MB15E07SRPFT [FUJITSU]

Single Serial Input PLL Frequency Synthesizer On-chip 2.5 GHz Prescaler; 单串行输入锁相环频率合成片2.5 GHz的预分频器
MB15E07SRPFT
型号: MB15E07SRPFT
厂家: FUJITSU    FUJITSU
描述:

Single Serial Input PLL Frequency Synthesizer On-chip 2.5 GHz Prescaler
单串行输入锁相环频率合成片2.5 GHz的预分频器

预分频器 信号电路 锁相环或频率合成电路 光电二极管
文件: 总25页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-21378-2E  
ASSP  
Single Serial Input  
PLL Frequency Synthesizer  
On-chip 2.5 GHz Prescaler  
MB15E07SR  
DESCRIPTION  
The Fujitsu MB15E07SR is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 2.5 GHz  
prescaler. The 2.5 GHz prescaler has a dual modulus division ratio of 32/33 or 64/65 enabling pulse swallowing  
operation.  
The supply voltage range is between 2.7 V and 5.0 V. A refined charge pump supplies well-balanced output  
currents of 1.0 mA and 4.0 mA. The charge pump current is selectable by serial data.  
The phase noise of MB15E07SR was drastically improved comparing wuth the former single PLL, MB15E07SL.  
The data format of serial data and the pin assignments except for φP, φR and OSCout pins are same as the former  
one, so it is easy to replace the former one.  
MB15E07SR is ideally suited for the base station of GSM (Global System for Mobile Communications) and PCS.  
FEATURES  
• High frequency operation: 2.5 GHz Max  
• Low power supply voltage: VCC = 2.7 V to 5.0 V  
• Ultra Low power supply current:ICC = 8.0 mA Typ (VCC = Vp = 3.75 V, Ta = +25°C, in locking state)  
• Direct power saving function:Power supply current in power saving mode  
Typ 0.1 µA (VCC = Vp = 3.75 V, Ta = +25°C)  
• Dual modulus prescaler: 32/33 or 64/65  
(Continued)  
PACKAGES  
16-pin plastic TSSOP  
16-pad plastic BCC  
(LCC-16P-M06)  
(FPT-16P-M07)  
MB15E07SR  
(Continued)  
• Serial input 14-bit programmable reference divider: R = 3 to 16,383  
• Serial input programmable divider consisting of:  
- Binary 7-bit swallow counter: 0 to 127  
- Binary 11-bit programmable counter: 3 to 2,047  
• Software selectable charge pump current  
• On-chip phase control for phase comparator  
• Built-in digital locking detector circuit to detect PLL locking and unlocking  
• Operating temperature: Ta = 40 °C to +85 °C  
PIN ASSIGNMENTS  
16-pin TSSOP  
16-pad BCC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OSCIN  
N.C.  
VP  
N.C.  
N.C.  
LD/fout  
N.C.  
PS  
OSCIN  
N.C.  
1
2
3
4
5
6
16 15 14  
13  
N.C.  
VP  
N.C.  
LD/fout  
N.C.  
PS  
VCC  
DO  
12  
VCC  
DO  
Top view  
Top view  
11  
10  
GND  
Xfin  
fin  
LE  
LE  
GND  
Xfin  
7
8
9
Data  
Data  
Clock  
fin Clock  
(LCC-16P-M06)  
(FPT-16P-M07)  
2
MB15E07SR  
PIN DESCRIPTIONS  
Pin no.  
Pin  
TSSOP BCC  
I/O  
Descriptions  
name  
1
2
3
4
16  
1
OSCIN  
N.C.  
VP  
I
Programmable reference divider input. Connection to a TCXO.  
No connection.  
2
Power supply voltage input for the charge pump.  
Power supply voltage input.  
3
VCC  
Charge pump output.  
Phase of the charge pump can be selected via programming of the FC bit.  
