FPT-64P-M24 [FUJITSU]

F2MC-8FX MB95160MA Series;
FPT-64P-M24
型号: FPT-64P-M24
厂家: FUJITSU    FUJITSU
描述:

F2MC-8FX MB95160MA Series

文件: 总76页 (文件大小:530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS07–12624–3E  
8-bit Microcontrollers  
CMOS  
F2MC-8FX MB95160MA Series  
MB95168MA/F168MA/F168NA/F168JA/  
MB95FV100D-103  
DESCRIPTION  
The MB95160MA series is general-purpose, single-chip microcontrollers. In addition to a compact instruction  
set, the microcontrollers contain a variety of peripheral functions.  
Note : F2MC is the abbreviation of FUJITSU Flexible Microcontroller.  
FEATURE  
F2MC-8FX CPU core  
Instruction set optimized for controllers  
• Multiplication and division instructions  
• 16-bit arithmetic operations  
• Bit test branch instruction  
• Bit manipulation instructions etc.  
Clock  
• Main clock  
• Main PLL clock  
• Sub clock  
• Sub PLL clock  
(Continued)  
For the information for microcontroller supports, see the following web site.  
This web site includes the "Customer Design Review Supplement" which provides the latest cautions  
on system development and the minimal requirements to be checked to prevent problems before the  
system development.  
http://edevice.fujitsu.com/micom/en-support/  
Copyright©2008-2009 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2009.3  
MB95160MA Series  
(Continued)  
Timer  
• 8/16-bit compound timer × 2 channels  
Can be used to interval timer, PWC timer, PWM timer and input capture.  
• 8/16-bit PPG × 2 channels  
• 16-bit PPG × 1 channel  
• Time-base timer × 1 channel  
• Watch prescaler × 1 channel  
LIN-UART × 1 channel  
• LIN function, clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable  
• Full duplex double buffer  
UART/SIO × 1 channel  
• Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable  
• Full duplex double buffer  
I2C × 1 channel  
Built-in wake-up function  
External interrupt × 8 channels  
• Interrupt by edge detection (rising, falling, or both edges can be selected)  
• Can be used to recover from low-power consumption (standby) modes.  
8/10-bit A/D converter × 8 channels  
8-bit or 10-bit resolution can be selected.  
LCD controller (LCDC)  
• 32 SEG × 4 COM (Max 128 pixels)  
• With blinking function  
Low-power consumption (standby) mode  
• Stop mode  
• Sleep mode  
• Watch mode  
• Time-base timer mode  
I/O port  
• The number of maximum ports : Max 52  
• Port configuration  
- General-purpose I/O ports (N-ch open drain) : 2 ports  
- General-purpose I/O ports (CMOS) : 50 ports  
Programmable input voltage levels of port  
Automotive input level / CMOS input level / hysteresis input level  
Flash memory security function (Flash memory product only)  
Protects the content of Flash memory  
2
DS07–12624–3E  
MB95160MA Series  
PRODUCT LINEUP  
Part number  
Parameter  
MB95168MA  
MB95F168MA  
MB95F168NA  
MB95F168JA  
Mask ROM  
product  
Type  
Flash memory product  
ROM capacity  
RAM capacity  
60 Kbytes  
2 Kbytes  
Yes/No  
selectable  
Reset output  
Yes  
No  
Clock system  
Dual clock  
Low voltage  
detection reset  
Yes/No  
selectable  
No  
Yes  
Yes/No  
selectable  
Clock supervisor  
No  
Yes  
Number of basic instructions  
Instruction bit length  
Instruction length  
: 136  
: 8 bits  
: 1 to 3 bytes  
: 1, 8, and 16 bits  
Data bit length  
CPU functions  
Minimum instruction execution time : 61.5 ns (at machine clock frequency  
16.25 MHz)  
Interrupt processing time  
: 0.6 μs (at machine clock frequency  
16.25 MHz)  
General-purpose I/O port (N-ch open drain) : 2 ports  
General-purpose I/O port (CMOS)  
Programmable input voltage levels of port :  
: 50 ports  
Ports (Max 52 ports)  
Automotive input level / CMOS input level / hysteresis input level  
Interrupt cycle : 0.5 ms, 2.1 ms, 8.2 ms, 32.8 ms (at main oscillation clock 4 MHz)  
Reset generated cycle  
Time-base timer  
(1 channel)  
Watchdog timer  
Wild register  
At main oscillation clock 10 MHz  
At sub oscillation clock 32.768 kHz (for dual clock product) : Min 250 ms  
: Min 105 ms  
Capable of replacing 3 bytes of ROM data  
Master/slave sending and receiving  
Bus error function and arbitration function  
Detecting transmitting direction function  
Start condition repeated generation and detection functions  
Built-in wake-up function  
I2C  
(1 channel)  
Data transfer capable in UART/SIO  
Full duplex double buffer,  
variable data length (5/6/7/8-bit), built-in baud rate generator  
NRZ type transfer format, error detected function  
LSB-first or MSB-first can be selected.  
Clock synchronous (SIO) or clock asynchronous (UART) serial data transfer ca-  
pable  
UART/SIO  
(1 channel)  
Dedicated reload timer allowing a wide range of communication speeds to be set.  
Full duplex double buffer.  
Capable of serial data transfer synchronous or asynchronous to clock signal.  
LIN functions available as the LIN master or LIN slave.  
LIN-UART  
(1 channel)  
8/10-bit A/D converter  
(8 channels)  
8-bit or 10-bit resolution can be selected.  
(Continued)  
DS07–12624–3E  
3
MB95160MA Series  
(Continued)  
Part number  
MB95168MA  
MB95F168MA  
MB95F168NA  
: 4 (Max)  
: 32 (Max)  
: 4  
MB95F168JA  
Parameter  
COM output  
SEG output  
LCD drive power supply (bias) pin  
LCD controller  
(LCDC)  
32 SEG × 4 COM : 128 pixels can be displayed.  
Duty LCD mode  
Operable in LCD standby mode  
With blinking function  
Built-in division resistance for LCD drive  
Each channel of the timer can be used as “8-bit timer × 2 channels” or “16-bit timer  
× 1 channel”.  
Built-in timer function, PWC function, PWM function, capture function, and square  
wave form output  
8/16-bit compound  
timer (2 channels)  
Count clock : 7 internal clocks and external clock can be selected.  
PWM mode or one-shot mode can be selected.  
Counter operating clock : Eight selectable clock sources  
Support for external trigger start  
16-bit PPG  
(1 channel)  
Each channel of the PPG can be used as 8-bit PPG × 2 channelsor 16-bit PPG  
× 1 channel.  
Counter operating clock : Eight selectable clock sources  
8/16-bit PPG  
(2 channels)  
Count clock : Four selectable clock sources (125 ms, 250 ms, 500 ms, or 1 s)  
Counter value can be set from 0 to 63. (Capable of counting for 1 minute when  
selecting clock source 1 second and setting counter value to 60)  
Watch counter  
Watch prescaler  
(1 channel)  
4 selectable interval times (125 ms, 250 ms, 500 ms, or 1 s)  
External interrupt  
(8 channels)  
Interrupt by edge detection (rising, falling, or both edges can be selected.)  
Can be used to recover from standby modes.  
Supports automatic programming, Embedded Algorithm  
Write/Erase/Erase-Suspend/Resume commands  
A flag indicating completion of the algorithm  
Number of write/erase cycles (Minimum) : 10000 times  
Data retention time: 20 years  
Flash memory  
Erase can be performed on each block  
Block protection with external programming voltage  
Flash Security Feature for protecting the content of the Flash  
Standby mode  
Sleep, stop, watch, and time-base timer  
* : For details of option, refer to “MASK OPTION”.  
Note : Part number of evaluation product in MB95160MA series is MB95FV100D-103. When using it, the MCU  
board (MB2146-303A-E) is required.  
4
DS07–12624–3E  
MB95160MA Series  
OSCILLATION STABILIZATION WAIT TIME  
The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The  
maximum value is shown as follows.  
Oscillation stabilization wait time  
Remarks  
(214-2) /FCH  
Approx. 4.10 ms (at main oscillation clock 4 MHz)  
PACKAGES AND CORRESPONDING PRODUCTS  
Part number  
MB95F168MA/  
F168NA/F168JA  
MB95168MA  
MB95FV100D-103  
Package  
FPT-64P-M23  
FPT-64P-M24  
BGA-224P-M08  
: Available  
: Unavailable  
DS07–12624–3E  
5
MB95160MA Series  
DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS  
Notes on Using Evaluation Products  
The evaluation product has not only the functions of the MB95160MA series but also those of other products  
to support software development for multiple series and models of the F2MC-8FX family. The I/O addresses  
for peripheral resources not used by the MB95160MA series are therefore access-barred. Read/write access  
to these access-barred addresses may cause peripheral resources supposed to be unused to operate,  
resulting in unexpected malfunctions of hardware or software.  
Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access  
are used, the address may be read or written unexpectedly).  
Also, as the read values of prohibited addresses on the evaluation product are different to the values on the  
Flash memory products or Mask ROM products, do not use these values in the program.  
The functions corresponding to certain bits in single-byte registers may not be supported depending on the  
type of Flash memory products and Mask ROM products. However, reading or writing to these bits will not  
cause malfunction of the hardware. Also, the products with either evaluation, Flash memory or Mask ROM  
are designed to have the same operation in software and hardware.  
Difference of Memory Spaces  
If the amount of memory on the evaluation product is different from that of the Flash memory and Mask ROM  
products, carefully check the difference in the amount of memory from the model to be actually used when  
developing software.  
For details of memory space, refer to “CPU CORE”.  
Current Consumption  
Current in Flash memory products is consumed more than Mask ROM products.  
For details of current consumption, refer to “ELECTRICAL CHARACTERISTICS”.  
Package  
For details of information on each package, refer to “PACKAGES AND CORRESPONDING PRODUCTS”  
and “PACKAGE DIMENSIONS”.  
Operating voltage  
The operating voltage is different among the evaluation, Flash memory products and Mask ROM products.  
For details of operating voltage, refer to “ELECTRICAL CHARACTERISTICS”  
6
DS07–12624–3E  
MB95160MA Series  
PIN ASSIGNMENT  
(TOP VIEW)  
AVCC  
AVR  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P60/SEG16/PPG10  
PC7/SEG15  
PC6/SEG14  
PC5/SEG13  
PC4/SEG12  
PC3/SEG11  
PC2/SEG10  
PC1/SEG09  
PC0/SEG08  
PB7/SEG07  
PB6/SEG06  
PB5/SEG05  
PB4/SEG04  
PB3/SEG03  
PB2/SEG02  
PB1/SEG01  
2
P14/PPG0  
P13/TRG0/ADTG  
P12/UCK0  
P11/UO0  
P10/UI0  
3
4
5
6
7
P24/EC0/SDA0  
P23/TO01/SCL0  
P22/TO00  
P21/PPG01  
P20/PPG00  
MOD  
8
LQFP-64  
9
10  
11  
12  
13  
14  
15  
16  
X0  
X1  
VSS  
(FPT-64P-M23,FPT-64P-M24)  
DS07–12624–3E  
7
MB95160MA Series  
PIN DESCRIPTION  
I/Ocircuit  
Pin no.  
Pin name  
Function  
A/D converter power supply pin  
type*1  
1
2
AVCC  
AVR  
A/D converter reference input pin  
General-purpose I/O port.  
The pin is shared with 16-bit PPG ch.0 output.  
3
P14/PPG0  
General-purpose I/O port.  
The pin is shared with 16-bit PPG ch.0 trigger input (TRG0) and  
A/D converter trigger input (ADTG) .  
P13/TRG0/  
ADTG  
4
H
General-purpose I/O port.  
The pin is shared with UART/SIO ch.0 clock I/O.  
5
6
7
P12/UCK0  
P11/UO0  
P10/UI0  
General-purpose I/O port.  
The pin is shared with UART/SIO ch.0 data output.  
General-purpose I/O port.  
