MB39A126 [FUJITSU]

DC/DC Converter IC for Charging Li-ion Battery; DC / DC转换器IC,适用于充电锂离子电池
MB39A126
型号: MB39A126
厂家: FUJITSU    FUJITSU
描述:

DC/DC Converter IC for Charging Li-ion Battery
DC / DC转换器IC,适用于充电锂离子电池

转换器 电池
文件: 总64页 (文件大小:743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27248-1E  
ASSP for Power Supply Applications (Secondary battery)  
DC/DC Converter IC for Charging  
Li-ion Battery  
MB39A125/126  
DESCRIPTION  
MB39A125/126 is a DC/DC converter IC for charging Li-ion battery, which is suitable for down-conversion, and  
uses pulse width modulation (PWM) for controlling the output voltage and current independently. This IC integrates  
the build-in comparator for the voltage detection of the AC adapter, and selects the AC adapter or battery auto-  
matically for power supply to the system.  
Provides a wide range of power supply voltage, low standby current, and high efficiency, which makes them ideal  
as a built-in charging device in products such as notebook PC.  
FEATURES  
• High efficiency : 97% (MAX)  
• Built-in two constant current control circuits  
• Analog control of the charging current value (+INE1, +INE2 terminal)  
• Built-in AC adapter voltage detection function (ACOK, XACOK terminal)  
(Continued)  
PACKAGES  
24-pin plastic SSOP  
28-pin plastic QFN  
(FPT-24P-M03)  
(LCC-28P-M11)  
MB39A125/126  
(Continued)  
• External output voltage setting resistor : MB39A125  
• Built-in output voltage setting resistor : MB39A126  
• Built-in charge stop function at low VCC  
• Output voltage setting accuracy : 0.74% (Ta = −10 °C to +85 °C) : MB39A125  
: 12.6 V/16.8 V 0.8% (Ta = −10 °C to +85 °C) : MB39A126  
• Built-in high accuracy current detection amplifier ( 5%) (At input voltage difference 100 mV) ,  
( 15%) (At input voltage difference 20 mV)  
• In IC standby mode (Icc= 0 µA Typ) , make output voltage setting resistor open to prevent inefficient current loss  
• Built-in soft-start circuit  
• Standby current : 0 µA (Typ)  
• Totem-pole type output for Pch MOS FET  
2
MB39A125/126  
PIN ASSIGNMENTS  
MB39A125  
(TOP VIEW)  
INC2  
OUTC2  
+INE2  
INE2  
ACOK  
VREF  
ACIN  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
+INC2  
GND  
CS  
3
4
VCC  
OUT  
VH  
5
6
7
XACOK  
RT  
INE1  
+INE1  
OUTC1  
OUTD  
INC1  
8
9
INE3  
FB123  
CTL  
1 0  
11  
1 2  
+INC1  
(FPT-24P-M03)  
(Continued)  
3
MB39A125/126  
(Continued)  
(TOP VIEW)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
N.C.  
GND  
1
2
3
4
5
6
7
FB123  
CTL  
+INC2  
N.C.  
+INC1  
N.C.  
INC2  
OUTC2  
+INE2  
INC1  
OUTD  
N.C.  
8
9
10  
11  
12  
13  
14  
(LCC-28P-M11)  
Note : Connect IC’s radiation board at bottom side to potential of GND.  
4
MB39A125/126  
MB39A126  
(TOP VIEW)  
INC2  
OUTC2  
+INE2  
INE2  
ACOK  
VREF  
ACIN  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
+INC2  
GND  
CS  
3
4
VCC  
OUT  
VH  
5
6
7
XACOK  
RT  
INE1  
+INE1  
OUTC1  
SEL  
8
9
INE3  
FB123  
CTL  
10  
11  
12  
INC1  
+INC1  
(FPT-24P-M03)  
(Continued)  
5
MB39A125/126  
(Continued)  
(TOP VIEW)  
28  
27  
26  
25  
24  
23  
22  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
N.C.  
GND  
INC2  
N.C.  
FB123  
CTL  
+
+INC1  
N.C.  
INC2  
INC1  
OUTC2  
SEL  
N.C.  
+INE2  
8
9
14  
10  
11  
12  
13  
(LCC-28P-M11)  
Note : Connect IC’s radiation board at bottom side to potential of GND.  
6
MB39A125/126  
PIN DESCRIPTIONS  
MB39A125 : SSOP-24  
Pin No.  
Pin Name  
I/O  
Description  
1
2
3
4
INC2  
I
O
I
Current detection amplifier (Current Amp2) inverted input terminal  
Current detection amplifier (Current Amp2) output terminal  
Error amplifier (Error Amp2) non-inverted input terminal  
Error amplifier (Error Amp2) inverted input terminal  
OUTC2  
+INE2  
INE2  
I
AC adapter voltage detection block (AC Comp.) output terminal  
ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L,  
ACOK = Hi-Z when CTL = L  
5
ACOK  
O
6
7
VREF  
ACIN  
O
I
Reference voltage output terminal  
AC adapter voltage detection block (AC Comp.) input terminal  
Error amplifier (Error Amp1) inverted input terminal  
Error amplifier (Error Amp1) non-inverted input terminal  
Current detection amplifier (Current Amp1) output terminal  
8
INE1  
+INE1  
OUTC1  
I
9
I
10  
O
When IC is standby mode, this terminal is set to “Hi-Z” to prevent loss  
of inefficient current through the output voltage setting resistor.  
Set CTL terminal to “H” level to output “L” level.  
11  
OUTD  
O
12  
13  
INC1  
+INC1  
I
I
Current detection amplifier (Current Amp1) inverted input terminal  
Current detection amplifier (Current Amp1) non-inverted input terminal  
Power supply control terminal  
14  
CTL  
I
Setting the CTL terminal at “L” level places the IC in the standby  
mode.  
15  
16  
17  
FB123  
INE3  
RT  
O
I
Error amplifier (Error Amp1, 2, 3) output terminal  
Error amplifier (Error Amp3) inverted input terminal  
Triangular wave oscillation frequency setting resistor connection terminal  
AC adapter voltage detection block ( AC Comp.) output terminal  
XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L,  
XACOK = Hi-Z when CTL = L  
18  
XACOK  
O
19  
20  
VH  
O
O
Power supply terminal for FET drive circuit (VH = VCC 6 V)  
OUT  
External FET gate drive terminal  
Power supply terminal for reference voltage, control circuit, and output cir-  
cuit  
21  
VCC  
22  
23  
24  
CS  
I
Soft-start setting capacitor connection terminal  
Ground terminal  
GND  
+INC2  
Current detection amplifier (Current Amp2) non-inverted input terminal  
7
MB39A125/126  
MB39A125 : QFN-28  
Pin No.  