5
4
DO  
O
6
7
5
6
GND  
Xfin  
I
Ground.  
Prescaler complementary input, which should be grounded via a capacitor.  
Prescaler input.  
8
9
7
8
fin  
Clock  
Data  
LE  
I
I
I
I
Connection to an external VCO should be done via AC coupling.  
Clock input for the 19-bit shift register.  
Data is shifted into the shift register on the rising edge of the clock.  
(Open is prohibited.)  
Serial data input using binary code.  
The last bit of the data is a control bit. (Open is prohibited.)  
10  
11  
9
Load enable signal input. (Open is prohibited.)  
When LE is set high, the data in the shift register is transferred to a latch  
according to the control bit in the serial data.  
10  
Power saving mode control. This pin must be set at “L” at Power-ON.  
(Open is prohibited.)  
12  
13  
14  
11  
12  
13  
PS  
N.C.  
I
PS = “H”; Normal mode  
PS = “L”; Power saving mode  
No connection.  
Lock detect signal output (LD)/phase comparator monitoring output (fout).  
The output signal is selected via programming of the LDS bit.  
LDS = “H”; outputs fout (fr/fp monitoring output)  
LD/fout  
O
LDS = “L”; outputs LD (“H” at locking, “L” at unlocking.)  
15  
16  
14  
15  
N.C.  
N.C.  
No connection.  
No connection.  
3
MB15E07SR  
BLOCK DIAGRAM  
fr  
1
OSCIN(16)  
SW FC LDS CS  
4-bit latch  
Binary 14-bit  
Reference  
oscillator circuit  
Phase  
comparator  
reference couter  
14-bit latch  
Intermittent  
mode control  
(power save)  
Lock  
detector  
12  
(11)  
PS  
C
N
T
19-bit shift register  
LD/fr/fp  
selector  
1-bit  
control  
latch  
14  
(13)  
LD/fout  
11  
(10)  
LE  
3
(2)  
V
P
Charge  
pump  
7-bit latch  
11-bit latch  
5
(4)  
DO  
Binary 7-bit  
swallow  
counter  
Binary 11-bit  
programmable  
counter  
10  
(9)  
Data  
9
(8)  
Clock  
fp  
7
Prescaler  
32/33  
Xfin  
fin  
(6)  
8
(7)  
64/65  
SW  
6
(5)  
GND  
4
CC (3)  
V
O : TSSOP  
( ) : BCC  
4
MB15E07SR  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Remark  
Min  
–0.5  
VCC  
Max  
5.5  
VCC  
VP  
V
V
Power supply voltage  
Input voltage  
6.0  
VI  
–0.5  
GND  
GND  
–55  
VCC + 0.5  
VCC  
V
VO  
Except Do  
V
Output voltage  
VO  
Do  
VP  
V
Storage temperature  
Tstg  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remark  
Min  
2.7  
Typ  
3.75  
Max  
5.0  
VCC  
VP  
VI  
V
V
Power supply voltage  
VCC  
5.5  
Input voltage  
GND  
–40  
VCC  
+85  
V
Operating temperature  
Ta  
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
5
MB15E07SR  
ELECTRICAL CHARACTERISTICS  
(VCC = 2.7 V to 5.0 V, Ta = –40°C to +85°C)  
Value  
Unit  
Sym-  
Parameter  
bol  
Condition  
Min  
Typ  
8.0  
0.1*2  
Max  
Power supply current*1  
Power saving current  
ICC*1  
IPS  
fIN = 2500 MHz, VCC = VP = 3.75 V  
mA  
PS = “L”  
20  
µA  
fin  
fIN  
50 system  
100  
3
2500 MHz  
Operating frequency  
OSCIN OSCIN  
40  
+2  
+2  
VCC  
MHz  
dBm  
dBm  
Vp-p  
100 MHz to 300 MHz  
–6  
fin*3  
Pfin  
Input sensitivity  
300 MHz to 2500 MHz  