The pin is shared with UART/SIO ch.0 data input.  
G
I
General-purpose I/O port.  
The pin is shared with 8/16-bit compound timer ch.0 clock input  
(EC0) and I2C ch.0 data I/O (SDA0) .  
P24/EC0/  
SDA0  
8
9
General-purpose I/O port.  
The pin is shared with 8/16-bit compound timer ch.0 output  
(TO01) and I2C ch.0 clock I/O (SCL0) .  
P23/TO01/  
SCL0  
General-purpose I/O port.  
The pin is shared with 8/16-bit compound timer ch.0 output.  
10  
11  
12  
P22/TO00  
P21/PPG01  
P20/PPG00  
General-purpose I/O port.  
The pin is shared with 8/16-bit PPG ch.0 output.  
H
General-purpose I/O port.  
The pin is shared with 8/16-bit PPG ch.0 output.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
MOD  
X0  
B
A
Operating mode designation pin  
Main clock oscillation pins  
X1  
VSS  
Power supply pin (GND)  
Power supply pin  
VCC  
C
Capacitor connection pin  
X1A  
A
Sub clock oscillation pins (32 kHz)  
Reset pin  
X0A  
RST  
P90/V3  
P91/V2  
P92/V1  
P93/V0  
B’  
General-purpose I/O ports.  
The pins are shared with power supply pin for LCDC drive.  
R
(Continued)  
8
DS07–12624–3E  
MB95160MA Series  
I/Ocircuit  
type*1  
Pin no.  
Pin name  
Function  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
P94  
S
General-purpose I/O ports.  
P95*2  
PA0/COM0  
PA1/COM1  
PA2/COM2  
PA3/COM3  
PB0/SEG00  
PB1/SEG01  
PB2/SEG02  
PB3/SEG03  
PB4/SEG04  
PB5/SEG05  
PB6/SEG06  
PB7/SEG07  
PC0/SEG08  
PC1/SEG09  
PC2/SEG10  
PC3/SEG11  
PC4/SEG12  
PC5/SEG13  
PC6/SEG14  
PC7/SEG15  
General-purpose I/O ports.  
The pins are shared with LCDC COM output (COM0 to COM3).  
M
General-purpose I/O ports.  
The pins are shared with LCDC SEG output (SEG00 to SEG07).  
M
General-purpose I/O ports.  
The pins are shared with LCDC SEG output (SEG08 to SEG15).  
M
P60/SEG16/  
PPG10  
48  
49  
General-purpose I/O ports.  
The pins are shared with LCDC SEG output (SEG16, SEG17)  
and 8/16-bit PPG ch.1 output (PPG10, PPG11) .  
P61/SEG17/  
PPG11  
General-purpose I/O port.  
The pin is shared with LCDC SEG output (SEG18) and 8/16-bit  
compound timer ch.1 output (TO10) .  
P62/SEG18/  
TO10  
50  
51  
52  
53  
54  
General-purpose I/O port.  
The pin is shared with LCDC SEG output (SEG19) and 8/16-bit  
compound timer ch.1 output (TO11) .  
P63/SEG19/  
TO11  
M
General-purpose I/O port.  
The pin is shared with LCDC SEG output (SEG20) and 8/16-bit  
compound timer ch.1 clock input (EC1) .  
P64/SEG20/  
EC1  
General-purpose I/O port.  
The pin is shared with LCDC SEG output (SEG21) and LIN-UART  
clock I/O (SCK) .  
P65/SEG21/  
SCK  
General-purpose I/O port.  
The pin is shared with LCDC SEG output (SEG22) and LIN-UART  
data output (SOT) .  
P66/SEG22/  
SOT  
(Continued)  
DS07–12624–3E  
9
MB95160MA Series  
(Continued)  
I/Ocircuit  
Pin no.  
Pin name  
Function  
type*1  
General-purpose I/O port.  
The pin is shared with LCDC SEG output (SEG23) and LIN-UART  
data input (SIN) .  
P67/SEG23/  
SIN  
55  
N
P07/INT07/  
AN07/SEG24  
56  
57  
58  
59  
60  
61  
62  
P06/INT06/  
AN06/SEG25  
P05/INT05/  
AN05/SEG26  
P04/INT04/  
AN04/SEG27  
General-purpose I/O ports.  
The pins are shared with external interrupt input (INT00 to INT07),  
A/D analog input (AN00 to AN07) and LCDC SEG output (SEG31  
to SEG24) .  
F
P03/INT03/  
AN03/SEG28  
P02/INT02/  
AN02/SEG29  
P01/INT01/  
AN01/SEG30  
P00/INT00/  
AN00/SEG31  
63  
64  
AVSS  
Power supply pin (GND) of A/D converter  
*1 : Refer to “I/O CIRCUIT TYPE” for details on the I/O circuit types.  
*2 : When using P07 for segment output (SEG24) of LCDC, P95 can not be used as an output port. It can be  
used only as an input port.  
10  
DS07–12624–3E  
MB95160MA Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillation circuit  
• High-speed side  
Feedback resistance : approx. 1 MΩ  
• Low-speed side  
X1 (X1A)  
X0 (X0A)  
Clock input  
N-ch  
Feedback resistance : approx. 10 MΩ  
Standby control  
B
• Only for input  
• Hysteresis input  
Mode input  
Reset input  
B’  
• Hysteresis input  
• Reset output  
Reset output  
N-ch  
F
• CMOS output  
• LCD output  
• Hysteresis input  
• Analog input  
P-ch  
N-ch  
Digital output  
Digital output  
• Automotive input  
Analog input  
LCD output  
Hysteresis input  
A/D control  
LCD control  
Automotive input  
Standby control  
External interrupt  
control  
G
• CMOS output  
• CMOS input  
R
P-ch  
Pull-up control  
• Hysteresis input  
• With pull-up control  
• Automotive input  
P-ch  
N-ch  
Digital output  
Digital output  
CMOS input  
Hysteresis input  
Automotive input  
Standby control  
(Continued)  
DS07–12624–3E  
11  
MB95160MA Series  
Type  
Circuit  
Remarks  
• CMOS output  
H
• Hysteresis input  
• With pull-up control  
• Automotive input  
R
P-ch  
Pull-up control  
Digital output  
P-ch  
Digital output  
N-ch  
Hysteresis input  
Automotive input  
Standby control  
I
• N-ch open drain output  
• CMOS input  
• Hysteresis input  
• Automotive input  
Digital output  
CMOS input  
N-ch  
Hysteresis input  
Automotive input  
Standby control  
M
• CMOS output  
• LCD output  
• Hysteresis input  
• Automotive input  
P-ch  
N-ch  
Digital output  
Digital output  
LCD output  
Hysteresis input  
Automotive input  
LCD control  
Standby control  
N
• CMOS output  
• LCD output  
• CMOS input  
• Hysteresis input  
• Automotive input  
P-ch  
Digital output  
Digital output  
N-ch  
LCD output  
CMOS input  
Hysteresis input  
Automotive input  
LCD control  
Standby control  
(Continued)  
12  
DS07–12624–3E  
MB95160MA Series  
(Continued)  
Type  
Circuit  
Remarks  
R
• CMOS output  
P-ch  
• LCD power supply  
• Hysteresis input  
• Automotive input  
Digital output  
Digital output  
N-ch  
LCD built-in internal split  
resistor I/O  
Hysteresis input  
Automotive input  
Standby control  
LCD control  
S
• CMOS output  
P-ch  
N-ch  
• LCD power supply  
• Hysteresis input  
• Automotive input  
Digital output  
Digital output  
Hysteresis input  
Automotive input  
Standby control  
DS07–12624–3E  
13  
MB95160MA Series  
HANDLING DEVICES  
Preventing Latch-up  
Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.  
Latch-up may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output  
pins  
other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between  
VCC pin and VSS pin.  
When latch-up occurs, power supply current increases rapidly and might thermally damage elements.  
Stable Supply Voltage  
Supply voltage should be stabilized.  
A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating  
range of the Vcc power-supply voltage.  
For stabilization, in principle, keep the variation in Vcc ripple (p-p value) in a commercial frequency range  
(50/60 Hz) not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the  
transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power  
supply is switched.  
Precautions for Use of External Clock  
Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-  
up from sub clock mode or stop mode.  
Serial communication  
There is a possibility to receive wrong data due to noise or other causes on the serial communication.  
Therefore, design a printed circuit board so as to avoid noise.  
Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit  
the data if an error occurs.  
PIN CONNECTION  
Treatment of Unused Pin  
Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent  
damage. Unused input pins should always be pulled up or down through resistance of at least 2 kΩ. Any  
unused input/output pins may be set to output mode and left open, or set to input mode and treated the same  
as unused input pins. If there is unused output pin, make it to open.  
Power Supply Pins  
In products with multiple VCC or VSS pins, the pins of the same potential are internally connected in the device  
to avoid abnormal operations including latch-up. However, you must connect the pins to external power  
supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of  
strobe signals caused by the rise in the ground level, and to conform to the total output current rating.  
Moreover, connect the current supply source with the VCC and VSS pins of this device at the low impedance.  
It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μF between VCC and VSS pins  
near this device.  
14  
DS07–12624–3E  
MB95160MA Series  
Mode Pin (MOD)  
Connect the MOD pin directly to VCC or VSS.  
To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as  
to minimize the distance from the MOD pin to VCC or VSS and to provide a low-impedance connection.  
C Pin  
Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of VCC  
pin must have a capacitance value higher than CS. For connection of smoothing capacitor CS, refer to the  
diagram below.  
• C pin connection diagram  
C
CS  
Analog Power Supply  
Always set the same potential to AVCC and VCC pins. When VCC > AVCC, the current may flow through the  
AN00 to AN07 pins.  
Treatment of Power Supply Pins on A/D Converter  
Connect to be AVCC = VCC and AVSS = AVR = VSS even if the A/D converter is not in use.  
Noise riding on the AVCC pin may cause accuracy degradation. So, connect approx. 0.1 μF ceramic capacitor  
as a bypass capacitor between AVCC and AVSS pins in the vicinity of this device.  
DS07–12624–3E  
15  
MB95160MA Series  
PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL  
PROGRAMMER  
Supported Parallel Programmers and Adapters  
The following table lists supported parallel programmers and adapters.  
Package  
Applicable adapter model  
Parallel programmers  
FPT-64P-M23  
TEF110-95F168HPMC  
AF9708 (Ver 02.35G or more)  
AF9709/B (Ver 02.35G or more)  
AF9723+AF9834 (Ver 02.08E or more)  
FPT-64P-M24  
TEF110-95F168HPMC1  
Note : For information on applicable adapter models and parallel programmers, contact the following:  
Flash Support Group, Inc. TEL: +81-53-428-8380  
Sector Configuration  
The individual sectors of Flash memory correspond to addresses used for CPU access and programming  
by the parallel programmer as follows:  
Flash memory  
60 Kbytes  
CPU address  
1000H  
Programmer address*  
11000H  
FFFFH  
1FFFFH  
*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer  
programs data into Flash memory.  
These programmer addresses are used for the parallel programmer to program or erase data in  
Flash memory.  
Programming Method  
1) Set the type code of the parallel programmer to 17222.  
2) Load program data to programmer addresses 11000H to 1FFFFH.  
3) Programmed by parallel programmer  
16  
DS07–12624–3E  
MB95160MA Series  
BLOCK DIAGRAM  
F2MC-8FX CPU  
RST  
Reset control  
ROM  
X0, X1  
RAM  
Clock control  
X0A, X1A  
Interrupt control  
Wild register  
Watch prescaler  
Watch counter  
P00/INT00 to  
P07/INT07  
External interrupt  
P60/SEG16/PPG10  
P61/SEG17/PPG11  
8/16-bit PPG ch.1  
8/16-bit  
P10/UI0  
P11/UO0  
P12/UCK0  
UART/SIO  
P62/SEG18/TO10  
P63/SEG19/TO11  
P64/SEG20/EC1  
compound timer ch.1  
P13/TRG0/ADTG  
16-bit PPG  
P14/PPG0  
P65/SEG21/SCK  
P66/SEG22/SOT  
P67/SEG23/SIN  
LIN-UART  
P20/PPG00  
P21/PPG01  
8/16-bit PPG ch.0  
P90/V3 to P93/V0  
P22/TO00  
P23/TO01/SCL0  
P24/EC0/SDA0  
8/16-bit  
