DDIO  
G3  
GND  
4
G4  
PORESET  
V
DDIO  
DDIO  
G5  
GE1_COL/UTP_RD1  
UTOPIA  
UTOPIA  
Ethernet 1  
Ethernet 1  
UTOPIA  
UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 1 UTOPIA  
V
G6  
GE1_TD2/UTP_TD4/  
PCI_AD29  
PCI  
PCI  
V
DDGE1  
G7  
G8  
GE1_RX_DV/UTP_RD7  
UTOPIA  
UTOPIA  
Ethernet 1  
Ethernet 1  
UTOPIA  
UTOPIA  
Ethernet 1 UTOPIA  
Ethernet 1 UTOPIA  
V
V
DDGE1  
DDGE1  
GE1_TX_ER/UTP_TD7/  
PCI_CBE1  
G9  
V
V
DD  
DD  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
1
Reserved  
GND  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
10  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
G23  
G24  
G25  
G26  
G27  
G28  
H1  
MBA1  
MA3  
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
MA8  
V
DDDDR  
DDDDR  
GND  
GND  
MCK0  
V
DDDDR  
1
Reserved  
H2  
CLKIN  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
H3  
HRESET  
V
H4  
PCI_CLK_IN  
NMI  
V
V
V
H5  
H6  
URXD/GPIO14/IRQ8/  
RC_LDF  
RC_LDF  
UART/GPIO/IRQ  
3, 6  
H7  
H8  
GE1_RX_ER/PCI_AD6/  
GPIO25/IRQ15  
GPIO/ Ethernet  
PCI  
GPIO/  
IRQ  
Ethernet 1  
Ethernet 1  
V
V
DDIO  
DDIO  
3, 6  
IRQ  
1
GE1_CRS/PCI_AD5  
PCI  
Ethernet  
1
PCI  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
J1  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
V
V
V
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
MBA0  
MA15  
V
DDDDR  
MA9  
MA7  
MCK0  
Reserved  
GND  
DDDDR  
1
J2  
GND  
J3  
V
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
J4  
STOP_BS  
V
4
J5  
NMI_OUT  
V
V
V
4
J6  
INT_OUT  
3, 4, 6  
J7  
SDA/GPIO27  
I2C/GPIO  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
11  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
J8  
V
V
V
DDIO  
DDIO  
DD  
J9  
V
DD  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
K1  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
DDDDR  
DDDDR  
GND  
GND  
V
DDDDR  
DDDDR  
GND  
GND  
V
DDDDR  
DDDDR  
1
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
K2  
K3  
K4  
K5  
V
V
DDPLL2A  
DDPLL2A  
K6  
GND  
GND  
K7  
V
V
V
V
V
DDPLL0A  
DDPLL1A  
DD  
DDPLL0A  
DDPLL1A  
K8  
K9  
V
DD  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
V
V
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
V
DD  
DD  
V
DDDDR  
DDDDR  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
12  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
K23  
K24  
K25  
K26  
K27  
K28  
L1  
MBA2  
MA10  
MA12  
MA14  
MA4  
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
MV  
REF  
DDDDR  
1
Reserved  
L2  
CLKOUT  
V
DDIO  
DDIO  
L3  
TMR1/UTP_IR/PCI_CBE3/  
UTOPIA  
TMR/ UTOPIA  
GPIO  
PCI  
PCI  
UTOPIA  
V
3, 6  
GPIO17  
3,  
L4  
TMR4/PCI_PAR/GPIO20  
TIMER/GPIO  
TIMER/GPIO  
V
DDIO  
6
/ UTP_REOP  
L5  
L6  
GND  
GND  
TMR2/PCI_FRAME/  
GPIO18  
TIMER/GPIO  
PCI  
TIMER/GPIO  
UTOPIA  
V
DDIO  
3, 6  
3, 4, 6  
2
L7  
SCL/GPIO26  
I C/GPIO  
V
V
DDIO  
3, 6  
L8  
UTXD/GPIO15/IRQ9  
UART/GPIO/IRQ  
DDIO  
L9  
GND  
GND  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
M1  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
1
Reserved  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
GND  
GND  
MCKE1  
MA1  
V
V
V
DDDDR  
DDDDR  
V
DDDDR  
DDDDR  
GND  
GND  
V
V
V
DDDDR  
DDDDR  
MCK1  
Reserved  
TRST  
EE0  
DDDDR  
1
M2  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
M3  
V
M4  
EE1  
V
V
V
V
M5  
UTP_RCLK/PCI_AD13  
UTP_RADDR0/PCI_AD7  
UTP_TD8/PCI_AD30  
UTOPIA  
PCI  
PCI  
PCI  
UTOPIA  
M6  
UTOPIA  
UTOPIA  
UTOPIA  
UTOPIA  
M7  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
13  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
M8  
M9  
V
V
V
DDIO  
DDIO  
DD  
V
DD  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
N1  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
V
DD  
DD  
DDDDR  
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
MCS1  
MA13  
MA2  
MA0  
DDDDR  
GND  
GND  
MCK1  
Reserved  
V
DDDDR  
1
N2  
V
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
N3  
TMS  
UTP_RD10/PCI_AD14  
V
5
N4  
UTOPIA  
PCI  
UTOPIA  
V
V
V
V
V
N5  
V
Power  
DDIO  
N6  
UTP_RADDR1/PCI_AD8  
UTP_TD9/PCI_AD31  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
N7  
3,  
N8  
TMR3/PCI_IRDY/GPIO19  
TIMER/GPIO  
PCI  
TIMER/GPIO  
UTOPIA  
6
/ UTP_TEOP  
N9  
GND  
GND  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
V
V
V
V
V
V
V
V
V
V
V
V
DDM3  
DDM3  
DD  
V
DD  
V
DDM3  
DD  
DDM3  
V
DD  
V
DDM3  
DD  
DDM3  
V
DD  
V
DDM3  
DD  
DDM3  
V
DD  
V
DDM3  
DD  
DDM3  
V
DD  
V
DDM3  
DDM3  
GND  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
14  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
P1  
GND  
GND  
MODT1  
MCKE0  
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
V
DDDDR  
MA5  
MA6  
MA11  
Reserved  
DDDDR  
1
5
P2  
TDI  
V
DDIO  
DDIO  
P3  
UTP_RD11/PCI_AD15  
GND  
UTOPIA  
PCI  
UTOPIA  
V
P4  
GND  
P5  
UTP_RADDR3/PCI_AD10  
UTP_RADDR2/PCI_AD9  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
DDIO  
P6  
V
3. 6  
P7  
PCI_GNT/GPIO29/IRQ7  
GPIO/IRQ  
GPIO/IRQ  
PCI  
PCI  
GPIO/IRQ  
GPIO/IRQ  
V
V
3,  
P8  
PCI_STOP/GPIO30/IRQ2  
6
P9  
GND  
GND  
GND  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
R1  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
GND  
GND  
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
MCS0  
MRAS  
GND  
DDDDR  
GND  
V
V
V
DDDDR  
DDDDR  
GND  
GND  
MCK2  
Reserved  
TCK  
DDDDR  
1
R2  
V
DDIO  
DDIO  
DDIO  
DDIO  
R3  
TDO  
V
R4  
UTP_RD12/PCI_AD16  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
V
V
R5  
UTP_RCLAV_PDRPA/  
PCI_AD12  
R6  
UTP_RADDR4/PCI_AD11  
UTOPIA  
PCI  
UTOPIA  
V
DDIO  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
15  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
R7  
R8  
V
V
V
DDIO  
DDIO  
PCI_REQ  
GND  
PCI  
DDIO  
R9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
T1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MODT0  
MDIC1  
MDIC0  
MCAS  
MWE  
MCK2  
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
1
Reserved  
T2  
UTP_RPRTY/PCI_AD21  
UTP_RD13/PCI_AD17  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
T3  
V
T4  
V
V
V
V
V
V
DDIO  
T5  
UTP_RD14/PCI_AD18  
UTP_RD15/PCI_AD19  
PCI_TRDY  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
T6  
T7  
PCI  
T8  
PCI_DEVSEL/GPIO31/  
GPIO/IRQ  
PCI  
GPIO/IRQ  
3, 6  
IRQ3  
T9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
16  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
U1  
GND  
GND  
V
V
V
V
V
DDDDR  
DDDDR  
GND  
GND  
V
DDDDR  
DDDDR  
GND  
GND  
V
DDDDR  
DDDDR  
GND  
GND  
V
DDDDR  
DDDDR  
1
Reserved  
U2  
UTP_TCLK/PCI_AD29  
UTP_TADDR4/PCI_AD27  
UTP_TADDR2  
GND  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
U3  
V
U4  
UTOPIA  
V
U5  
GND  
U6  
UTP_REN/PCI_AD20  
PCI_AD26  
UTOPIA  
PCI  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDM3  
U7  
PCI  
PCI  
V
V
V
U8  
PCI_AD25  
1
U9  
Reserved  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
V1  
V
V
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
GND  
GND  
MDQ7  
MDQ3  
MDQ4  
MDQ5  
MDQ1  
MDQ0  
Reserved  
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
1
V2  
UTP_TD10/PCI_CBE0  
UTP_TADDR3  
UTOPIA  
PCI  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
V3  
UTOPIA  
V
V4  
UTP_TD1/PCI_PERR  
UTP_TADDR0/PCI_AD23  
UTP_TADDR1/PCI_AD24  
UTP_TCLAV/PCI_AD28  
UTOPIA  
UTOPIA  
UTOPIA  
UTOPIA  
PCI  
UTOPIA  
V
V
V
V
V5  
PCI  
PCI  
PCI  
UTOPIA  
UTOPIA  
UTOPIA  
V6  
V7  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
17  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
V8  
V9  
V
V
V
DDIO  
DDIO  
1
Reserved  
GND  
DDIO  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
W1  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
GND  
GND  
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
MDQ2  
V
DDDDR  
MDQ6  
GND  
DDDDR  
GND  
V
V
V
DDDDR  
DDDDR  
MDQS0  
DDDDR  
1
Reserved  
W2  
UTP_TD12/PCI_CBE2  
UTP_TD11/PCI_CBE1  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
W3  
V
W4  
V
V
DDIO  
W5  
GND  
GND  
W6  
UTP_TD15/PCI_IRDY  
UTP_TD0/PCI_SERR  
UTP_RSOC/PCI_AD22  
UTOPIA  
UTOPIA  
UTOPIA  
PCI  
PCI  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDM3  
W7  
PCI  
UTOPIA  
UTOPIA  
V
V
V
W8  
1
W9  
Reserved  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
V
V
DDM3  
GND  
GND  
V
V
25M3  
25M3  
GND  
GND  
V
V
V
V
DDM3  
DDM3  
25M3  
DDM3  
V
25M3  
V
DDM3  
GND  
GND  
V
V
25M3  
25M3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
GND  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
18  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
W23  
W24  
W25  
W26  
W27  
W28  
Y1  
MDQ10  
GND  
V
DDDDR  
GND  
MDQ11  
MDM0  
GND  
V
V
DDDDR  
DDDDR  
GND  
MDQS0  
V
DDDDR  
1
Reserved  
-
Y2  
UTP_TD14/PCI_FRAME  
UTOPIA  
TDM/GPIO  
PCI  
UTOPIA  
V
DDIO  
DDIO  
Y3  
TDM5TSYN/PCI_AD18/  
PCI  
TDM/GPIO  
V
3, 6  
GPIO12  
Y4  
Y5  
TDM5TCLK/PCI_AD16  
TDM4RCLK/PCI_AD7  
TDM4TSYN/PCI_AD12  
UTP_TPRTY/RC14  
TDM  
TDM  
TDM  
PCI  
PCI  
TDM  
TDM  
TDM  
V
V
V
V
V
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
Y6  
PCI  
Y7  
RC14  
UTOPIA  
Y8  
UTP_TEN/PCI_PAR  
UTOPIA  
PCI  
UTOPIA  
1
Y9  
Reserved  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
AA1  
AA2  
AA3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
V
V
DDM3  
DDM3  
GND  
GND  
GND  
GND  
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
MDQ13  
V
DDDDR  
DDDDR  
GND  
GND  
MDQ9  
V
V
V
DDDDR  
DDDDR  
V
DDDDR  
MDQ8  
DDDDR  
1
Reserved  
UTP_TD13/PCI_CBE3  
TDM5RSYN/PCI_AD15/  
UTOPIA  
TDM/GPIO  
PCI  
UTOPIA  
V
DDIO  
DDIO  
PCI  
PCI  
PCI  
TDM/GPIO  
TDM/GPIO  
TDM/GPIO  
V
3, 6  
GPIO10  
AA4  
AA5  
AA6  
TDM5TDAT, AT/PCI_AD17/  
GPIO11  
TDM/GPIO  
TDM/GPIO  
V
V
DDIO  
DDIO  
6
TDM5RCLK/PCI_AD13/  
GPIO28  
3, 6  
GND  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
19  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
AA7  
AA8  
TDM4TCLK/PCI_AD10  
TDM4TDAT/PCI_AD11  
TDM  
TDM  
PCI  
PCI  
TDM  
TDM  
V
V
V
DDIO  
DDIO  
DDIO  
DDM3  
AA9  
V
V
DDIO  
AA10  
V
DDM3  
AA11 GND  
AA12  
AA13 GND  
AA14  
AA15 GND  
AA16  
AA17 GND  
AA18  
AA19 GND  
AA20  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
AA21 GND  
GND  
AA22 GND  
GND  
AA23 MDQ15  
AA24 MDQ14  
AA25 MDM1  
AA26 MDQ12  
AA27 MDQS1  
AA28 MDQS1  
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
1
AB1  
AB2  
AB3  
AB4  
Reserved  
UTP_TSOC/RC15  
-
RC15  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
V
V
DDIO  
TDM6RDAT/PCI_AD20/  
GPIO5/IRQ11  
TDM/GPIO/ IRQ  
TDM/GPIO  
PCI  
PCI  
PCI  
PCI  
TDM/GPIO/ IRQ  
TDM/GPIO  
V
V
V
V
3, 6  
AB5  
AB6  
AB7  
TDM5RDAT/PCI_AD14/  
DDIO  
DDIO  
DDIO  
3, 6  
GPIO9  
TDM6TSYN/PCI_AD24/  
GPIO8/ IRQ14  
TDM/GPIO/IRQ  
TDM/GPIO/IRQ  
TDM/GPIO/IRQ  
TDM/GPIO/IRQ  
3, 6  
TDM6RCLK/PCI_AD19/  
GPIO4/IRQ10  
3, 6  
AB8  
AB9  
TDM4RSYN/PCI_AD9  
TDM4RDAT/PCI_AD8  
TDM  
TDM  
PCI  
PCI  
TDM  
TDM  
V
V
DDIO  
DDIO  
AB10 GND  
AB11  
AB12 GND  
AB13  
AB14 GND  
AB15  
AB16 GND  
AB17  
AB18 GND  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
20  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
AB19  
V
V
DDM3  
DDM3  
AB20 GND  
AB21 GND  
GND  
GND  
AB22  
V
V
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
AB23 MECC7  
AB24 MECC1  
AB25 MECC4  
AB26 MECC5  
AB27 MECC2  
AB28 ECC_MDQS  
DDDDR  
1
AC1  
AC2  
AC3  
AC4  
AC5  
Reserved  
UTP_RD9/RC13  
UTP_RD8/RC12  
TDM6TCLK/PCI_AD22  
TDM6RSYN/PCI_AD21/  
RC13  
RC12  
UTOPIA  
UTOPIA  
V
DDIO  
DDIO  
DDIO  
DDIO  
V
TDM  
PCI  
PCI  
TDM  
V
V
TDM/GPIO/IRQ  
TDM/GPIO/IRQ  
3, 6  
GPIO6/ IRQ12  
AC6  
AC7  
AC8  
V
V
V
V
DDIO  
DDIO  
DDIO  
DDIO  
TDM3TSYN/RC11  
RC11  
TDM  
PCI  
PCI_AD23/GPIO7/IRQ13/  
TDM6TDAT /UTP_RMOD  
TDM/GPIO/IRQ  
TDM  
TDM/GPIO/IRQ  
reserved  
UTOPIA  
3, 6  
AC9  
TDM7TSYN/ PCI_AD4  
PCI  
V
DDIO  
AC10  
V
V
DDM3IO  
DDM3IO  
AC11 GND  
AC12  
AC13 GND  
AC14  
AC15 GND  
AC16  
AC17 GND  
AC18  
AC19 GND  
AC20  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
DDM3IO  
DDM3IO  
1
AC21 Reserved  
AC22 MECC6  
AC23 MECC3  
V
V
V
V
V
V
V
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
DDDDR  
AC24 ECC_MDM  
AC25  
AC26 MECC0  
AC27  
V
DDDDR  
V
DDDDR  
AC28 ECC_MDQS  
DDDDR  
1
AD1  
AD2  
AD3  
Reserved  
3, 6  
GPIO1  
GPIO  
V
DDIO  
DDIO  
TMR0/GPIO13  
TIMER/GPIO  
V
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
21  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
3, 6  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
GPIO2  
GND  
GPIO  
V
DDIO  
GND  
TDM1TCLK  
TDM  
TDM  
TDM  
TDM  
V
DDIO  
DDIO  
DDIO  
DDIO  
TDM3TDAT/RC10  
TDM3RSYN/RC9  
TDM3RDAT/RC8  
RC10  
RC9  
RC8  
V
V
V
AD10 GND  
AD11  
AD12 GND  
AD13  
AD14 GND  
AD15  
AD16 GND  
AD17  
AD18 GND  
AD19  
GND  
V
V
25M3  
25M3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
25M3  
25M3  
GND  
V
V
DDM3  
DDM3  
GND  
V
V
25M3  
25M3  
AD20 GND  
GND  
1
AD21 Reserved  
AD22  
AD23 GND  
AD24  
AD25 GND  
AD26  
AD27 GND  
V
V
V
V
V
DDDDR  
DDDDR  
GND  
V
DDDDR  
DDDDR  
GND  
V
DDDDR  
DDDDR  
GND  
AD28  
AE1  
AE2  
AE3  
AE4  
AE5  
AE6  
AE7  
AE8  
AE9  
V
DDDDR  
DDDDR  
1
Reserved  
3, 6  
3, 6  
GPIO0  
GPIO3  
GPIO  
GPIO  
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
V
TDM1RCLK  
TDM  
V
V
V
V
V
V
V
V
TDM1TSYN/RC3  
TDM1TDAT/RC2  
TDM1RSYN/RC1  
TDM3RCLK/RC16  
TDM3TCLK  
RC3  
RC2  
RC1  
RC16  
TDM  
TDM  
TDM  
TDM  
TDM  
AE10 TDM2TDAT/RC6  
RC6  
TDM  
3. 6  
AE11 GPIO21/IRQ1 /SPICLK  
GPIO/IRQ/SPI  
AE12 GND  
GND  
1
AE13 Reserved  
AE14 GND  
GND  
1
AE15 Reserved  