–15  
0.5  
OSCIN*3  
VOSC  
VIH  
“H” level input voltage  
“L” level input voltage  
“H” level input current  
“L” level input current  
Data,  
Clock,  
LE, PS  
VCC × 0.7  
V
VIL  
IIH*4  
IIL*4  
VCC × 0.3  
+1.0  
Data,  
Clock,  
LE, PS  
–1.0  
–1.0  
µA  
+1.0  
“H” level input current  
“L” level input current  
“H” level output voltage  
“L” level output voltage  
“H” level output voltage  
“L” level output voltage  
IIH  
0
–100  
VCC – 0.4  
+100  
0
OSCIN  
µA  
IIL*4  
VOH  
VOL  
VCC = VP = 3.75 V, IOH = –1 mA  
VCC = VP = 3.75 V, IOL = 1 mA  
LD/fout  
V
0.4  
VDOH VCC = VP = 3.75 V, IDOH = –0.5 mA VP – 0.4  
Do  
Do  
V
VDOL  
IOFF  
IOH  
IOL  
VCC = VP = 3.75 V, IDOL = 0.5 mA  
0.4  
High impedance cutoff  
current  
VCC = VP = 3.75 V,  
VOFF = 0.5 V to VP – 0.5 V  
2.5  
nA  
mA  
“H” level output current  
“L” level output current  
1.0  
–1.0  
LD/fout  
CS bit = “1”  
–4.0  
–1.0  
4.0  
1.0  
5
“H” level output current  
“L” level output current  
IDOH*4  
VCC = 3.75 V,  
CS bit = “0”  
VP = 3.75 V,  
Do  
mA  
VDO = VP/2  
Ta = +25°C  
CS bit = “1”  
IDOL  
CS bit = “0”  
IDOL/IDOH IDOMT*5 VDO = VP/2  
%
%
%
Charge pump current  
rate  
IDOVD*6  
vs VDO  
0.5 V VDO VP – 0.7 V  
10  
3
7
vs Ta IDOTA* – 40°C Ta +85°C  
*1: Conditions; fosc = 13 MHz, Vosc = 1.2 VPP , Ta = +25°C, in locking state.  
*2: VCC = VP = 3.75 V, fosc = 13 MHz, Vosc = 1.2 VPP , Ta = +25°C, in power saving mode  
*3: AC coupling. 1000 pF capacitor is connected under the condition of minimum operating frequency.  
*4: The symbol “–” (minus) means direction of current flow.  
*5: VCC = VP = 3.0 V, Ta = +25°C  
(||I3| – |I4||) / [(|I3| + |I4|) /2] × 100(%)  
(Continued)  
6
MB15E07SR  
(Continued)  
*6: VCC = VP = 3.0 V, Ta = +25°C [(||I2| – |I1||) /2] / [(|I1| + |I2|) /2] × 100(%) (Applied to each IDOL, IDOH)  
*7: VCC = VP = 3.0 V, VDO = VP/2 (||IDO(+85°C)| – |IDO(–40°C)|| /2) / (|IDO(+85°C)| + |IDO(–40°C)| /2) × 100(%) (Applied to each IDOL, IDOH)  
I1  
I3  
I2  
IDOL  
IDOH  
I4  
I2  
I1  
0.5  
Vp/2  
Vp 0.7 V  
Vp  
Charge Pump Output Voltage (V)  
7
MB15E07SR  
FUNCTIONAL DESCRIPTION  
1. Pulse Swallow Function  
The divide ratio can be calculated using the following equation:  
fVCO = [(M × N) + A] × fOSC ÷ R (A < N)  
fVCO : Output frequency of external voltage controlled oscillator (VCO)  
N
A
: Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)  
: Preset divide ratio of binary 7-bit swallow counter (0 A 127)  
fOSC : Output frequency of the reference frequency oscillator  
R
M
: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)  
: Preset divide ratio of modulus prescaler (32 or 64)  
2. Serial Data Input  
Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference  
divider and the programmable divider separately.  
Binary serial data is entered through the Data pin.  
One bit of data is shifted into the shift register on the rising edge of the Clock. When the LE signal pin is taken  