Pin Name  
I/O  
I
Description  
1
2
3
4
5
6
7
8
N.C.  
No connection  
GND  
Ground terminal  
+INC2  
N.C.  
Current detection amplifier (Current Amp2) non-inverted input terminal  
No connection  
I
INC2  
OUTC2  
+INE2  
INE2  
Current detection amplifier (Current Amp2) inverted input terminal  
Current detection amplifier (Current Amp2) output terminal  
Error amplifier (Error Amp2) non-inverted input terminal  
Error amplifier (Error Amp2) inverted input terminal  
O
I
I
AC adapter voltage detection block (AC Comp.) output terminal  
ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L,  
ACOK = Hi-Z when CTL = L  
9
ACOK  
O
10  
11  
12  
13  
14  
15  
VREF  
ACIN  
O
I
Reference voltage output terminal  
AC adapter voltage detection block (AC Comp.) input terminal  
Error amplifier (Error Amp1) inverted input terminal  
Error amplifier (Error Amp1) non-inverted input terminal  
Current detection amplifier (Current Amp1) output terminal  
No connection  
INE1  
+INE1  
OUTC1  
N.C.  
I
I
O
When IC is standby mode, this terminal is set to “Hi-Z” to prevent loss  
of inefficient current through the output voltage setting resistor.  
Set CTL terminal to “H” level to output “L” level.  
16  
OUTD  
O
17  
18  
19  
INC1  
N.C.  
I
I
Current detection amplifier (Current Amp1) inverted input terminal  
No connection  
+INC1  
Current detection amplifier (Current Amp1) non-inverted input terminal  
Power supply control terminal  
20  
CTL  
I
Setting the CTL terminal at “L” level places the IC in the standby  
mode.  
21  
22  
23  
FB123  
INE3  
RT  
O
I
Error amplifier (Error Amp1, 2, 3) output terminal  
Error amplifier (Error Amp3) inverted input terminal  
Triangular wave oscillation frequency setting resistor connection terminal  
AC adapter voltage detection block ( AC Comp.) output terminal  
XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L,  
XACOK = Hi-Z when CTL = L  
24  
XACOK  
O
25  
26  
VH  
O
O
Power supply terminal for FET drive circuit (VH = VCC - 6 V)  
External FET gate drive terminal  
OUT  
Power supply terminal for reference voltage, control circuit, and output cir-  
cuit  
27  
28  
VCC  
CS  
Soft-start setting capacitor connection terminal  
8
MB39A125/126  
MB39A126 : SSOP-24  
Pin No.  
Pin Name  
I/O  
Description  
1
2
3
4
INC2  
I
O
I
Current detection amplifier (Current Amp2) inverted input terminal  
Current detection amplifier (Current Amp2) output terminal  
Error amplifier (Error Amp2) non-inverted input terminal  
Error amplifier (Error Amp2) inverted input terminal  
OUTC2  
+INE2  
INE2  
I
AC adapter voltage detection block (AC Comp.) output terminal  
ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L,  
ACOK = Hi-Z when CTL = L  
5
ACOK  
O
6
7
VREF  
ACIN  
O
I
Reference voltage output terminal  
AC adapter voltage detection block (AC Comp.) input terminal  
Error amplifier (Error Amp1) inverted input terminal  
Error amplifier (Error Amp1) non-inverted input terminal  
Current detection amplifier (Current Amp1) output terminal  
8
INE1  
+INE1  
OUTC1  
I
9
I
10  
O
Charge voltage setting switch terminal (3cells or 4cells)  
SEL terminal “H” level : Charge voltage setting 16.8 V (4cells)  
SEL terminal “L” level : Charge voltage setting 12.6 V (3cells)  
11  
SEL  
I
12  
13  
INC1  
+INC1  
I
I
Current detection amplifier (Current Amp1) inverted input terminal  
Current detection amplifier (Current Amp1) non-inverted input terminal  
Power supply control terminal  
Setting the CTL terminal at “L” level places the IC in the standby mode.  
14  
CTL  
I
15  
16  
17  
FB123  
INE3  
RT  
O
I
Error amplifier (Error Amp1, 2, 3) output terminal  
Error amplifier (Error Amp3) inverted input terminal  
Triangular wave oscillation frequency setting resistor connection terminal  
AC adapter voltage detection block ( AC Comp.) output terminal  
XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L,  
XACOK = Hi-Z when CTL = L  
18  
XACOK  
O
19  
20  
VH  
O
O
Power supply terminal for FET drive circuit (VH = VCC - 6 V)  
External FET gate drive terminal  
OUT  
Power supply terminal for reference voltage, control circuit, and output cir-  
cuit  
21  
VCC  
22  
23  
24  
CS  
I
Soft-start setting capacitor connection terminal  
Ground terminal  
GND  
+INC2  
Current detection amplifier (Current Amp2) non-inverted input terminal  
9
MB39A125/126  
MB39A126 : QFN-28  
Pin No.  
Pin Name  
I/O  
I
Description  
1
2
3
4
5
6
7
8
N.C.  
No connection  
GND  
Ground terminal  
+INC2  
N.C.  
Current detection amplifier (Current Amp2) non-inverted input terminal  
No connection  
I
INC2  
OUTC2  
+INE2  
INE2  
Current detection amplifier (Current Amp2) inverted input terminal  
Current detection amplifier (Current Amp2) output terminal  
Error amplifier (Error Amp2) non-inverted input terminal  
Error amplifier (Error Amp2) inverted input terminal  
O
I
I
AC adapter voltage detection block (AC Comp.) output terminal  
ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L,  
ACOK = Hi-Z when CTL = L  
9
ACOK  
O
10  
11  
12  
13  
14  
15  
VREF  
ACIN  
O
I
Reference voltage output terminal  
AC adapter voltage detection block (AC Comp.) input terminal  
Error amplifier (Error Amp1) inverted input terminal  
Error amplifier (Error Amp1) non-inverted input terminal  
Current detection amplifier (Current Amp1) output terminal  
No connection  
INE1  
+INE1  
OUTC1  
N.C.  