compound timer ch.0  
PA0/COM0 to PA3/COM3  
PB0/SEG00 to PB7/SEG07  
PC0/SEG08 to PC7/SEG15  
(P00/SEG31 to P07/SEG24)  
LCDC  
I2C  
(P00/AN00 to  
P07/AN07)  
8/10-bit  
A/D converter  
AVCC  
AVSS  
AVR  
P94, P95  
Port  
Port  
Other pins  
MOD, VSS, VCC, C  
DS07–12624–3E  
17  
MB95160MA Series  
CPU CORE  
1. Memory space  
Memory space of the MB95160MA series is 64 Kbytes and consists of I/O area, data area, and program  
area. The memory space includes special-purpose areas such as the general-purpose registers and vector  
table. Memory map of the MB95160MA series is shown below.  
• Memory Map  
MB95F168MA  
MB95F168NA  
MB95168MA  
MB95FV100D-103  
MB95F168JA  
0000H  
0000H  
0000H  
I/O  
I/O  
I/O  
0080H  
0100H  
0200H  
0080H  
0100H  
0200H  
0080H  
0100H  
0200H  
RAM 2 Kbytes  
RAM 2 Kbytes  
RAM 3.75 Kbytes  
Register  
Register  
Register  
0880H  
0F80H  
1000H  
0880H  
0F80H  
1000H  
Access prohibited  
Access prohibited  
0F80H  
Exterded I/O  
Exterded I/O  
Exterded I/O  
1000H  
Mask ROM  
60 Kbytes  
Flash memory  
60 Kbytes  
Flash memory  
60 Kbytes  
FFFFH  
FFFFH  
FFFFH  
18  
DS07–12624–3E  
MB95160MA Series  
2. Register  
The MB95160MA series has two types of registers; dedicated registers in the CPU and general-purpose  
registers in the memory. The dedicated registers are as follows:  
Program counter (PC)  
: A 16-bit register to indicate locations where instructions are stored.  
Accumulator (A)  
: A 16-bit register for temporary storage of arithmetic operations. In the case of  
an 8-bit data processing instruction, the lower 1 byte is used.  
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator.  
In the case of an 8-bit data processing instruction, the lower 1 byte is used.  
Index register (IX)  
Extra pointer (EP)  
Stack pointer (SP)  
Program status (PS)  
: A 16-bit register for index modification.  
: A 16-bit pointer to point to a memory address.  
: A 16-bit register to indicate a stack area.  
: A 16-bit register for storing a register bank pointer, a direct bank pointer, and  
a condition code register.  
Initial Value  
16-bit  
FFFDH  
0000H  
0000H  
0000H  
0000H  
0000H  
0030H  
: Program counter  
: Accumulator  
PC  
AH  
TH  
AL  
TL  
: Temporary accumulator  
: Index register  
IX  
: Extra pointer  
EP  
SP  
PS  
: Stack pointer  
: Program status  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank  
pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)  
Structure of the Program Status  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
R4  
R3  
R2  
R1  
R0 DP2 DP1 DP0  
H
I
IL1  
IL0  
N
Z
PS  
C
V
RP  
DP  
CCR  
DS07–12624–3E  
19  
MB95160MA Series  
The RP indicates the address of the register bank currently being used. The relationship between the content  
of RP and the real address conforms to the conversion rule illustrated below:  
Rule for Conversion of Actual Addresses in the General-purpose Register Area  
RP upper  
OP code lower  
"0" "0" "0" "0" "0" "0" "0" "1"  
R4 R3 R2 R1 R0 b2  
b1  
b0  
Generated address  
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct  
addresses to 0080H to 00FFH.  
Direct bank pointer (DP2 to DP0)  
Specified address area  
Mapping area  
0000H to 007FH (without mapping)  
0080H to 00FFH (without mapping)  
0100H to 017FH  
XXXB (no effect to mapping)  
0000H to 007FH  
000B (initial value)  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
0180H to 01FFH  
0200H to 027FH  
0080H to 00FFH  
0280H to 02FFH  
0300H to 037FH  
0380H to 03FFH  
0400H to 047FH  
The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits  
that control CPU operations at interrupt.  
H flag  
I flag  
Set to “1” when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to “0” otherwise. This flag is for decimal adjustment instructions.  
:
:
:
Interrupt is enabled when this flag is set to “1”. Interrupt is disabled when this flag is set to “0”.  
The flag is set to “0” when reset.  
IL1, IL0  
Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level  
is higher than the value indicated by these bits.  
IL1  
IL0  
0
Interrupt level  
Priority  
0
0
1
0
1
2
High  
1
0
1
1
3
Low (no interruption)  
N flag  
Set to “1” if the MSB is set to “1” as the result of an arithmetic operation. Cleared to “0” when the  
bit is set to “0”.  
:
Z flag : Set to “1” when an arithmetic operation results in “0”. Cleared to “0” otherwise.  
V flag  
Set to “1” if the complement on 2 overflows as a result of an arithmetic operation. Cleared to “0”  
otherwise.  
:
C flag  
Set to “1” when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared  
to “0” otherwise. Set to the shift-out value in the case of a shift instruction.  
:
20  
DS07–12624–3E  
MB95160MA Series  
The following general-purpose registers are provided:  
General-purpose registers: 8-bit data storage registers  
The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains  
8-register. Up to a total of 32 banks can be used on the MB95160MA series. The bank currently in use is  
specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose  
register 0 (R0) to general-purpose register 7 (R7).  
• Register Bank Configuration  
8-bit  
1F8H  
This address = 0100  
H
+ 8 × (RP)  
Address 100H  
R0  
R1  
R0  
R1  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R2  
R3  
R4  
R5  
R6  
R7  
R2  
R3  
R4  
R5  
R6  
R7  
1FFH  
Bank 31  
107H  
32 banks  
32 banks (RAM area)  
The number of banks is  
limited by the usable RAM  
capacitance.  
Bank 0  
Memory area  
DS07–12624–3E  
21  
MB95160MA Series  
I/O MAP  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0000H  
0001H  
0002H  
0003H  
0004H  
0005H  
0006H  
0007H  
0008H  
0009H  
000AH  
000BH  
000CH  
000DH  
000EH  
000FH  
PDR0  
DDR0  
PDR1  
DDR1  
Port 0 data register  
Port 0 direction register  
Port 1 data register  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
Port 1 direction register  
(Disabled)  
WATR  
PLLC  
SYCC  
STBC  
RSRR  
TBTC  
WPCR  
WDTC  
Oscillation stabilization wait time setting register  
PLL control register  
R/W  
R/W  
R/W  
R/W  
11111111B  
00000000B  
1010X011B  
00000000B  
System clock control register  
Standby control register  
Reset factor register  
R/W XXXXXXXXB  
Time-base timer control register  
Watch prescaler control register  
Watchdog timer control register  
(Disabled)  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
PDR2  
DDR2  
Port 2 data register  
R/W  
R/W  
00000000B  
00000000B  
Port 2 direction register  
0010H  
to  
0015H  
(Disabled)  
0016H  
0017H  
PDR6  
DDR6  
Port 6 data register  
R/W  
R/W  
00000000B  
00000000B  
Port 6 direction register  
0018H  
to  
001BH  
(Disabled)  
001CH  
001DH  
001EH  
001FH  
0020H  
0021H  
0022H  
0023H  
PDR9  
DDR9  
PDRA  
DDRA  
PDRB  
DDRB  
PDRC  
DDRC  
Port 9 data register  
Port 9 direction register  
Port A data register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
Port A direction register  
Port B data register  
Port B direction register  
Port C data register  
Port C direction register  
0024H  
to  
002CH  
(Disabled)  
(Continued)  
22  
DS07–12624–3E  
MB95160MA Series  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
002DH  
002EH  
PUL1  
PUL2  
Port 1 pull-up register  
Port 2 pull-up register  
R/W  
R/W  
00000000B  
00000000B  
002FH  
to  
0035H  
(Disabled)  
0036H  
0037H  
0038H  
0039H  
003AH  
003BH  
003CH  
003DH  
T01CR1  
T00CR1  
T11CR1  
T10CR1  
PC01  
8/16-bit compound timer 01 control status register 1 ch.0 R/W  
8/16-bit compound timer 00 control status register 1 ch.0 R/W  
8/16-bit compound timer 11 control status register 1 ch.1 R/W  
8/16-bit compound timer 10 control status register 1 ch.1 R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
8/16-bit PPG1 control register ch.0  
8/16-bit PPG0 control register ch.0  
8/16-bit PPG1 control register ch.1  
8/16-bit PPG0 control register ch.1  
R/W  
R/W  
R/W  
R/W  
PC00  
PC11  
PC10  
003EH  
to  
0041H  
(Disabled)  
0042H  
0043H  
PCNTH0  
PCNTL0  
16-bit PPG status control register (upper byte) ch.0  
16-bit PPG status control register (lower byte) ch.0  
R/W  
R/W  
00000000B  
00000000B  
0044H  
to  
0047H  
(Disabled)  
0048H  
0049H  
004AH  
004BH  
EIC00  
EIC10  
EIC20  
EIC30  
External interrupt circuit control register ch.0/ch.1  
External interrupt circuit control register ch.2/ch.3  
External interrupt circuit control register ch.4/ch.5  
External interrupt circuit control register ch.6/ch.7  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
004CH  
to  
004FH  
(Disabled)  
0050H  
0051H  
0052H  
0053H  
0054H  
0055H  
0056H  
0057H  
0058H  
SCR  
SMR  
LIN-UART serial control register  
LIN-UART serial mode register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00001000B  
00000000B  
00000100B  
000000XXB  
00000000B  
00100000B  
SSR  
LIN-UART serial status register  
RDR/TDR  
ESCR  
ECCR  
SMC10  
SMC20  
SSR0  
LIN-UART reception/transmission data register  
LIN-UART extended status control register  
LIN-UART extended communication control register  
UART/SIO serial mode control register 1 ch.0  
UART/SIO serial mode control register 2 ch.0  
UART/SIO serial status register ch.0  
00000001B  
(Continued)  
DS07–12624–3E  
23  
MB95160MA Series  
Register  
Address  
Register name  
R/W Initial value  
abbreviation  
0059H  
005AH  
TDR0  
RDR0  
UART/SIO serial output data register ch.0  
UART/SIO serial input data register ch.0  
R/W  
R
00000000B  
00000000B  
005BH  
to  
005FH  
(Disabled)  
0060H  
0061H  
0062H  
0063H  
0064H  
0065H  
IBCR00  
IBCR10  
IBSR0  
IDDR0  
IAAR0  
ICCR0  
I2C bus control register 0 ch.0  
I2C bus control register 1 ch.0  
I2C bus status register ch.0  
I2C data register ch.0  
R/W  
R/W  
R
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
R/W  
R/W  
R/W  
I2C address register ch.0  
I2C clock control register ch.0  
0066H  
to  
006BH  
(Disabled)  
006CH  
006DH  
006EH  
006FH  
0070H  
0071H  
0072H  
0073H  
0074H  
0075H  
0076H  
0077H  
ADC1  
ADC2  
ADDH  
ADDL  
WCSR  
8/10-bit A/D converter control register 1  
8/10-bit A/D converter control register 2  
8/10-bit A/D converter data register (upper byte)  
8/10-bit A/D converter data register (lower byte)  
Watch counter status register  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
(Disabled)  
FSR  
Flash memory status register  
R/W  
R/W  
R/W  
000X0000B  
00000000B  
00000000B  
SWRE0  
SWRE1  
Flash memory sector writing control register 0  
Flash memory sector writing control register 1  
(Disabled)  
WREN  
WROR  
Wild register address compare enable register  
Wild register data test setting register  
R/W  
R/W  
00000000B  
00000000B  
Register bank pointer (RP) ,  
Mirror of direct bank pointer (DP)  
0078H  
0079H  
007AH  
007BH  
007CH  
007DH  
007EH  
007FH  
0F80H  
ILR0  
ILR1  
Interrupt level setting register 0  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Interrupt level setting register 4  
Interrupt level setting register 5  
(Disabled)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
ILR2  
ILR3  
ILR4  
ILR5  
WRARH0  