1
AE16 Reserved  
1
AE17 Reserved  
AE18 GND  
GND  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
22  
Freescale Semiconductor  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
AE19 GND  
GND  
AE20  
V
V
DDM3IO  
DDM3IO  
1
AE21 Reserved  
AE22 GND  
AE23 GND  
AE24 GND  
GND  
GND  
GND  
AE25  
AE26 GND  
AE27  
AE28 GND  
V
V
DDDDR  
DDDDR  
GND  
V
V
DDDDR  
DDDDR  
GND  
1
AF1  
AF2  
AF3  
AF4  
Reserved  
V
V
DDIO  
DDIO  
GND  
GND  
TDM0RDAT/  
RCFG_CLKIN_RNG  
RCFG_  
CLKIN_  
RNG  
TDM  
V
DDIO  
AF5  
TDM0TSYN/RCW_SRC2  
RCW_  
SRC2  
TDM  
TDM  
V
DDIO  
AF6  
AF7  
AF8  
AF9  
TDM1RDAT/RC0  
RC0  
RC4  
V
V
DDIO  
V
DDIO  
DDIO  
GND  
GND  
TDM2RDAT/RC4  
TDM  
TDM  
V
DDIO  
DDIO  
DDIO  
AF10 TDM2TCLK  
V
V
3, 6  
AF11 GPIO22/IRQ4 /SPIMOSI  
AF12 GND  
GPIO/IRQ/SPI  
GND  
GND  
AF13 GND  
AF14  
V
V
V
V
DDM3IO  
DDM3IO  
AF15 GND  
GND  
AF16 GND  
GND  
1
AF17 Reserved  
AF18  
V
DDM3IO  
DDM3IO  
AF19 GND  
GND  
1
1
AF20 Reserved  
AF21 Reserved  
AF22 M3_RESET  
AF23 GND  
DDM3IO  
GND  
AF24  
AF25 GND  
AF26  
AF27 GND  
V
V
V
V
DDDDR  
DDDDR  
GND  
V
DDDDR  
DDDDR  
GND  
AF28  
AG1  
AG2  
AG3  
V
DDDDR  
DDDDR  
1
Reserved  
3, 6  
GPIO16/IRQ0  
TDM0TCLK  
GPIO/IRQ  
TDM  
V
DDIO  
DDIO  
V
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
23  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
AG4  
TDM0RSYN/RCW_SRC0  
RCW_  
SRC0  
TDM  
V
DDIO  
AG5  
AG6  
TDM0RCLK  
TDM  
TDM  
V
V
DDIO  
DDIO  
TDM0TDAT/RCW_SRC1  
RCW_  
SRC1  
AG7  
AG8  
AG9  
TDM2TSYN/RC7  
TDM2RCLK  
RC7  
TDM  
TDM  
V
V
V
V
V
DDIO  
DDIO  
DDIO  
DDIO  
TDM2RSYN/RC5  
RC5  
TDM  
3, 6  
AG10 GPIO24/IRQ6 /SPISEL  
GPIO/IRQ/SPI  
GPIO/IRQ/SPI  
3, 6  
AG11 GPIO23/IRQ5 /SPIMISO  
DDIO  
1
AG12 Reserved  
AG13 GND  
AG14 GND  
AG15 GND  
AG16 GND  
GND  
GND  
GND  
GND  
1
AG17 Reserved  
1
AG18 Reserved  
AG19 GND  
AG20 GND  
GND  
GND  
AG21  
V
V
DDM3IO  
DDM3IO  
AG22 GND  
AG23 GND  
AG24 GND  
GND  
GND  
GND  
AG25  
AG26 GND  
AG27  
AG28 GND  
V
V
V
DDDDR  
DDDDR  
GND  
V
DDDDR  
DDDDR  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
AH1  
AH2  
AH3  
AH4  
AH5  
AH6  
AH7  
AH8  
AH9  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
AH10 Reserved  
AH11 Reserved  
AH12 Reserved  
AH13 Reserved  
AH14 Reserved  
AH15 Reserved  
AH16 Reserved  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
24  
Freescale Semiconductor  
Electrical Characteristics  
Table 1. Signal List by Ball Number (continued)  
2
Power-  
On  
I/O Multiplexing Mode  
Ball  
Number  
Ref.  
Supply  
Signal Name  
Reset  
Value  
0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101)  
6 (110)  
7 (111)  
1
AH17 Reserved  
AH18 Reserved  
AH19 Reserved  
AH20 Reserved  
AH21 Reserved  
AH22 Reserved  
AH23 Reserved  
AH24 Reserved  
AH25 Reserved  
AH26 Reserved  
AH27 Reserved  
AH28 Reserved  
1
1
1
1
1
1
1
1
1
1
1
Notes: 1. Reserved signals should be disconnected for compatibility with future revisions of the device.  
2. For signals with same functionality in all modes the appropriate cells are empty.  
3. The choice between GPIO function and other function is by GPIO registers setup. For configuration details, see Chapter 23,  
GPIO in the MSC8144E Reference Manual.  
4. Open-drain signal.  
5. Internal 20 KΩ pull-up resistor.  
6. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register  
programming. See Chapter 23, GPIO of the MSC8144E Reference Manual for configuration details.  
2
Electrical Characteristics  
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications. For additional information, see the MSC8144E Reference Manual.  
2.1  
Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage  
due to high static voltage or electrical fields; however,  
normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for  
example, either GND or V ).  
DD  
In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification  
does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values  
in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction.  
Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another  
specification; adding a maximum to a minimum represents a condition that can never exist.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
25  
Electrical Characteristics  
Table 2 describes the maximum electrical ratings for the MSC8144E.  
Table 2. Absolute Maximum Ratings  
Symbol  
Rating  
Value  
Unit  
Core supply voltage  
PLL supply voltage  
V
–0.3 to 1.1  
–0.3 to 1.1  
V
V
dd  
V
V
V
DDPLL0  
DDPLL1  
DDPLL2  
M3 memory Internal voltage  
DDR memory supply voltage  
V
–0.3 to 1.32  
V
DDM3  
V
DDDDR  
DDR mode  
DDR2 mode  
–0.3 to 2.75  
–0.3 to 1.98  
V
V
DDR reference voltage  
MV  
–0.3 to 0.51 × V  
V
REF  
DDDDR  
Input DDR voltage  
V
–0.3 to V  
+ 0.3  
DDDDR  
V
V
INDDR  
DDGE1  
Ethernet 1 I/O voltage  
V
–0.3 to 3.465  
Input Ethernet 1 I/O voltage  
Ethernet 2 I/O voltage  
V
–0.3 to V  
+ 0.3  
V
V
INGE1  
DDGE1  
V
–0.3 to 3.465  
DDGE2  
Input Ethernet 2I/O voltage  
V
–0.3 to V  
+ 0.3  
V
V
INGE2  
DDGE2  
I/O voltage excluding Ethernet, DDR, M3, and RapidIO lines  
V
–0.3 to 3.465  
DDIO  
Input I/O voltage  
V
–0.3 to V  
+ 0.3  
V
V
INIO  
DDIO  
M3 memory I/O and M3 memory charge pump voltage  
V
–0.3 to 2.75  
DDM3IO  
V
25M3  
Input M3 memory I/O voltage  
Rapid I/O C voltage  
V
V
V
–0.3 to V  
+ 0.3  
V
V
INM3IO  
DDSXC  
DDSXP  
DDM3IO  
–0.3 to 1.21  
Rapid I/O P voltage  
–0.3 to 1.26  
–0.3 to 1.21  
–40 to 105  
–55 to +150  
V
Rapid I/O PLL voltage  
V
V
DDRIOPLL  
Operating temperature  
T
°C  
°C  
J
Storage temperature range  
Notes: 1. Functional operating conditions are given in Table 3.  
T
STG  
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the listed limits may affect device reliability or cause permanent damage.  
3. PLL supply voltage is specified at input of the filter and not at pin of the MSC8144E (see Figure 44)  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
26  
Freescale Semiconductor  
Electrical Characteristics  
2.2  
Recommended Operating Conditions  
Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.  
Table 3. Recommended Operating Conditions  
Rating  
Symbol  
Min  
Nominal  
Max  
Unit  
Core supply voltage  
PLL supply voltage  
V
0.97  
0.97  
1.0  
1.0  
1.05  
1.05  
V
V
DD  
V
V
V
DDPLL0  
DDPLL1  
DDPLL2  
M3 memory Internal voltage  
DDR memory supply voltage  
V
1.213  
1.25  
1.313  
V
DDM3  
V
DDDDR  
DDR mode  
DDR2 mode  
2.375  
1.71  
2.5  
1.8  
2.625  
1.89  
0.51 × V  
DDDDR  
V
V
V
DDR reference voltage  
MV  
0.49 × V  
0.5 × V  
REF  
DDDDR  
DDDDR  
Ethernet 1 I/O voltage  
V
DDGE1  
2.5 V mode  
3.3 V mode  
2.375  
3.135  
2.5  
3.3  
2.625  
3.465  
V
V
Ethernet 2 I/O voltage  
V
DDGE2  
2.5 V mode  
3.3 V mode  
2.375  
3.135  
2.5  
3.3  
2.625  
3.465  
V
V
I/O voltage excluding Ethernet,  
DDR, M3, and RapidIO lines  
V
3.135  
2.375  
0.95  
3.3  
2.5  
1.0  
3.465  
2.625  
1.05  
V
V
V
DDIO  
M3 memory I/O and M3 charge  
pump voltage  
V
DDM3IO  
V
25M3  
Rapid I/O C voltage  
Rapid I/O P voltage  
V
V
DDSXC  
DDSXP  
Short run (haul) mode  
Long run (haul) mode  
0.95  
1.14  
1.0  
1.2  
1.05  
1.26  
V
V
Rapid I/O PLL voltage  
V
0.95  
1.0  
1.05  
V
DDRIOPLL  
Operating temperature range:  
Standard  
Extended  
T
0
–40  
90  
105  
°C  
°C  
°C  
J
T
A
T
J
Note:  
PLL supply voltage is specified at input of the filter and not at pin of the MSC8144E (see Figure 44).  
2.3  
Default Output Driver Characteristics  
Table 4 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.  
Table 4. Output Drive Impedance  
Driver Type  
Output Impedance (Ω)  
DDR signal  
18  
DDR2 signal  
18  
35 (half strength mode)  
PCI signals  
25  
100  
50  
Rapid I/O signals  
Other signals  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
27  
Electrical Characteristics  
2.4  
Thermal Characteristics  
Table 5 describes thermal characteristics of the MSC8144E for the FC-PBGA packages.  
Table 5. Thermal Characteristics for the MSC8144E  
FC-PBGA  
29 × 29 mm5  
Characteristic  
Symbol  
Unit  
Natural  
200 ft/min  
Convection  
(1 m/s) airflow  
1, 2  
Junction-to-ambient  
R
R
R
R
20  
15  
7
15  
12  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJA  
θJB  
θJC  
1, 3  
Junction-to-ambient, four-layer board  
4
Junction-to-board (bottom)  
5
Junction-to-case  
0.8  
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the active surface of the die and the case top surface determined by the cold plate method (MIL  
SPEC-883 Method 1012.1) with the calculated case temperature.  
2.5  
Power Characteristics  
The estimated typical power dissipation for MSC8144E versus the core frequency is shown in Table 6.  
Table 6. Power Dissipation  
Extended Core Frequency  
Core Frequency  
Typical  
Unit  
266  
400  
533  
667  
800  
500  
667  
833  
1000  
400  
600  
800  
1000  
500  
750  
1000  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
W
333  
400  
500  
W
W
W
Note:  
Measured for 1.0 V core at 25°C junction temperature.  
The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No  
peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
28  
Freescale Semiconductor  
Electrical Characteristics  
all four cores. It was created using CodeWarrior® 3.0. These values are provided as examples only. Power consumption is  
application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining  
proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Section 3 of  
this document.  
At allowable voltage levels, Table 7 lists the estimated power dissipation on the 1.0-V AVDD supplies for the MSC8144E PLLs.  
Table 7. MSC8144E PLLs Power Dissipation  
PLL supply  
Typical  
Maximum  
Unit  
V
V
V
TBD  
TBD  
TBD  
10  
10  
10  
mW  
mW  
mW  
DDPLL0  
DDPLL1  
DDPLL2  
Note:  
Typical value is based on V  
= 1.0 V, T = 70°C, T = 105°C.  
DDPLLX A J  
2.6  
DC Electrical Characteristics  
This section describes the DC electrical characteristics for the MSC8144E.  
2.6.1  
DDR SDRAM DC Electrical Characteristics  
This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8144E.  
Note: DDR SDRAM uses VDDDDR(typ) = 2.5 V and DDR2 SDRAM uses VDDDDR(typ) = 1.8 V.  
2.6.1.1  
DDR2 (1.8 V) SDRAM DC Electrical Characteristics  
Table 8 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MSC8144E when  
VDDDDR(typ) = 1.8 V.  
Table 8. DDR2 SDRAM DC Electrical Characteristics for VDDDDR (typ) = 1.8 V  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
1
I/O supply voltage  
V
1.7  
1.9  
V
V
DDDDR  
2
I/O reference voltage  
MV  
0.49 × V  
0.51 × V  
DDDDR  
REF  
TT  
DDDDR  
3
I/O termination voltage  
Input high voltage  
Input low voltage  
V
MV  
– 0.04  
MV  
+ 0.04  
V
REF  
REF  
V
MV  
+ 0.125  
V
+ 0.3  
V
IH  
REF  
DDDDR  
V
I
–0.3  
MV  
– 0.125  
V
IL  
REF  
4
Output leakage current  
Output high current (V  
–50  
–13.4  
13.4  
50  
μA  
mA  
mA  
OZ  
OH  
= 1.420 V)  
I
OUT  
Output low current (V  
= 0.280 V)  
I
OL  
OUT  
Notes: 1.  
V
is expected to be within 50 mV of the DRAM V at all times.  
DDDDR DD  
2. MV  
is expected to be equal to 0.5 × V  
, and to track V  
DC variations as measured at the receiver.  
DDDDR  
REF  
DDDDR  
Peak-to-peak noise on MV  
may not exceed 2% of the DC value.  
REF  
3.  
V
is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
TT  
equal to MV  
. This rail should track variations in the DC level of V  
.
REF  
DDDDR  
4. Output leakage is measured with all outputs are disabled, 0 V V  
V  
.
DDDDR  
OUT  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
29  
Electrical Characteristics  
Table 9 provides the DDR capacitance when VDDDDR(typ) = 1.8 V.  
Table 9. DDR2 SDRAM Capacitance for VDDDDR(typ) = 1.8 V  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
C
6
8
pF  
pF  
IO  
C
0.5  
DIO  
Note:  
This parameter is sampled. V  
= 1.8 V 0.090 V, f = 1 MHz, T = 25°C, V  
= V  
/2, V  
(peak-to-peak) = 0.2 V.  
DDDDR  
A
OUT  
DDDDR  
OUT  
2.6.1.2  
DDR (2.5V) SDRAM DC Electrical Characteristics  
Table 10 provides the recommended operating conditions for the DDR SDRAM component(s) of the MSC8144E when  
VDDDDR(typ) = 2.5 V.  
Table 10. DDR SDRAM DC Electrical Characteristics for VDDDDR (typ) = 2.5 V  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
1
I/O supply voltage  
V
2.3  
2.7  
V
V
DDDDR  
2
I/O reference voltage  
MV  
0.49 × V  
0.51 × V  
DDDDR  
REF  
TT  
DDDDR  
3
I/O termination voltage  
Input high voltage  
Input low voltage  
V
MV  
– 0.04  
MV  
+ 0.04  
V
REF  
REF  
REF  
V
MV  
+ 0.15  
V
+ 0.3  
V
IH  
DDDDR  
V
I
–0.3  
MV  
– 0.15  
REF  
V
IL  
4
Output leakage current  
Output high current (V  
–50  
–16.2  
16.2  
50  
μA  
mA  
mA  
OZ  
OH  
= 1.95 V)  
I
OUT  
Output low current (V  
= 0.35 V)  
I
OL  
OUT  
Notes: 1.  
V
is expected to be within 50 mV of the DRAM V at all times.  
DDDDR DD  
2. MV  
is expected to be equal to 0.5 × V  
, and to track V  
DC variations as measured at the receiver.  
DDDDR  
REF  
DDDDR  
Peak-to-peak noise on MV  
may not exceed 2% of the DC value.  
REF  
3.  
V
is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
TT  
equal to MV  
. This rail should track variations in the DC level of V  
.
REF  
DDDDR  
4. Output leakage is measured with all outputs are disabled, 0 V V  
V  
.
DDDDR  
OUT  
Table 11 provides the DDR capacitance when VDDDDR (typ) = 2.5 V.  
Table 11. DDR SDRAM Capacitance for VDDDDR (typ) = 2.5 V  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note: This parameter is sampled. V  
C
6
8
pF  
pF  
IO  
C
0.5  
DIO  
= 2.5 V 0.125 V, f = 1 MHz, T = 25°C, V  
= V  
/2, V  
(peak-to-peak) = 0.2 V.  