high, stored data is latched according to the control bit data as follows:  
Table 1. Control Bit  
Control bit (CNT)  
Destination of serial data  
For the programmable reference divider  
For the programmable divider  
H
L
(1) Shift Register Configuration  
Programmable Reference Counter  
LSB  
1
MSB  
Data Flow  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
C
N
T
R
1
R
2
R
3
R
4
R
5
R
6
R
7
R
8
R
9
R
R
R
R
R
LDS  
10 11 12 13 14 SW FC  
CS  
CNT  
: Control bit  
[Table 1]  
R1 to R14 : Divide ratio setting bit for the programmable reference counter (3 to 16,383) [Table 2]  
SW  
FC  
LDS  
CS  
: Divide ratio setting bit for the prescaler (32/33 or 64/65)  
: Phase control bit for the phase comparator  
: LD/fOUT signal select bit  
[Table 5]  
[Table 8]  
[Table 7]  
[Table 6]  
: Charge pump current select bit  
Note: Start data input with MSB first.  
8
MB15E07SR  
Programmable Counter  
MSB  
LSB  
1
Data Flow  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
C
N
T
A
1
A
2
A
3
A
4
A
5
A
6
A
7
N
1
N
2
N
3
N
4
N
5
N
6
N
7
N
8
N
9
N
N
10 11  
CNT  
: Control bit  
[Table 1]  
[Table 3]  
[Table 4]  
N1 to N11: Divide ratio setting bits for the programmable counter (3 to 2,047)  
A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)  
Note: Data input with MSB first.  
Table 2. Binary 14-bit Programmable Reference Counter Data Setting  
Divide ratio (R) R14 R13 R12 R11 R10 R9  
R8  
0
R7  
0
R6  
0
R5  
0
R4  
R3  
0
R2  
1
R1  
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
1
0
0
16383  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note: Divide ratio less than 3 is prohibited.  
Table 3. Binary 11-bit Programmable Counter Data Setting  
Divide ratio (N) N11 N10  
N9  
0
N8  
0
N7  
0
N6  
0
N5  
0
N4  
N3  
N2  
N1  
1
3
0
0
0
0
0
0
0
1
1
0
4
0
0
0
0
0
0
2047  
1
1
1
1
1
1
1
1
1
1
1
Note: Divide ratio less than 3 is prohibited.  
9
MB15E07SR  
Table 4. Binary 7-bit Swallow Counter Data Setting  
Divide ratio (A) A7  
A6  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
0
1
0
0
0
0
0
0
0
1
127  
1
1
1
1
1
1
1
Table 5. Prescaler Data Setting  
SW  
1
Prescaler divide ratio  
32/33  
64/65  
0
Table 6. Charge Pump Current Setting  
CS  
1
Current value  
4.0 mA  
0
1.0 mA  
Table 7. LD/fout Output Select Data Setting  
LDS  
LD/fOUT output signal  
1
0
fout signal  
LD signal  
(2) Relation between the FC Input and Phase Characteristics  
The FC bit changes the phase characteristics of the phase comparator. The internal charge pump output level  
(DO) is reversed according to the FC bit. Also, the monitor pin (fOUT) output is controlled by the FC bit. The  
relationship between the FC bit and DO is shown below.  
Table 8. FC Bit Data Setting (LDS = “1”)  
FC = 1  
LD/fout  
FC = 0  
LD/fout  
DO  
H
DO  
L
fr > fP  
fr < fP  
fr = fP  
L
fout = fr  
H
fout = fp  
Z*  
Z*  
*: High impedance  
10  
MB15E07SR  
When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.  
When the LPF and VCO characteristics are similar  
to (1), set FC bit high.  