Wild register address setting register (upper byte) ch.0  
R/W  
00000000B  
(Continued)  
24  
DS07–12624–3E  
MB95160MA Series  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0F81H  
0F82H  
0F83H  
0F84H  
0F85H  
0F86H  
0F87H  
0F88H  
WRARL0  
WRDR0  
WRARH1  
WRARL1  
WRDR1  
WRARH2  
WRARL2  
WRDR2  
Wild register address setting register (lower byte) ch.0  
Wild register data setting register ch.0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
00000000B  
Wild register address setting register (upper byte) ch.1  
Wild register address setting register (lower byte) ch.1  
Wild register data setting register ch.1  
Wild register address setting register (upper byte) ch.2  
Wild register address setting register (lower byte) ch.2  
Wild register data setting register ch.2  
0F89H  
to  
0F91H  
(Disabled)  
0F92H  
0F93H  
0F94H  
0F95H  
T01CR0  
T00CR0  
T01DR  
T00DR  
8/16-bit compound timer 01 control status register 0 ch.0 R/W  
8/16-bit compound timer 00 control status register 0 ch.0 R/W  
00000000B  
00000000B  
00000000B  
00000000B  
8/16-bit compound timer 01 data register ch.0  
8/16-bit compound timer 00 data register ch.0  
R/W  
R/W  
8/16-bit compound timer 00/01 timer mode control  
register ch.0  
0F96H  
TMCR0  
R/W  
00000000B  
0F97H  
0F98H  
0F99H  
0F9AH  
T11CR0  
T10CR0  
T11DR  
T10DR  
8/16-bit compound timer 11 control status register 0 ch.1 R/W  
8/16-bit compound timer 10 control status register 0 ch.1 R/W  
00000000B  
00000000B  
00000000B  
00000000B  
8/16-bit compound timer 11 data register ch.1  
8/16-bit compound timer 10 data register ch.1  
R/W  
R/W  
8/16-bit compound timer 10/11 timer mode control  
register ch.1  
0F9BH  
TMCR1  
R/W  
00000000B  
0F9CH  
0F9DH  
0F9EH  
0F9FH  
0FA0H  
0FA1H  
0FA2H  
0FA3H  
0FA4H  
0FA5H  
PPS01  
PPS00  
PDS01  
PDS00  
PPS11  
PPS10  
PDS11  
PDS10  
PPGS  
8/16-bit PPG1 cycle setting buffer register ch.0  
8/16-bit PPG0 cycle setting buffer register ch.0  
8/16-bit PPG1 duty setting buffer register ch.0  
8/16-bit PPG0 duty setting buffer register ch.0  
8/16-bit PPG1 cycle setting buffer register ch.1  
8/16-bit PPG0 cycle setting buffer register ch.1  
8/16-bit PPG1 duty setting buffer register ch.1  
8/16-bit PPG0 duty setting buffer register ch.1  
8/16-bit PPG start register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
11111111B  
00000000B  
00000000B  
REVC  
8/16-bit PPG output inversion register  
0FA6H  
to  
0FA9H  
(Disabled)  
(Continued)  
DS07–12624–3E  
25  
MB95160MA Series  
Register  
Address  
Register name  
R/W Initialvalue  
abbreviation  
0FAAH  
0FABH  
0FACH  
0FADH  
0FAEH  
0FAFH  
PDCRH0  
PDCRL0  
PCSRH0  
PCSRL0  
PDUTH0  
PDUTL0  
16-bit PPG down counter register (upper byte) ch.0  
16-bit PPG down counter register (lower byte) ch.0  
16-bit PPG cycle setting buffer register (upper byte) ch.0  
16-bit PPG cycle setting buffer register (lower byte) ch.0  
16-bit PPG duty setting buffer register (upper byte) ch.0  
16-bit PPG duty setting buffer register (lower byte) ch.0  
R
00000000B  
00000000B  
11111111B  
11111111B  
11111111B  
11111111B  
R
R/W  
R/W  
R/W  
R/W  
0FB0H  
to  
0FBBH  
(Disabled)  
0FBCH  
0FBDH  
BGR1  
BGR0  
LIN-UART baud rate generator register 1  
LIN-UART baud rate generator register 0  
R/W  
R/W  
00000000B  
00000000B  
UART/SIO dedicated baud rate generator prescaler se-  
lecting register ch.0  
0FBEH  
0FBFH  
PSSR0  
BRSR0  
R/W  
R/W  
00000000B  
00000000B  
UART/SIO dedicated baud rate generator setting register  
ch.0  
0FC0H  
to  
0FC2H  
(Disabled)  
0FC3H  
0FC4H  
0FC5H  
0FC6H  
0FC7H  
0FC8H  
0FC9H  
0FCAH  
0FCBH  
0FCCH  
AIDRL  
LCDCC  
LCDCE1  
LCDCE2  
LCDCE3  
LCDCE4  
LCDCE5  
A/D input disable register (lower byte)  
LCDC control register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00000000B  
00010000B  
00110000B  
00000000B  
00000000B  
00000000B  
00000000B  
LCDC enable register 1  
LCDC enable register 2  
LCDC enable register 3  
LCDC enable register 4  
LCDC enable register 5  
(Disabled)  
LCDCB1  
LCDCB2  
LCDC blinking setting register 1  
LCDC blinking setting register 2  
R/W  
R/W  
00000000B  
00000000B  
0FCDH  
to  
LCDRAM  
LCDC display RAM  
R/W  
00000000B  
0FDCH  
0FDDH  
to  
0FE2H  
(Disabled)  
0FE3H  
WCDR  
Watch counter data register  
R/W  
00111111B  
(Continued)  
26  
DS07–12624–3E  
MB95160MA Series  
(Continued)  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0FE4H  
to  
0FE6H  
(Disabled)  
0FE7H  
ILSR2  
Input level select register 2  
(Disabled)  
R/W  
00000000B  
0FE8H,  
0FE9H  
0FEAH  
CSVCR  
Clock supervisor control register  
R/W  
00011100B  
0FEBH  
to  
0FEDH  
(Disabled)  
0FEEH  
0FEFH  
ILSR  
Input level selecting register  
Interrupt pin control register  
R/W  
R/W  
00000000B  
01000000B  
WICR  
0FF0H  
to  
0FFFH  
(Disabled)  
R/W access symbols  
R/W : Readable/Writable  
R
: Read only  
: Write only  
W
Initial value symbols  
0
: The initial value of this bit is “0”.  
: The initial value of this bit is “1”.  
: The initial value of this bit is undefined.  
1
X
Note : Do not write to the “ (Disabled) ”. Reading the “ (Disabled) ” returns an undefined value.  
DS07–12624–3E  
27  
MB95160MA Series  
INTERRUPT SOURCE TABLE  
Vector  
table address  
Same level  
priority order  
(atsimultaneous  
occurrence)  
Interrupt  
request  
number  
Bit name of  
interrupt level  
setting register  
Interrupt source  
Upper  
Lower  
External interrupt ch.0  
High  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
FFFAH  
FFFBH  
L00 [1 : 0]  
L01 [1 : 0]  
L02 [1 : 0]  
L03 [1 : 0]  
External interrupt ch.4  
External interrupt ch.1  
External interrupt ch.5  
External interrupt ch.2  
External interrupt ch.6  
External interrupt ch.3  
External interrupt ch.7  
UART/SIO ch.0  
FFF8H  
FFF6H  
FFF4H  
FFF9H  
FFF7H  
FFF5H  
IRQ4  
IRQ5  
FFF2H  
FFF0H  
FFEEH  
FFECH  
FFEAH  
FFE8H  
FFE6H  
FFE4H  
FFE2H  
FFE0H  
FFDEH  
FFDCH  
FFDAH  
FFD8H  
FFD6H  
FFD4H  
FFD2H  
FFD0H  
FFCEH  
FFCCH  
FFF3H  
FFF1H  
FFEFH  
FFEDH  
FFEBH  
FFE9H  
FFE7H  
FFE5H  
FFE3H  
FFE1H  
FFDFH  
FFDDH  
FFDBH  
FFD9H  
FFD7H  
FFD5H  
FFD3H  
FFD1H  
FFCFH  
FFCDH  
L04 [1 : 0]  
L05 [1 : 0]  
L06 [1 : 0]  
L07 [1 : 0]  
L08 [1 : 0]  
L09 [1 : 0]  
L10 [1 : 0]  
L11 [1 : 0]  
L12 [1 : 0]  
L13 [1 : 0]  
L14 [1 : 0]  
L15 [1 : 0]  
L16 [1 : 0]  
L17 [1 : 0]  
L18 [1 : 0]  
L19 [1 : 0]  
L20 [1 : 0]  
L21 [1 : 0]  
L22 [1 : 0]  
L23 [1 : 0]  
8/16-bit compound timer ch.0 (Lower)  
8/16-bit compound timer ch.0 (Upper)  
LIN-UART (reception)  
LIN-UART (transmission)  
8/16-bit PPG ch.1 (Lower)  
8/16-bit PPG ch.1 (Upper)  
(Unused)  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
8/16-bit PPG ch.0 (Upper)  
8/16-bit PPG ch.0 (Lower)  
8/16-bit compound timer ch.1 (Upper) IRQ14  
16-bit PPG ch.0  
I2C ch.0  
IRQ15  
IRQ16  
IRQ17  
IRQ18  
IRQ19  
IRQ20  
IRQ21  
(Unused)  
8/10-bit A/D converter  
Time-base timer  
Watch prescaler/Watch counter  
(Unused)  
8/16-bit compound timer ch.1 (Lower) IRQ22  
Flash memory IRQ23  
Low  
28  
DS07–12624–3E  
MB95160MA Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
VCC,  
AVCC  
Vss 0.3  
Vss 0.3  
Vss 0.3  
Vss + 6.0  
Vss + 6.0  
Vss + 6.0  
*2  
*2  
*3  
Power supply voltage*1  
V
V
AVR  
Power supply voltage  
for LCD  
V0 to V3  
Input voltage*1  
VI  
VO  
Vss 0.3  
Vss 0.3  
2.0  
Vss + 6.0  
Vss + 6.0  
+ 2.0  
V
V
*4  
*4  
Output voltage*1  
Maximum clamp current  
ICLAMP  
mA Applicable to pins*5  
Total maximum clamp  
current  
Σ|ICLAMP|  
20  
15  
mA Applicable to pins*5  
“L” level maximum  
output current  
IOL  
mA Applicable to pins*5  
Applicable to pins*5  
“L” level average  
current  
Average output current =  
IOLAV  
4
mA  
operating current × operating ratio  
(1 pin)  
“L” level total maximum  
output current  
ΣIOL  
ΣIOLAV  
IOH  
100  
50  
mA  
Total average output current =  
mA operating current × operating ratio  
(Total of pins)  
“L” level total average  
output current  
“H” level maximum  
output current  
15  
mA Applicable to pins*5  
Applicable to pins*5  
“H” level average  
current  
Average output current =  
IOHAV  
4  
mA  
operating current × operating ratio  
(1 pin)  
“H” level total maximum  
output current  
ΣIOH  
100  
50  
mA  
Total average output current =  
mA operating current × operating ratio  
(Total of pins)  
“H” level total average  
output current  
ΣIOHAV  
Power consumption  
Operating temperature  
Storage temperature  
Pd  
TA  
320  
+ 85  
+ 150  
mW  
40  
55  
°C  
Tstg  
°C  
(Continued)  
DS07–12624–3E  
29  
MB95160MA Series  
(Continued)  
*1 : The parameter is based on VSS = 0.0 V.  
*2 : Apply equal potential to AVCC and VCC. AVR should not exceed AVCC + 0.3 V.  
*3 : V0 to V3 should not exceed VCC + 0.3 V.  
*4 : VI and Vo should not exceed VCC + 0.3 V. VI must not exceed the rating voltage. However, if the maximum  
current to/from an input is limited by some means with external components, the ICLAMP rating supersedes  
the VI rating.  
*5 : Applicable to pins :  
P00 to P07, P10 to P14, P20 to P22,P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7  
Use within recommended operating conditions.  
Use at DC voltage (current).  
• + B signal is an input signal that exceeds VCC voltage. The + B signal should always be applied a limiting  
resistance placed between the + B signal and the microcontroller.  
The value of the limiting resistance should be set so that when the + B signal is applied the input current  
to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.  
Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input  
potential may pass through the protective diode and increase the potential at the VCC pin, and this affects  
other devices.  
Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the  
power supply is provided from the pins, so that incomplete operation may result.  
Note that if the + B input is applied during power-on, the power supply is provided from the pins and the  
resulting power supply voltage may not be sufficient to operate the power-on reset.  
Care must be taken not to leave the + B input pin open.  
Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot  
accept + B signal input.  
Sample recommended circuits :  
Input/Output Equivalent circuits  
Protective diode  
Vcc  
Limiting  
P-ch  
resistance  
+ B input (0 V to 16 V)  
N-ch  
R
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
30  
DS07–12624–3E  
MB95160MA Series  
2. Recommended Operating Conditions  
Condi-  
(Vss = 0.0 V)  
Value  
Max  
2.42*1,*2 5.5*1  
Parameter  
Symbol  
Unit  
Remarks  
tions  
Min  
In normal operating  
Other than  
MB95FV100D-  
103  
Hold condition in  
STOP mode  
2.3  
2.7  
2.3  
5.5  
5.5  
5.5  
Power supply  
voltage  
VCC,  
AVCC  
V
In normal operating  
MB95FV100D-  
103  
Hold condition in  
STOP mode  
V0  
to  
V3  
The range of liquid crystal power supply  
(The optimal value depends on liquid  
crystal display elements used.)  
Power supply  
voltage for LCD  
VSS  
4.0  
VCC  
V
V
A/D converter  
reference input voltage  
AVR  
CS  