OUT  
DDDDR  
A
OUT  
DDDDR  
Table 12 lists the current draw characteristics for MVREF  
.
Table 12. Current Draw Characteristics for MVREF  
Parameter / Condition  
Symbol  
Min  
Max  
Unit  
Current draw for MV  
I
500  
μA  
REF  
MVREF  
Note:  
The voltage regulator for MV  
must be able to supply up to 500 μA current.  
REF  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
30  
Freescale Semiconductor  
Electrical Characteristics  
2.6.2  
Serial RapidIO DC Electrical Characteristics  
DC receiver logic levels are not defined since the receiver is AC-coupled.  
2.6.2.1  
DC Requirements for SerDes Reference Clocks  
The SerDes reference clocks SRIO_REF_CLK and SRIO_REF_CLK are AC-coupled differential inputs. Each differential  
clock input has an internal 50 Ω termination to GNDSXC. The reference clock must be able to drive this termination. The  
recommended minimum operating voltage is –0.4 V; the recommended maximum operating voltage is 1.32 V; and the  
maximum absolute voltage is 1.72 V.  
The maximum average current allowed in each input is 8 mA. This current limitation sets the maximum common mode input  
voltage to be less than 0.4 V (0.4 V/50 Ω = 8 mA) while the minimum common mode input level is GNDSXC. For example, a  
clock with a 50/50 duty cycle can be driven by a current source output that ranges from 0 mA to 16 mA (0–0.8 V). The input is  
AC-coupled internally, so, therefore, the exact common mode input voltage is not critical.  
Note: This internal AC-couple network does not function correctly with reference clock frequencies below 90 MHz.  
If the device driving the SRIO_REF_CLK inputs cannot drive 50 Ω to GNDSXC, or if it exceeds the maximum input current  
limitations, then it must use external AC-coupling. The minimum differential peak-to-peak amplitude of the input clock is 0.4 V  
(0.2 V peak-to-peak per phase). The maximum differential peak-to-peak amplitude of the input clock is 1.6 V peak-to-peak (see  
Figure 5. The termination to GNDSXC allows compatibility with HCSL type reference clocks specified for PCI-Express  
applications. Many other low voltage differential type outputs can be used but will probably need to be AC-coupled due to the  
limited common mode input range. LVPECL outputs can produce too large an amplitude and may need to be source terminated  
with a divider network to reduce the amplitude. The amplitude of the clock must be at least a 400 mV differential peak-peak for  
single-ended clock. If driven differentially, each signal wire needs to drive 100 mV around common mode voltage. The  
differential reference clock (SRIO_REF_CLK/ SRIO_REF_CLK) input is HCSL-compatible DC coupled or LVDS-compatible  
with AC-coupling.  
SRIO_REF_CLK  
50 Ω  
GNDSXC  
50 Ω  
SRIO_REF_CLK  
Figure 5. SerDes Reference Clocks Input Stage  
2.6.2.2  
Spread Spectrum Clock  
SRIO_REF_CLK/ SRIO_REF_CLK is designed to work with a spread spectrum clock (0 to 0.5% spreading at 3033 kHz rate  
is allowed), assuming both ends have same reference clock. For better results use a source without significant unintended  
modulation.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
31  
Electrical Characteristics  
2.6.3  
PCI DC Electrical Characteristics  
Table 13. PCI DC Electrical Characteristics  
Characteristic Symbol Min  
Max  
Unit  
Supply voltage 3.3 V  
Input high voltage  
Input low voltage  
V
3.135  
0.5 × V  
3.465  
3.465  
V
V
V
DDPCI  
V
IH  
DDPCI  
V
–0.5  
0.7 × V  
0.3 × V  
DDPCI  
IL  
2
Input Pull-up voltage  
V
IPU  
DDPCI  
Input leakage current, 0<V <V  
I
IN  
–30  
–30  
–30  
–30  
30  
30  
30  
30  
μA  
μA  
μA  
μA  
V
IN  
DDPCI  
Tri-state (high impedance off state) leakage current, 0<V <V  
I
OZ  
IN  
DDPCI  
2
Signal low input current, V = 0.4 V  
I
IL  
L
2
Signal high input current, V = 2.0 V  
I
IH  
H
Output high voltage, I = –0.5 μA,  
V
0.9 × V  
DDPCI  
OH  
OH  
except open drain pins  
Output low voltage, I = 1.5 μA  
V
0.1 × V  
DDPCI  
V
OL  
OL  
2
Input Pin Capacitance  
C
10  
pF  
IN  
Notes: 1. See Figure 6 for undershoot and overshoot voltages.  
2. Not tested. Guaranteed by design.  
2.6.4  
TDM DC Electrical Characteristics  
Table 14. TDM DC Electrical Characteristics  
Characteristic Symbol Min  
Max  
Unit  
Supply voltage 3.3 V  
Input high voltage  
Input low voltage  
V
3.135  
2.0  
3.465  
3.465  
0.8  
30  
V
V
DDTDM  
V
IH  
V
I
–0.3  
–30  
–30  
–30  
2.4  
V
IL  
Input leakage current, 0<V <V  
μA  
μA  
μA  
V
IN  
DDTDM  
IN  
Tri-state (high impedance off state) leakage current,  
I
30  
OZ  
1
Signal input current,  
I
30  
L
Output high voltage, I = –1.6 mA,  
V
OH  
OH  
Output low voltage, I = 0.4mA  
V
0.4  
8
V
OL  
OL  
1
Pin Capacitance  
Cp  
pF  
Note:  
1. Not tested. Guaranteed by design.  
2.6.5  
2.6.5.1  
Ethernet DC Electrical Characteristics  
MII, SMII and RMII DC Electrical Characteristics  
Table 15. MII, SMII and RMII DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply voltage 3.3 V  
V
V
3.135  
3.465  
V
DDGE1  
DDGE2  
Input high voltage  
Input low voltage  
V
2.0  
–0.3  
–30  
3.465  
0.8  
V
V
IH  
V
I
IL  
Input leakage current, V = supply voltage  
30  
μA  
IN  
IN  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
32  
Freescale Semiconductor  
Electrical Characteristics  
Table 15. MII, SMII and RMII DC Electrical Characteristics (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
Signal low input current, V = 0.4 V  
I
–30  
–30  
2.4  
30  
30  
μA  
μA  
V
IL  
L
1
Signal high input current, V = 2.4 V  
I
IH  
H
Output high voltage, I = –4 mA,  
V
3.465  
0.4  
8
OH  
OH  
Output low voltage, I = 4mA  
V
V
OL  
OL  
1
Input Pin Capacitance  
C
pF  
IN  
Note:  
1. Not tested. Guaranteed by design.  
2.6.5.2  
RGMII DC Electrical Characteristics  
Table 16. RGMII DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply voltage 2.5V  
V
V
2.375  
2.625  
V
DDGE1  
DDGE2  
Input high voltage  
Input low voltage  
V
1.7  
–0.3  
–30  
–30  
–30  
2.0  
2.625  
0.7  
30  
V
V
IH  
V
I
IL  
Input leakage current, V = supply voltage  
μA  
μA  
μA  
V
IN  
IN  
1
Signal low input current, V = 0.4 V  
I
30  
IL  
L
1
Signal high input current, V = 2.4 V  
I
30  
IH  
H
Output high voltage, I = –1 mA,  
V
2.625  
0.4  
8
OH  
OH  
Output low voltage, I = 1 mA  
V
V
OL  
OL  
1
Input Pin Capacitance  
C
pF  
IN  
Note:  
1. Not tested. Guaranteed by design.  
2.6.6  
ATM/UTOPIA/POS DC Electrical Characteristics  
Table 17. ATM/UTOPIA/POS DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Input high voltage  
Input low voltage  
V
3.135  
2.0  
3.465  
3.465  
0.8  
V
V
DDIO  
V
IH  
V
I
–0.3  
–30  
–30  
–30  
2.4  
V
IL  
Input leakage current, V = supply voltage  
30  
μA  
μA  
μA  
V
IN  
IN  
1
Signal low input current, V = 0.4 V  
I
30  
IL  
L
1
Signal high input current, V = 2.4 V  
I
30  
IH  
H
Output high voltage, I = –4 mA,  
V
3.465  
0.5  
OH  
OH  
Output low voltage, I = 4 mA  
V
V
OL  
OL  
Notes: 1. Not tested. Guaranteed by design.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
33  
Electrical Characteristics  
2.6.7  
SPI DC Electrical Characteristics  
Table 18 provides the SPI DC electrical characteristics.  
Table 18. SPI DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
V
2.0  
OV +0.3  
V
V
IH  
DD  
V
I
–0.3  
0.8  
30  
IL  
μA  
V
IN  
Output high voltage  
Output low voltage  
V
I
= –4.0 mA  
2.4  
OH  
OH  
V
I
= 4.0 mA  
0.5  
V
OL  
OL  
2
2.6.8  
GPIO, UART, TIMER, EE, STOP_BS, I C, IRQn, NMI_OUT, INT_OUT,  
CLKIN, JTAG Ports DC Electrical Characteristics  
Table 19. GPIO, UART, Timer, EE, STOP_BS, I2C, IRQn, NMI_OUT, INT_OUT, CLKIN, and JTAG Port  
DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Input high voltage  
Input low voltage  
V
3.135  
2.0  
3.465  
3.465  
0.8  
V
V
DDIO  
V
IH  
V
I
–0;3  
–30  
–30  
–30  
–30  
2.4  
V
IL  
Input leakage current, V = supply voltage  
30  
μA  
μA  
μA  
μA  
V
IN  
IN  
Tri-state (high impedance off state) leakage current, V = supply voltage  
I
30  
IN  
OZ  
2
Signal low input current, V = 0.4 V  
I
30  
IL  
L
2
Signal high input current, V = 2.0 V  
I
30  
IH  
H
Output high voltage, I = –2 mA,  
V
3.465  
OH  
OH  
except open drain pins  
Output low voltage, I = 3.2 mA  
V
0.4  
V
OL  
OL  
Notes: 1. See Figure 6 for undershoot and overshoot voltages.  
2. Not tested. Guaranteed by design.  
VDDIO + 17%  
VIH  
V
DDIO + 5%  
VDDIO  
GND  
GND – 0.3 V  
GND – 0.7 V  
VIL  
Must not exceed 10% of clock period  
Figure 6. Overshoot/Undershoot Voltage for VIH and VIL  
2.7  
AC Timings  
The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
34  
Freescale Semiconductor  
Electrical Characteristics  
2.7.1  
Start-Up Timing  
Starting the device requires coordination among several input sequences including clocking, reset, and power. Section 2.7.2  
describes the clocking characteristics. Section 2.7.3 describes the reset and power-up characteristics. You must use the  
following guidelines when starting up an MSC8144E device:  
PORESET and TRST must be asserted externally for the duration of the power-up sequence using the VDDIO (3.3 V)  
supply. See Table 24 for timing. TRST deassertion does not have to be synchronized with PORESET deassertion.  
During functional operation when JTAG is not used, TRST can be asserted and remain asserted after the power ramp.  
Note: For applications that use M3 memory, M3_RESET should replicate the PORESET sequence timing, but using the  
VDDM3IO (2.5 V) supply. See Section 3.1.1, Power-on Sequence for additional design information.  
CLKIN should start toggling at least 32 cycles before the PORESET deassertion to guarantee correct device operation  
(see Figure 7). 32 cycles should be accounted only after VDDIO reaches its nominal value.  
CLKIN and PCI_CLK_IN should either be stable low during the power-up of VDDIO supply and start their swings after  
power-up or should swing within VDDIO range during VDDIO power-up., so their amplitude grows as VDDIO grows  
during power-up.  
Figure 7 shows a sequence in which VDDIO is raised after VDD and CLKIN begins to toggle with the raise of VDDIO supply.  
V
= Nominal  
DDIO  
VDD = Nominal  
1
V
Nominal  
3.3 V  
1.0 V  
DDIO  
VDD Nominal  
Time  
PORESET/TRST asserted  
VDD applied  
PORESET  
CLKIN starts toggling  
applied  
V
DDIO  
Figure 7. Start-Up Sequence with VDD Raised Before VDDIO with CLKIN Started with VDDIO  
2.7.2  
Clock and Timing Signals  
The following sections include a description of clock signal characteristics. Table 20 shows the maximum frequency values for  
internal (Core, Reference, Bus and DSI) and external (CLKIN, PCI_CLK_IN and CLKOUT. The user must ensure that  
maximum frequency values are not exceeded.  
Table 20. Clock Frequencies  
Characteristic  
Symbol  
MIN  
Max  
Unit  
CLKIN frequency  
F
25  
25  
40  
40  
150  
150  
60  
MHz  
MHz  
%
CLKIN  
PCI_CLK_IN  
PCI_CLK_IN frequency  
CLKIN duty cycle  
F
D
CLKIN  
PCI_CLK_IN duty cycle  
D
60  
%
PCI_CLK_IN  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
35  
Electrical Characteristics  
Table 21. Clock Parameters  
Characteristic  
Min  
Max  
Unit  
CLKIN slew rate (20%-80%)  
1
1
V/ns  
V/ns  
PCI_CLK_IN slew rate (20%-80%)  
2.7.3  
Reset Timing  
The MSC8144E has several inputs to the reset logic:  
Power-on reset (PORESET)  
External hard reset (HRESET)  
External soft reset (SRESET)  
Software watchdog reset  
JTAG reset  
RapidIO reset  
Software hard reset  
Software soft reset  
All MSC8144E reset sources are fed into the reset controller, which takes different actions depending on the source of the reset.  
The reset status register indicates the most recent sources to cause a reset. Table 22 describes the reset sources.  
Table 22. Reset Sources  
Name  
Direction  
Description  
Power-on reset  
(PORESET)  
Input  
Initiates the power-on reset flow that resets the MSC8144E and configures various attributes of the  
MSC8144E. On PORESET, the entire MSC8144E device is reset. All PLLs states is reset, HRESET  
and SRESET are driven, the extended cores are reset, and system configuration is sampled. The  
reset source and word are configured only when PORESET is asserted.  
External hard  
reset (HRESET)  
Input/ Output  
Initiates the hard reset flow that configures various attributes of the MSC8144E. While HRESET is  
asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and  
SRESET are driven, the extended cores are reset, and system configuration is sampled. Note that  
the RCW (reset Configuration Word) is not reloaded during HRESET assertion after out of power on  
reset sequence. The reset configuration word is described in the Reset chapter in the MSC8144E  
Reference Manual.  
External soft reset  
(SRESET)  
Input/ Output  
Internal  
Initiates the soft reset flow. The MSC8144E detects an external assertion of SRESET only if it occurs  
while the MSC8144E is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET  
is driven, the extended cores are reset, and system configuration is maintained.  
Host reset  
command through  
the TAP  
When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the  
soft reset signal and an internal soft reset sequence is generated.  
Software  
watchdog reset  
Internal  
Internal  
Internal  
Internal  
When the MSC8144E watchdog count reaches zero, a software watchdog reset is signalled. The  
enabled software watchdog event then generates an internal hard reset sequence.  
RapidIO reset  
When the RapidIO logic asserts the RapidIO hard reset signal, it generates an internal hard reset  
sequence.  
Software hard  
