MB15F83ULPVA

更新时间:2024-09-18 05:30:08
品牌:FUJITSU
描述:Fractional-N PLL Frequency Synthesizer

MB15F83ULPVA 概述

Fractional-N PLL Frequency Synthesizer 小数N分频PLL频率合成器

MB15F83ULPVA 数据手册

通过下载MB15F83ULPVA数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-21371-1E  
ASSP  
Fractional-N  
PLL Frequency Synthesizer  
MB15F83UL  
DESCRIPTION  
The Fujitsu MB15F83UL is Fractional-N Phase Locked Loop (PLL) frequency synthesizer with fast lock up function.  
The Fractional-N PLL operating up to 2000 MHz and the integer PLL operating up to 600 MHz are integrated on  
one chip.  
The MB15F83UL is used, as charge pump which is well-balanced output current with 1.5 mA and 6 mA selectable  
by serial data, direct power save control and digital lock detector. In addition, the MB15F83UL adopts a new  
architecture to achieve fast lock.  
The new package (Thin Bump Chip Carrier20) decreases a mount area of MB15F83UL more than 30% comparing  
with the former B.C.C.16 (for dual PLL, MB15F03SL) .  
The MB15F83UL is ideally suited for wireless mobile communications, such as GSM.  
FEATURES  
• High frequency operation  
: RF synthesizer : 2000 MHz Max.  
: IF synthesizer : 600 MHz Max.  
: VCC = 2.7 V to 3.6 V  
• Low power supply voltage  
• Ultra Low power supply current : ICC = 5.8 mA Typ. (VCC = Vp = 3.0 V, Ta = +25 °C, SW = 0 in IF and RF locking  
state)  
(Continued)  
PACKAGES  
20-pin, Plastic TSSOP  
20-pad, Plastic BCC  
(FPT-20P-M06)  
(LCC-20P-M05)  
MB15F83UL  
(Continued)  
• Direct power saving function : Power supply current in power saving mode  
Typ. 0.1 µA (VCC = Vp = 3.0 V, Ta = +25 °C) , Max. 10 µA (VCC = Vp = 3.0 V)  
• Fractional function : modulo 13 fixed (implemented in RF-PLL)  
• Dual modulus prescaler : 2000 MHz prescaler (16/17 fixed) /600 MHz prescaler (8/9 or 16/17)  
• Serial input programmable reference divider : RF : 7 bit (3 to 127) /IF : 14 bit (3 to 16383)  
• Serial input programmable divider consisting of :  
RF section- Binary 4-bit swallow counter : 0 to 15  
- Binary 10-bit programmable counter : 18 to 1,023  
- Binary 4-bit fractional counter numerator : 0 to 15  
IF section - Binary 4-bit swallow counter : 0 to 15  
- Binary 11-bit programmable counter : 3 to 2,047  
• On-chip phase comparator for fast lock and low noise  
• Operating temperature : Ta = −40 °C to +85 °C  
• Small package Bump Chip Carrier.0 (3.4 mm × 3.6 mm × 0.6 mm)  
PIN ASSIGNMENTS  
(BCC-20)  
TOP VIEW  
(TSSOP-20)  
TOP VIEW  
OSCIN Data  
GND Clock  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Clock  
Data  
OSCIN  
GND  
finIF  
LE  
finIF  
1
2
3
4
5
20 19 18 17 16  
LE  
finRF  
XfinIF  
GNDIF  
VCCIF  
PSIF  
XfinIF  
15  
14  
13  
12  
finRF  
XfinRF  
GNDRF  
VCCRF  
PSRF  
VpRF  
DORF  
GNDIF  
VCCIF  
XfinRF  
GNDRF  
VCCRF  
PSIF  
VpIF  
VpIF  
6
7
8
9
10 11  
PSRF  
DOIF  
DOIF  
LD/fout  
DORF  
LD/fout 10  
VpRF  
(LCC-20P-M05)  
(FPT-20P-M06)  
2
MB15F83UL  
PIN DESCRIPTION  
Pin no.  
Pin  
I/O  
Descriptions  
name  
TSSOP BCC  
The programmable reference divider input pin. TCXO should be connected with  
an AC coupling capacitor.  
1
2
3
19  
20  
1
OSCIN  
GND  
finIF  
I
Ground pin for OSC input buffer and the shift register circuit.  
Prescaler input pin for the IF-PLL.  
Connection to an external VCO should be AC coupling.  
I
I
Prescaler complimentary input pin for the IF-PLL section.  
This pin should be grounded via a capacitor.  
4
5
2
3
XfinIF  
GNDIF  
Ground pin for the IF-PLL section.  
Power supply voltage input pin for the IF-PLL section (except for the charge  
pump circuit) , the shift register and the oscillator input buffer.  
When power is OFF, latched data of IF-PLL is lost.  