AVCC  
Smoothing capacitor  
0.1  
40  
+ 5  
1.0  
μF *3  
+ 85  
+35  
°C Other than MB95FV100D-103  
°C MB95FV100D-103  
Operating temperature  
TA  
*1 : The values vary with the operating frequency, machine clock or analog guarantee range.  
*2 : When the low voltage detection reset is used, reset occurs while the low voltage is detected. For details on  
Low voltage detection, see "(9) Low Voltage Detection" in "4. AC Characteristics ".  
*3 : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of VCC  
pin must have a capacitor value higher than CS. For connection of smoothing capacitor CS, refer to the  
diagram below.  
• C pin connection diagram  
C
CS  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
onthedatasheet.Usersconsideringapplicationoutsidethelistedconditionsareadvisedtocontact  
their representatives beforehand.  
DS07–12624–3E  
31  
MB95160MA Series  
3. DC Characteristics  
Sym-  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Pin name  
Conditions  
Unit  
Remarks  
bol  
Min  
Typ  
Max  
When selecting  
CMOS input level  
VIH1 P10, P67  
VIH2 P23, P24  
*1  
*1  
0.7 VCC  
0.7 VCC  
VCC + 0.3  
VSS + 5.5  
V
V
P00 to P07,  
P10 to P14,  
P20 to P22,  
P60 to P67,  
P90 to P95,  
PA0 to PA3,  
PB0 to PB7,  
PC0 to PC7  
Port inputs if Auto-  
motive input levels  
are selected  
VIHA  
0.8 VCC  
VCC + 0.3  
V
“H” level input  
voltage  
P00 to P07,  
P10 to P14,  
P20 to P22,  
P60 to P67,  
P90 to P95,  
VIHS1  
*1  
0.8 VCC  
VCC + 0.3  
V
Hysteresis input  
PA0 to PA3,  
PB0 to PB7,  
PC0 to PC7  
VIHS2 P23, P24  
VIHM RST, MOD  
*1  
0.8 VCC  
0.8 VCC  
VSS + 5.5  
VCC + 0.3  
V
V
Hysteresis input  
(When selecting  
CMOS input level)  
P10,P23,  
VIL  
*1  
VSS 0.3  
0.3 VCC  
V
P24,P67  
P00 to P07,  
P10 to P14,  
P20 to P24,  
P60 to P67,  
P90 to P95,  
PA0 to PA3,  
PB0 to PB7,  
PC0 to PC7  
Port inputs if  
Automotive input  
levels are selected  
VILA  
VSS 0.3  
0.5 VCC  
V
“L” level input  
voltage  
P00 to P07,  
P10 to P14,  
P20 to P24,  
P60 to P67,  
P90 to P95,  
PA0 to PA3,  
PB0 to PB7,  
PC0 to PC7  
VILS  
*1  
VSS 0.3  
0.2 VCC  
V
Hysteresis input  
Hysteresis input  
VILM RST, MOD  
VSS 0.3  
Vcc 0.5  
0.3 VCC  
V
V
“H” level  
output voltage  
IOH =  
VOH All output pins  
4.0 mA  
“L” level output  
voltage  
RST*2,  
VOL  
IOL = 4.0 mA  
0.4  
V
All output pins  
(Continued)  
32  
DS07–12624–3E  
MB95160MA Series  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Remarks  
Min Typ Max  
Input leakage  
current (Hi-Z  
output leakage  
current)  
Ports other than  
P23, P24  
When the pull-up  
prohibition setting  
ILI  
0.0 V < VI < VCC  
5  
+ 5  
μA  
Open drain  
output leakage ILIOD P23, P24  
current  
0.0 V < VI < VSS  
+ 5.5 V  
5
μA  
Pull-up  
resistor  
P10 to P14,  
P20 to P22  
When the pull-up  
permission setting  
RPULL  
VI = 0.0 V  
25  
50  
50  
100  
kΩ  
kΩ  
Pull-down  
resistor  
Mask ROM  
product only  
RMOD MOD  
Other than AVCC,  
VI = VCC  
100 200  
Input  
capacitance  
CIN AVSS, AVR, VCC, f = 1 MHz  
5
15  
pF  
VSS  
Flash memory  
product  
9.5 12.5 mA (At other than  
Flash memory writ-  
ing and erasing)  
FCH = 20 MHz  
FMP = 10 MHz  
Main clock mode  
(divided by 2)  
Flash memory  
product  
30.0 35.0 mA (At Flash memory  
writing and eras-  
ing)  
Mask ROM  
product  
7.2  
9.5  
mA  
ICC  
Flash memory  
product  
15.2 20.0 mA (At other than  
Flash memory writ-  
VCC  
Power supply  
current*3  
(External clock  
operation)  
ing and erasing)  
FCH = 32 MHz  
FMP = 16 MHz  
Main clock mode  
(divided by 2)  
Flash memory  
product  
35.7 42.5 mA (At Flash memory  
writing and eras-  
ing)  
Mask ROM  
11.6 15.2 mA  
product  
FCH = 20 MHz  
FMP = 10 MHz  
Main Sleep mode  
(divided by 2)  
4.5  
7.5  
mA  
ICCS  
FCH = 32 MHz  
FMP = 16 MHz  
Main Sleep mode  
(divided by 2)  
7.2 12.0 mA  
(Continued)  
DS07–12624–3E  
33  
MB95160MA Series  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Remarks  
Min Typ Max  
FCL = 32 kHz  
FMPL = 16 kHz  
Sub clock mode  
(divided by 2)  
TA = + 25 °C  
ICCL  
45  
10  
100 μA  
FCL = 32 kHz  
FMPL = 16 kHz  
Sub sleep mode  
(divided by 2)  
TA = + 25 °C  
ICCLS  
81  
μA  
FCL = 32 kHz  
Watch mode  
Main stop mode  
TA = + 25 °C  
ICCT  
4.6 27.0 μA  
Flashmemory  
product  
FCH = 4 MHz  
9.3 12.5 mA  
FMP = 10 MHz  
Main PLL mode  
(multiplied by 2.5)  
VCC  
Mask ROM  
product  
(External clock  
operation)  
7
9.5 mA  
ICCMPLL  
Flashmemory  
product  
FCH = 6.4 MHz  
FMP = 16 MHz  
Main PLL mode  
(multiplied by 2.5)  
14.9 20.0 mA  
11.2 15.2 mA  
Power supply  
current*3  
Mask ROM  
product  
FCL = 32 kHz  
FMPL = 128 kHz  
Sub PLL mode  
(multiplied by 4) ,  
TA = + 25 °C  
ICCSPLL  
160 400 μA  
FCH = 10 MHz  
Time-base timer  
mode  
ICTS  
0.15 1.10 mA  
TA = + 25 °C  
Sub stop mode  
TA = + 25 °C  
ICCH  
5
20  
μA  
FCH = 16 MHz  
At operating of A/D  
conversion  
IA  
2.4  
4.7 mA  
AVCC  
FCH = 16 MHz  
At stopping of A/D  
conversion  
IAH  
1
5
μA  
TA = + 25 °C  
LCD internal  
division resistance  
RLCD  
Between V3 and VSS  
300  
5
kΩ  
kΩ  
kΩ  
COM0 to COM3  
output impedance  
RVCOM COM0 to COM3  
RVSEG SEG00 to SEG31  
V1 to V3 = 5.0 V  
SEG00 to SEG31  
output impedance  
7
(Continued)  
34  
DS07–12624–3E  
MB95160MA Series  
(Continued)  
Parameter  
Value  
Sym-  
bol  
Pin name  
V0 to V3,  
Conditions  
Unit  
Remarks  
Min Typ Max  
LCD leak current  
ILCDL COM0 to COM3  
SEG00 to SEG31  
1 + 1 μA  
*1 : The value is 2.88 V when the low voltage detection reset is used.  
*2 : Product without clock supervisor only  
*3 : The power-supply current is determined by the external clock. When both low voltage detection option  
and clock supervisor option are selected, the power-supply current will be a value of adding current  
consumption of the low voltage detection circuit (ILVD) and current consumption of built-in CR oscillator  
(ICSV) to the specified value.  
Refer to “4. AC Characteristics (1) Clock Timing” for FCH and FCL.  
Refer to “4. AC Characteristics (2) Source Clock/Machine Clock” for FMP and FMPL.  
DS07–12624–3E  
35  
MB95160MA Series  
4. AC Characteristics  
(1) Clock Timing  
(Vcc = 2.42 V to 5.5 V, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
When using main  
oscillation circuit  
1.00  
16.25 MHz  
1.00  
3.00  
3.00  
3.00  
3.00  
32.50 MHz When using external clock  
10.00 MHz Main PLL multiplied by 1  
8.13 MHz Main PLL multiplied by 2  
6.50 MHz Main PLL multiplied by 2.5  
4.06 MHz Main PLL multiplied by 4  
When using sub  
FCH  
X0, X1  
Clock frequency  
32.768  
32.768  
kHz  
oscillation circuit  
FCL  
X0A, X1A  
X0, X1  
kHz When using sub PLL  
When using oscillation  
circuit  
61.5  
1000  
ns  
tHCYL  
Clock cycle time  
30.8  
1000  
ns When using external clock  
tLCYL X0A, X1A  
30.5  
μs When using sub clock  
tWH1  
tWL1  
X0  
61.5  
15.2  
5
ns  
When using external clock  
Duty ratio is about 30% to  
70%.  
Input clock pulse  
width  
tWH2  
X0A  
tWL2  
μs  
Input clock rise  
time and fall time  
tCR  
X0, X0A  
tCF  
ns When using external clock  
36  
DS07–12624–3E  
MB95160MA Series  
Input wave form for using external clock (main clock)  
tHCYL  
tWH1  
tWL1  
tCR  
tCF  
0.8 VCC 0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Figure of Main Clock Input Port External Connection  
When using a crystal or  
ceramic oscillator  
When using external clock  
Microcontroller  
Microcontroller  
X0  
X1  
X0  
X1  
Open  
F
CH  
FCH  
C1  
C2  
Input wave form for using external clock (sub clock)  
tLCYL  
tWH2  
tWL2  
tCR  
tCF  
0.8 VCC 0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Figure of Sub clock Input Port External Connection  
When using a crystal or  
ceramic oscillator  
When using external clock  
Microcontroller  
Microcontroller  
X0A  
X1A  
X0A  
X1A  
Open  
FCL  
C2  
FCL  
C1  
DS07–12624–3E  
37  
MB95160MA Series  
(2) Source Clock/Machine Clock  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Typ  
Sym- Condi-  
Parameter  
Unit  
Remarks  
bol tions  
Min  
Max  
When using main clock  
Min : FCH = 8.125 MHz,  
PLL multiplied by 2  
Max : FCH = 1 MHz, divided by 2  
When using sub clock  
61.5  
2000  
ns  
Source clock  
cycle time*1  
(Clock before setting  
division)  
tSCLK  
7.6  
61.0  
μs Min : FCL = 32 kHz, PLL multiplied by 4  
Max : FCL = 32 kHz, divided by 2  
FSP  
0.50  
16.25 MHz When using main clock  
131.072 kHz When using sub clock  
When using main clock  
Source clock  
frequency  
FSPL  
16.384  
61.5  
7.6  
32000  
ns Min : FSP = 16.25 MHz, no division  
Machine clock cycle  
time*2  
(Minimum instruction  
execution time)  
Max : FSP = 0.5 MHz, divided by 16  
tMCLK  
When using sub clock  
μs Min : FSPL = 131 kHz, no division  
Max : FSPL = 16 kHz, divided by 16  
976.5  
FMP  
0.031  
1.024  
16.250 MHz When using main clock  
131.072 kHz When using sub clock  
Machine clock  
frequency  
FMPL  
*1 : Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0) . This  
source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0) , and it  
becomes the machine clock. Further, the source clock can be selected as follows.  
Main clock divided by 2  
PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)  
Sub clock divided by 2  
PLL multiplication of sub clock (select from 2, 3, 4 multiplication)  
*2 : Operation clock of the microcontroller. Machine clock can be selected as follows.  
Source clock (no division)  
Source clock divided by 4  
Source clock divided by 8  
Source clock divided by 16  
Outline of clock generation block  
F
CH  
Divided by 2  
(main oscillation)  
Main PLL  
× 1  
× 2  
× 2.5  
× 4  
Division  
circuit  
× 1  
× 1/4  
× 1/8  
× 1/16  
SCLK  
( source clock )  
MCLK  
( machine clock )  
F
CL  
Divided by 2  
(sub oscillation)  
Clock mode select bit  
( SYCC : SCS1, SCS0 )  
Sub PLL  
× 2  
× 3  
× 4  
38  
DS07–12624–3E  
MB95160MA Series  
Operating voltage - Operating frequency (When TA = − 40 °C to + 85 °C)  
• MB95168MA/F168MA/F168NA/F168JA  
Main clock mode and main PLL mode  
operation guarantee range  
Sub PLL, sub clock mode and  
watch mode operation guarantee range  
5.5  
5.5  
3.5  
2.42  
2.42  
0.5 MHz 3 MHz  
10 MHz  
16.25 MHz  
16.384 kHz  
32 kHz  
131.072 kHz  
PLL operation guarantee range  
PLL operation guarantee range  
Main clock operation guarantee range  
Source clock frequency (FSP)  
Source clock frequency (FSPL)  
Operating voltage - Operating frequency (When TA = + 5 °C to + 35 °C)  
MB95FV100D-103  
Sub PLL, sub clock mode and  
watch mode operation guarantee range  
Main clock mode and main PLL mode  
operation guarantee range  
5.5  
5.5  
2.7  
3.5  
2.7  
0.5MHz 3 MHz  
10 MHz  
16.25 MHz  
16.384 kHz  
32 kHz  
131.072 kHz  
PLL operation guarantee range  
PLL operation guarantee range  
Main clock operation guarantee range  
Source clock frequency (FSP)  
Source clock frequency (FSPL)  
DS07–12624–3E  
39  
MB95160MA Series  
Main PLL operation frequency  
[MHz]  
16.25  
16  
15  
× 4  
12  
× 2.5  
10  
× 1  
× 2  
7.5  
6
5
3
[MHz]  
10  
0
3
4
5
6.4  
6.5  
8
4.062  
8.125  
Main oscillation (FCH)  