reset  
A hard reset sequence can be initialized by writing to a memory mapped register (RCR)  
Software soft reset  
A soft reset sequence can be initialized by writing to a memory mapped register (RCR)  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
36  
Freescale Semiconductor  
Electrical Characteristics  
Table 23 summarizes the reset actions that occur as a result of the different reset sources.  
Table 23. Reset Actions for Each Reset Source  
Power-OnReset  
Hard Reset (HRESET)  
(PORESET)  
Soft Reset (SRESET)  
Reset Action/Reset Source  
External or Internal  
External or  
internal  
Software  
JTAG Command:  
EXTEST, CLAMP, or  
HIGHZ  
External only  
(Software Watchdog,  
Software or RapidIO)  
Configuration pins sampled (Refer to  
Yes  
No  
No  
No  
Section 2.7.3.2 for details).  
PLL state reset  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Select reset configuration source  
System reset configuration write  
HRESET driven  
No  
No  
No  
Yes  
Yes  
No  
No  
IPBus modules reset (TDM, UART, SWT,  
DDRC, IPBus master, GIC, HS, and GPIO)  
Yes  
Yes  
SRESET driven  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Depends on command  
Yes  
Extended cores reset  
CLASS registers reset  
Some  
Some registers  
registers  
Timers, Performance Monitor  
Packet Processor, PCI, DMA  
Yes  
Yes  
Yes  
Yes  
No  
No  
Most  
Most registers  
registers  
2.7.3.1  
Power-On Reset (PORESET) Pin  
Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 32 CLKIN cycles after  
VDD and VDDIO are both at their nominal levels.  
2.7.3.2  
Reset Configuration  
The MSC8144E has two mechanisms for writing the reset configuration:  
Through the I2C port  
Through external pins  
Through internal hard coded  
Twenty-three signals (see Section 1 for signal description details) are sampled during the power-on reset sequence to define the  
Reset Word Configuration Source and operating conditions:  
RCW_SRC[2–0]  
RC[16–0]  
The RCFG_CLKIN_RNG pin must be valid during power-on or hard reset sequence. The STOP_BS pin must be always valid  
and is also sampled during power-on reset sequence for RCW loading from an I2C EEPROM.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
37  
Electrical Characteristics  
2.7.3.3 Reset Timing Tables  
Table 24 and Figure 8 describe the reset timing for a reset configuration.  
Table 24. Timing for a Reset Configuration Write  
No.  
Characteristics  
Expression  
Max  
Min  
Unit  
1
Required external PORESET duration minimum  
32/CLKIN  
25 MHz <= CLKIN < 44 MHz  
44 MHz <= CLKIN < 66 MHz  
66 MHz <= CLKIN < 100 MHz  
100 MHz <= CLKIN < 133 MHz  
1280  
728  
485  
320  
727  
484  
320  
241  
ns  
ns  
ns  
ns  
2
Delay from de-assertion of external PORESET to HRESET deassertion for  
external pins and hard coded RCW  
25 MHz <= CLKIN < 66 MHz  
66 MHz <= CLKIN <= 133 MHz  
15369/CLKIN  
34825/CLKIN  
615  
528  
233  
262  
μs  
μs  
Delay from de-assertion of external PORESET to HRESET deassertion for  
2
loading RCW the I C interface  
25 MHz <= CLKIN < 44 MHz  
44 MHz <= CLKIN < 66 MHz  
66 MHz <= CLKIN < 100 MHz  
100 MHz <= CLKIN < 133 MHz  
92545/CLKIN  
107435/CLKIN  
124208/CLKIN  
157880/CLKIN  
3702  
2441  
1882  
1579  
2103  
1627  
1242  
1187  
μs  
μs  
μs  
μs  
3
Delay from HRESET deassertion to SRESET deassertion  
REFCLK = 25 MHz to 133 MHz  
16/CLKIN  
640  
120  
ns  
Note:  
Timings are not tested, but are guaranteed by design.  
RCW_SRC2,RCW_SRC1,RCW_SRC0,STOP_BS and RCFG_CLKIN_RNG  
pins must be valid  
1
PORESET  
Input  
HRESET  
Output (I/O)  
2
SRESET  
Output (I/O)  
Reset configuration write  
sequence during this  
period.  
3
Figure 8. Timing for a Reset Configuration Write  
See also Reset Errata for PLL lock and reset duration.  
2.7.4  
DDR SDRAM AC Timing Specifications  
This section describes the AC electrical characteristics for the DDR SDRAM interface.  
2.7.4.1  
DDR SDRAM Input Timings  
Table 25 provides the input AC timing specifications for the DDR SDRAM when VDDDDR (typ) = 2.5 V.  
Table 25. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface  
Parameter  
Symbol  
Min  
Max  
– 0.31  
REF  
Unit  
AC input low voltage  
V
MV  
V
IL  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
38  
Freescale Semiconductor  
Electrical Characteristics  
Table 25. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface (continued)  
Parameter  
Symbol  
Min  
+ 0.31  
REF  
Max  
Unit  
AC input high voltage  
Note: At recommended operating conditions with V  
V
MV  
V
IH  
of 2.5 5%.  
DDDDR  
Table 26 provides the input AC timing specifications for the DDR SDRAM when VDDDDR (typ) = 1.8 V.  
Table 26. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
Parameter  
Symbol  
Min  
Max  
– 0.25  
REF  
Unit  
AC input low voltage  
AC input high voltage  
V
MV  
V
V
IL  
V
MV  
+ 0.25  
REF  
IH  
Note:  
At recommended operating conditions with V  
of 1.8 5%.  
DDDDR  
Table 27 provides the input AC timing specifications for the DDR SDRAM interface.  
Table 27. DDR SDRAM Input AC Timing Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
1
Controller Skew for MDQS—MDQ/MECC/MDM  
t
CISKEW  
400 MHz  
333 MHz  
266 MHz  
200 MHz  
–365  
–390  
–428  
–490  
365  
390  
428  
490  
ps  
ps  
ps  
ps  
Notes: 1.  
t
represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is  
CISKEW  
captured with MDQS[n]. Subtract this value from the total timing budget.  
2. At recommended operating conditions with V (1.8 V or 2.5 V) 5%  
DDDDR  
2.7.4.2  
DDR SDRAM Output AC Timing Specifications  
Table 28 provides the output AC timing specifications for the DDR SDRAM interface.  
Table 28. DDR SDRAM Output AC Timing Specifications  
1
Parameter  
Symbol  
Min  
Max  
Unit  
2
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)  
t
3
10  
ns  
MCK  
3
ADDR/CMD output setup with respect to MCK  
t
DDKHAS  
DDKHAX  
DDKHCS  
DDKHCX  
400 MHz  
333 MHz  
266 MHz  
200 MHz  
1.95  
2.40  
3.15  
4.20  
ns  
ns  
ns  
ns  
3
ADDR/CMD output hold with respect to MCK  
t
400 MHz  
333 MHz  
266 MHz  
200 MHz  
1.95  
2.40  
3.15  
4.20  
ns  
ns  
ns  
ns  
3
MCSn output setup with respect to MCK  
t
t
400 MHz  
333 MHz  
266 MHz  
200 MHz  
1.95  
2.40  
3.15  
4.20  
ns  
ns  
ns  
ns  
3
MCSn output hold with respect to MCK  
400 MHz  
333 MHz  
266 MHz  
200 MHz  
1.95  
2.40  
3.15  
4.20  
ns  
ns  
ns  
ns  
4
MCK to MDQS Skew  
t
–0.6  
0.6  
ns  
DDKHMH  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
39  
Electrical Characteristics  
Table 28. DDR SDRAM Output AC Timing Specifications (continued)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
5
MDQ/MECC/MDM output setup with respect to MDQS  
t
DDKHDS,  
400 MHz  
333 MHz  
266 MHz  
200 MHz  
t
700  
900  
1100  
1200  
ps  
ps  
ps  
ps  
DDKLDS  
5
MDQ/MECC/MDM output hold with respect to MDQS  
t
DDKHDX,  
400 MHz  
333 MHz  
266 MHz  
200 MHz  
t
700  
900  
1100  
1200  
ps  
ps  
ps  
ps  
DDKLDX  
6
MDQS preamble start  
t
–0.5 × t  
– 0.6  
–0.5 × t +0.6  
MCK  
ns  
ns  
DDKHMP  
MCK  
6
MDQS epilogue end  
t
–0.6  
0.6  
DDKHME  
Notes: 1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state) (reference)(state)  
inputs and t  
for outputs. Output hold time can be read as DDR timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
symbolizes DDR timing (DD) for the time t memory clock reference (K) goes from the high (H) state until outputs  
t
DDKHAS  
MCK  
(A) are setup (S) or output valid time. Also, t  
symbolizes DDR timing (DD) for the time t  
memory clock reference  
DDKLDX  
MCK  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals 0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the  
ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by  
1/2 applied cycle.  
4. Note that t  
follows the symbol conventions described in note 1. For example, t  
describes the DDR timing (DD)  
DDKHMH  
DDKHMH  
from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t  
can be modified through control  
DDKHMH  
of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the  
CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same  
adjustment value. See the MSC8144 Reference Manual for a description and understanding of the timing modifications  
enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t  
follows the  
DDKHMP  
symbol conventions described in note 1.  
7. At recommended operating conditions with V  
(1.8 V or 2.5 V) 5%.  
DDDDR  
Figure 9 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH).  
MCK[n]  
MCK[n]  
tMCK  
tDDKHMHmax) = 0.6 ns  
MDQS  
tDDKHMH(min) = –0.6 ns  
MDQS  
Figure 9. Timing for tDDKHMH  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
40  
Freescale Semiconductor  
Electrical Characteristics  
Figure 10 shows the DDR SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS, tDDKHCS  
tDDKHAX ,tDDKHCX  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 10. DDR SDRAM Output Timing  
Figure 11 provides the AC test load for the DDR bus.  
VDDDDR/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 11. DDR AC Test Load  
2.7.5  
Serial RapidIO Timing and SGMII Timing  
2.7.5.1  
AC Requirements for SRIO_REF_CLK and SRIO_REF_CLK  
Table 29 lists AC requirements.  
Table 29. SDn_REF_CLK and SDn_REF_CLK AC Requirements  
Parameter Description  
Symbol  
Min  
Typical  
Max  
Units  
Comments  
REFCLK cycle time  
t
10 (8, 6.4)  
ns  
8 ns applies only to serial RapidIO system  
with 125-MHz reference clock. 6.4 ns  
applies only to serial RapidIO systems with  
a 156.25 MHz reference clock.  
REF  
Note:  
SGMII uses the 8 ns (125 MHz)  
value only.  
REFCLK cycle-to-cycle  
jitter  
t
80  
40  
ps  
ps  
Difference in the period of any two  
adjacent REFCLK cycles  
REFCJ  
Phase jitter  
t
–40  
Deviation in edge location with respect to  
mean edge location  
REFPJ  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
41  
Electrical Characteristics  
2.7.5.2  
Signal Definitions  
LP-Serial links use differential signaling. This section defines terms used in the description and specification of differential  
signals. Figure 12 shows how the signals are defined. The figure shows waveforms for either a transmitter output (TD and TD)  
or a receiver input (RD and RD). Each signal swings between voltage levels A and B, where A > B.  
TD or RD  
A
TD or RD  
B
Differential Peak-Peak = 2  
× (A – B)  
Figure 12. Differential VPP of Transmitter or Receiver  
Note: This explanation uses generic TD/TD/RD/RD signal names. These correspond to SRIO_TXD/SRIO_TXD/  
SRIO_RXD/SRIO_RXD respectively.  
Using these waveforms, the definitions are as follows:  
1. The transmitter output signals and the receiver input signals TD, TD, RD and RD each have a peak-to-peak voltage  
(VPP) swing of A – B.  
2. The differential output signal of the transmitter, VOD, is defined as VTD – VTD  
3. The differential input signal of the receiver, VID, is defined as VRD – VRD  
.
.
4. The differential output signal of the transmitter and the differential input signal of the receiver each range from A – B  
to –(A – B).  
5. The peak value of the differential transmitter output signal and the differential receiver input signal is A – B.  
6. The value of the differential transmitter output signal and the differential receiver input signal is 2 × (A – B) VPP.  
To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common  
mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 V and 2.0 V. Using these values,  
the peak-to-peak voltage swing of the signals TD and TD is 500 mVPP. The differential output signal ranges between 500 mV  
and –500 mV. The peak differential voltage is 500 mV. The peak-to-peak differential voltage is 1000 mVPP.  
Note: AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud  
rates (a total of six cases) are described. The parameters for the AC electrical specifications are guided by the XAUI  
electrical interface specified in Clause 47 of IEEE™ Std 802.3ae-2002™. XAUI has similar application goals to  
serial RapidIO. The goal of this standard is that electrical designs for serial RapidIO can reuse electrical designs for  
XAUI, suitably modified for applications at the baud intervals and reaches described herein.  
2.7.5.3  
Equalization  
With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects such  
as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye  
opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be  
used. The most common equalization techniques that can be used are:  
A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.  
The use of active circuits in the receiver. This is often referred to as adaptive equalization.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
42  
Freescale Semiconductor  
Electrical Characteristics  
2.7.5.4  
Transmitter Specifications  
LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section. The differential return  
loss, S11, of the transmitter in each case shall be better than  
–10 dB for (baud frequency)/10 < freq(f) < 625 MHz, and  
–10 dB + 10log(f/625 MHz) dB for 625 MHz freq(f) baud frequency  
The reference impedance for the differential return loss measurements is 100 Ω resistive. Differential return loss includes  
contributions from internal circuitry, packaging, and any external components related to the driver. The output impedance  
requirement applies to all valid output levels. It is recommended that the 20–80% rise/fall time of the transmitter, as measured  
at the transmitter output, have a minimum value 60 ps in each case. It is also recommended that the timing skew at the output  