6
7
4
5
VCCIF  
PSIF  
Power saving mode control signal pin for the IF-PLL section. This pin must be set  
at “L” when the power supply is started up. (Open is prohibited.)  
PSIF = “H”; Normal mode / PSIF = “L”; Power saving mode  
I
8
9
6
7
VpIF  
Power supply voltage input pin for the IF-PLL charge pump.  
Charge pump output pin for the IF-PLL section.  
Phase characteristics of the phase detector can be reversed by FC-bit.  
DoIF  
O
O
O
Look detect signal output (LD) /phase comparator monitoring output (fout) pins.  
The output signal is selected by an LDS bit in a serial data.  
LDS bit = “H”; outputs fout signal / LDS bit = “L”; outputs LD signal  
10  
8
LD/fout  
Charge pump output pin for the RF-PLL section.  
Phase characteristics of the phase detector can be reversed by FC-bit.  
11  
12  
9
DoRF  
10  
VpRF  
Power supply voltage input pin for the RF-PLL charge pump.  
Power saving mode control pin for the RF-PLL section. This pin must be set at  
“L” when the power supply is started up. (Open is prohibited. )  
PSRF = “H”; Normal mode / PSRF = “L”; Power saving mode  
13  
11  
PSRF  
I
Power supply voltage input pin for the RF-PLL section (except for the charge  
pump circuit) .  
14  
15  
16  
12  
13  
14  
VCCRF  
GNDRF  
XfinRF  
Ground pin for the RF-PLL section.  
Prescaler complimentary input pin for the RF-PLL section.  
This pin should be grounded via a capacitor.  
I
I
Prescaler input pin for the RF-PLL.  
Connection to an external VCO should be AC coupling.  
17  
18  
15  
16  
finRF  
Load enable signal input pin (with the schmitt trigger circuit.)  
On a rising edge of load enable, data in the shift register is transferred to the cor-  
responding latch according to the control bit in a serial data.  
LE  
I
Serial data input pin (with the schmitt trigger circuit.)  
19  
20  
17  
18  
Data  
I
I
A data is transferred to the corresponding latch (IF-ref counter, IF-prog. counter,  
RF-ref. counter, RF-prog. counter) according to the control bit in a serial data.  
Clock input pin for the 23-bit shift register (with the schmitt trigger circuit.)  
One bit data is shifted into the shift register on a rising edge of the clock.  
Clock  
3
MB15F83UL  
BLOCK DIAGRAM  
VCCIF GNDIF  
(4) (3)  
VpIF  
(6)  
6
5
8
4-bit latch  
11-bit latch  
Power  
7
(5)  
PSIF  
fpIF  
Binary 11-bit  
programmable  
counter (IF-PLL)  
saving  
Binary 4-bit  
Phase  
Charge  
IF-PLL  
swallow counter  
9
DoIF  
comp.  
pump  
(IF-PLL)  
(IF-PLL)  
(IF-PLL)  
(7)  
(1)  
3
4
Prescaler  
(IF-PLL)  
finIF  
XfinIF  
8/9, 16/17  
(2)  
14-bit latch  
Lock  
Binary 14-bit pro-  
grammable ref.  
counter (IF-PLL)  
Det.  
(IF-PLL)  
6-bit latch  
LDIF  
Slector  
OSCIN  
1
LDIF  
LDRF  
frIF  
(19)  
10  
LD/fout  
(8)  
Binary 7-bit pro-  
grammable ref.  
counter (RF-PLL)  
frRF  
fpIF  
fpRF  
OR  
Lock  
7-bit latch  
5-bit latch  
Det.  
(RF-PLL)  
frRF  
MD2  
frRF  
Fractional  
Counter  
13  
Selector  
fpRF  
OR  
Phase  
(15)  
Prescaler  
(RF-PLL)  
16/17  
comp.  
finRF 17  
MD1  
(RF-PLL)  
fpRF  
16  
XfinRF  
(14)  
Binary 10-bit  
programmable  
counter (RF-PLL)  
F
1
F
2
F
3
F
4
Binary 4-bit  
Charge  
swallow counter  
11  
DoRF  
pump  
(RF-PLL)  
Power  
(9)  
(RF-PLL)  
13  
PSRF  
saving  
4-bit latch  
4-bit latch  
10-bit latch  
(11)  
RF-PLL  
Schmitt  
circuit  
18  
LE  
Latch selector  
SC  
(16)  
(RF-PLL)  
SC1  
SC2  
Schmitt  
circuit  
C
N
C
N
C
N
19  
Data  
23-bit shift  
register  
(17)  
Schmitt  
circuit  
20  
Clock  
1
2
3
(18)  
(20)  
(12) 14  
15 (13) 12 (10)  
2
GND  
VccRF GNDRF VpRF  
O : TSSOP 20  
( ) : BCC 20  
4
MB15F83UL  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min.  