(1)  
When the VCO characteristics are similar to (2),  
set FC bit low.  
VCO  
Output  
Frequency  
PLL  
LPF  
VCO  
(2)  
LPF Output Voltage  
Note : Give attention to the polarity for using active type LPF.  
3. Power Saving Mode (Intermittent Mode Control Circuit)  
Table 9. PS Pin Setting  
PS pin  
Status  
H
L
Normal mode  
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See  
the Electrical Characteristics chart for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the signal PLL, the lock detector, LD, remains high, indicating a locked condition.  
Setting the PS pin high, releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.  
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is  
because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr)  
which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase  
in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error  
signal from the phase detector when it returns to normal operation.  
11  
MB15E07SR  
Note: When power (VCC) is first applied, the device must be in standby mode, PS = Low, for at least 1 µs.  
The serial data input after the power supply becames stable, and then the power saving mode is released  
after completed the data input.  
OFF  
ON  
tV 1 µs  
VCC  
Clock  
Data  
LE  
tPS 100 ns  
PS  
(1)  
(2)  
(3)  
(1) PS = L (power saving mode) at Power ON  
(2) Set serial data 1 µs later after power supply remains stable (VCC > 2.2 V).  
(3) Release power saving mode (PS: L H) 100 ns later after setting serial data.  
12  
MB15E07SR  
SERIAL DATA INPUT TIMING  
1st data  
2nd data  
Control bit Invalid data  
Data  
MSB  
LSB  
Clock  
t1  
t2  
t3  
t6  
t7  
LE  
t4  
t5  
On the rising edge of the clock, one bit of data is transferred into the shift register.  
Parameter Min  
Typ  
Max Unit  
Parameter Min  
Typ  
Max Unit  
t1  
t2  
t3  
t4  
20  
20  
30  
30  
ns  
ns  
ns  
ns  
t5  
t6  
t7  
100  
20  
ns  
ns  
ns  
100  
Note: LE should be “L” when the data is transferred into the shift register.  
13  
MB15E07SR  
PHASE COMPARATOR OUTPUT WAVEFORM  
fr  
fp  
tWU  
tWL  
LD  
[FC = “H”]  
DO  
[FC = “L”]  
DO  
Notes : Phase error detection range: –2 π to +2 π  
Pulses on Do signal during locked state are output to prevent dead zone.  
LD output becomes low when phase is tWU or more. LD output becomes high when phase  
error is tWL or less and continues to be so for three cycles or more.  
tWU and tWL depend on OSCIN input frequency.  
tWU > 2/fosc (s) (e. g. tWU > 153.8 ns, fosc = 13 MHz)  
tWU < 4/fosc (s) (e. g. tWL < 307.7 ns, fosc = 13 MHz)  
LD becomes high during the power saving mode (PS = “L”).  
14  
MB15E07SR  
MEASURMENT CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
1000 pF  
0.1 µF  
1000 pF  
0.1 µF  
1000 pF  
S.G.  
S.G.  
N.C.  
2
fin  
8
Xfin GND DO  
VCC  
VP  
OSCIN  
50 Ω  
50 Ω  
7
6
5
4
3
1
9
10  
11  
12  
13  
14  
15  
16  
Clock Data LE  
N.C.  
N.C.  
PS  
LD/fout  
N.C.  
VCC  
Oscilloscope  