of an LP-Serial transmitter between the two signals comprising a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50  
GB, and 15 ps at 3.125 GB.  
Table 30. Short Run Transmitter AC Timing Specifications—1.25 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Output Voltage,  
V
–0.40  
2.30  
V
Voltage relative to COMMON of either signal  
comprising a differential pair  
O
Differential Output Voltage  
Deterministic Jitter  
Total Jitter  
V
500  
800  
1000  
0.17  
0.35  
1000  
mV  
DIFFPP  
PP  
PP  
PP  
J
UI  
UI  
D
J
T
Multiple output skew  
S
ps  
Skew at the transmitter output between lanes of a  
multilane link  
MO  
Unit Interval  
UI  
800  
ps  
100 ppm  
Table 31. Short Run Transmitter AC Timing Specifications—2.5 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Output Voltage,  
V
–0.40  
2.30  
V
Voltage relative to COMMON of either signal  
comprising a differential pair  
O
Differential Output Voltage  
Deterministic Jitter  
Total Jitter  
V
500  
400  
1000  
0.17  
0.35  
1000  
mV  
DIFFPP  
PP  
PP  
PP  
J
UI  
UI  
D
J
T
Multiple Output skew  
S
ps  
Skew at the transmitter output between lanes of a  
multilane link  
MO  
Unit Interval  
UI  
400  
ps  
100 ppm  
Table 32. Short Run Transmitter AC Timing Specifications—3.125 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Output Voltage,  
V
-0.40  
2.30  
V
Voltage relative to COMMON of either signal  
comprising a differential pair  
O
Differential Output Voltage  
Deterministic Jitter  
Total Jitter  
V
500  
320  
1000  
0.17  
0.35  
1000  
mV  
DIFFPP  
PP  
PP  
PP  
J
UI  
UI  
D
J
T
Multiple output skew  
S
ps  
Skew at the transmitter output between lanes of a  
multilane link  
MO  
Unit Interval  
UI  
320  
ps  
100 ppm  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
43  
Electrical Characteristics  
Table 33. Long Run Transmitter AC Timing Specifications—1.25 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Output Voltage,  
V
-0.40  
2.30  
V
Voltage relative to COMMON of either signal  
comprising a differential pair  
O
Differential Output Voltage  
Deterministic Jitter  
Total Jitter  
V
800  
1600  
0.17  
0.35  
1000  
mV  
DIFFPP  
PP  
PP  
PP  
J
UI  
UI  
D
J
T
Multiple output skew  
S
ps  
Skew at the transmitter output between lanes of a  
multilane link  
MO  
Unit Interval  
UI  
800  
800  
ps  
100 ppm  
Table 34. Long Run Transmitter AC Timing Specifications—2.5 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Output Voltage,  
V
-0.40  
2.30  
V
Voltage relative to COMMON of either signal  
comprising a differential pair  
O
Differential Output Voltage  
Deterministic Jitter  
Total Jitter  
V
800  
400  
1600  
0.17  
0.35  
1000  
mV  
DIFFPP  
PP  
PP  
PP  
J
UI  
UI  
D
J
T
Multiple output skew  
S
ps  
Skew at the transmitter output between lanes of a  
multilane link  
MO  
Unit Interval  
UI  
400  
ps  
100 ppm  
Table 35. Long Run Transmitter AC Timing Specifications—3.125 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Output Voltage,  
V
-0.40  
2.30  
V
Voltage relative to COMMON of either signal  
comprising a differential pair  
O
Differential Output Voltage  
Deterministic Jitter  
Total Jitter  
V
800  
1600  
0.17  
0.35  
1000  
mV  
DIFFPP  
PP  
PP  
PP  
J
UI  
UI  
D
J
T
Multiple output skew  
S
ps  
Skew at the transmitter output between lanes of a  
multilane link  
MO  
Unit Interval  
UI  
320  
320  
ps  
100 ppm  
For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall  
entirely within the unshaded portion of the transmitter output compliance mask shown in Figure 13 with the parameters  
specified in Table 36 when measured at the output pins of the device and the device is driving a 100 Ω 5% differential resistive  
load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce  
inter-symbol interference) need only comply with the transmitter output compliance mask when pre-emphasis is disabled or  
minimized.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
44  
Freescale Semiconductor  
Electrical Characteristics  
VDIFF max  
VDIFF min  
0
-VDIFF min  
-VDIFF max  
0
A
B
1-B  
1-A  
1
Time in UI  
Figure 13. Transmitter Output Compliance Mask  
Table 36. Transmitter Differential Output Eye Diagram Parameters  
Transmitter Type  
1.25 GBaud short range  
V
min (mV)  
V
max (mV)  
A (UI)  
B (UI)  
DIFF  
DIFF  
250  
400  
250  
400  
250  
400  
500  
800  
500  
800  
500  
800  
0.175  
0.175  
0.175  
0.175  
0.175  
0.175  
0.39  
0.39  
0.39  
0.39  
0.39  
0.39  
1.25 GBaud long range  
2.5 GBaud short range  
2.5 GBaud long range  
3.125 GBaud short range  
3.125 GBaud long range  
2.7.5.5  
Receiver Specifications  
LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section. Receiver input impedance  
shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to 0.8  
× baud frequency. This includes contributions from internal circuitry, the package, and any external components related to the  
receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is  
100 Ω resistive for differential return loss and 25 Ω resistive for common mode.  
Table 37. Receiver AC Timing Specifications—1.25 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Differential Input Voltage  
V
J
200  
0.37  
0.55  
1600  
mV  
Measured at receiver  
Measured at receiver  
Measured at receiver  
IN  
PP  
PP  
PP  
Deterministic Jitter Tolerance  
UI  
UI  
D
Combined Deterministic and Random  
Jitter Tolerance  
J
DR  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
45  
Electrical Characteristics  
Table 37. Receiver AC Timing Specifications—1.25 GBaud (continued)  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
0.65  
Max  
Total Jitter Tolerance  
J
UI  
Measured at receiver. Total jitter is composed of  
three components, deterministic jitter, random jitter  
and single frequency sinusoidal jitter. The sinusoidal  
jitter may have any amplitude and frequency in the  
unshaded region of Figure 14. The sinusoidal jitter  
component is included to ensure margin for low  
frequency jitter, wander, noise, crosstalk and other  
variable system effects.  
T
PP  
Multiple Input Skew  
S
24  
ns  
Skew at the receiver input between lanes of a  
multilane link  
MI  
–12  
Bit Error Rate  
Unit Interval  
BER  
UI  
10  
800  
800  
ps  
100 ppm  
Table 38. Receiver AC Timing Specifications—2.5 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Differential Input Voltage  
V
J
200  
0.37  
0.55  
1600  
mV  
Measured at receiver  
Measured at receiver  
Measured at receiver  
IN  
PP  
PP  
PP  
Deterministic Jitter Tolerance  
UI  
UI  
D
Combined Deterministic and Random  
Jitter Tolerance  
J
DR  
Total Jitter Tolerance  
J
0.65  
UI  
Measured at receiver. Total jitter is composed of  
three components, deterministic jitter, random jitter  
and single frequency sinusoidal jitter. The sinusoidal  
jitter may have any amplitude and frequency in the  
unshaded region of Figure 14. The sinusoidal jitter  
component is included to ensure margin for low  
frequency jitter, wander, noise, crosstalk and other  
variable system effects.  
T
PP  
Multiple Input Skew  
S
24  
ns  
Skew at the receiver input between lanes of a  
multilane link  
MI  
–12  
Bit Error Rate  
Unit Interval  
BER  
UI  
10  
400  
400  
ps  
100 ppm  
Table 39. Receiver AC Timing Specifications—3.125 GBaud  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Differential Input Voltage  
V
J
200  
0.37  
0.55  
1600  
mV  
Measured at receiver  
Measured at receiver  
Measured at receiver  
IN  
PP  
PP  
PP  
Deterministic Jitter Tolerance  
UI  
UI  
D
Combined Deterministic and Random  
Jitter Tolerance  
J
DR  
Total Jitter Tolerance  
J
0.65  
UI  
Measured at receiver. Total jitter is composed of  
three components, deterministic jitter, random jitter  
and single frequency sinusoidal jitter. The sinusoidal  
jitter may have any amplitude and frequency in the  
unshaded region of Figure 14. The sinusoidal jitter  
component is included to ensure margin for low  
frequency jitter, wander, noise, crosstalk and other  
variable system effects.  
T
PP  
Multiple Input Skew  
S
22  
ns  
Skew at the receiver input between lanes of a  
multilane link  
MI  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
46  
Freescale Semiconductor  
Electrical Characteristics  
Table 39. Receiver AC Timing Specifications—3.125 GBaud (continued)  
Range  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
–12  
Bit Error Rate  
Unit Interval  
BER  
UI  
10  
320  
320  
ps  
100 ppm  
8.5 UI p-p  
Sinusoidal  
Jitter  
Amplitude  
0.10 UI p-p  
22.1 kHz  
Frequency  
1.875 MHz  
20 MHz  
Figure 14. Single Frequency Sinusoidal Jitter Limits  
2.7.5.6  
Receiver Eye Diagrams  
For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the corresponding bit error rate  
specification (Table 37, Table 38, and Table 39) when the eye pattern of the receiver test signal (exclusive of sinusoidal jitter)  
falls entirely within the unshaded portion of the receiver input compliance mask shown in Figure 15 with the parameters  
specified in Table 40. The eye pattern of the receiver test signal is measured at the input pins of the receiving device with the  
device replaced with a 100 Ω 5% differential resistive load.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
47  
Electrical Characteristics  
VDIFF max  
VDIFF min  
0
–VDIFF min  
–VDIFF max  
0
1
A
B
1 – B  
1 – A  
Time (UI)  
Figure 15. Receiver Input Compliance Mask  
Table 40. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter  
Receiver Type  
V
min (mV)  
V
max (mV)  
DIFF  
A (UI)  
B (UI)  
DIFF  
1.25 GBaud  
2.5 GBaud  
100  
100  
100  
800  
800  
800  
0.275  
0.275  
0.275  
0.400  
0.400  
0.400  
3.125 GBaud  
2.7.5.7  
Measurement and Test Requirements  
Since the LP-Serial electrical specification are guided by the XAUI electrical interface specified in Clause 47 of IEEE Std.  
802.3ae-2002™, the measurement and test requirements defined here are similarly guided by Clause 47. In addition, the CJPAT  
test pattern defined in Annex 48A of IEEE Std. 802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter  
measurements. Annex 48B of IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test  
methods.  
2.7.5.8  
Eye Template Measurements  
For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (baud  
frequency)/1667 is applied to the jitter. The data pattern for template measurements is the continuous jitter test pattern (CJPAT)  
defined in Annex 48A of IEEE Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive  
directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined  
in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0.  
The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10–12. The eye pattern  
shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of  
the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100 Ω  
resistive 5% differential to 2.5 GHz.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
48  
Freescale Semiconductor  
Electrical Characteristics  
2.7.5.9  
Jitter Test Measurements  
For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is  
applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in  
Annex 48A of IEEE Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and  
opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A.  
Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be  
measured with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance  
setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE Std.  
802.3ae.  
2.7.5.10 Transmit Jitter  
Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive 5% differential to 2.5 GHz.  
2.7.5.11 Jitter Tolerance  
Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum  
of deterministic and random jitter defined in Section 2.7.5.9 and then adjusting the signal amplitude until the data eye contacts  
the 6 points of the minimum eye opening of the receive template shown in Figure 15 and Table 40. Note that for this to occur,  
the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter)  
about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using  
a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter  
specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.  
2.7.6  
PCI Timing  
This section describes the general AC timing parameters of the PCI bus. Table 41 provides the PCI AC timing specifications.  
Table 41. PCI AC Timing Specifications  
33 MHz  
66 MHz  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Output delay  
t
2.0  
2.0  
11.0  
1.0  
1.0  
6.0  
14  
40  
ns  
ns  
PCVAL  
High-Z to Valid Output delay  
Valid to High-Z Output delay  
Input setup  
t
PCON  
t
28  
ns  
PCOFF  
t
7.0  
0
3.0  
0
ns  
PCSU  
Input hold  
t
ns  
PCH  
Reset active time after PCI_CLK_IN stable  
Reset active to output float delay  
Reset active time after power stable  
HRESET high to first Configuration Access  
t
t
100  
100  
μs  
PCRST-CLK  
PCRST-OFF  
40  
ns  
t
1
1
ms  
clocks  
PCRST  
t
32M  
32M  
PCRHFA  
Notes: 1. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
2. All PCI signals are measured from 0.5 × V  
of the rising edge of PCI_CLK_IN to 0.4 × V  
of the signal in question for  
DDIO  
DDIO  
3.3-V PCI signaling levels.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. The reset assertion timing requirement for HRESET is in Table 24 and Figure 8  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
49  
Electrical Characteristics  
Figure 16 provides the AC test load for the PCI.  
Output  
VDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 16. PCI AC Test Load  