0.5  
VCC  
Max.  
VCC  
Vp  
+4.0  
+4.0  
V
V
Power supply voltage  
Input voltage  
VI  
0.5  
GND  
GND  
55  
VCC + 0.5  
VCC  
V
LD / fout  
VO  
V
Output voltage  
Do  
VDO  
Tstg  
Vp  
V
Storage temperature  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remark  
Min.  
2.7  
Typ.  
3.0  
Max.  
3.6  
VCC  
Vp  
VI  
V
V
VCCRF = VCCIF  
Power supply voltage  
VCC  
3.0  
3.6  
Input voltage  
GND  
40  
VCC  
+85  
V
Operating temperature  
Ta  
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
5
MB15F83UL  
*
ELECTRICAL CHARACTERISTICS  
(VCC = 2.7 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
finIF = 480 MHz, SWC = 0  
VCCIF = VpIF = 3.0 V  
*1  
ICCIF  
1.0  
1.6  
2.3  
mA  
mA  
Power supply current  
finRF = 2000 MHz  
VCCRF = VpRF = 3.0 V  
*1  
ICCRF  
2.8  
4.2  
5.8  
IPSIF  
IPSRF  
finIF  
PS = “L”  
PS = “L”  
IF PLL  
0.1*2  
0.1*2  
10  
10  
µA  
Power saving current  
Operating frequency  
µA  
*3  
finIF  
100  
400  
3
600  
2000  
40  
MHz  
MHz  
MHz  
dBm  
dBm  
Vp-p  
*3  
finRF  
finRF  
fOSC  
RF PLL  
OSCIN  
finIF  
PfinIF  
IF PLL, 50 system  
15  
15  
0.5  
+2  
Input sensitivity  
finRF  
PfinRF RF PLL, 50 system  
+2  
OSCIN  
VOSC  
VCC  
0.7 VCC  
+ 0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
VIL  
Schmitt triger input  
Schmitt triger input  
Data,  
Clock,  
LE  
V
V
0.3 VCC  
0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
0.7 VCC  
PSIF  
PSRF  
VIL  
0.3 VCC  
Data,  
Clock,  
LE,  
PSIF,  
PSRF  
*4  
“H” level input current  
IIH  
1.0  
1.0  
+1.0  
µA  
*4  
“L” level input current  
IIL  
+1.0  
“H” level input current  
“L” level input current  
“H” level output voltage  
“L” level output voltage  
“H” level output voltage  
“L” level output voltage  
IIH  
0
+100  
OSCIN  
µA  
*4  
IIL  
100  
0
VOH  
VOL  
VCC = Vp = 3.0 V, IOH = −1 mA  
VCC = Vp = 3.0 V, IOL = 1 mA  
VCC 0.4  
LD/  
fout  
V
0.4  
VDOH  
VDOL  
VCC = Vp = 3.0 V, IDOH = −0.5 mA Vp 0.4  
VCC = Vp = 3.0 V, IDOL = 0.5 mA  
DoIF  
DoRF  
V
0.4  
2.5  
High impedance  
cutoff current  
DoIF  
DoRF  
VCC = Vp = 3.0 V  
VOFF = 0.5 V to Vp 0.5 V  
IOFF  
nA  
mA  
*4  
“H” level output current  
“L” level output current  
IOH  
VCC = Vp = 3.0 V  
1.0  
LD/  
fout  
IOL  
VCC = Vp = 3.0 V  
1.0  
(Continued)  
6
MB15F83UL  
(Continued)  
(VCC = 2.7 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
VCC = Vp = 3.0 V  
VDOH = Vp / 2  
Ta = +25 °C  
Min.  
Typ.  
Max.  
CS bit = “H”  
CS bit = “L”  
CS bit = “H”  
CS bit = “L”  
8.2  
6.0  
4.1  
mA  
mA  
mA  
mA  
“H” level output  
current  
*4  
IDOH  
2.2  
4.1  
1.5  
6.0  
0.8  
8.2  
DoIF  
DoRF  
VCC = Vp = 3.0 V  
VDOL = Vp / 2  
Ta = +25 °C  
“L” level output  
current  
IDOL  
0.8  
1.5  
2.2  
*5  
IDOL/IDOH IDOMT  
VDO = Vp / 2  
3
%
%
*6  
*7  
Charge pump  
current rate  
vs VDO  
IDOVD  
0.5 V VDO Vp 0.5 V  
10  
40 °C Ta ≤ +85 °C,  
VDO = Vp / 2  
vs Ta  
IDOTA  
5
%
*1 : Conditions ; fosc = 13 MHz, Ta = +25 °C in locking state.  
*2 : VCCIF = VpIF = VCCRF = VpRF = 3.0 V, fosc = 13 MHz, Ta = +25 °C, in power saving mode.  