Controller (setting divide ratio)  
Note: TSSOP-16  
15  
MB15E07SR  
TYPICAL CHARACTERISTICS  
1. fin Input Sensitivity  
Input sensitivity - Input frequency  
Ta = +25 °C  
10  
0
Catalog guaranteed range  
10  
20  
30  
40  
50  
VCC = 2.7 V  
VCC = 3.75 V  
VCC = 5.0 V  
VCC = 5.25 V  
SPEC  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Input frequency fIN (MHz)  
2. OSCIN Input Sensitivity  
Input sensitivity - Input frequency  
Ta = +25 °C  
10  
Catalog  
guaranteed  
range  
0
10  
20  
30  
40  
50  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.75 V  
VCC = 5.0 V  
SPEC  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Input frequency fOSC (MHz)  
16  
MB15E07SR  
3. Do output current  
1.0 mA mode  
IDO - VDO  
10.00  
Ta = + 25 °C  
VCC = 3.75 V  
Vp = 3.75 V  
2.000  
/div  
10.00  
0.00  
7.00  
1.00/div  
Charge pump output voltage VDO (V)  
4.0 mA mode  
IDO - VDO  
10.00  
Ta = + 25 °C  
CC = 3.75 V  
Vp = 3.75 V  
V
2.000  
/div  
10.00  
7.00  
0.00  
1.00/div  
Charge pump output voltage VDO (V)  
17  
MB15E07SR  
4. fin input impedance  
4
22.184 61.264 3.9002 nH  
2 500.000 000 MHz  
1
2
3
:
:
:
78.328  
319.34  
300 MHz  
4
22.145  
77.82  
1 GHz  
3
14.324  
13.364  
2 GHz  
1
2
START  
300.000 000 MHz  
STOP 2 500.000 000 MHz  
5. OSCIN input impedance  
4
32.719 Ω −801.28 4.9656 pF  
2 500.000 000 MHz  
1 : 633.5 Ω  
9.258 kΩ  
3 MHz  
038.63 Ω  
2 :  
3.0145 kΩ  
10 MHz  
083.94 Ω  
3 :  
1.5534 kΩ  
20 MHz  
4
3
21  
START  
3.000 000 000 MHz  
STOP 40.000 000 MHz  
18  
MB15E07SR  
REFERENCE INFORMATION  
Test Circuit  
fVCO = 1730 MHz  
KV = 42 MHz/V  
fr = 200 kHz  
VCC =VP = 3.75 V  
VVCO = 3.3 V  
Ta = +25 °C  
CP : 4.0 mA mode  
S.G.  
OSCIN  
fin  
fOSC = 13 MHz  
LPF  
Do  
LPF  
27 kΩ  
2.7 kΩ  
1000 pF  
120 pF  
Spectrum  
Analyzer  
VCO  
15000 pF  
PLL Reference Leakage  
REF 10.0 dB  
MKR200 kHz 80.39 dBc  
NOISE/1 Hz  
116.53 dBc/Hz  
DELTA MKR  
200 kHz  
CENTER 1.732004 GHz  
SPAN 1.00 MHz  
RBW 3 kHz  
VBW 30 Hz  
SWP 23 s  
ATT 10 dB  
PLL Phase Noise  
REF 10.0 dB  
MKR1.00 kHz 81.66 dBc/Hz  
VAVG 10  
NOISE/1 Hz  
81.66 dBc/Hz  
DELTA MKR  
1.00 kHz  
10  
10  
CENTER 1.73200392 GHz  
RBW 30 Hz VBW 100 Hz  
SPAN 10.00 kHz  
SWP 2.0 s  
ATT 10 dB  
(Continued)  
19  
MB15E07SR  
(Continued)  
1805 MHz1730 MHz within 1 kHz  
1730 MHz1805 MHz within 1 kHz  
HchLch  
375 µs  
LchHch  
390 µs  
Mkr x : 375.00233 µs  
y : 75.0818 MHz  
Mkr x : 389.98165 µs  
y : 74.8653 MHz  
100.0050  
MHz  
100.0050  
MHz  
2.88  
2.88  
kHz/01v  
kHz/01v  
99.99500  
MHz  
99.99500  
MHz  
0 s  
0 s  
2.0000000 µs  
2.0000000 µs  
Mkr x : 389.98165 µs  
Mkr x : 375.08233 µs  
y : 75.0018 MHz  
y : 74.8653 MHz  
100.0050  
MHz  
250.0000  
MHz  
50.0000  
MHz/01v  
2.88  
kHz/01v  
0
Hz  
99.99500  
MHz  
0 s  
0 s  
2.0000000 µs  
2.0000000 µs  
20  
MB15E07SR  
APPLICATION EXAMPLE  
OUTPUT  
VCO  
LPF  
Lock Det.  
From  
a controller  
N.C.  
16  
N.C.  
15  
N.C.  
13  
LE  
11  
Data  
10  
Clock  