Figure 17 shows the PCI input AC timing conditions.  
CLK  
tPCSU  
tPCH  
Input  
Figure 17. PCI Input AC Timing Measurement Conditions  
Figure 18 shows the PCI output AC timing conditions.  
CLK  
tPCVAL  
Output Delay  
tPCOFF  
tPCON  
High-Impedance  
Output  
Figure 18. PCI Output AC Timing Measurement Condition  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
50  
Freescale Semiconductor  
Electrical Characteristics  
2.7.7  
TDM Timing  
Table 42. TDM Timing  
Characteristic  
Symbol  
Expression  
Min  
Max  
Units  
1
TDMxRCLK/TDMxTCLK  
t
TC  
16  
7
ns  
ns  
ns  
ns  
TDMC  
4
4
TDMxRCLK/TDMxTCLK high pulse width  
TDMxRCLK/TDMxTCLK low pulse width  
t
(0.5 0.1) × TC  
(0.5 0.1) × TC  
TDMCH  
t
7
TDMCL  
TDM receive all input set-up time related to TDMxRCLK  
TDMxTSYN input set-up time related to TDMxTCLK in TSO=0 mode  
t
t
3.6  
TDMVKH  
TDM receive all input hold time related to TDMxRCLK  
1.9  
ns  
TDMXKH  
TDMxTSYN input hold time related to TDMxTCLK in TSO=0 mode  
2
TDMxTCLK high to TDMxTDAT output active  
t
t
2.5  
9.8  
ns  
ns  
ns  
ns  
ns  
ns  
TDMDHOX  
TDMDHOV  
2
TDMxTCLK high to TDMxTDAT output valid  
3
All output hold time (except TDMxTSYN)  
t
2.5  
TDMHOX  
TDMDHOZ  
TDMSHOV  
TDMSHOX  
2
TDMxTCLK high to TDMxTDAT output high impedance  
t
t
t
9.8  
9.25  
2
TDMxTCLK high to TDMxTSYN output valid  
3
TDMxTSYN output hold time  
2.0  
Notes: 1. Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz.  
2. Values are based on 20 pF capacitive load.  
3. Values are based on 10 pF capacitive load.  
4. The expression is for common calculations only.  
Figure 19 shows the TDM input AC timing.  
t
TDMC  
t
t
TDMCL  
TDMCH  
TDMxRCLK  
t
TDMXKH  
t
TDMVKH  
TDMxRDAT  
t
TDMXKH  
t
TDMVKH  
TDMxRSYN  
Figure 19. TDM Inputs Signals  
Note: For some TDM modes receive data and receive sync are being input on other pins. This timing is valid for them as well.  
See the MSC8144E Reference Manual.  
Figure 20 shows TDMxTSYN AC timing in TSO=0 mode.  
TDMxTCLK  
t
TDMXKH  
t
TDMVKH  
TDMxTSYN  
Figure 20. TDMxTSYN in TSO=0 mode  
Figure 21 shows the TDM Output AC timing  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
51  
t
TDMC  
t
t
TDMCL  
TDMCH  
TDMxTCLK  
TDMxTDAT  
TDMxTSYN  
t
TDMDHOZ  
t
TDMDHOV  
t
TDMHOX  
t
TDMDHOX  
t
TDMSHOV  
t
TDMSHOX  
Figure 21. TDM Output Signals  
Note: For some TDM modes transmit data is being output on other pins. This timing is valid for it as well. See the MSC8144E  
Reference Manual  
2.7.8  
UART Timing  
Table 43. UART Timing  
Characteristics  
Symbol  
Expression  
Min  
Max  
Unit  
URXD and UTXD inputs high/low duration  
URXD and UTXD inputs rise/fall time  
UTXD output rise/fall time  
T
16 × T  
160  
6
ns  
ns  
ns  
UREFCLK  
REFCLK  
T
T
UAVKH  
UAVXH  
5.5  
Note:  
T
= T  
is guaranteed by design.  
REFCLK  
UREFCLK  
Figure 22 shows the UART input AC timing  
T
UAVKH  
T
UAVKH  
UTXD, URXD  
inputs  
T
UREFCLK  
T
UREFCLK  
Figure 22. UART Input Timing  
Figure 23 shows the UART output AC timing  
T
UAVXH  
T
UAVXH  
UTXD output  
Figure 23. UART Output Timing  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
52  
Freescale Semiconductor  
2.7.9  
Timer Timing  
Table 44. Timer Timing  
Characteristics  
Symbol  
Min  
Unit  
TIMERx frequency  
T
10.0  
4.0  
ns  
ns  
ns  
TMREFCLK  
TIMERx Input high phase  
TIMERx Output low phase  
T
TMCH  
T
4.0  
TMCL  
Figure 24 shows the timer input AC timing  
T
TMREFCLK  
T
TTMCH  
TMCL  
TIMERx (Input)  
Figure 24. Timer Timing  
2.7.10 Ethernet Timing  
This section describes the AC electrical characteristics for the Ethernet interface.  
There are programmable delay units (PDU) that should be programmed differently for each Interface to meet timing. There is  
a general configuration register 4 (GCR4) used to configure the timing. For additional information, see the MSC8144E  
Reference Manual.  
2.7.10.1 Management Interface Timing  
Table 45. Ethernet Controller Management Interface Timing  
Characteristics  
Symbol  
Min  
Max  
Unit  
ETHMDC clock pulse width high  
t
32  
10  
7
70  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
MDCH  
2
ETHMDC to ETHMDIO delay  
t
t
t
MDKHDX  
MDDVKH  
MDDXKH  
ETHMDIO to ETHMDC rising edge set-up time  
ETHMDC rising edge to ETHMDIO hold time  
ETHMDC rise time.  
0
t
MDCR  
ETHMDC fall time.  
t
MDHF  
Notes: 1. Program the ETHMDC frequency (f  
) to a maximum value of 2.5 MHz (400 ns period for t  
). The value depends on the  
MDC  
MDC  
source clock and configuration of MIIMCFG[MCS] and UPSMR[MDCP]. For example, for a source clock of 400 MHz, to  
achieve f = 2.5 MHz, program MIIMCFG[MCS] = 0x4 and UPSMR[MDCP] = 0. See the MSC8144E Reference Manual for  
MDC  
configuration details.  
2. The value depends on the source clock. For example, for a source clock of 267 MHz, the delay is 70 ns. For a source clock of  
333 MHz, the delay is 58 ns.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
53  
t
MDC  
t
MDCR  
ETHMDC  
t
MDCH  
t
MDHF  
ETHMDIO  
(Input)  
t
t
MDDVKH  
MDDXKH  
ETHMDIO  
(Output)  
t
MDKHDX  
Figure 25. MII Management Interface Timing  
2.7.10.2 MII Transmit AC Timing Specifications  
Table 46 provides the MII transmit AC timing specifications.  
Table 46. MII Transmit AC Timing Specifications  
1
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
TX_CLK duty cycle  
t
t
35  
0
65  
25  
%
ns  
ns  
ns  
MTXH/ MTX  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
TX_CLK data clock rise  
t
MTKHDX  
t
1.0  
1.0  
4.0  
4.0  
MTXR  
TX_CLK data clock fall  
t
MTXF  
Notes: 1. Typical TX_CLK period (t  
) for 10 Mbps is 400 ns and for 100 Mbps is 40 ns.  
MTX  
2. Program GCR4 as 0x00030CC3.  
Figure 26 shows the MII transmit AC timing diagram.  
tMTX  
tMTXR  
TX_CLK  
tMTXH  
tMTXF  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 26. MII Transmit AC Timing  
2.7.10.3 MII Receive AC Timing Specifications  
Table 47 provides the MII receive AC timing specifications.  
Table 47. MII Receive AC Timing Specifications  
1
Parameter/Condition  
Symbol  
/t  
Min  
Max  
Unit  
RX_CLK duty cycle  
t
35  
65  
%
MRXH MRX  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
54  
Freescale Semiconductor  
Table 47. MII Receive AC Timing Specifications (continued)  
1
Parameter/Condition  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
Symbol  
Min  
Max  
Unit  
t
t
10.0  
2
ns  
ns  
ns  
ns  
MRDVKH  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise  
MRDXKH  
t
1.0  
1.0  
4.0  
4.0  
MRXR  
RX_CLK clock fall time  
t
MRXF  
Notes: 1. Typical RX_CLK period (t  
) for 10 Mbps is 400 ns and for 100 Mbps is 40 ns.  
MRX  
2. Program GCR4 as 0x00030CC3.  
Figure 27 provides the AC test load.  
Output  
VDDGE/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 27. AC Test Load  
Figure 28 shows the MII receive AC timing diagram.  
tMRXR  
tMRX  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 28. MII Receive AC Timing  
2.7.10.4 RMII Transmit and Receive AC Timing Specifications  
Table 48 provides the RMII transmit and receive AC timing specifications.  
Table 48. RMII Transmit and Receive AC Timing Specifications  
1
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
REF_CLK duty cycle  
t
t
35  
2
65  
10  
%
ns  
ns  
ns  
ns  
ns  
RMXH/ RMX  
REF_CLK to RMII data TXD[1–0], TX_EN delay  
RXD[1–0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1–0], CRS_DV, RX_ER hold time to REF_CLK  
REF_CLK data clock rise  
t
RMTKHDX  
RMRDVKH  
RMRDXKH  
t
t
4.0  
2.0  
1.0  
1.0  
t
4.0  
4.0  
RMXR  
REF_CLK data clock fall  
t
RMXF  
Typical REF_CLK clock period (t  
) is 20 ns  
RMX  
Notes: 1. Typical REF_CLK clock period (t  
2. Program GCR4 as 0x00001405  
) is 20 ns  
RMX  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
55  
Figure 29 shows the RMII transmit and receive AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXH  
tRMXF  
TXD[1–0]  
TX_EN  
tRMTKHDX  
RXD[1–0]  
CRS_DV  
RX_ER  
Valid Data  
tRMRDVKH  
tRMRDXKH  
Figure 29. RMII Transmit and Receive AC Timing  
Figure 30 provides the AC test load.  
Output  
VDDGE/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 30. AC Test Load  
2.7.10.5 SMII AC Timing Specification  
Table 49. SMII Mode Signal Timing  
Characteristics  
Symbol  
Min  
Max  
Unit  
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time  
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time  
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay  
t
t
1.5  
1.0  
1.5  
ns  
ns  
ns  
SMDVKH  
SMDXKH  
t
5.0  
SMXR  
Notes: 1. Typical REF_CLK clock period is 8ns  
2. Measured using a 5 pF load.  
3. Measured using a 15 pF load  
4. REF_CLK duty cycle is TBD.  
5. Program GCR4 as 0x00002008  
Figure 31 provides the AC test load.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
56  
Freescale Semiconductor  
ETHCLOCK  
t
t
SMDVKH  
SMDXKH  
ETHSYNC_IN  
ETHRXD  
Valid  
t
SMXR  
ETHSYNC  
ETHTXD  
Valid  
Valid  
Figure 31. SMII Mode Signal Timing  
2.7.10.6 RGMII AC Timing Specifications  
Table 50 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock.  
Table 50. RGMII with On-Board Delay AC Timing Specifications  
Parameter/Condition  
Data to clock output skew (at transmitter)  
Symbol  
Min  
Typ  
Max  
Unit  
t
-0.5  
0.9  
7.2  
45  
40  
0.5  
2.6  
8.8  
55  
ns  
ns  
ns  
%
SKEWT  
t
SKEWR  
2
Data to clock input skew (at receiver)  
3
Clock cycle duration  
t
8.0  
50  
50  
RGT  
4, 5  
Duty cycle for 1000Base-T  
t
t
/t  
RGTH RGT  
3, 5  
Duty cycle for 10BASE-T and 100BASE-TX  
Rise time (20%–80%)  
/t  
60  
%
RGTH RGT  
t
0.75  
0.75  
ns  
ns  
ns  
%
RGTR  
Fall time (20%–80%)  
t
RGTF  
6
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
t
8.0  
G12  
t
/t  
47  
53  
G125H G125  
Notes: 1. At recommended operating conditions with LV of 2.5 V +/- 5%.  
DD  
2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns will  
be added to the associated clock signal.  
3. For 10 and 100 Mbps, t  
scales to 400 ns +/- 40 ns and 40 ns +/- 4 ns, respectively.  
RGT  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long  
as the minimum duty cycle is not violated and stretching occurs for no more than three t  
between.  
of the lowest speed transitioned  
RGT  
5. Duty cycle reference is L /2.  
Vdd  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
7. GCR4 should be programmed as 0x00001004.  
Table 51 presents the RGMII AC timing specification for applications required non-delayed clock on board.  
Table 51. RGMII with No On-Board Delay AC Timing Specifications  
Parameter/Condition  
Data to clock output skew (at transmitter)  
Symbol  
Min  
Typ  
Max  
Unit  
t
–2.6  
–0.5  
7.2  
45  
–0.9  
0.5  
8.8  
55  
ns  
ns  
ns  
%
SKEWT  
t
SKEWR  
2
Data to clock input skew (at receiver)  
3
Clock cycle duration  
t
8.0  
50  
50  
RGT  
4, 5  
Duty cycle for 1000Base-T  
t
t
/t  
RGTH RGT  
3, 5  
Duty cycle for 10BASE-T and 100BASE-TX  
Rise time (20%–80%)  
/t  
40  
60  
%
RGTH RGT  
t
0.75  
0.75  
ns  
ns  
ns  
RGTR  
Fall time (20%–80%)  
t
RGTF  
6
GTX_CLK125 reference clock period  
t
8.0  
G12  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
57  
Table 51. RGMII with No On-Board Delay AC Timing Specifications (continued)  
Parameter/Condition  
GTX_CLK125 reference clock duty cycle  
Notes: 1. At recommended operating conditions with LV of 2.5 V +/- 5%.  
Symbol  
/t  
Min  
Typ  
Max  
Unit  
t
47  
53  
%
G125H G125  
DD  
2. This implies that PC board design will require clocks to be routed with no additional trace delay  
3. For 10 and 100 Mbps, t scales to 400 ns +/- 40 ns and 40 ns +/- 4 ns, respectively.  
RGT  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long  
as the minimum duty cycle is not violated and stretching occurs for no more than three t  
between.  
of the lowest speed transitioned  
RGT  
5. Duty cycle reference is L /2.  
Vdd  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
7. GCR4 should be programmed as 0x0004C130.  
Figure 32 shows the RGMII AC timing and multiplexing diagrams.  
t
RGT  
t
RGTH  
GTX_CLK  
(At Transmitter)  
t
SKEWT  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
t
SKEWR  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
t
SKEWT  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
t
SKEWR  
RX_CLK  
(At PHY)  
Figure 32. RGMII AC Timing and Multiplexing s  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
58  
Freescale Semiconductor  
2.7.11 ATM/UTOPIA/POS Timing  
Table 52 provides the ATM/UTOPIA/POS input and output AC timing specifications.  
Table 52. ATM/UTOPIA/POS AC Timing (External Clock) Specifications  
Characteristic  
Outputs—External clock delay  
Symbol  
Min  
Max  
Unit  
t
t
1
1
4
1
9
9
ns  
ns  
ns  
ns  
UEKHOV  
UEKHOX  
Outputs—External clock High Impedance  
Inputs—External clock input setup time  
Inputs—External clock input hold time  
t
UEIVKH  
UEIXKH  
t
Note:  
Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are  
measured at the pin. Although the specifications generally reference the rising edge of the clock, these AC timing diagrams also  
apply when the falling edge is the active edge.  
Figure 33 provides the AC test load for the ATM/UTOPIA/POS.  
VDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 33. ATM/UTOPIA/POS AC Test Load  
Figure 34 shows the ATM/UTOPIA/UTOPIA timing with external clock.  
CLK (input)  
Input Signals:  
Output Signals:  
tUEIXKH  
tUEIVKH  
tUEKHOV  
tUEKHOX  
Figure 34. ATM/UTOPIAPOS AC Timing (External Clock)  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
59  
2.7.12 SPI Timing  
Table 52 provides the SPI input and output AC timing specifications.  