*3 : AC coupling. 1000 pF capacitor is connected.  
*4 : The symbol “–” (minus) means direction of current flow.  
*5 : VCC = Vp = 3.0 V, Ta = +25 °C (||I3| |I4||) / [ (|I3| + |I4|) / 2] × 100 (%)  
*6 : VCC = Vp = 3.0 V, Ta = +25 °C [ (||I2| |I1||) / 2] / [ (|I1| + |I2|) / 2] × 100 (%) (Applied to each lDOL and lDOH)  
*7 : VCC = Vp = 3.0 V, Ta = +25 °C[ (||IDO (85 °C) | |IDO (–40 °C) ||) / 2] / [ (|IDO (85 °C) | + |IDO (–40 °C) |) / 2] × 100 (%) (Applied  
to each IDOL and IDOH)  
I2  
I3  
I1  
IDOL  
IDOH  
I1  
I4  
I2  
0.5  
Vp/2  
Vp 0.5  
Vp  
output voltage (V)  
7
MB15F83UL  
FUNCTIONAL DESCRIPTION  
1. Serial Data Input  
Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL  
sections and programmable reference dividers of IF/RF-PLL sections are controlled individually.  
Serial data of binary code is entered through Data pin.  
On a rising edge of clock, one bit of serial data is transferred into the shift register. On a rising edge of load  
enable signal, the data stored in the shift register is transferred to one of latches depending upon the control bit  
data setting.  
The programmable  
counter and the  
swallow counter for the  
IF-PLL  
The prgrammable  
counter and the  
swallow counter for  
the RF-PLL  
The programmable  
reference counter for  
the IF-PLL  
The programmable  
reference counter for  
the RF-PLL  
CN1  
CN2  
CN3  
0
0
0
1
0
0
0
1
0
1
1
0
Note : (CN3 = 1 is pohibited)  
(1) Serial data format  
LSB  
Direction of data shift  
MSB  
1
0
1
0
1
2
0
0
1
1
3
0
0
0
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RC10 RC11 RC12 RC13 RC14 LDS T1 T2 SWC FCC CSC  
AC1 AC2 AC3 AC4 NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 NC10 NC11  
RF1 RF2 RF3 RF4 RF5 RF6 RF7  
AF1 AF2 AF3 AF4 NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8 NF9 NF10 F1 F2 F3 F4  
0
0
0
X
X
0
0
0
0
0
0
0
0
SC1 SC2  
1
FCF CSF  
0
0
Control bit (CN3)  
Control bit (CN2)  
Control bit (CN1)  
RC1 to RC14  
AC1 to AC4  
NC1 to NC11  
: Divide ratio setting bits for the reference counter of the IF (3 to 16383)  
: Divide ratio setting bits for the swallow counter of the IF (0 to 15, A < N)  
: Divide ratio setting bits for the programmable counter of the IF (3 to 2047)  
LDS, T1, T2 : Select bits for the lock detect output or a monitoring phase comparison frequency  
SWC  
: Divide ratio setting for the prescaler of the IF  
FCC  
: Phase control bit for the phase detector of the IF  
: Charge pump current select bit of the IF  
CSC  
RF1 to RF7  
AF1 to AF4  
NF1 to NF10  
F1 to F4  
SC1, SC2  
FCF  
: Divide ratio setting bits for the reference counter of the RF (3 to 127)  
: Divide ratio setting bits for the swallow counter of the RF (0 to 15, A < N 2)  
: Divide ratio setting bits for the programmable counter of the RF (18 to 1023)  
: Fractional-N increment setting bit for the fractional accumulator (0 to 15, F < Q)  
: Spurious cancel set bit of the RF.  
: Phase control bit for the phase detector of the RF.  
: Charge pump current select bit of the RF  
CSF  
X
: Dummy bit (Set “0” or “1”)  
Note: Data input with MSB first.  
8
MB15F83UL  
(2) Data Setting  
RF synthesizer Data Setting (Fractional-N)  
The divide ratio can be calculated using the following equation :  
fVCORF = NTOTAL × fosc÷R  
NTOTAL = P × N + A + F / Q  
(A < N 2, F < Q)  
fVCORF  
NTOTAL  
fosc  
R
: Output frequency of external voltage controlled oscillator (VCO)  
: Total division ratio from prescaler input to the phase detector input  
: Output frequency of the reference frequency oscillator  
: Preset divide ratio of binary 7 bit reference counter (3 to 127)  
: Preset divide ratio of modulus prescaler (16 fixed)  
P
N
: Preset divide ratio of binary 10 bit programmable counter (18 to 1023)  
: Preset divide ratio of binary 4 bit swallow counter (0 to 15)  
: A numerator of fractional-N (0 to 15)  
A
F
Q
: A denominator of fractional-N, modulo 13  
Binary 7-bit Programmable Reference Counter Data Setting (RF1 to RF7)  
Divide ratio (R)  
RF7  
0
RF6  
0
RF5  
0
RF4  
0
RF3  
0
RF2  
1
RF1  
1
3
4
0
0
0
0
1
0
0
52  
0
1
1
1
1
1
0
1
1
1
0
1
0
1
127  
Note : Divide ratio less than 3 is prohibited.  