I
I
O
Charge voltage setting switch terminal (3cells or 4cells) .  
SEL terminal “H” level : Charge voltage setting 16.8 V (4cells)  
SEL terminal “L” level : Charge voltage setting 12.6 V (3cells)  
16  
SEL  
I
17  
18  
19  
INC1  
N.C.  
I
I
Current detection amplifier (Current Amp1) inverted input terminal  
No connection  
+INC1  
Current detection amplifier (Current Amp1) non-inverted input terminal  
Power supply control terminal  
20  
CTL  
I
Setting the CTL terminal at “L” level places the IC in the standby  
mode.  
21  
22  
23  
FB123  
INE3  
RT  
O
I
Error amplifier (Error Amp1, 2, 3) output terminal  
Error amplifier (Error Amp3) inverted input terminal  
Triangular wave oscillation frequency setting resistor connection terminal  
AC adapter voltage detection block ( AC Comp.) output terminal  
XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L,  
XACOK = Hi-Z when CTL = L  
24  
XACOK  
O
25  
26  
VH  
O
O
Power supply terminal for FET drive circuit (VH = VCC - 6 V)  
External FET gate drive terminal  
OUT  
Power supply terminal for reference voltage, control circuit, and output cir-  
cuit  
27  
28  
VCC  
CS  
Soft-start setting capacitor connection terminal  
10  
MB39A125/126  
BLOCK DIAGRAMS  
MB39A125  
ACIN  
7
ACOK  
5
XACOK  
18  
<AC Comp.>  
+
INE1  
8
1.4 V  
<Current Amp1>  
VREF  
OUTC1 10  
13  
+
×20  
+INC1  
<Error Amp1>  
0.2 V  
<UV Comp.>  
INC1  
12  
+
+
INC1  
(Vo)  
+INE1  
INE2  
9
4
21  
20  
VCC  
OUT  
<PWM Comp.>  
+
<Current Amp2>  
2
OUTC2  
<Error Amp2>  
<OUT>  
24  
+
×20  
+INC2  
INC2  
Drive  
+
1
3
+INE2  
2.5 V  
1.5 V  
19 VH  
FB123  
15  
(VCC 6 V)  
VH  
Bias  
<Error Amp3>  
Voltage  
INE3  
16  
11  
+
OUTD  
<UVLO>  
4.2 V  
VREF  
UVLO  
< SOFT>  
4.2 V  
Bias  
VREF  
VCC  
Slope  
Control  
10 µA  
<OSC>  
500 kHz Max  
14  
<REF>  
<CTL>  
CTL  
22  
CS  
VREF  
5.0 V  
C
T
(45 pF)  
23  
6
17  
RT  
VREF  
GND  
11  
MB39A125/126  
MB39A126  
ACIN  
7
ACOK  
5
XACOK  
18  
<AC Comp.>  
+
INE1  
8
1.4 V  
<Current Amp1>  
VREF  
OUTC1 10  
13  
+
×20  
+INC1  
<Error Amp1>  
0.2 V  
<UV Comp.>  
INC1  
12  
+
+
INC1  
+INE1  
INE2  
9
4
(Vo)  
21  
VCC  
<PWM Comp.>  
+
<Current Amp2>  
2
OUTC2  
<Error Amp2>  
<OUT>  
24  
+
×20  
+INC2  
INC2  
Drive  
20 OUT  
+
1
3
+INE2  
2.5 V  
1.5 V  
19  
VH  
FB123  
15  
(VCC 6 V)  
VH  
Bias  
Voltage  
<Error Amp3>  
R1  
R2  
INE3 16  
+
<UVLO>  
4.2 V/3.15 V  
VREF  
UVLO  
SEL 11  
Hi : 4 Cells  
Lo : 3 Cells  
< SOFT>  
4.2 V  
Bias  
VREF  
VCC  
Slope  
Control  
10 µA  
<OSC>  
500 kHz Max  
14  
<REF>  
<CTL>  
CTL  
22  
CS  
VREF  
5.0 V  
C
T
(45 pF)  
23  
6
17  
RT  
VREF  
GND  
12  
MB39A125/126  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Unit  
Parameter  
Symbol  
Condition  
Min  
Max  
Power supply voltage  
Output current  
VCC  
IOUT  
IOUT  
VCC terminal  
28  
V
60  
mA  
mA  
mW  
mW  
°C  
Peak output current  
Duty 5% (t = 1 / fosc × Duty)  
Ta ≤ +25 °C (SSOP-24)  
Ta ≤ +25 °C (QFN-28)  
700  
740*1  
3700*2  
+125  
Power dissipation  
PD  
Storage temperature  
TSTG  
55  
*1 : When mounted on a 10cm square epoxy double-sided.  
*2 : The packages are mounted on the dual-sided epoxy board (10 cm × 10 cm) . Connect IC’s radiation board at  
bottom side to potential of GND.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
13  
MB39A125/126  
RECOMMENDED OPERATION CONDITIONS  
Value  
TYP  
Parameter  
Symbol  
Condition  
VCC terminal  
Unit  
MIN  
8
MAX  
25  
Power supply voltage  
VCC  
IREF  
IVH  
V
mA  
mA  
V
Reference voltage Output current  
VH terminal output current  
1  
0
0
30  
VINE  
VINC  
VCTL  
IOUT  
+INE, INE terminal  
0
5
Input voltage  
+INC, INC terminal  
0
VCC  
25  
V
CTL terminal input voltage  
Output current  
0
V
45  
+45  
mA  
Duty 5%  
(t = 1 / fosc × Duty)  
Peak output current  
IOUT  
600  
+600  
mA  
ACIN terminal input Voltage  
ACOK terminal output voltage  
ACOK terminal output current  
XACOK terminal output voltage  
XACOK terminal output current  
VACIN  
VACOK  
IACOK  
0
0
0
0
0
VCC  
25  
1
V
V
mA  
V
VXACOK  
IXACOK  
25  
1
mA  
OUTD terminal output voltage :  
MB39A125  
VOUTD  
IOUTD  
VSEL  
0
0
0
17  
2
V
mA  
V
OUTD terminal output current :  
MB39A125  
SEL terminal input voltage :  
MB39A126  
25  
Oscillation frequency  
fOSC  
RT  
100  
27  
300  
47  
500  
130  
1.0  
1.0  
kHz  
kΩ  
µF  
µF  
µF  
°C  
Timing resistor  
Soft-start capacitor  
CS  
0.22  
0.1  
VH terminal capacitor  
CVH  
CREF  
Ta  
Reference voltage output capacitor  
Operating ambient Temperature  
0.22  
+25  
1.0  
+85  
30  
Note : The terminal number which has been described in the text is the one of the SSOP-24P package after this.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
14  
MB39A125/126  
ELECTRICAL CHARACTERISTICS  
(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)  
Value  
Sym- Pin  
Parameter  
Condition  
Unit Remarks  
bol  
No.  