Table 53. SPI AC Timing Specifications 1  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
SPI outputs valid—Master mode (internal clock) delay  
SPI outputs hold—Master mode (internal clock) delay  
SPI outputs valid—Slave mode (external clock) delay  
SPI outputs hold—Slave mode (external clock) delay  
SPI inputs—Master mode (internal clock input setup time  
SPI inputs—Master mode (internal clock input hold time  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
t
t
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NIKHOV  
0.5  
NIKHOX  
t
t
8
NEKHOV  
NEKHOX  
2
4
0
4
2
t
t
NIIVKH  
NIIXKH  
t
NEIVKH  
NEIXKH  
t
1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal.  
Timings are measured at the pin.  
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the internal timing  
(NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).  
Figure 35 provides the AC test load for the SPI.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 35. SPI AC Test Load  
Figure 36 through Figure 37 represent the AC timings from Table 52. Note that although the specifications generally reference  
the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.  
Figure 36 shows the SPI timings in slave mode (external clock).  
SPICLK (Input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOX  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 36. SPI AC Timing in Slave Mode (External Clock)  
Figure 37 shows the SPI timings in master mode (internal clock).  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
60  
Freescale Semiconductor  
SPICLK (Output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOX  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 37. SPI AC Timing in Master Mode (Internal Clock)  
2.7.13 Asynchronous Signal Timing  
Table 54. Signal Timing  
Characteristics  
Symbol  
Type  
Min  
1
Input  
t
Asynchronous  
Asynchronous  
One CLKIN cycle  
IN  
Output  
Note:  
t
Application dependent  
OUT  
1. Relevant for EE0, IRQ[15–0], and NMI only.  
The following interfaces use the specified asynchronous signals:  
GPIO. Signals GPIO[31–0], when used as GPIO signals, that is, when the alternate multiplexed special functions are  
not selected.  
Note: When used as a GPI, the input should be driven until it is acknowledged by the device; the GPIO input status is read  
from a register.  
EE port. Signals EE0, EE1, EE2_0, EE2_1, EE2_2, and EE2_3.  
Boot function. Signal STOP_BS.  
I2C interface. Signals I2C_SCL and I2C_SDA.  
Interrupt inputs. Signals IRQ[15–0] and NMI.  
Interrupt outputs. Signals INT_OUT and NMI_OUT (pulse width is 10 ns).  
Figure 38 shows the behavior of the asynchronous signals.  
tIN  
Input  
tOUT  
Output  
Figure 38. Asynchronous Signal Timing  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
61  
2.7.14 JTAG Signals  
Table 55. JTAG Timing  
All frequencies  
Characteristics  
Symbol  
Unit  
Min  
Max  
TCK cycle time  
t
36.0  
15.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCKX  
TCKH  
TCKR  
TCK clock high phase measured at V = 1.6 V  
t
t
M
TCK rise and fall times  
3.0  
Boundary scan input data set-up time  
Boundary scan input data hold time  
TCK fall to output data valid  
TCK fall to output high impedance  
TMS, TDI data set-up time  
TMS, TDI data hold time  
t
t
0.0  
15.0  
BSVKH  
BSXKH  
t
20.0  
24.0  
TCKHOV  
t
TCKHOZ  
t
0.0  
5.0  
TDIVKH  
TDIXKH  
TDOHOV  
t
TCK fall to TDO data valid  
TCK fall to TDO high impedance  
TRST assert time  
t
10.0  
12.0  
t
TDOHOZ  
t
100.0  
TRST  
Note:  
All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.  
Figure 39 Shows the Test Clock Input Timing Diagram  
tTCKX  
t
TCKH  
V
M
V
M
TCK  
(Input)  
t
TCKR  
t
TCKR  
Figure 39. Test Clock Input Timing  
Figure 40 Shows the boundary scan (JTAG) timing diagram.  
TCK  
(Input)  
t
t
BSXKH  
BSVKH  
Data  
Inputs  
Input Data Valid  
t
TCKHOV  
Data  
Outputs  
Output Data Valid  
t
TCKHOZ  
Data  
Outputs  
Figure 40. Boundary Scan (JTAG) Timing  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
62  
Freescale Semiconductor  
Figure 41 Shows the test access port timing diagram  
TCK  
(Input)  
t
t
TDIXKH  
TDIVKH  
TDI  
TMS  
Input Data Valid  
(Input)  
t
TDOHOV  
TDO  
(Output)  
Output Data Valid  
t
TDOHOZ  
TDO  
(Output)  
Figure 41. Test Access Port Timing  
Figure 42 Shows the TRST timing diagram.  
TRST  
(Input)  
t
TRST  
Figure 42. TRST Timing  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
63  
Hardware Design Considerations  
3
Hardware Design Considerations  
The following sections discuss areas to consider when the MSC8144E device is designed into a system.  
3.1  
Start-up Sequencing Recommendations  
3.1.1  
Power-on Sequence  
Use the following guidelines for power-on sequencing:  
There are no dependencies in power-on/power-off sequence between VDDM3 and VDD supplies.  
There are no dependencies in power-on/power-off sequence between RapidIO supplies: VDDSXC, VDDSXP  
,
VDDRIOPLL and other MSC8144E supplies.  
VDDPLL should be coupled with the VDD power rail with extremely low impedance path.  
External voltage applied to any input line must not exceed the related to this port I/O supply by more than 0.6 V at any time,  
including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for  
configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80  
mA per input pin per MSC8144E device in the system during start-up. An assertion of the inputs to the high voltage level before  
power-up should be with slew rate less than 4V/ns.  
The following supplies should rise before any other supplies in any sequence  
VDD and VDDPLL coupled together  
VDDM3  
After the above supplies rise to 90% of their nominal value the following I/O supplies may rise in any sequence (see Figure 43):  
VDDGE1  
VDDGE2  
VDDIO  
V
DDDDR and MVREF coupled one to another. MVREF should be either at same time or after VDDDDR  
VDDM3IO  
V25M3  
.
I/O supplies  
V
V
and V  
DDM3, DD, DDPLL  
90%  
Figure 43. VDDM3, VDDM3IO and V25M3 Power-on Sequence  
Note: 1. This recommended power sequencing is different from the MSC8122/MSC8126.  
2. If no pins that require VDDGE1 as a reference supply are used (see Table 1), VDDGE1 can be tied to GND.  
3. If no pins that require VDDGE2 as a reference supply are used (see Table 1), VDDGE2 can be tied to GND.  
4. If the DDR interface is not used, VDDDDR and MVREF can be tied to GND.  
5. If the M3 memory is not used, VDDM3, VDDM3IO, and V25M3 can be tied to GND.  
6. If the RapidIO interface is not used, VDDSX, VDDSXP, and VDDRIOPLL can be tied to GND.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
64  
Freescale Semiconductor  
Hardware Design Considerations  
3.1.2  
Start-Up Timing  
Section 2.7.1 describes the start-up timing.  
3.2  
Power Supply Design Considerations  
3.2.1  
PLL Supplies  
Each PLL supply must have an external RC filter for the VDDPLL input. The filter is a 10 Ω resistor in series with two 2.2 μF,  
low ESL (<0.5 nH) and low ESR capacitors. All three PLLs can connect to a single supply voltage source (such as a voltage  
regulator) as long as the external RC filter is applied to each PLL separately (see Figure 44). For optimal noise filtering, place  
the circuit as close as possible to its VDDPLL inputs. These traces should be short and direct.  
MSC8144  
10 Ω  
Voltage Regulator  
VDDPLL0  
2.2 μF  
2.2 μF  
2.2 μF  
10 Ω  
VDDPLL0  
2.2 μF  
10 Ω  
VDDPLL0  
2.2 μF  
2.2 μF  
Figure 44. PLL Supplies  
3.2.2  
Other Supplies (TBD)  
3.3  
Clock and Timing Signal Board Layout Considerations  
When laying out the system board, use the following guidelines:  
Keep clock and timing signal paths as short as possible and route with 50 Ω impedance.  
Use a serial termination resistor placed close to the clock buffer to minimize signal reflection. Use the following  
equation to compute the resistor value:  
Rterm = Rim – Rbuf  
where Rim = trace characteristic impedance  
Rbuf = clock buffer internal impedance.  
Note: See MSC8144 CLKIN and PCI_CLK_IN Board Layout (AN3440) for an example layout.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
65  
Hardware Design Considerations  
3.4  
Connectivity Guidelines  
Note: Although the package actually uses a ball grid array, the more conventional term pin is used to denote signal  
connections in this discussion.  
First, select the pin multiplexing mode to allocate the required I/O signals. Then use the guidelines presented in the following  
subsections for board design and connections. The following conventions are used in describing the connectivity requirements:  
1. GND indicates using a 10 kΩ pull-down resistor (recommended) or a direct connection to the ground plane. Direct  
connections to the ground plane may yield DC current up to 50mA through the I/O supply that adds to overall power  
consumption.  
2. VDD indicates using a 10 kΩ pull-up resistor (recommended) or a direct connection to the appropriate power supply.  
Direct connections to the supply may yield DC current up to 50mA through the I/O supply that adds to overall power  
consumption.  
3. Mandatory use of a pull-up or pull-down resistor it is clearly indicated as “pull-up/pull-down”.  
4. NC indicates “not connected” and means do not connect anything to the pin.  
5. The phrase “in use” indicates a typical pin connection for the required function.  
Note: Please see recommendations #1 and #2 as mandatory pull-down or pull-up connection for unused pins in case of  
subset interface connection.  
3.4.1  
DDR Memory Related Pins  
This section discusses the various scenarios that can be used with DDR1 and DDR2 memory.  
Note: For information about unused differential/non-differential pins in DDR1/DDR2 modes (that is, unused negative lines  
of strobes in DDR1), please refer to Table 56.  
3.4.1.1  
DDR Interface Is Not Used  
Table 56. Connectivity of DDR Related Pins When the DDR Interface Is Not Used  
Signal Name  
Pin Connection  
MDQ[0–31]  
MDQS[0–3]  
MDQS[0–3]  
MA[0–15]  
MCK[0–2]  
MCK[0–2]  
MCS[0–1]  
MDM[0–3]  
MBA[0–2]  
MCAS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
MCKE[0–1]  
MODT[0–1]  
MDIC[0–1]  
MRAS  
MWE  
MECC[0–7]  
ECC_MDM  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
66  
Freescale Semiconductor  
Hardware Design Considerations  
Table 56. Connectivity of DDR Related Pins When the DDR Interface Is Not Used (continued)  
Signal Name  
Pin Connection  
ECC_MDQS  
ECC_MDQS  
NC  
NC  
MV  
GND  
GND  
REF  
V
DDDDR  
Note:  
If the DDR controller is not used, disable the internal DDR clock by writing a 1 to the CLK11DIS bit in the System Clock Control  
Register (SCCR[CLK!11DIS]). See Chapter 7, Clocks, in the MSC8144E Reference Manual for details.  
3.4.1.2  
16-Bit DDR Memory Only  
Table 57 lists unused pin connection when using 16-bit DDR memory. The 16 most significant data lines are not used.  
Table 57. Connectivity of DDR Related Pins When Using 16-bit DDR Memory Only  
Signal Name  
Pin connection  
MDQ[0–15]  
MDQ[16–31]  
MDQS[0–1]  
MDQS[2–3]  
MDQS[0–1]  
MDQS[2–3]  
MA[0–15]  
MCK[0–2]  
MCK[0–2]  
MCS[0–1]  
MDM[0–1]  
MDM[2–3]  
MBA[0–2]  
MCAS  
in use  
pull-up to V  
DDDDR  
in use  
pull-down to GND  
in use  
pull-up to V  
DDDDR  
in use  
in use  
in use  
in use  
in use  
NC  
in use  
in use  
in use  
in use  
in use  
in use  
in use  
MCKE[0–1]  
MODT[0–1]  
MDIC[0–1]  
MRAS  
MWE  
MV  
1/2*V  
DDDDR  
REF  
V
2.5 V or 1.8 V  
DDDDR  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
67  
Hardware Design Considerations  
3.4.1.3  
ECC Unused Pin Connections  
When the error code corrected mechanism is not used in any 32- or 16-bit DDR configuration, refer to Table 58 to determine  
the correct pin connections.  
Table 58. Connectivity of Unused ECC Mechanism Pins  
Signal Name  
Pin connection  
MECC[0–7]  
ECC_MDM  
ECC_MDQS  
ECC_MDQS  
pull-up to V  
NC  
DDDDR  
pull-down to GND  
pull-up to V  
DDDDR  
3.4.2  
Serial RapidIO Interface Related Pins  
Serial RapidIO interface Is Not Used  
3.4.2.1  
Table 59. Connectivity of Serial RapidIO Interface Related Pins When the RapidIO Interface Is Not Used  
Signal Name  
Pin Connection  
SRIO_IMP_CAL_RX  
SRIO_IMP_CAL_TX  
SRIO_REF_CLK  
SRIO_REF_CLK  
SRIO_RXD[0–3]  
SRIO_RXD[0–3]  
SRIO_TXD[0–3]  
SRIO_TXD[0–3]  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
V
GND  
GND  
GND  
GND  
GND  
GND  
DDRIOPLL  
GND  
GND  
GND  
RIOPLL  
SXP  
SXC  
V
DDSXP  
DDSXC  
V
3.4.2.2  
Serial RapidIO Specific Lane Is Not Used  
Table 60. Connectivity of Serial RapidIO Related Pins When Specific Lane Is Not Used  
Signal Name  
Pin Connection  
SRIO_IMP_CAL_RX  
SRIO_IMP_CAL_TX  
SRIO_REF_CLK  
SRIO_REF_CLK  
SRIO_RXDx  
in use  
in use  
in use  
in use  
GND  
GND  
SXC  
SXC  
SRIO_RXDx  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
68  
Freescale Semiconductor  
Hardware Design Considerations  
Table 60. Connectivity of Serial RapidIO Related Pins When Specific Lane Is Not Used (continued)  
Signal Name  
Pin Connection  
SRIO_TXDx  
SRIO_TXDx  
NC  
NC  
V
in use  
in use  
DDRIOPLL  
GND  
GND  
GND  
RIOPLL  
SXP  
GND  
GND  
SXP  
SXC  
SXC  
V
V
1.0 V  
1.0 V  
DDSXP  
DDSXC  
Note:  
The x indicates the lane number {0,1,2,3} for all unused lanes.  
3.4.3  
M3 Memory Related Pins  
Table 61. Connectivity of M3 Related Pins When M3 Memory Is Not Used  
Signal Name  
Pin Connection  
M3_RESET  
NC  
V
V
V
GND  
GND  
GND  
25M3  
DDM3  
DDM3IO  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
69  
Hardware Design Considerations  
3.4.4  
Ethernet Related Pins  