Fractional-N incremant of the fractional accumulator Data Setting (F1 to F4)  
Setting value(F)  
F4  
0
F3  
0
F2  
0
F1  
0
0
1
2
0
0
0
1
0
0
1
0
15  
1
1
1
1
Note : F < Q  
9
MB15F83UL  
Binary 10-bit Programable Counter Data Setting (NF1 to NF10)  
Divide ratio (N)  
NF10  
0
NF9  
0
NF8  
0
NF7  
0
NF6  
0
NF5  
1
NF4  
0
NF3  
0
NF2  
1
NF1  
0
18  
19  
0
0
0
0
0
1
0
0
1
1
32  
0
1
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
1023  
Note : Divide ratio less than 18 is prohibited.  
Binary 4-bit Swallow Counter Data Setting (AF1 to AF4)  
Divide ratio (A)  
AF4  
0
AF3  
0
AF2  
0
AF1  
0
1
2
0
1
0
0
0
0
0
0
1
15  
1
1
1
1
Note : A < N 2  
Spurious cancel Bit Setting  
Spurious cancel amount  
SC1  
SC2  
Large  
Midium  
Small  
0
0
1
0
1
0
Note : The bits set how much the amount of spurious cancel.  
If the Large is selected, a spurious is tended to become small.  
Phase Comparator Phase Switching Data Setting  
FCF = High  
FCF = Low  
DO  
H
Z
DO  
L
fr > fp  
fr = fp  
Z
fr < fp  
L
H
2
VCO polarity  
1
Notes : Z = High-Z  
Depending upon the VCO and LPF polarity, FC bit should be set.  
Charge pump current select Bit Setting  
CSF  
1
Current value  
± 6.0 mA  
0
± 1.5 mA  
10  
MB15F83UL  
IF synthesizer Data Setting (Integer)  
The divide ratio can be calculated using the following equation :  
fVCOIF = [ (P × N) + A] × fosc÷R (A < N)  
fVCOIF  
P
: Output frequency of external voltage controlled oscillator (VCO)  
: Preset divide ratio of modulus prescaler (8 or 16)  
N
: Preset divide ratio of binary 11 bit programmable counter (3 to 2047)  
: Preset divide ratio of binary 4 bit swallow counter (0 to 15)  
: Output frequency of the reference frequency oscillator  
A
fosc  
R
: Preset divide ratio of binary 14 bit reference counter (3 to 16383)  
Binary 14-bit Programmable Reference Counter Data Setting (RC1 to RC14)  
Divide ratio  
RC14  
RC13  
RC12  
RC11  
RC10  
RC9  
RC8  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
(R)  
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
4
16383  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note : Divide ratio less than 3 is prohibited.  
Binary 11-bit Programmable Counter Data Setting (NC1 to NC11)  
Divide ratio (N) NC11 NC10  
NC9  
0
NC8  
0
NC7  
0
NC6  
0
NC5  
0
NC4  
0
NC3  
NC2  
NC1  
3
4
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
2047  
1
1
1
1
1
1
1
1
1
1
1
Note : Divide ratio less than 3 is prohibited.  
Binary 4-bit Swallow Counter Data Setting (AC1 to AC4)  
Divide ratio (A) AC4  
AC3  
0
AC2  
0
AC1  
0
0
1
2
0
0
0
0
0
1
0
1
0
15  
1
1
1
1
Note : A < N  
Prescaler Data Setting (SWC)  
SWC  
Prescaler divide ratio  
1
0
8/9  
16/17  
11  
MB15F83UL  
Phase Comparator Phase Switching Data Setting  
FCC = High  
FCC = Low  
DO  
H
Z
DO  
L
fr > fp  
fr = fp  
fr < fp  
Z
L
H
Notes : Z = High-Z  
Depending upon the VCO and LPF polarity, FC bit should be set.  
Charge pump current select Data Setting (CSC)  
CSC  
1
Do current  
± 6.0 mA  
± 1.5 mA  
0
Common setting  
LD/fout Output Select Data Setting  
LD/fout  
LDS  
T1  
T2  
LD output  
0
1
1
1
1
frIF  
0
1
0
1
0
0
1
1
frRF  
fpIF  
fout  
output  
fpRF  
FC bit Setting  
When designing a synthesizer, the FC bit setting depends on the VCO and LPF characteristics.  
When the LPF and VCO characteristics are similar to (1) ,  
set FC bit “H”.  