Min  
4.963 5.000 5.037  
Ta = −10 °C to +85 °C 4.95 5.000 5.05  
Ta = +25 °C 4.943 4.980 5.017  
Ta = −10 °C to +85 °C 4.930 4.980 5.030  
Typ Max  
VREF1  
VREF2  
VREF1  
VREF2  
Line  
6
6
6
6
6
6
Ta = +25 °C  
V
V
MB39A125  
MB39A125  
MB39A126  
MB39A126  
Output voltage  
V
1.  
Reference  
voltage block  
[REF]  
V
Input stability  
Load stability  
VCC = 8 V to 25 V  
3
1
10  
10  
mV  
mV  
Load  
VREF = 0 mA to 1 mA  
Output current  
at short circuit  
Ios  
6
VREF = 1 V  
50  
25  
12 mA  
2.  
VTLH  
VTHL  
6
6
VREF =  
VREF =  
2.6  
2.4  
2.8  
2.6  
3.0  
2.8  
V
V
Threshold  
voltage  
Under voltage  
lockout  
protection  
circuit block  
[UVLO]  
Hysteresis  
width  
VH  
6
0.2*  
V
3.  
Charge  
current  
Softstartblock  
[SOFT]  
ICS  
22  
14  
270  
10  
300  
1*  
6  
µA  
Oscillation  
frequency  
fOSC  
20 RT = 47 kΩ  
330 kHz  
4.  
Triangular  
waveoscillator  
block [OSC]  
Frequency  
temperature  
stability  
f/fdt 20 Ta = −30 °C to +85 °C  
%
Input offset  
voltage  
3, 4,  
8, 9  
VIO  
IB  
FB123 = 2 V  
1
5
mV  
nA  
Input bias  
current  
3, 4,  
8, 9  
100 30  
Common  
mode input  
voltage range  
3, 4,  
8, 9  
VCM  
0
5
V
5-1.  
Error amplifier  
block  
[Error Amp1,  
Error Amp2]  
Voltage gain  
Av  
15 DC  
100*  
1.3*  
dB  
Frequency  
bandwidth  
BW  
15 AV = 0 dB  
MHz  
VFBH  
VFBL  
15  
15  
4.8  
5.0  
0.8  
V
V
Output voltage  
0.9  
Output source  
current  
ISOURCE 15 FB123 = 2 V  
ISINK 15 FB123 = 2 V  
120 60  
4.0  
µA  
Output sink  
current  
2.0  
mA  
* : Standard design value  
(Continued)  
15  
MB39A125/126  
(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)  
Value  
Sym-  
Pin  
No.  
Parameter  
bol  
Condition  
Unit Remarks  
Min  
Typ  
Max  
Input  
IINE  
16  
15  
15  
INE3 = 0 V  
100  
30  
nA MB39A125  
current  
Voltage  
Av  
DC  
100*  
1.3*  
dB  
gain  
Frequency  
BW  
AV = 0 dB  
MHz  
bandwidth  
VFBH  
VFBL  
15  
15  
4.8  
5.0  
0.8  
V
V
Output  
voltage  
0.9  
Output  
source  
current  
ISOURCE  
15  
FB123 = 2 V  
120  
60  
µA  
Outputsink  
current  
ISINK  
VTH1  
VTH2  
VTH3  
VTH4  
VTH5  
VTH6  
15  
16  
16  
12  
12  
12  
12  
FB123 = 2 V  
2.0  
4.0  
mA  
FB123 = 2 V,  
Ta = +25 °C  
4.179 4.200 4.220  
4.169 4.200 4.231  
16.700 16.800 16.900  
16.666 16.800 16.934  
12.525 12.600 12.675  
12.500 12.600 12.700  
V
V
V
V
V
V
MB39A125  
MB39A125  
MB39A126  
MB39A126  
MB39A126  
MB39A126  
FB123 = 2 V,  
Ta = −10 °C to +85 °C  
5-2.  
Error  
amplifier  
block  
[Error  
Amp3]  
SEL = 5 V, FB123 = 2 V,  
Ta = +25 °C  
Threshold  
voltage  
SEL = 5 V, FB123 = 2 V,  
Ta = −10 °C to +85 °C  
SEL = 0 V, FB123 = 2 V,  
Ta = +25 °C  
SEL = 0 V, FB123 = 2 V,  
Ta = −10 °C to +85 °C  
OUTD  
terminal  
output leak  
current  
ILEAK  
11  
OUTD = 17 V  
0
1
µA MB39A125  
OUTD  
terminal  
output ON  
resistance  
RON  
11  
12  
OUTD = 1 mA  
INC1 = 16.8 V  
35  
84  
50  
MB39A125  
Input  
current  
IIN  
150  
µA MB39A126  
R1  
R2  
12, 16  
16  
105  
35  
150  
50  
195  
65  
kMB39A126  
kMB39A126  
Input  
resistance  
* : Standard design value  
(Continued)  
16  
MB39A125/126  
(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)  
Value  
Sym-  
bol  
Parameter  
Pin No.  
Condition  
Error Amp3  
Unit Remarks  
Min  
Typ  
Max  
reference voltage  
= 4.2 V  
(4-cell setting)  
VON  
11  
2
25  
V
V
MB39A126  
MB39A126  
5-2.  