40  
DS07–12624–3E  
MB95160MA Series  
(3) External Reset  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym-  
bol  
Pin  
name  
Condi-  
tions  
Parameter  
Unit  
Remarks  
Min  
Max  
2 tMCLK*1  
ns At normal operating  
At stop mode,  
Oscillation time of oscillator*2  
sub clock mode,  
sub sleep mode,  
RST “L” level  
pulse width  
μs  
tRSTL  
RST  
+ 100  
and watch mode  
At time-base timer  
mode  
100  
μs  
*1 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
*2 : Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation  
time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds  
of μs and several ms. In the external clock, the oscillation time is 0 ms.  
At normal operating  
tRSTL  
RST  
0.2 VCC  
0.2 VCC  
At stop mode, sub clock mode, sub sleep mode, watch mode, and power-on  
tRSTL  
RST  
0.2 VCC  
0.2 VCC  
90% of  
amplitude  
X0  
Internal  
operating  
clock  
100 μs  
Oscillation stabilization wait time  
Oscillation  
time of  
oscillator  
Execute instruction  
Internal reset  
DS07–12624–3E  
41  
MB95160MA Series  
(4) Power-on Reset  
(Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Symbol Pin name Conditions  
Unit  
Remarks  
Min  
Max  
Power supply rising  
time  
tR  
50  
ms  
ms  
VCC  
Powersupplycutoff  
time  
Waiting time  
until power-on  
tOFF  
1
tR  
tOFF  
2.5 V  
0.2 V  
0.2 V  
0.2 V  
VCC  
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power  
supply voltages during operation, set the slope of rising within 30 mV/ms as shown below.  
VCC  
Limiting the slope of rising within  
30 mV/ms is recommended.  
2.3 V  
Hold condition in stop mode  
VSS  
42  
DS07–12624–3E  
MB95160MA Series  
(5) Peripheral Input Timing  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit  
Min  
Max  
Peripheral input  
“H” pulse width  
tILIH  
tIHIL  
2 tMCLK*  
ns  
ns  
INT00 to INT07,  
EC0, EC1, TRG0/ADTG  
Peripheral input  
“L” pulse width  
2 tMCLK*  
* : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
tILIH  
tIHIL  
INT00 to INT07,  
EC0, EC1,  
0.8 VCC 0.8 VCC  
TRG0/ADTG  
0.2 VCC  
0.2 VCC  
DS07–12624–3E  
43  
MB95160MA Series  
(6) UART/SIO, Serial I/O Timing  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit  
Min  
Max  
Serial clock cycle time  
UCK ↓ → UO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
UCK0  
UCK0, UO0  
UCK0, UI0  
UCK0, UI0  
UCK0  
4 tMCLK*  
190  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock  
operation  
output pin : CL = 80 pF  
+ 1TTL.  
+ 190  
Valid UI UCK ↑  
2 tMCLK*  
2 tMCLK*  
4 tMCLK*  
4 tMCLK*  
UCK ↑ → valid UI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
UCK ↓ → UO time  
External clock  
operation  
output pin : CL = 80 pF  
+ 1TTL.  
UCK0  
UCK0, UO0  
UCK0, UI0  
UCK0, UI0  
190  
Valid UI UCK ↑  
2 tMCLK*  
2 tMCLK*  
UCK ↑ → valid UI hold time  
* : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
• Internal shift clock mode  
t
SCYC  
2.4 V  
UCK0  
0.8 V  
0.8 V  
t
SLOV  
UO0  
UI0  
2.4 V  
0.8 V  
t
IVSH  
tSHIX  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
• External shift clock mode  
UCK0  
t
SLSH  
t
SHSL  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
t
SLOV  
UO0  
UI0  
2.4 V  
0.8 V  
t
IVSH  
tSHIX  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
44  
DS07–12624–3E  
MB95160MA Series  
(7) LIN-UART Timing  
Sampling at the rising edge of sampling clock*1 and prohibited serial clock delay*2  
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK ↓ → SOT delay time  
Valid SIN SCK ↑  
tSCYC  
SCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
tSLOVI SCK, SOT  
+ 95  
tIVSHI  
SCK, SIN  
tMCLK*3 + 190  
SCK ↑ → valid SIN hold time tSHIXI SCK, SIN  
0
3 tMCLK*3 tR  
tMCLK*3 + 95  
Serial clock “L” pulse width  
Serial clock “H” pulse width  
SCK ↓ → SOT delay time  
Valid SIN SCK ↑  
tSLSH  
tSHSL  
SCK  
SCK  
tSLOVE SCK, SOT  
2 tMCLK*3 + 95  
External clock  
tIVSHE SCK, SIN operation output pin :  
190  
10  
10  
CL = 80 pF + 1 TTL.  
SCK ↑ → valid SIN hold time tSHIXE SCK, SIN  
tMCLK*3 + 95  
SCK fall time  
SCK rise time  
tF  
tR  
SCK  
SCK  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of  
the serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
DS07–12624–3E  
45  
MB95160MA Series  
• Internal shift clock mode  
tSCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
tSLOVI  
2.4 V  
0.8 V  
SOT  
SIN  
tIVSHI  
tSHIXI  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
• External shift clock mode  
SCK  
tSHSL  
tSLSH  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tR  
tF  
tSLOVE  
2.4 V  
0.8 V  
SOT  
SIN  
tIVSHE  
tSHIXE  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
46  
DS07–12624–3E  
MB95160MA Series  
Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2  
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)  
(VCC = 5.0 V 10%, VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK↑→ SOT delay time  
Valid SINSCK↓  
tSCYC  
tSHOVI  
tIVSLI  
SCK  
ns  
ns  
ns  
SCK, SOT  
SCK, SIN  
+ 95  
Internal clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
tMCLK*3 + 190  
SCK↓→ valid SIN hold  
tSLIXI  
tSHSL  
tSLSH  
SCK, SIN  
SCK  
0
ns  
ns  
ns  
time  
Serial clock “H” pulse  
width  
3 tMCLK*3 tR  
tMCLK*3 + 95  
Serial clock “L” pulse  
width  
SCK  
External clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
SCK↑ →SOT delay time tSHOVE SCK, SOT  
2 tMCLK*3 + 95  
ns  
ns  
Valid SINSCK↓  
tIVSLE  
SCK, SIN  
190  
SCK↓→ valid SIN hold  
time  
tSLIXE  
SCK, SIN  
tMCLK*3 + 95  
ns  
SCK fall time  
SCK rise time  
tF  
SCK  
SCK  
10  
10  
ns  
ns  
tR  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of  
the serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
DS07–12624–3E  
47  
MB95160MA Series  
• Internal shift clock mode  
tSCYC  
2.4 V  
2.4 V  
SCK  
0.8 V  
tSHOVI  
2.4 V  
0.8 V  
SOT  
SIN  
tSLIXI  
tIVSLI  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
• External shift clock mode  
SCK  
tSHSL  
tSLSH  
0.8 VCC  
0.8 VCC  
0.2 VCC  
tR  
0.2 VCC  
0.2 VCC  
tF  
tSHOVE  
2.4 V  
0.8 V  
SOT  
SIN  
tIVSLE  
tSLIXE  
0.8 VCC 0.8 VCC  
0.2 VCC 0.2 VCC  
48  
DS07–12624–3E  
MB95160MA Series  
Sampling at the rising edge of sampling clock*1 and enabled serial clock delay*2  
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)  
(VCC = 5.0 V 10%, VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
Max  
Serial clock cycle time  
SCK↑→ SOT delay time  
Valid SINSCK↓  
tSCYC  
tSHOVI  
tIVSLI  
SCK  
5 tMCLK*3  
ns  
ns  
ns  
SCK, SOT  
SCK, SIN  
95  
+ 95  
Internal clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
tMCLK*3 + 190  
SCK↓→ valid SIN hold  
tSLIXI  
SCK, SIN  
SCK, SOT  
0
ns  
ns  
time  
SOTSCKdelay time  
tSOVLI  
4 tMCLK*3  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of  
the serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
t
SCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
t
SHOVI  
t
SOVLI  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
SOT  
SIN  
tSLIXI  
tIVSLI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
DS07–12624–3E  
49  
MB95160MA Series  
Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2  
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)  
(VCC = 5.0 V 10%, VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Conditions  
Unit  
Min  
5 tMCLK*3  
95  
Max  
Serial clock cycle time  
SCK↓→SOT delay time  
Valid SINSCK↑  
tSCYC  
tSLOVI  
tIVSHI  
SCK  
ns  
ns  
ns  
SCK, SOT  
SCK, SIN  
+ 95  
Internal clock  
operation output pin :  
CL = 80 pF + 1 TTL.  
tMCLK*3 + 190  
SCK↑ → valid SIN hold  
tSHIXI  
SCK, SIN  
SCK, SOT  
0
ns  
ns  
time  
SOTSCKdelay time  
tSOVHI  
4 tMCLK*3  
*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the  
serial clock.  
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.  
*3 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
tSCYC  
2.4 V  
2.4 V  
SCK  
0.8 V  
tSOVHI  
tSLOVI  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
SOT  
SIN  
tSHIXI  
tIVSHI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
50  
DS07–12624–3E  
MB95160MA Series  
(8) I2C Timing  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Conditions Standard-mode  
Pin  
name  
Parameter  
Symbol  
Fast-mode  
Unit  
Min  
Max  
Min  
Max  
SCL clock frequency  
fSCL  
SCL0  
0
100  
0
400  
kHz  
(Repeat) Start condition hold  
time SDA ↓ → SCL ↓  
SCL0  
SDA0  
tHD;STA  
4.0  
0.6  
μs  
SCL clock “L” width  
SCL clock “H” width  
tLOW  
tHIGH  
SCL0  
SCL0  
4.7  
4.0  
1.3  
0.6  
μs  
μs  
(Repeat) Start condition setup  
time SCL ↑ → SDA ↓  
SCL0  
SDA0  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
4.7  
0
3.45*2  
0.6  
0
0.9*3  
μs  
μs  
μs  
μs  
μs  
R = 1.7 kΩ,  
C = 50 pF*1  
Data hold time SCL ↓ →  
SDA ↓ ↑  
SCL0  
SDA0  
Data setup time SDA ↓ ↑ →  
SCL ↑  
SCL0  
SDA0  
0.25*4  
4.0  
0.1*4  
0.6  
1.3  
Stop condition setup time  
SCL ↑ → SDA ↑  
SCL0  
SDA0  
Bus free time between stop  
condition and start condition  
SCL0  
SDA0  
4.7  
*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.  
*2 : The maximum tHD;DAT have only to be met if the device dose not stretch the “L” width (tLOW) of the SCL signal.  
*3 : A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement  
tSU;DAT 250 ns must then be met.  
*4 : Refer to “ Note of SDA and SCL set-up time”.  
Note of SDA and SCL set-up time  
SDA0  
Input data set-up time  
SCL0  
6TMCLK  
The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on  
the load capacitance or pull-up resistor.  
Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be  
satisfied.  
DS07–12624–3E  
51  
MB95160MA Series  
tWAKEUP  
SDA0  
tHD;STA  
tHD;DAT  
tHIGH  
tBUF  
tLOW  
SCL0  
tSU;STO  
tHD;STA  
tSU;DAT  
tSU;STA  
52  
DS07–12624–3E  
MB95160MA Series  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value*2  
Sym- Pin  
bol name  
Condi-  
tions  
Parameter  
Unit  
Remarks  
Min  
Max  
SCL clock  
“L” width  
(2 + nm / 2) tMCLK −  
tLOW SCL0  
tHIGH SCL0  
ns Master mode  
20  
SCL clock  
“H” width  
(nm / 2) tMCLK 20  
(nm / 2 ) tMCLK + 20  
(1 + nm) tMCLK + 20  
ns Master mode  
Master mode  
Maximum value is  
applied when m,  
ns n = 1, 8.  
Start condition  
hold time  
SCL0  
tHD;STA  
(1 + nm / 2) tMCLK −  
20  
SDA0  
Otherwise, the  
minimum value is  
applied.  
Stop condition  
setup time  
SCL0  
tSU;STO  
(1 + nm / 2) tMCLK −  
(1 + nm / 2) tMCLK + 20 ns Master mode  
(1 + nm / 2) tMCLK + 20 ns Master mode  
20  
SDA0  
Start condition  
setup time  
SCL0  
tSU;STA  
(1 + nm / 2) tMCLK −  
20  
SDA0  
Bus free time  
between stop  
condition and  
start condition  
SCL0  
tBUF  
(2 nm + 4) tMCLK 20  
3 tMCLK 20  
ns  
SDA0  
SCL0  
SDA0  
Data hold time tHD;DAT  
ns Master mode  
Master mode  
When assuming  
that “L” of SCL is  
not extended, the  
minimum value is  
ns applied to first bit  
of continuous  
R = 1.7 kΩ,  
C = 50 pF*1  
Data setup  
tSU;DAT  
SCL0  
SDA0  
(2 + nm / 2) tMCLK (1 + nm / 2) tMCLK +  
20 20  
time  
data.  
Otherwise,  
the maximum  
value is applied.  
Minimum value is  
appliedtointerrupt  
at 9th SCL.  
Maximum value is  
appliedtointerrupt  