When the VCO characteristics are similar to (2) ,  
set FC bit “L”.  
High  
(1)  
VCO output  
frequency  
(2)  
LPF output voltage  
Max.  
12  
MB15F83UL  
2. Power Saving Mode (Intermittent Mode Control)  
PS Pin Setting  
PS pin  
Status  
H
L
Normal mode  
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pin low, the device enters the power saving mode, reducing the current consumption.  
See “ELECTRICAL CHARACTERISTICS” for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the single PLL, the lock detector, LD, remains high, indicating a locked condition.  
For the dual PLL, the lock detector, LD, is shown in “PHASE DETECTOR OUTPUT WAVEFORM the LD Output  
Logic table.  
Setting the PS pin high releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth start-up when the device returns to normal operation.  
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is  
because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr)  
which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase  
in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error  
signal from the phase detector when it returns to normal operation.  
Notes: When power (VCC) is first applied, the device must be in standby mode and PS = Low, for at least 1 µs.  
PS pin must be set “L” for Power ON.  
OFF  
ON  
VCC  
tV 1 µs  
Clock  
Data  
LE  
PS  
tPS 100 ns  
(2)  
(1)  
(3)  
(1) PS = L (power saving mode) at Power ON  
(2) Set serial data 1 µs after power supply remains stable (VCC 2.2 V) .  
(3) Release power saving mode (PS : L H) 100 ns after setting serial data.  
13  
MB15F83UL  
3. Serial Data Input Timing  
1st data  
2nd data  
Control bit Invalid data  
LSB  
Data  
MSB  
Clock  
LE  
t4  
t3  
t1  
t2  
t5  
t6  
t7  
On the rising edge of the clock, one bit of data is transferred into shift register.  
Parameter Min.  
Typ.  
Max.  
Unit  
ns  
Parameter  
Min. Typ. Max.  
Unit  
ns  
t1  
t2  
t3  
t4  
20  
20  
30  
30  
t5  
t6  
t7  
100  
20  
ns  
ns  
ns  
100  
ns  
ns  
Note : LE should be “L” when the data is transferred into the shift register.  
14  
MB15F83UL  
PHASE DETECTOR OUTPUT WAVEFORM  
frIF/RF  
fpIF/RF  
tWU  
tWL  
LD  
(FC bit = High)  
H
DOIF/RF  
Z
L
(FC bit = Low)  
H
DOIF/RF  
Z
L
LD Output Logic Table  
IF-PLL section  
RF-PLL section  
LD output  
Locking state/Power saving state  
Locking state/Power saving state  
Unlocking state  
Locking state/Power saving state  
Unlocking state  
H
L
L
L
Locking state/Power saving state  
Unlocking state  
Unlocking state  
Notes: Phase error detection range = −2 π to +2 π  
Pulses on DoIF/RF signals are output to prevent dead zone.  
LD output becomes low when phase error is tWU or more.  
LD output becomes high when phase error is tWL or less and continues to be so for three cycles or more.  
tWU and tWL depend on OSCIN input frequency as follows.  
tWU 2/fosc [s] : i.e. tWU 153.8 ns when fosc = 13.0 MHz  
tWU 4/fosc [s] : i.e. tWL 307.7 ns when fosc = 13.0 MHz  
15  
MB15F83UL  
TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
fout  
Oscilloscope  
VpIF  
VCCIF  
0.1 µF  
0.1 µF  
1000 pF  
1000 pF  
P.G  
1000 pF  
S.G  
50 Ω  
LD/fout DOIF VpIF PSIF VCCIF GNDIF XfinIF finIF GND OSCIN  
50 Ω  
10  
9
8
7
6
5
4
3
2
1
MB15F83UL  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DORF VpRF PSRF VCCRFGNDRFXfinRF finRF LE Data Clock  
1000 pF  
S.G  
1000 pF  
Controller (divide  
ratio setting)  
VpRF  
VCCRF  
50 Ω  
0.1 µF  
0.1 µF  
Note : TSSOP-20  