9
LD/fout  
14  
PS  
12  
MB15E07SR  
1
2
3
4
5
6
7
8
OSCIN  
N.C.  
VP  
GND  
fin  
DO  
Xfin  
VCC  
1000 pF  
1000 pF  
1000 pF  
0.1 µF  
0.1 µF  
TCXO  
VP: 5.5 V Max  
Note : TSSOP-16  
21  
MB15E07SR  
USAGE PRECAUTIONS  
To protect against damage by electrostatic discharge, note the following handling precautions:  
-Store and transport devices in conductive containers.  
-Use properly grounded workstations, tools, and equipment.  
-Turn off power before inserting device into or removing device from a socket.  
-Protect leads with a conductive sheet when transporting a board-mounted device.  
ORDERING INFORMATION  
Part number  
MB15E07SRPFT  
MB15E07SRPV1  
Package  
Remarks  
16-pin, Plastic TSSOP  
(FPT-16P-M07)  
16-pad, Plastic BCC  
(LCC-16P-M06)  
22  
MB15E07SR  
PACKAGE DIMENSIONS  
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max) .  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
16-pin plastic TSSOP  
(FPT-16P-M07)  
15.00±0.10(.197±.004)  
*
0.17±0.05  
(.007±.002)  
16  
9
2 4.40±0.10 6.40±0.20  
*
(.173±.004) (.252±.008)  
INDEX  
Details of "A" part  
1.05±0.05  
(.041±.002)  
(Mounting height)  
1
8
LEAD No.  
"A"  
0.65(.026)  
0.24±0.08  
(.009±.003)  
0~8˚  
M
0.13(.005)  
0.07 +00..0073 .003 +..000031  
(0.50(.020))  
(Stand off)  
0.25(.010)  
0.60±0.15  
(.024±.006)  
0.10(.004)  
C
2003 FUJITSU LIMITED F16020S-c-3-3  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
(Continued)  
23  
MB15E07SR  
(Continued)  
16-pad plastic BCC  
(LCC-16P-M06)  
4.55±0.10  
(.179±.004)  
0.80(.031)MAX  
Mounting height  
3.40(.134)TYP  
0.325±0.10  
0.65(.026)  
TYP  
(.013±.004)  
0.40±0.10  
(.016±.004)  
14  
9
9
14  
0.80(.031)  
REF  
INDEX AREA  
3.40±0.10  
(.134±.004)  
2.45(.096)  
TYP  
1.15(.045)  
REF  
"B"  
"A"  
0.075±0.025  
(.003±.001)  
(Stand off)  
1.725(.068)  
REF  
1
6
6
1
Details of "A" part  
0.75±0.10  
Details of "B" part  
0.60±0.10  
(.024±.004)  
(.030±.004)  
0.05(.002)  
0.40±0.10  
0.60±0.10  
(.016±.004)  
(.024±.004)  
C
1999 FUJITSU LIMITED C16017S-1C-1  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
24  
MB15E07SR  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0505  
© 2005 FUJITSU LIMITED Printed in Japan  

相关型号:

MB15E07SRPV

暂无描述
FUJITSU

MB15E07SRPV1

Single Serial Input PLL Frequency Synthesizer On-chip 2.5 GHz Prescaler
FUJITSU

MB15E64UV

PLL Frequency Synthesizer, PBCC18, PLASTIC, BCC-18
FUJITSU

MB15E64UVPVB

PLL/Frequency Synthesis Circuit
FUJITSU

MB15E64UVPVB-G-ER2KE1

PLL/Frequency Synthesis Circuit
FUJITSU

MB15E65UV

PLL Frequency Synthesizer, PBCC18, PLASTIC, BCC-18
FUJITSU

MB15F02

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02L

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02LPFV1

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02LPV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02PFV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02PFV1

PLL Frequency Synthesizer, BICMOS, PDSO16, PLASTIC, SSOP-16
FUJITSU