Error  
amplifier  
block  
SEL input  
voltage  
Error Amp3  
reference voltage  
= 3.15 V  
VOFF  
11  
0
0.8  
[Error Amp3]  
(3-cell setting)  
ISELH  
ISELL  
11  
11  
SEL = 5 V  
SEL = 0 V  
50  
0
100  
1
µA MB39A126  
µA MB39A126  
Input  
current  
Input  
offset  
voltage  
+INC1 = +INC2 =  
INC1 = −INC2 =  
3 V to VCC  
1, 12,  
13, 24  
VIO  
3  
20  
+3  
30  
mV  
+INC1 = +INC2 =  
I+INCH  
13, 24 3 V to VCC,  
µA  
VIN = −100 mV  
+INC1 = +INC2 =  
1, 12 3 V to VCC,  
VIN = −100 mV  
0.1  
0.1  
0.2  
0.2  
µA MB39A125  
µA MB39A126  
I-INCH  
Input  
current  
+INC1 = +INC2 =  
3 V to VCC,  
1
VIN = −100 mV  
+INC1 = +INC2 = 0 V,  
VIN = −100 mV  
6.  
I+INCL  
13, 24  
1, 12  
180 120  
195 130  
µA  
µA  
Current  
Detection  
Amplifier  
B l o c k  
[Current  
Amp1,  
Current  
Amp2]  
+INC1 = +INC2 = 0 V,  
VIN = −100 mV  
I-INCL  
+INC1 = +INC2 =  
2, 10 3 V to VCC,  
VOUTC1  
1.9  
2.0  
2.1  
V
V
VIN = −100 mV  
+INC1 = +INC2 =  
2, 10 3 V to VCC,  
VIN = −20 mV  
Current  
detection  
voltage  
VOUTC2  
0.34  
0.40  
0.46  
+INC1 = +INC2 = 0 V,  
2, 10  
VOUTC3  
VOUTC4  
1.8  
0.2  
2.0  
0.4  
2.2  
0.6  
V
V
VIN = −100 mV  
+INC1 = +INC2 = 0 V,  
VIN = −20 mV  
2, 10  
Common  
mode input  
voltage  
1, 12,  
VCM  
Av  
0
VCC  
21  
V
13, 24  
range  
+INC1 = +INC2 =  
2, 10 3 V to VCC,  
VIN = −100 mV  
Voltage  
gain  
19  
20  
V/V  
(Continued)  
17  
MB39A125/126  
(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)  
Value  
Re-  
Sym-  
bol  
Parameter  
Frequency  
Pin No.  
Condition  
Unit  
marks  
Min  
Typ  
Max  
BW  
2, 10 AV = 0 dB  
2*  
MHz  
6.  
bandwidth  
Current  
Detection  
Amplifier  
Block  
[Current  
Amp1,  
Current  
Amp2]  
VOUTCH  
VOUTCL  
2, 10  
2, 10  
4.7  
4.9  
20  
V
Output  
voltage  
200  
mV  
Output  
source cur- ISOURCE  
rent  
2, 10 OUTC1 = OUTC2 = 2 V  
2  
1  
mA  
Outputsink  
ISINK  
2, 10 OUTC1 = OUTC2 = 2 V 150  
300  
1.5  
µA  
current  
7.  
VTL  
15  
Duty cycle = 0%  
1.4  
V
PWMComp.  
Block  
[PWM  
Comp.]  
Threshold  
voltage  
VTH  
15  
Duty cycle = 100%  
2.5  
2.6  
V
Output  
source cur- ISOURCE  
rent  
OUT = 13 V,  
20  
20  
Duty 5%  
400*  
mA  
mA  
(t = 1 / fosc × Duty)  
OUT = 19 V,  
Duty 5%  
(t = 1 / fosc × Duty)  
Outputsink  
ISINK  
8.  
400*  
current  
Output  
block  
[OUT]  
ROH  
ROL  
tr1  
20  
20  
20  
20  
OUT = −45 mA  
OUT = 45 mA  
OUT = 3300 pF  
OUT = 3300 pF  
6.5  
5.0  
50*  
50*  
9.8  
7.5  
Output ON  
resistance  
Rise time  
Fall time  
ns  
ns  
tf1  
VCC =  
,
9.  
VTLH  
VTHL  
VH  
21  
21  
21  
17.2  
16.8  
17.4  
17.0  
0.4*  
17.6  
17.2  
V
V
V
INC1 = 16.8 V  
Threshold  
voltage  
Low Input  
Voltage  
Detection  
Block  
VCC =  
INC1 = 16.8 V  
,
Hysteresis  
width  
[UV Comp.]  
10.  
VTLH  
VTHL  
7
7
ACIN =  
ACIN =  
1.3  
1.2  
1.4  
1.3  
1.5  
1.4  
V
V
Threshold  
voltage  
AC Adapter  
Voltage  
Detection  
Block  
Hysteresis  
width  
VH  
7
0.1*  
V
[AC Comp.]  
* : Standard design value  
(Continued)  
18  
MB39A125/126  
(Continued)  
(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)  
Value  
Re-  
Sym- Pin  
Parameter  
Condition  
Unit  
bol  
No.  
marks  
Min  
Typ  
Max  
ACOK  
terminal  
output leak  
current  
ILEAK  
5
ACOK = 25 V  
0
1
µA  
ACOK  
terminal  
output ON  
resistance  
10.  
RON  
ILEAK  
RON  
5
ACOK = 1 mA  
200  
0
400  
1
AC Adapter  
Voltage  
Detection  
Block  
XACOK  
terminal  
output leak  
current  
18 XACOK = 25 V  
18 XACOK = 1 mA  
µA  
[AC Comp.]  
XACOK  
terminal  
output ON  
resistance  
200  
400  
11.  
VON  
VOFF  
ICTLH  
ICTLL  
14 IC operation mode  
14 IC standby mode  
14 CTL = 5 V  
2
0
25  
0.8  
150  
1
V
V
CTL input  
voltage  
Power  
Supply  
Control  
Block  
[CTL]  
100  
0
µA  
µA  
Input current  
14 CTL = 0 V  
12.  
BiasVoltage Output  
VCC = 8 V to 25 V,  
19  
VCC −  
6.5  
VCC −  
6.0  
VCC −  
5.5  
VH  
V
Block  
[VH]  
Voltage  
VH = 0 mA to 30 mA  
Standby  
current  
ICCS  
21 CTL = 0 V  
21 CTL = 5 V  
0
5
10  
µA  
13.  
General  
Power  
supply  
current  
ICC  
7.5  
mA  
* : Standard design value  
19  
MB39A125/126  
TYPICAL CHARACTERISTICS  
Power Supply Current vs. Power Supply Voltage  
CTL Terminal Input Current, Reference Voltage vs.  