16  
MB15F83UL  
TYPICAL CHARACTERISTICS  
1. fin input sensitivity  
RF-PLL input sensitivity vs. Input frequency  
Ta = + 25 °C  
10  
0
2.7 V  
3.0 V  
SPEC  
10  
20  
30  
40  
50  
3.6 V  
SPEC  
3.3 V  
0
500  
1000  
1500  
2000  
2500  
finRF (MHz)  
IF-PLL input sensitivity vs. Input frequency  
Ta = + 25 °C  
10  
0
10  
20  
30  
40  
50  
2.7 V  
3.0 V  
SPEC  
3.3 V  
3.6 V  
0
500  
1000  
1500  
2000  
finIF (MHz)  
17  
MB15F83UL  
2. OSCIN input sensitivity  
Input sensitivity vs. Input frequency  
Ta = + 25 °C  
10  
SPEC  
0
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
10  
20  
30  
40  
50  
60  
0
50  
100  
150  
200  
250  
300  
Input frequency fOSC (MHz)  
18  
MB15F83UL  
3. RF-PLL Do output current  
• 1.5 mA mode  
IDO VDO  
20  
0
20  
0
1
2
3
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO VDO  
20  
0
20  
0
1
2
3
Charge pump output voltage VDO (V)  
19  
MB15F83UL  
4. IF-PLL Do output current  
• 1.5 mA mode  
IDO VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
0.0  
2.0  
1.0  
3.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO VDO  
10.0  
VCC = Vp = 2.7 V  
0
10.0  
2.0  
3.0  
1.0  
0.0  
Charge pump output voltage VDO (V)  
20  
MB15F83UL  
5. fin input impedance  
finR input impedance  
1.1765 pF  
1 : 45.859 Ω  
188.77 Ω  
1 GHz  
2 : 25.48 Ω  
103.67 Ω  
1.7 GHz  
3 : 22.152 Ω  
83.391 Ω  
2 GHz  
1
2
3
START 1 000.000 000 MHz  
STOP 2 600.000 000 MHz  
finIF input impedance  
4 : 9.3437 Ω  
75.625 Ω  
2.1045 pF  
1 000.000 000 MHz  
1 : 325.78 Ω  
732.22 Ω  
100 MHz  
2 : 21.516 Ω  
170.72 Ω  
500 MHz  
3 : 12.422 Ω  
108.38 Ω  
750 MHz  
1
2
4
3
START .030 000 MHz  
STOP 1 000.000 000 MHz  
21  
MB15F83UL  
6. OSCIN input impedance  
OSCIN input impedance  
4 : 092.56 Ω  
-1.3177 kΩ  
2.4157 pF  
50.000 000 MHz  
1 : 28.625 Ω  
667.75 Ω  
100 MHz  
2 : 2.1273 kΩ  
5.9445 kΩ  
10 MHz  
3 : 2.1273 kΩ  
5.9445 kΩ  
4
10 MHz  
3
32  
1
START .030 000 MHz  
STOP 100.000 000 MHz  
22  
MB15F83UL  
REFERENCE INFORMATION  
(for Lock-up Time, Phase Noise and Reference Leakage)  
fVCO = 1733 MHz  
VCC = 3.0 V  
Test Circuit  
OSC IN  
KV = 44 MHz/V  
fr = 200 kHz  
fOSC = 13 MHz  
LPF  
VVCO = 3.5 V  
Ta = +25 °C  
CP : 6 mA mode  
QM = 13  
S.G.  
LPF  
DO  
fin  
10 kΩ  
Spectrum  
Analyzer  
VCO  
3.0 kΩ  
82 pF  
390 pF  
3900 pF  
• PLL Reference Leakage  
ATTEN 10 dB  
RL 0 dBm  
VAVG 100  
MKR 69.00 dB  
200 kHz  
10 dB/  
MKR  
200 kHz  
69.00 dB  
D
CENTER 1.733000 GHz  
RBW 10 kHz  
SPAN 1.000 MHz  
SWP 50.0 ms  
VBW 10 kHz  
• PLL Phase Noise  
ATTEN 10 dB  
RL 0 dBm  
VAVG 24  
10 dB/  
MKR 63.17 dB  
1.00 kHz  
MKR  
1.00 kHz  
63.17 dB  
D
CENTER 1.73299933 GHz  
RBW 100 Hz VBW 100 Hz  
SPAN 10.00 kHz  
SWP 802 ms  
23  
MB15F83UL  
PLL Lock Up time  
1733 MHz1803 MHz within ± 1 kHz  
PLL Lock Up time  
1803 MHz1733 MHz within ± 1 kHz  
LchHch  
189 µs  
HchLch  
167 µs  
1.733004500 GH  
z
1.803004500 GH  
z
1.803000500 GHz  
1.733000500 GH  
z
1.802996500 GHz  
1.732996500 GH  
z
956 µs  
1.544 ms  
500.0 µs/div  
956 µs  
1.544 ms  
500.0 µs/div  
4.044 ms  
4.044 ms  
24  
MB15F83UL  
APPLICATION EXAMPLE  
OUTPUT  
VCO  
3.0 V  
LPF  
3.0 V  
from controller  
1000 pF  
1000 pF  
0.1 µF  
0.1 µF  
Clock  
20  
DATA  
19  
LE  
18  
finRF  
XfinRF GNDRF VCCRF  
PSRF  
13  
VpRF  
DORF  
17  
16  
15  
14  
12  
11  
MB15F83UL  
1
2
3
4
5
6
7
8
9
10  
OSCIN  
GND  
finIF  
XfinIF  
GNDIF  
VCCIF  
PSIF  
VpIF  
DOIF  
LD/fout  
3.0 V  
3.0 V  
Lock Det.  