at 8th SCL.  
Setup time  
between  
clearing  
interrupt and  
SCL rising  
tSU;INT SCL0  
(nm / 2) tMCLK 20 (1 + nm / 2) tMCLK + 20 ns  
SCL clock “L”  
width  
4 tMCLK 20  
4 tMCLK 20  
tLOW SCL0  
tHIGH SCL0  
ns At reception  
SCL clock “H”  
width  
ns At reception  
Undetected when  
ns 1 tMCLK is used at  
reception  
Start condition  
detection  
SCL0  
tHD;STA  
2 tMCLK 20  
SDA0  
(Continued)  
DS07–12624–3E  
53  
MB95160MA Series  
(Continued)  
(VCC = 5.0 V 10%, AVSS = VSS = 0.0 V, TA = −40 °C to + 85 °C)  
Value*2  
Sym- Pin  
bol name  
Condi-  
tions  
Parameter  
Unit  
Remarks  
Min  
Max  
Undetected when 1  
ns tMCLK is used at  
reception  
Stop condition  
detection  
SCL0  
tSU;STO  
2 tMCLK 20  
SDA0  
Undetected when 1  
ns tMCLK is used at  
reception  
Restart condition  
detection condition  
SCL0  
tSU;STA  
2 tMCLK 20  
SDA0  
SCL0  
tBUF  
2 tMCLK 20  
2 tMCLK 20  
Bus free time  
ns At reception  
SDA0  
SCL0  
tHD;DAT  
At slave transmission  
mode  
Data hold time  
Data setup time  
Data hold time  
Data setup time  
ns  
SDA0  
R = 1.7 kΩ,  
C = 50 pF*1  
SCL0  
tSU;DAT  
At slave transmission  
mode  
tLOW 3 tMCLK −  
ns  
20  
SDA0  
SCL0  
tHD;DAT  
0
ns At reception  
ns At reception  
SDA0  
SCL0  
tSU;DAT  
tMCLK 20  
SDA0  
Oscillation  
stabilization  
wait time +  
2 tMCLK 20  
SDA↓→SCL↑  
(at wakeup function)  
tWAKE- SCL0  
ns  
UP  
SDA0  
*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.  
*2 : Refer to “ (2) Source Clock/Machine Clock” for tMCLK.  
m is CS4 bit and CS3 bit (bit 4 and bit 3) of I2C clock control register (ICCR) .  
n is CS2 bit to CS0 bit (bit 2 to bit 0) of I2C clock control register (ICCR) .  
Actual timing of I2C is determined by m and n values set by the machine clock (tMCLK) and CS4 to CS0 of  
ICCR0 register.  
Standard-mode :  
m and n can be set at the range : 0.9 MHz < tMCLK (machine clock) < 10 MHz.  
Setting of m and n determines the machine clock that can be used below.  
(m, n) = (1, 8) : 0.9 MHz < tMCLK 1 MHz  
(m, n) = (1, 22) , (5, 4) , (6, 4) , (7, 4) , (8, 4) : 0.9 MHz < tMCLK 2 MHz  
(m, n) = (1, 38) , (5, 8) , (6, 8) , (7, 8) , (8, 8) : 0.9 MHz < tMCLK 4 MHz  
(m, n) = (1, 98) : 0.9 MHz < tMCLK 10 MHz  
Fast-mode :  
m and n can be set at the range : 3.3 MHz < tMCLK (machine clock) < 10 MHz.  
Setting of m and n determines the machine clock that can be used below.  
(m, n) = (1, 8) : 3.3 MHz < tMCLK 4 MHz  
(m, n) = (1, 22) , (5, 4) : 3.3 MHz < tMCLK 8 MHz  
(m, n) = (6, 4) : 3.3 MHz < tMCLK 10 MHz  
54  
DS07–12624–3E  
MB95160MA Series  
(9) Low Voltage Detection  
(Vss = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Typ  
Sym- Condi-  
Parameter  
Unit  
Remarks  
bol  
tions  
Min  
2.52  
2.42  
70  
Max  
2.88  
2.78  
Release voltage  
Detection voltage  
Hysteresis width  
VDL+  
VDL-  
VHYS  
2.70  
2.60  
100  
V
V
At power-supply rise  
At power-supply fall  
mV  
Power-supply start  
voltage  
Voff  
Von  
2.3  
V
V
Power-supply end  
voltage  
4.9  
0.3  
Slope of power supply that reset  
release signal generates  
μs  
Power-supply voltage  
change time  
tr  
Slope of power supply that reset  
(at power supply rise)  
300  
3000  
μs release signal generates within  
rating (VDL+)  
Slope of power supply that reset  
detection signal generates  
μs  
Power-supply voltage  
change time  
(at power supply fall)  
tf  
Slope of power supply that reset  
μs detection signal generates within  
rating (VDL-)  
300  
Reset release delay  
time  
td1  
td2  
38  
400  
30  
μs  
μs  
Reset detection delay  
time  
Current consumption of low  
μA  
Current consumption  
ILVD  
50  
voltage detection circuit only  
Vcc  
Von  
Voff  
Vcc  
Time  
tr  
tf  
VDL+  
VDL-  
VHYS  
Internal reset signal  
Time  
td1  
td2  
DS07–12624–3E  
55  
MB95160MA Series  
(10) Clock Supervisor Clock  
Condi-  
(Vcc = 5.0 V 10%, Vss = 0.0 V, TA = −40 °C to + 85 °C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
tions  
Min  
50  
Typ  
100  
Max  
200  
10  
Oscillation frequency  
Oscillation start time  
fOUT  
twk  
kHz  
μs  
Current consumption of  
built-in CR oscillator, at  
100 kHz oscillation  
Current consumption  
ICSV  
20  
36  
μA  
56  
DS07–12624–3E  
MB95160MA Series  
5. A/D Converter  
(1) A/D Converter Electrical Characteristics  
(AVCC = VCC = 4.0 V to 5.5 V, AVSS = VSS = 0.0 V, TA = − 40 °C to + 85 °C)  
Value  
Sym- Condi-  
Parameter  
Unit  
Remarks  
bol  
tions  
Min  
Typ  
Max  
10  
Resolution  
Total error  
bit  
3.0  
2.5  
+ 3.0  
+ 2.5  
LSB  
LSB  
Linearity error  
Differential  
linear error  
1.9  
+ 1.9  
LSB  
Zero  
transition  
voltage  
AVSS −  
1.5 LSB  
AVSS +  
0.5 LSB  
AVSS +  
2.5 LSB  
VOT  
V
Full-scale  
transition  
voltage  
AVR −  
3.5 LSB  
AVR −  
1.5 LSB  
AVR +  
0.5 LSB  
VFST  
V
0.9  
1.8  
16500  
16500  
μs 4.5 V AVcc 5.5 V  
μs 4.0 V AVcc < 4.5 V  
Compare time  
4.5 V AVcc 5.5 V,  
μs At external  
0.6  
1.2  
impedance < 5.4 kΩ  
Sampling time  
4.0 V AVcc < 4.5 V,  
μs At external  
impedance < 2.4 kΩ  
Analog input  
current  
IAIN  
VAIN  
0.3  
AVSS  
+ 0.3  
AVR  
AVCC  
900  
5
μA  
Analog input  
voltage  
V
Reference  
voltage  
AVSS + 4.0  
V
AVR pin  
AVR pin,  
during A/D operation  
IR  
600  
μA  
μA  
Reference  
voltage supply  
current  
AVR pin,  
at stop mode  
IRH  
DS07–12624–3E  
57  
MB95160MA Series  
(2) Notes on Using A/D Converter  
About the external impedance of analog input and its sampling time  
A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling  
time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting  
A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relation-  
ship between the external impedance and minimum sampling time and either adjust the register value and  
operatingfrequencyordecreasetheexternalimpedancesothatthesamplingtimeislongerthantheminimum  
value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input  
pin.  
Analog input equivalent circuit  
R
Analog input  
Comparator  
C
During sampling : ON  
R
C
4.5 V VCC 5.5 V  
4.0 V VCC < 4.5 V  
2.0 kΩ (Max)  
8.2 kΩ (Max)  
16 pF (Max)  
16 pF (Max)  
Note : The values are reference values.  
The relationship between external impedance and minimum sampling time  
(External impedance = 0 kΩ to 20 kΩ)  
(External impedance = 0 kΩ to 100 kΩ)  
100  
90  
20  
18  
V
CC 4.5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
16  
VCC 4.5 V  
14  
12  
V
CC 4.0 V  
VCC 4.0 V  
10  
8
6
4
2
0
8
14  
0
2
4
6
10  
12  
0
1
2
3
4
Minimum sampling time [μs]  
Minimum sampling time [μs]  
About errors  
As |VCC VSS| becomes smaller, values of relative errors grow larger.  
58  
DS07–12624–3E  
MB95160MA Series  
(3) Definition of A/D Converter Terms  
• Resolution  
The level of analog variation that can be distinguished by the A/D converter.  
When the number of bits is 10, analog voltage can be divided into 210 = 1024.  
• Linearity error (unit : LSB)  
The deviation between the value along a straight line connecting the zero transition point  
(“00 0000 0000” ← → “00 0000 0001”) of a device and the full-scale transition point  
(“11 1111 1111” ← → “11 1111 1110”) compared with the actual conversion values obtained.  
• Differential linear error (Unit : LSB)  
Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.  
Total error (unit: LSB)  
Difference between actual and theoretical values, caused by a zero transition error, full-scale transition  
error, linearity error, quantum error, and noise.  
Ideal I/O characteristics  
Total error  
VFST  
3FFH  
3FEH  
3FDH  
3FFH  
3FEH  
3FDH  
Actual conversion  
characteristic  
1.5 LSB  
{1 LSB × (N 1) + 0.5 LSB}  
004H  
003H  
002H  
001H  
004H  
003H  
002H  
001H  
VNT  
VOT  
Actual conversion  
characteristic  
1 LSB  
0.5 LSB  
Ideal characteristics  
VSS  
VSS  
VCC  
VCC  
Analog input  
Analog input  
Total error of  
digital output N  
VCC Vss  
1024  
VNT {1 LSB × (N 1) + 0.5 LSB}  
=
1 LSB =  
(V)  
[LSB]  
1 LSB  
N
: A/D converter digital output value  
VNT : A voltage at which digital output transits from (N 1) H to NH  
(Continued)  
DS07–12624–3E  
59  
MB95160MA Series  
(Continued)  
Full-scale transition error  
Zero transition error  
004H  
Ideal characteristics  
Actual conversion  
characteristic  
3FFH  
3FEH  
3FDH  
3FCH  
Actual conversion  
characteristic  
003H  
Ideal  
characteristics  
VFST  
(measurement  
value)  
002H  
Actual conversion  
characteristic  
Actual conversion  
characteristic  
001H  
VOT (measurement value)  
VSS  
VCC  
VSS  
VCC  
Analog input  
Analog input  
Linearity error  
Differential linear error  
Ideal characteristics  
Actual conversion  
characteristic  
3FFH  
3FEH  
3FDH  
(N+1)H  
NH  
Actual conversion  
characteristic  
{1 LSB × N + VOT}  
V (N+1)T  
VFST  
(measurement  
value)  
VNT  
004H  
003H  
002H  
001H  
(N-1)H  
(N-2)H  
VNT  
Actual conversion  
characteristic  
Actual conversion  
characteristic  
Ideal characteristics  
VOT (measurement value)  
VSS  
VCC  
VSS  
VCC  
Analog input  
Analog input  
Linearity error in  
digital output N  
VNT {1 LSB × N + VOT}  
V (N + 1) T VNT  
Differential linear error  
in digital output N  
=
=
1  
1 LSB  
1 LSB  
N
: A/D converter digital output value  
VNT : A voltage at which digital output transits from (N 1) H to NH  
VOT (Ideal value) = VSS + 0.5 LSB [V]  
VFST (Ideal value) = VCC 1.5 LSB [V]  
60  
DS07–12624–3E  
MB95160MA Series  
6. Flash Memory Program/Erase Characteristics  
Value  
Condi-  
Parameter  
tions  
Unit  
Remarks  
Min  
Typ  
Max  
Excludes 00H programming  
prior erasure.  
Chip erase time  
1*1  
15*2  
s
Excludes system-level  
overhead.  
Byte programming time  
Erase/program cycle  
10000  
4.5  
32  
3600  
μs  
cycle  
V
Power supply voltage at  
erase/program  
5.5  
Flash memory data  
retention time  
20*3  
year Average TA = + 85 °C  
*1 : TA = + 25 °C, VCC = 5.0 V, 10000 cycles  
*2 : TA = + 85 °C, VCC = 4.5 V, 10000 cycles  
*3 : This value comes from the technology qualification (using Arrhenius equation to translate high temperature  
measurements into normalized value at +85 °C) .  
DS07–12624–3E  
61  
MB95160MA Series  
EXAMPLE CHARACTERISTICS  
Power supply current temperature (MB95F168MA/F168NA/F168JA)  
ICC VCC  
ICC TA  
TA = + 25 °C, FMP = 2, 4, 8, 10, 16 MHz (divided by 2)  
VCC = 5.5 V, FMP = 10, 16 MHz (divided by 2)  
Main clock mode, at external clock operating  
Main clock mode, at external clock operating  
20  
20  
15  
10  
5
15  
F
MP = 16 MHz  
MP = 10 MHz  
F
F
MP = 16 MHz  
MP = 10 MHz  
10  
5
F
F
MP = 8 MHz  
F
MP = 4 MHz  
MP = 2 MHz  
F
0
0
-50  
0
+50  
[°C]  
+100  
+150  
2
3
4
5
6
7
VCC [V]  
T
A
ICCS VCC  
ICCS TA  
TA = + 25 °C, FMP = 2, 4, 8, 10, 16 MHz (divided by 2)  
VCC = 5.5 V, FMP = 10, 16 MHz (divided by 2)  
Main sleep mode, at external clock operating  
Main sleep mode, at external clock operating  
20  
15  
10  
20  
15  
10  
5
F
F
MP = 16 MHz  
MP = 10 MHz  
F
F
MP =16 MHz  
=10 MHz  
5
0
FMMPP = 8 MHz  
FMMPP = 2 MHz  
F
= 4 MHz  
0
-50  
0
+50  
[°C]  
+100  
+150  
2
3
4
5
6 7  
V
CC [V]  
T
A
ICCMPLL VCC  
ICCMPLL TA  