CTL Terminal Input Voltage  
6
5
4
3
2
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
9
8
7
6
5
4
3
2
1
0
Ta = +25 °C  
VCC = 19 V  
VREF = 0 mA  
VREF  
ICTL  
Ta = +25 °C  
CTL = 5 V  
1
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Power supply voltage VCC (V)  
CTL terminal input voltage VCTL (V)  
Reference Voltage vs. Power Supply Voltage  
Reference Voltage vs. Load Current  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Ta = +25 °C  
VCC = 19 V  
CTL = 5 V  
Ta = +25 °C  
CTL = 5 V  
VREF = 0 mA  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
Power supply voltage VCC (V)  
Load current IREF (mA)  
Reference Voltage vs.  
Operating Ambient Temperature  
Triangular Wave Oscillation Frequency vs.  
Power Supply Voltage  
340  
330  
320  
310  
300  
290  
280  
270  
260  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
Ta = +25 °C  
CTL = 5 V  
VCC = 19 V  
CTL = 5 V  
RT = 47 kΩ  
VREF = 0 mA  
40  
20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
Operating ambient temperature Ta ( °C)  
Power Supply Voltage VCC (V)  
(Continued)  
20  
MB39A125/126  
Triangular Wave Oscillation Frequency vs.  
Operating Ambient Temperature  
Triangular Wave Oscillation Frequency vs.  
Timing Resistor  
340  
330  
320  
310  
300  
290  
280  
270  
260  
1000  
VCC = 19 V  
CTL = 5 V  
Ta = +25 °C  
VCC = 19 V  
CTL = 5 V  
RT = 47 kΩ  
100  
10  
10  
100  
1000  
40  
20  
0
20  
40  
60  
80  
100  
Operating ambient temperature Ta ( °C)  
<MB39A125>  
Error Amplifier Threshold Voltage vs.  
Operating Ambient Temperature  
Timing resistor RT (k)  
4.28  
4.26  
4.24  
4.22  
4.20  
4.18  
4.16  
4.14  
4.12  
VCC = 19 V  
CTL = 5 V  
VREF = 0 mA  
40  
20  
0
20  
40  
60  
80  
100  
Operating ambient temperature Ta ( °C)  
<MB39A126>  
Error Amplifier Threshold Voltage vs.  
Error Amplifier Threshold Voltage vs.  
Operating Ambient Temperature  
Operating Ambient Temperature  
16.90  
16.85  
16.80  
16.75  
16.70  
12.70  
12.65  
12.60  
12.55  
12.50  
VCC = 19 V  
VCC = 19 V  
CTL = 5 V  
SEL = 0 V  
CTL = 5 V  
SEL = 5 V  
40 20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
(Continued)  
21  
MB39A125/126  
Error Amplifier, Gain, Phase vs. Frequency  
Vcc = 19 V  
Ta = +25 °C  
4.2 V  
240 kΩ  
VCC = 19 V  
40  
30  
180  
90  
10  
10  
kΩ  
kΩ  
20  
INE1, 2  
IN  
φ
2.4 kΩ  
1 µ+F  
OUT  
FB123  
15  
8
10  
(4)  
Av  
0
0
+
9
(3)  
+INE1, 2  
10  
20  
30  
40  
10  
kΩ  
10  
kΩ  
Error Amp1  
(Error Amp2)  
90  
180  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Error Amplifier, Gain, Phase vs. Frequency  
Ta = +25 °C  
40  
30  
VCC = 19 V 180  
240 kΩ  
10  
20  
90  
kΩ  
φ
10  
INE3  
16  
IN  
1µF  
2.4 kΩ  
Av  
+
OUT  
FB123  
15  
+
0
0
10  
20  
30  
40  
90  
180  
10  
kΩ  
4.2 V  
Error Amp3  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Current Detection Amplifier, Gain, Phase vs. Frequency  
VCC = 19 V  
+INC  
40  
30  
180  
90  
13  
(24)  
+
OUTC  
Av  
×20  
10  
INC  
20  
12  
(2)  
OUT  
(1)  
10  
Current Amp1  
(Current Amp2)  
0
0
φ
10  
20  
30  
40  
12.55 V  
12.6 V  
90  
180  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
(Continued)  
22  
MB39A125/126  
(Continued)  
Power Dissipation vs.  
Operating Ambient Temperature (SSOP)  
Power Dissipation vs.  
Operating Ambient Temperature (QFN)  
800  
4000  
740  
700  
3700  
3500  
600  
500  
400  
300  
200  
100  
0
3000  
2500  
2000  
1500  
1000  
500  
0
40  
20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
23  
MB39A125/126  
FUNCTIONAL DESCRIPTION  
1. DC/DC Converter Block  
(1) Reference voltage block (REF)  
The reference voltage circuit uses the voltage supplied from the VCC terminal (pin 21) to generate a temperature  
compensated, stable voltage (5.0 V Typ) used as the reference power supply voltage for the IC’s internal circuitry.  
This block can also be used to obtain a load current to a maximum of 1 mA from the reference voltage VREF  
terminal (pin 6) .  
(2) Triangular wave oscillator block (OSC)  
The triangular wave oscillator block has built-in capacitor for frequency setting into and generates the triangular  
wave oscillation waveform by connecting the frequency setting resistor with the RT terminal (pin 17) .  
The triangular wave is input to the PWM comparator circuits on the IC.  
(3) Error amplifier block (Error Amp1)  
This amplifier detects the output signal from the current detection amplifier (Current Amp1) , compares this to  
the +INE1 terminal (pin 9) , and outputs a PWM control signal to be used in controlling the charge current.  
In addition, an arbitrary loop gain can be set up by connecting a feedback resistor and capacitor between the  
FB123 terminal (pin 15) and INE1 terminal (pin 8) , providing stable phase compensation to the system.  
(4) Error amplifier block (Error Amp2)  
This amplifier detects the output signal from the current detection amplifier (Current Amp2) , compares this to  
the +INE2 terminal (pin 3) , and outputs a PWM control signal to be used in controlling the charge current.  
In addition, an arbitrary loop gain can be set up by connecting a feedback resistor and capacitor between the  
FB123 terminal (pin 15) and INE2 terminal (pin 4) , providing stable phase compensation to the system.  