1000 pF  
1000 pF  
1000 pF  
0.1 µF  
0.1 µF  
TCXO  
OUTPUT  
VCO  
LPF  
Notes:Schmit trigger circuit is provided (insert a pull-up or pull-down resistor to prevent oscillation  
when open-circuited in the input) .  
TSSOP-20  
25  
MB15F83UL  
USAGE PRECAUTIONS  
(1) VCCRF, VpRF, VCCIF and VpIF must be equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF, VpRF, VCCIF and VpIF to  
keep them equal. It is recommended that the non-use PLL is controlled by power saving function.  
(2) To protect against damage by electrostatic discharge, note the following handling precautions :  
-Store and transport devices in conductive containers.  
-Use properly grounded workstations, tools, and equipment.  
-Turn off power before inserting or removing this device into or from a socket.  
-Protect leads with conductive sheet, when transporting a board mounted device.  
ORDERING INFORMATION  
Part number  
MB15F83ULPFT  
MB15F83ULPVA  
Package  
Remarks  
20-pin plastic TSSOP  
(FPT-20P-M06)  
20-pad plastic BCC  
(LCC-20P-M05)  
26  
MB15F83UL  
PACKAGE DIMENSIONS  
20-pin Plastic TSSOP  
(FPT-20P-M06)  
* : These dimensions do not include resin protrusion.  
*
6.50±0.10(.256±.004)  
0.17±0.05  
(.007±.002)  
20  
11  
*
4.40±0.10 6.40±0.20  
(.173±.004) (.252±.008)  
INDEX  
Details of "A" part  
1.05±0.05  
(Mounting height)  
(.041±.002)  
1
10  
LEAD No.  
"A"  
0.65(.026)  
0.24±0.08  
(.009±.003)  
0~8°  
M
0.13(.005)  
0.07 +00..0073 .003 +..000031  
(0.50(.020))  
(Stand off)  
0.25(.010)  
0.45/0.75  
(.018/.030)  
0.10(.004)  
C
1999 FUJITSU LIMITED F20026S-2C-2  
(
)
Dimensions in mm inches  
(Continued)  
27  
MB15F83UL  
(Continued)  
20-pad plastic BCC  
(LCC-20P-M05)  
3.00(.118)TYP  
0.25±0.10  
3.60±0.10(.142±.004)  
0.55±0.05  
(.022±.002)  
(Mounting height)  
(.010±.004)  
16  
11  
11  
16  
0.50(.020)  
TYP  
0.25±0.10  
(.010±.004)  
INDEX AREA  
3.40±0.10  
(.134±.004)  
2.70(.106)  
TYP  
"D"  
"A"  
"B"  
"C"  
1
6
6
1
0.50(.020)  
TYP  
2.80(.110)REF  
0.075±0.025  
(.003±.001)  
(Stand off)  
0.05(.002)  
Details of "A" part  
Details of "B" part  
Details of "C" part  
Details of "D" part  
0.50±0.10  
0.50±0.10  
0.50±0.10  
0.30±0.10  
(.020±.004)  
(.020±.004)  
(.020±.004)  
(.012±.004)  
C0.20(.008)  
0.60±0.10  
(.024±.004)  
0.30±0.10  
(.012±.004)  
0.60±0.10  
(.024±.004)  
0.40±0.10  
(.016±.004)  
C
2001 FUJITSU LIMITED C20056S-c-2-1  
(
)
Dimensions in mm inches  
28  
MB15F83UL  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0107  
FUJITSU LIMITED Printed in Japan  

MB15F83ULPVA 相关器件

型号 制造商 描述 价格 文档
MB15F86UL FUJITSU Fractional-N PLL Frequency Synthesizer 获取价格
MB15F86ULPFT FUJITSU Fractional-N PLL Frequency Synthesizer 获取价格
MB15F86ULPFV2 FUJITSU PLL/Frequency Synthesis Circuit, PDSO20 获取价格
MB15F86ULPVA FUJITSU Fractional-N PLL Frequency Synthesizer 获取价格
MB15F88UL FUJITSU Fractional-N PLL Frequency Synthesizer 获取价格
MB15F88ULPFT FUJITSU Fractional-N PLL Frequency Synthesizer 获取价格
MB15F88ULPV FUJITSU PLL Frequency Synthesizer, PBCC20, PLASTIC, BCC-20 获取价格
MB15F88ULPVA FUJITSU Fractional-N PLL Frequency Synthesizer 获取价格
MB15F8XUL FUJITSU Fractional-N / Integer dual PLL Frequency Synthesizers 获取价格
MB15G MICRO-ELECTRONICS LED BACKLIGHT FOR LCD DISPLAY 获取价格

MB15F83ULPVA 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6