Ethernet Controller 1 (GE1) Related Pins  
3.4.4.1  
Note: Table 62 and Table 63 assume that the alternate function of the specified pin is not used. If the alternate function is  
used, connect the pin as required to support that function.  
3.4.4.1.1  
GE1 Interface Is Not Used  
Table 62 assumes that the GE1 signals are not used for any purpose (including any multiplexed functions) and that VDDGE1 is  
tied to GND.  
Table 62. Connectivity of GE1 Related Pins When the GE1 Interface Is Not Used  
Signal Name  
Pin Connection  
GE1_COL  
NC  
NC  
NC  
NC  
NC  
NC  
GE1_CRS  
GE1_RD[0–4]  
GE1_RX_ER  
GE1_RX_CLK  
GE1_RX_DV  
GE1_SGMII_RX  
GE1_SGMII_RX  
GE1_SGMII_TX  
GE1_SGMII_TX  
GE1_TD[0–4]  
GE1_TX_CLK  
GE1_TX_EN  
GE1_TX_ER  
GND  
GND  
SXC  
SXC  
NC  
NC  
NC  
NC  
NC  
NC  
3.4.4.1.2  
Subset of GE1 Pins Required  
When only a subset of the whole GE1 interface is used, such as for RMII, the unused GE1 pins should be connected as described  
in Table 63. This table assumes that the unused GE1 pins are not used for any purpose (including any multiplexed function) and  
that VDDGE1 is tied to either 2.5 V or 3.3 V.  
Table 63. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required  
Signal Name  
Pin Connection  
GE1_COL  
GND  
GND  
GND  
GND  
GND  
GND  
GE1_CRS  
GE1_RD[0–3]  
GE1_RX_ER  
GE1_RX_CLK  
GE1_RX_DV  
GE1_SGMII_RX  
GE1_SGMII_RX  
GE1_SGMII_TX  
GND  
GND  
SXC  
SXC  
NC  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
70  
Freescale Semiconductor  
Hardware Design Considerations  
Table 63. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)  
Signal Name  
Pin Connection  
GE1_SGMII_TX  
GE1_TD[0-3]  
GE1_TX_CLK  
GE1_TX_EN  
GE1_TX_ER  
NC  
NC  
GND  
NC  
NC  
3.4.4.2  
Ethernet Controller 2 (GE2) Related Pins  
Note: Table 64 and Table 66 assume that the alternate function of the specified pin is not used. If the alternate function is  
used, connect the pin as required to support that function.  
3.4.4.2.1  
GE2 interface Is Not Used  
Table 64 assumes that the GE2 pins are not used for any purpose (including any multiplexed function) and that VDDGE2 is tied  
to GND.  
Table 64. Connectivity of GE2 Related Pins When the GE2 Interface Is Not Used  
Signal Name  
Pin Connection  
GE2_RD[0-3]  
GE2_RX_CLK  
GE2_RX_DV  
GE2_RX_ER  
GE2_SGMII_RX  
GE2_SGMII_RX  
GE2_SGMII_TX  
GE2_SGMII_TX  
GE2_TCK  
NC  
NC  
NC  
NC  
GND  
GND  
SXC  
SXC  
NC  
NC  
Nc  
Nc  
NC  
GE2_TD[0–3]  
GE2_TX_EN  
3.4.4.2.2  
Subset of GE2 Pins Required  
When only a subset of the whole GE2 interface is used, such as for RMII, the unused GE2 pins should be connected as described  
in Table 65. The table assumes that the unused GE2 pins are not used for any purpose (including any multiplexed functions)  
and that VDDGE2 is tied to either 2.5 V or 3.3 B.  
Table 65. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required  
Signal Name  
Pin Connection  
GE2_RD[0-3]  
GE2_RX_CLK  
GE2_RX_DV  
GE2_RX_ER  
GE2_SGMII_RX  
GND  
GND  
GND  
GND  
GND  
SXC  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
71  
Hardware Design Considerations  
Table 65. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)  
Signal Name  
Pin Connection  
GND  
GE2_SGMII_RX  
GE2_SGMII_TX  
GE2_SGMII_TX  
GE2_TCK  
SXC  
NC  
NC  
NC  
NC  
NC  
GE2_TD[0–3]  
GE2_TX_EN  
3.4.4.3  
GE1 and GE2 Management Pins  
GE_MDC and GE_MDIO pins should be connected as required by the specified protocol. If neither GE1 nor GE2 is used (that  
is, VDDGE2 is connected to GND), Table 66 lists the recommended management pin connections.  
Table 66. Connectivity of GE Management Pins When GE1 and GE2 Are Not Used  
Signal Name  
Pin Connection  
GE_MDC  
GE_MDIO  
NC  
NC  
3.4.5  
UTOPIA/POS Related Pins  
Table 67 lists the board connections of the UTOPIA/POS pins when the entire UTOPIA/POS interface is not used or subset of  
UTOPIA/POS interface is used. For multiplexing options that select a subset of the UTOPIA/POS interface, use the connections  
described in Table 67 for those signals that are not selected. Table 67 assumes that the alternate function of the specified pin is  
not used. If the alternate function is used, connect that pin as required to support the selected function.  
Table 67. Connectivity of UTOPIA/POS Related Pins When UTOPIA/POS Interface Is Not Used  
Signal Name  
Pin Connection  
UTP_IR  
GND  
UTP_RADDR[0–4]  
UTP_RCLAV_PDRPA  
UTP_RCLK  
V
DDIO  
NC  
GND  
GND  
UTP_RD[0–15]  
UTP_REN  
V
DDIO  
UTP_RPRTY  
UTP_RSOC  
GND  
GND  
UTP_TADDR[0–4]  
UTP_TCLAV  
UTP_TCLK  
V
DDIO  
NC  
GND  
NC  
UTP_TD[0–15]  
UTP_TEN  
V
DDIO  
UTP_TPRTY  
UTP_TSOC  
NC  
NC  
V
3.3 V  
DDIO  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
72  
Freescale Semiconductor  
Hardware Design Considerations  
3.4.6  
TDM Interface Related Pins  
Table 68 lists the board connections of the TDM pins when an entire specific TDM is not used. For multiplexing options that  
select a subset of a TDM interface, use the connections described in Table 68 for those signals that are not selected. Table 68  
assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required  
to support the selected function.  
Table 68. Connectivity of TDM Related Pins When TDM Interface Is Not Used  
Signal Name  
Pin Connection  
TDMxRCLK  
TDMxRDAT  
TDMxRSYN  
TDMxTCLK  
TDMTxDAT  
TDMxTSYN  
GND  
GND  
GND  
GND  
GND  
GND  
3.3 V  
V
DDIO  
Notes: 1. x = {0, 1, 2,3, 4, 5, 6, 7}  
2. In case of subset of TDM interface usage please make sure to disable unused TDM modules. See Chapter 20, TDM, in the  
MSC8144E Reference Manual for details.  
3.4.7  
PCI Related Pins  
Table 69 lists the board connections of the pins when PCI is not used. Table 69 assumes that the alternate function of the  
specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.  
Table 69. Connectivity of PCI Related Pins When PCI Is Not Used  
Signal Name  
Pin Connection  
PCI_AD[0–31]  
PCI_CBE[0–3]  
PCI_CLK_IN  
PCI_DEVSEL  
PCI_FRAME  
PCI_GNT  
GND  
GND  
GND  
V
V
V
DDIO  
DDIO  
DDIO  
PCI_IDS  
GND  
PCI_IRDY  
V
DDIO  
PCI_PAR  
GND  
PCI_PERR  
PCI_REQ  
V
DDIO  
NC  
PCI_SERR  
PCI_STOP  
PCI_TRDY  
V
DDIO  
DDIO  
DDIO  
V
V
V
3.3 V  
DDIO  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
73  
Hardware Design Considerations  
3.4.8  
Miscellaneous Pins  
Table 70 lists the board connections for the pins if they are required by the system design. Table 70 assumes that the alternate  
function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected  
function.  
Table 70. Connectivity of Individual Pins When They Are Not Required  
Signal Name  
Pin Connection  
CLKOUT  
EE0  
NC  
GND  
EE1  
NC  
GPIO[0–31]  
SCL  
NC  
See the GPIO connectivity guidelines in this table.  
See the GPIO connectivity guidelines in this table.  
NC  
SDA  
INT_OUT  
IRQ[0–15]  
NMI  
See the GPIO connectivity guidelines in this table.  
V
DDIO  
NMI_OUT  
RC[0–16]  
RC_LDF  
STOP_BS  
TCK  
NC  
GND  
NC  
GND  
GND  
TDI  
GND  
TDO  
NC  
TMR[0–4]  
TMS  
See the GPIO connectivity guidelines in this table.  
GND  
TRST  
GND  
See the GPIO connectivity guidelines in this table.  
See the GPIO connectivity guidelines in this table.  
3.3 V  
URXD  
UTXD  
V
DDIO  
Note:  
When using I/O multiplexing mode 5 or 6, tie the TDM7TSYN/PCI_AD4 signal (ball number AC9) to GND.  
Note: For details on configuration, see the MSC8144E Reference Manual. For additional information, refer to the MSC8144  
Design Checklist (AN3202).  
3.5  
External DDR SDRAM Selection  
TBD  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
74  
Freescale Semiconductor  
Ordering Information  
4
Ordering Information  
Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.  
Core  
Core  
Operating  
Part  
Package Type  
Spheres  
Frequency Order Number  
(MHz)  
Voltage Temperature  
MSC8144E Flip Chip Plastic Ball Grid Array (FC-PBGA)  
Lead-free  
1.0 V  
–40° to 105°C  
0° to 90°C  
800  
TBD  
TBD  
1000  
5
Package Information  
Notes:  
1. All dimensions in millimeters.  
2. Dimensioning and tolerancing  
per ASME Y14.5M–1994.  
3. Maximum solder ball diameter  
measured parallel to Datum A.  
4. Datum A, the seating plane, is  
determined by the spherical  
crowns of the solder balls.  
5. Parallelism measurement  
should exclude any effect of  
marking.  
6. Capacitors may not be present  
on all devices.  
7. Caution must be taken not to  
short exposed metal capacitor  
pads on package top.  
CASE NO. 1842-02  
Figure 45. MSC8144E Mechanical Information, 783-ball FC-PBGA Package  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
75  
Product Documentation  
6
Product Documentation  
MSC8144E Technical Data Sheet (MSC8144E). Details the signals, AC/DC characteristics, clock signal  
characteristics, package and pinout, and electrical design considerations of the MSC8144E device.  
MSC8144E Reference Manual (MSC8144ERM). Includes functional descriptions of the extended cores and all the  
internal subsystems including configuration and programming information.  
Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8144E device.  
SC3400 DSP Core Reference Manual. Covers the SC3400 core architecture, control registers, clock registers, program  
control, and instruction set.  
MSC8144 SC3400 DSP Core Subsystem Reference Manual. Covers core subsystem architecture, functionality, and  
registers.  
7
Revision History  
Table 71 provides a revision history for this data sheet.  
Table 71. Document Revision History  
Revision  
Date  
Description  
0
1
June. 2007  
Sep 2007  
Initial public release.  
Updated M3 voltage range in Table 3.  
Changed note in Table 7 for PLL power supplies.  
DDR voltage designator changed from VDD to VDDDDR in Table 8, Table 10, Section 2.7.4.1, Section  
2.7.4.2, and Figure 11. Changed range on IOZ in Table 8 and Table 10.  
Deleted text before Table 13 and added note 2 to input pin capacitance.  
Deleted text before Table 14, added a 1 to the note, and added note 1 to input pin capacitance.  
Deleted Section 2.6.5 on page 32 and renumbered subsequent subsections.  
Deleted text before new Section 2.6.5.1.  
Added a 1 to the note in Table 15 and added note 1 to input pin capacitance.  
Deleted ac voltage rows from Table 16. Added note 1 to input pin capacitance.  
Changed output high and low voltage levels in Table 17 and Table 18.  
Deleted text before Table 19.  
Added clock skew ranges in percent in Table 21.  
Changed VREF to MVREF in Table 26.  
Changed VDD to VDDIO in Table 41 Updated note 2.  
Added note 4 to Table 42. Changed tTDMSHOX value.  
Changed VDD to VDDGE in Figure 27 and Figure 30.  
Changed the value of the data to clock out skew in Table 51.  
Changed EE pin timing in Table 55.  
Changed the head for the JTAG timing section, now Section 2.7.14.  
Updated JTAG timing for TCK cycle time, TCK high phase, and boundary scan input data hold time in  
Table 55.  
Added new Section 3.3 with guidelines for board layout for clock and timing signals. Renumbered  
subsequent sections.  
2
Sep 2007  
Changed leakage current values in Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19  
from –10 and 10 μa to –30 and 30 μa.  
Change the minimum value of tMDDVKH in Table 45 from 5 ns to 7 ns.  
Updated note 1 in Table 45.  
3
4
Oct 2007  
Oct 2007  
Corrected column numbering in Figure 3 and Figure 4.  
Updated SPI signal names in Table 1.  
Updated SPI signal names in Table 1.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
76  
Freescale Semiconductor  
Revision History  
Table 71. Document Revision History  
Description  
Revision  
Date  
5
Dec 2007  
Changed minimum voltage level for VDDM3 to 1.213 (1.25 – 3%) in Table 3.  
Added POS to titles in Section 2.6.6.  
Added additional signals to titles in Section 2.6.8. Added high and low voltage ranges to Table 19.  
Added ATM and POS to headings in Section 2.7.11. Changed characteristics to generic input/output in  
Table 52, Figure 33, and Figure 34.  
Replaced Sections 2.7.13 and 2.7.14 with new Section 2.7.13. Renumbered subsequent sections, tables,  
and figures.  
Added POS to all UTOPIA references in Section 3.4.5.  
6
Dec 2007  
Changed GCR4 program value to 0x0004C130 in Note 7 in Table 51.  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
77  
Revision History  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
78  
Freescale Semiconductor  
Revision History  
MSC8144E Quad Core Digital Signal Processor Data Sheet, Rev. 6  
Freescale Semiconductor  
79  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
support.asia@freescale.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
+1-800 441-2447 or  
Freescale™, the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are  
trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the  
RapidIO Trade Association. All other product or service names are the property of their  
respective owners.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2007. All rights reserved.  
Document Number: MSC8144E  
Rev. 6  
12/2007  

相关型号:

TBD-03-01-B

BARRIER TERMINAL STRIPS
ADAM-TECH

TBD-03-01-M

BARRIER TERMINAL STRIPS
ADAM-TECH

TBD-03-03-B

BARRIER TERMINAL STRIPS
ADAM-TECH

TBD-03-03-M

BARRIER TERMINAL STRIPS
ADAM-TECH

TBD-03-04-B

BARRIER TERMINAL STRIPS
ADAM-TECH

TBD-03-04-M

BARRIER TERMINAL STRIPS
ADAM-TECH

TBD0123

5V-3A regulator encapsulated in high-dissipation plastic package
ETC

TBD0201B

1BARRIER TERMINAL STRIPS
ADAM-TECH

TBD0201M

1BARRIER TERMINAL STRIPS
ADAM-TECH

TBD0202B

1BARRIER TERMINAL STRIPS
ADAM-TECH

TBD0202M

1BARRIER TERMINAL STRIPS
ADAM-TECH

TBD0203B

1BARRIER TERMINAL STRIPS
ADAM-TECH