(5) Error amplifier block (Error Amp3)  
This error amplifier (Error Amp3) detects the output voltage from the DC/DC converter and outputs the PWM  
control signal. MB39A125 can set the desired level of output voltage from 1 cell to 4 cells by connecting external  
output voltage setting resistors to the error amplifier inverted input terminal. MB39A126 can set the output voltage  
for 3 cells or 4 cells by SEL terminal (pin 11) input.  
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB123  
terminal (pin 15) to the INE3 terminal (pin 16) , enabling stable phase compensation to the system.  
(6) Current detection amplifier block (Current Amp1)  
The current detection amplifier (Current Amp1) detects a voltage drop which occurs between both ends of the  
output sense resistor (RS2) due to the flow of the charge current, using the +INC1 terminal (pin 13) and INC1  
terminal (pin 12) . The signal amplified to 20 times is output to the OUTC1 terminal (pin 10) .  
24  
MB39A125/126  
(7) Current detection amplifier block (Current Amp2)  
The current detection amplifier (Current Amp2) detects a voltage drop which occurs between both ends of the  
output sense resistor (RS1) due to the flow of the AC adapter current, using the +INC2 terminal (pin 24) and  
INC2 terminal (pin 1) . The signal amplified to 20 times is output to the OUTC2 terminal (pin 2) .  
(8) PWM comparator block (PWM Comp.)  
The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error  
amplifiers (Error Amp1 to Error Amp3) depending on their output voltage.  
The PWM comparator circuit compares the triangular wave voltage the lowest generated by the triangular wave  
oscillator to the error amplifier output voltage and turns on the external output transistor, during the interval in  
which the triangular wave voltage is lower than the error amplifier output voltage.  
(9) Output block (OUT)  
The output circuit uses a totem-pole configuration capable of driving an external Pch MOS FET.  
The output “L” level sets the output amplitude to 6 V (Typ) using the voltage generated by the bias voltage block  
(VH) .  
This results in increasing conversion efficiency and suppressing the withstand voltage of the connected external  
transistor in a wide range of input voltages.  
(10) Power supply control block (CTL)  
Setting the CTL terminal (pin 14) low places the IC in the standby mode. (The power supply current is 10µA at  
maximum in the standby mode.)  
CTL function table : MB39A125  
CTL  
L
Power  
OUTD  
Hi-Z  
L
OFF (Standby)  
ON (Active)  
H
CTL function table : MB39A126  
CTL  
Power  
L
OFF (Standby)  
ON (Active)  
H
(11) Bias voltage block (VH)  
The bias voltage circuit outputs VCC 6 V (Typ) as the minimum potential of the output circuit. In the standby  
mode, this circuit outputs the potential equal to VCC.  
25  
MB39A125/126  
2. Protection Functions  
(1) Under voltage lockout protection circuit block (UVLO)  
The transient state or a momentary decrease in power supply voltage or internal reference voltage (VREF) ,  
which occurs when the power supply (VCC) is turned on, may cause malfunctions in the control IC, resulting in  
breakdown or deterioration of the system.  
To prevent such malfunction, the under voltage lockout protection circuit detects internal reference voltage drop  
and fixes the OUT terminal (pin 20) to the “H” level. The system restores voltage supply when the internal  
reference voltage reaches the threshold voltage of the under voltage lockout protection circuit.  
Protection circuit (UVLO) operation function table : MB39A125  
When UVLO is operating (VREF voltage is lower than UVLO threshold voltage, the logic of the following terminal  
is fixed.)  
OUTD  
OUT  
CS  
ACOK  
XACOK  
Hi-Z  
H
L
H
L
Protection circuit (UVLO) operation function table : MB39A126  
When UVLO is operating (VREF voltage is lower than UVLO threshold voltage, the logic of the following terminal  
is fixed.)  
OUT  
CS  
ACOK  
XACOK  
H
L
H
L
(2) Low input voltage detection block (UV Comp.)  
UV Comp. detects that power supply voltage (VCC) is lower than the battery voltage +0.2 V (Typ) and fixes the  
OUT terminal (pin 20) to the “H” level.  
The system restores voltage supply when the power supply voltage reaches the threshold voltage of the AC  
adapter detection block.  
Protection circuit (UV Comp.) operation function table : MB39A125  
When UV Comp. is operating (VCC voltage is lower than UV Comp. threshold voltage, the logic of the following  
terminal is fixed.)  
OUTD  
OUT  
CS  
L
H
L
Protection circuit (UV Comp.) operation function table : MB39A126  
When UV Comp. is operating (VCC voltage is lower than UV Comp. threshold voltage, the logic of the following  
terminal is fixed.)  
OUT  
CS  
H
L
26  
MB39A125/126  
3. Detection Function  
(1) AC adapter voltage detection block (AC Comp.)  
When ACIN terminal (pin 7) voltage is lower than 1.3 V (Typ) , AC adapter voltage detection block (AC Comp.)  
outputs “Hi-Z” level to the ACOK terminal (pin 5) and outputs “L” level to the XACOK terminal (pin 18) . When  
CTLterminal(pin14)issettoLlevel, ACOKterminal(pin5)andXACOKterminal(pin18)arefixedtoHi-Zlevel.  
ACIN  
ACOK  
L
XACOK  
Hi-Z  
L
H
L
Hi-Z  
4. Switch Function : MB39A126  
The charge voltage can be set to 16.8 V/12.6 V with the SEL terminal (pin 11) .  
SEL function table  
SEL  
H
DC/DC output setting voltage  
16.8 V  
12.6 V  
L
27  
MB39A125/126  
CONSTANT CHARGING VOLTAGE AND CURRENT OPERATION  
MB39A125/126 is DC/DC converter with the pulse width modulation (PWM) .  
MB39A125 is in the output voltage control loop, the Error Amp3 compares internal voltage reference voltage  
4.2 V and DC/DC converter output to output the PWM controlled signal.  
MB39A126 is in the output voltage control loop, the Error Amp3 compares internal voltage reference voltage  
4.2 V/3.15 V and DC/DC converter output to output the PWM controlled signal.  
In the charging current control loop, the voltage drop generated at both ends of charging current sense resistor  
(RS2) is sensed by +INC1 terminal (pin 13) , INC1 terminal (pin 12) of Current Amp1, and the signal is output  
to OUTC1 terminal (pin 10) , which is amplified by 20 times. Error Amp1 compares the OUTC1 terminal (pin  
10) voltage, which is the output of Current Amp1, and +INE1 terminal (pin 9) to output the PWM control signal  
and regulates the charging current.  