TA = + 25 °C, FMP = 2, 4, 8, 10, 16 MHz  
VCC = 5.5 V, FMP = 10, 16 MHz (Main PLL multiplied by 2.5)  
(Main PLL multiplied by 2.5)  
Main PLL mode, at external clock operating  
Main PLL mode, at external clock operating  
20  
15  
20  
15  
10  
5
F
F
MP = 16 MHz  
MP = 10 MHz  
F
MP = 16 MHz  
10  
5
F
F
MP = 10 MHz  
MP = 8 MHz  
F
F
MP = 4 MHz  
MP = 2 MHz  
0
-50  
0
0
+50  
[°C]  
+100  
+150  
2
3
4
5
6
7
V
CC [V]  
T
A
(Continued)  
62  
DS07–12624–3E  
MB95160MA Series  
ICCL VCC  
ICCL TA  
TA = + 25 °C, FMPL = 16 kHz (divided by 2)  
Sub clock mode, at external clock operating  
VCC = 5.5 V, FMPL = 16 kHz (divided by 2)  
Sub clock mode, at external clock operating  
100  
75  
50  
25  
0
100  
75  
50  
25  
0
2
3
4
5
6
7
7
7
50  
0
+50  
[°C]  
+100  
+150  
V
CC [V]  
T
A
ICCLS VCC  
ICCLS TA  
TA = + 25 °C, FMPL = 16 kHz (divided by 2)  
Sub sleep mode, at external clock operating  
VCC = 5.5 V, FMPL = 16 kHz (divided by 2)  
Sub sleep mode, at external clock operating  
100  
100  
75  
50  
25  
0
75  
50  
25  
0
2
3
4
5
6
50  
0
+50  
+100  
+150  
VCC [V]  
T
A
[°C]  
ICCT VCC  
ICCT TA  
TA = + 25 °C, FMPL = 16 kHz (divided by 2)  
Clock mode, at external clock operating  
VCC = 5.5 V, FMPL = 16 kHz (divided by 2)  
Clock mode, at external clock operating  
100  
100  
75  
50  
25  
0
75  
50  
25  
0
2
3
4
5
6
50  
0
+50  
[°C]  
+100  
+150  
VCC [V]  
T
A
(Continued)  
DS07–12624–3E  
63  
MB95160MA Series  
ICCSPLL VCC  
ICCSPLL TA  
TA = + 25 °C, FMPL = 128 kHz (Main PLL multiplied by 4)  
Sub PLL mode, at external clock operating  
VCC = 5.5 V, FMPL = 128 kHz (Main PLL multiplied by 4)  
Sub PLL mode, at external clock operating  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
50  
50  
25  
25  
0
0
2
3
4
5
6
7
50  
0
+50  
[°C]  
+100  
+150  
VCC [V]  
T
A
ICTS VCC  
ICTS TA  
TA = + 25 °C, FMP = 2, 4, 8, 10, 16 MHz (divided by 2)  
VCC = 5.5 V, FMP = 10, 16 MHz (divided by 2)  
Time-base timer mode, at external clock operating  
Time-base timer mode, at external clock operating  
2.0  
2.0  
1.5  
1.5  
FMP = 16 MHz  
F
MP = 16 MHz  
1.0  
0.5  
0.0  
1.0  
F
F
MP = 10 MHz  
MP = 8 MHz  
FMP = 10 MHz  
F
F
MP = 4 MHz  
MP = 2 MHz  
0.5  
0.0  
2
3
4
5
6
7
50  
0
+50  
TA [°C]  
+100  
+150  
VCC [V]  
ICCH VCC  
TA = + 25 °C, FMPL = (stop)  
Sub stop mode, at external clock stopping  
ICCH TA  
VCC = 5.5 V, FMPL = (stop)  
Sub stop mode, at external clock stopping  
20  
20  
15  
10  
5
15  
10  
5
0
0
2
3
4
5
6
7
50  
0
+50  
A [°C]  
+100  
+150  
VCC [V]  
T
(Continued)  
64  
DS07–12624–3E  
MB95160MA Series  
(Continued)  
IA AVCC  
IA TA  
TA = + 25 °C, FMP = 16 MHz (divided by 2)  
VCC = 5.5 V, FMP = 16 MHz (divided by 2)  
Main clock mode, at external clock operating  
Main clock mode, at external clock operating  
4
4
3
2
1
0
3
2
1
0
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
AVCC [V]  
T
A
[°C]  
IR AVCC  
IR TA  
TA = + 25 °C, FMP = 16 MHz (divided by 2)  
VCC = 5.5 V, FMP = 16 MHz (divided by 2)  
Main clock mode, at external clock operating  
Main clock mode, at external clock operating  
4
4
3
2
1
0
3
2
1
0
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
AVCC [V]  
TA [°C]  
DS07–12624–3E  
65  
MB95160MA Series  
Input voltage (MB95F168MA/F168NA/F168JA)  
VIH1 VCC and VIL VCC  
VIHS1 VCC and VILS VCC  
TA = + 25 °C  
TA = + 25 °C  
5
4
5
4
3
2
1
0
V
V
IHS1  
ILS  
V
IH1  
3
2
1
0
V
IL  
2
2
2
3
4
5
6
7
7
7
2
2
2
3
4
5
6
7
7
7
V
CC [V]  
VCC [V]  
VIH2 VCC and VIL VCC  
TA = + 25 °C  
VIHS2 VCC and VILS VCC  
TA = + 25 °C  
5
4
3
2
1
0
5
4
3
2
1
0
V
IHS2  
V
IH2  
V
IL  
V
ILS  
3
4
5
6
3
4
5
6
VCC [V]  
VCC [V]  
VIHA VCC and VILA VCC  
TA = + 25 °C  
VIHM VCC and VILM VCC  
TA = + 25 °C  
5
4
3
2
1
0
5
4
3
2
1
0
V
IHA  
V
ILA  
V
V
IHM  
ILM  
3
4
5
6
3
4
5
6
VCC [V]  
VCC [V]  
66  
DS07–12624–3E  
MB95160MA Series  
Output voltage (MB95F168MA/F168NA/F168JA)  
(VCC - VOH) IOH  
TA = + 25 °C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
CC = 4 V  
V
V
V
CC = 4.5 V  
CC = 5.0 V  
CC = 5.5 V  
V
CC = 2.45 V  
0
-2  
-4  
-6  
OH [mA]  
-8  
-10  
I
VOL IOL  
TA = + 25 °C  
VOL IOL  
TA = + 25 °C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
CC = 3.3 V  
1.0  
V
CC = 2.5 V  
V
V
CC = 3.5 V  
0.8  
0.6  
0.4  
0.2  
0.0  
V
CC = 2.5 V  
CC = 4.0 V  
= 4.5 V  
CC = 5.0 V  
V
V
V
V
V
V
V
CC = 2.7 V  
V
VCCCC = 5.5 V  
V
CC = 3.0 V  
CC = 3.3 V  
CC = 3.5 V  
= 4.0 V  
CC = 5.0 V  
CCCC = 2.5 V  
V
CC = 2.45 V  
0.0  
2.0  
4.0  
I
6.0  
OL [mA]  
8.0  
10.0  
0
2
4
6
8
10  
I
OL [mA]  
Pull-up (MB95F168MA/F168NA/F168JA)  
RPULL VCC  
TA = + 25 °C  
250  
200  
150  
100  
50  
0
2
3
4
5
6
VCC [V]  
DS07–12624–3E  
67  
MB95160MA Series  
MASK OPTION  
MB95F168MA/  
MB95F168NA/  
MB95F168JA  
Part number  
No.  
MB95168MA  
MB95FV100D-103  
Setting disabled  
Specified when  
ordering ROM  
Specifying procedure  
Setting disabled  
Clock mode select*  
Single-system clock mode  
Dual-system clock mode  
Changing by the switch  
Dual-system clock  
mode  
Dual-system clock  
mode  
1
2
3
on  
MCU board  
Low voltage detection reset*  
With low voltage detection reset  
Without low voltage detection  
reset  
Changing by the switch  
Specified when  
ordering ROM  
Specified by part  
number  
on  
MCU board  
Clock supervisor*  
With clock supervisor  
Without clock supervisor  
Changing by the switch  
Specified when  
ordering ROM  
Specified by part  
number  
on  
MCU board  
MCU board switch sets  
as follows;  
With clock supervi-  
Reset output*  
With reset output  
Without reset output  
Specified when  
ordering ROM  
Specified by part sor:  
4
number  
Without reset output  
Without clock super-  
visor:  
With reset output  
Fixed to oscillation  
stabilization  
Fixed to oscillation  
stabilization  
Fixed to oscillation sta-  
bilization wait time of  
(214 2) /FCH  
5
Oscillation stabilization wait time  
wait time of (214 2) / wait time of (214 2) /  
FCH  
FCH  
* : Refer to table below about clock mode select, low voltage detection reset, clock supervisor select and reset  
output.  
Part number  
Clock mode select Low voltage detection reset Clock supervisor Reset output  
No  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
MB95168MA  
Dual-system  
Dual-system  
Single-system  
Dual-system  
Yes  
No  
MB95F168MA  
MB95F168NA  
MB95F168JA  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
Yes  
No  
MB95FV100D-103  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
68  
DS07–12624–3E  
MB95160MA Series  
ORDERING INFORMATION  
Part number  
Package  
MB95F168MAPMC  
MB95F168NAPMC  
MB95F168JAPMC  
MB95168MAPMC  
64-pin plastic LQFP  
(FPT-64P-M23)  
MB95F168MAPMC1  
MB95F168NAPMC1  
MB95F168JAPMC1  
MB95168MAPMC1  
64-pin plastic LQFP  
(FPT-64P-M24)  
MCU board  
224-pin plastic PFBGA  
MB2146-303A-E  
(MB95FV100D-103PBT)  
(
)
(BGA-224P-M08)  
DS07–12624–3E  
69  
MB95160MA Series  
PACKAGE DIMENSIONS  
64-pin plastic LQFP  
Lead pitch  
0.65 mm  
12.0 × 12.0 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Plastic mold  
1.70 mm MAX  
P-LFQFP64-12×12-0.65  
Code  
(Reference)  
(FPT-64P-M23)  
64-pin plastic LQFP  
(FPT-64P-M23)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
14.00  
±
0.20(.551  
±
.008)SQ  
.004)SQ  
*12.00  
±
0.10(.472  
±
0.145  
±
0.055  
(.0057  
±
.0022)  
48  
33  
49  
32  
0.10(.004)  
Details of "A" part  
1.50 +0.20  
0.10  
.004  
(Mounting height)  
.059 +.008  
0.25(.010)  
INDEX  
0~8˚  
64  
17  
0.50  
(.020  
±
±
0.20  
.008)  
0.10  
±
0.10  
.004)  
(.004  
±
"A"  
1
16  
(Stand off)  
0.60  
±
0.15  
(.024  
±
.006)  
0.65(.026)  
0.32  
(.013  
±
±
0.05  
.002)  
M
0.13(.005)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values  
©2003-2008 FUJITSU MICROELECTRONICS LIMITED F64034S-c-1-2  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/package/en-search/  
(Continued)  
70  
DS07–12624–3E  
MB95160MA Series  
(Continued)  
64-pin plastic LQFP  
Lead pitch  
0.50 mm  
10.0 × 10.0 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.70 mm MAX  
0.32 g  
Code  
(Reference)  
(FPT-64P-M24)  
P-LFQFP64-10×10-0.50  
64-pin plastic LQFP  
(FPT-64P-M24)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
12.00±0.20(.472±.008)SQ  
*
10.00±0.10(.394±.004)SQ  
0.145±0.055  
(.006±.002)  
48  
33  
49  
32  
Details of "A" part  
0.08(.003)  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
INDEX  
0.10±0.10  
(.004±.004)  
(Stand off)  
0˚~8˚  
64  
17  
"A"  
0.25(.010)  
0.50±0.20  
(.020±.008)  
1
16  
LEAD No.  
0.60±0.15  
(.024±.006)  
0.50(.020)  
0.20±0.05  
(.008±.002)  
M
0.08(.003)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values  
©2005-2008 FUJITSU MICROELECTRONICS LIMITED F64036S-c-1-2  
2005 FUJITSU LIMITED F64036S-c-1-1  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/package/en-search/  
DS07–12624–3E  
71  
MB95160MA Series  
MAIN CHANGES IN THIS EDITION  
Page  
4
Section  
Change Results  
PRODUCT LINEUP  
Changed the Note.  
(MB2146-303A MB2146-303A-E).  
14  
HANDLING DEVICES  
Added the item of “ Serial communication”.  
ELECTRICAL CHARACTERISTICS Changed *2 under the table.  
2. Recommended Operating Conditions  
31  
ORDERING INFORMATION  
Changed the part number.  
(MB2146-303A MB2146-303A-E).  
69  
The vertical lines marked in the left side of the page show the changes.  
72  
DS07–12624–3E  
MB95160MA Series  
MEMO  
DS07–12624–3E  
73  
MB95160MA Series  
MEMO  
74  
DS07–12624–3E  
MB95160MA Series  
MEMO  
DS07–12624–3E  
75  
MB95160MA Series  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,  
Shinjuku-ku, Tokyo 163-0722, Japan  
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://www.fmal.fujitsu.com/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm. 3102, Bund Center, No.222 Yan An Road (E),  
Shanghai 200002, China  
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
Korea  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fmc/en/  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fmk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incor-  
porating the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or  
any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other  
right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property  
rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages  
arising in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-  
current levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations  
of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

FPT-8P-M01

SMALL OUTLINE L-LEADED PACKAGE
FUJITSU

FPT-8P-M02

SMALL OUTLINE L-LEADED PACKAGE 8 PIN PLASTIC
FUJITSU

FPT-MOBILE

Provides the following
GAMEWELL-FCI

FPT-XDIM

Provides the following
GAMEWELL-FCI

FPT-XSTAND

Provides the following
GAMEWELL-FCI

FPT0125

Optoelectronic
ETC

FPT0136

Optoelectronic
ETC

FPT100

General Purpose Silicon Planar Phototransistor
FAIRCHILD

FPT100A

General Purpose Silicon Planar Phototransistor
FAIRCHILD

FPT100B

General Purpose Silicon Planar Phototransistor
FAIRCHILD

FPT110

General Purpose Silicon Planar Phototransistor
FAIRCHILD

FPT110A

General Purpose Silicon Planar Phototransistor
FAIRCHILD