In the AC adapter current control loop, the voltage drop generated at both ends of AC adapter current sense  
resistor (RS1) is sensed by +INC2 terminal (pin 24) , INC2 terminal (pin 1) of Current Amp2, and the signal is  
output to OUTC2 terminal (pin 2) , which is amplified by 20 times. Error Amp2 compares OUTC2 terminal (pin  
2) voltage, which is output of Current Amp2, and +INE2 terminal (pin 3) voltage and outputs PWM controlled  
signal, and it limits the charging current due to the AC adapter current not to exceed the setting value.  
The PWM comparator compares the triangular wave to the smallest terminal voltage among the Error AMP1,  
Error AMP2 and Error AMP3. And the triangular wave voltage generated by the triangular wave oscillator. When  
the triangular wave voltage is smaller than the error amplifier output voltage, the main side output transistor is  
turned on.  
28  
MB39A125/126  
SETTING THE CHARGE VOLTAGE  
MB39A125  
The charging voltage (DC/DC output voltage) can be set by connecting external output voltage setting resistors  
(R3, R4) to the INE3 terminal (pin 16) . Be sure to select a resistor value that allows you to ignore the on-  
resistance (35 , 1 mA) of the internal FET connected to the OUTD terminal (pin 11) .  
Battery charging voltage : Vo  
Vo (V) = (R3 + R4) / R4 × 4.2 (V)  
Vo  
B
R3  
INE3  
<Error Amp3>  
16  
11  
R4  
+
4.2 V  
OUTD  
29  
MB39A125/126  
MB39A126  
The setting of the charge voltage is switched to 3cells or 4cells by the SEL terminal (pin 11) .  
Charge voltage is set to 16.8 V when SEL terminal is “H” level, and charge voltage is set to 12.6 V when SEL  
terminal is “L” level.  
Battery charging voltage : Vo  
Vo (V) = (150 kΩ + 50 k) / 50 kΩ × 4.2 (V) = 16.8 (V) (SEL = H)  
Vo (V) = (150 kΩ + 50 k) / 50 kΩ × 3.15 (V) = 12.6 (V) (SEL = L)  
INC1  
12  
16  
R3  
R4  
150 kΩ  
INE3  
<Error Amp3>  
50 k  
+
SEL  
11  
3.15 V  
4.2 V  
30  
MB39A125/126  
SETTING THE CHARGE CURRENT  
The charge current value can be set at the analog voltage value of the +INE1 terminal (pin 9) .  
Charge current formula : Ichg (A) = V+INE1 (V) / (20 × RS1 () )  
Charge current setting voltage : V+INE1 (V) = 20 × Ichg (A) × RS1 ()  
SETTING THE INPUT CURRENT  
The input limit current value can be set at the analog voltage value of the +INE2 terminal (pin 3) .  
Input current formula : IIN (A) = V+INE2 (V) / (20 × RS2 () )  
Input current setting voltage : V+INE2 (V) = 20 × IIN (A) × RS2 ()  
SETTING THE TRIANGULAR WAVE OSCILLATION FREQUENCY  
The triangular wave oscillation frequency can be set by the timing resistor (RT) connected to the RT terminal  
(pin 17) .  
Triangular wave oscillation frequency fosc  
fosc (kHz) =: 14100 / RT (k)  
31  
MB39A125/126  
SETTING THE SOFT-START TIME  
Soft-start function prevents rush current at start-up of IC when the Soft-start capacitor (Cs) is connected to the  
CS terminal (pin 22) . This IC charges external soft-start capacitor (Cs) with 10 µA after CTL terminal (pin 14)  
voltage level becomes high and IC starts (when VCC UVLO threshold voltage) .  
Output ON duty depends on PWM comparator, which compares the FB123 terminal (pin 15) voltage with the  
triangular wave oscillator output voltage.  
During soft start, FB123 terminal (pin 15) voltage increases with sum voltage of CS terminal and diode voltage.  
Therefore, the output voltage of the DC/DC converter and current increase can be set by output ON duty in  
proportion to rise of CS terminal (pin 22) voltage. The ON Duty is affected by the ramp voltage of FB123 terminal  
(pin 15) until an output voltage of one Error Amp reaches the DC/DC converter loop controlled voltage.  
Soft-start time is obtained from the following formula :  
Soft-start time : ts (time to output on duty 80 %)  
ts (s) =: 0.13 × Cs (µF)  
Soft-start timing chart  
CS  
CT  
FB123  
CS  
FB123  
CT  
0 V  
OUT  
OUT  
0 V  
Error Amp3 threshold voltage  
Vo  
Vo  
0 V  
Io  
Io  
0 A  
32  
MB39A125/126  
TRANSIENT RESPONSE AT LOAD-STEP  
The constant voltage control loop and the constant current control loop are independent. With the load-step,  
these two control loops change.  
The battery voltage and current overshoot are generated by the delay time of the control loop when the mode  
changes. The delay time is determined by phase compensation constant. When the battery is removed if the  
charge control is switched from the constant current control to the constant voltage control, and the charging  
voltagedoes overshoot by generatingthe period controlled with high duty by output setting voltage. The excessive  
voltage is not applied to the battery because the battery is not connected.  
When the battery is connected if the charge control is switched from the constant voltage control to the constant  
current control, and the charging current does overshoot by generating the period controlled with high duty by  
charge current setting.  
The battery pack manufacturer in Japan thinks it is not the problem the current overshoot of 10 ms or less.  
Timing chart at load-step  
Error Amp3 Output  
Error Amp1 Output  
Error Amp1 Output  
Constant Current  
Error Amp3 Output  
Constant Voltage  
Constant Current  
Battery Voltage  
Battery Current  
When charge control switches  
from the constant current control to  
the constant voltage control, the  
voltage does overshoot by gener-  
ating the period controlled with  
high duty by output setting voltage.  
The battery pack manufac-  
turer in Japan thinks it is  
not the problem the current  
overshoot of 10 ms or less.  
10 ms  
33  
MB39A125/126  
AC ADAPTER DETECTION FUNCTION  
When ACIN terminal (pin 7) voltage is lower than 1.3 V (Typ) , AC adapter voltage detection block (AC Comp.)  
outputs “Hi-Z” level to the ACOK terminal (pin 5) and outputs “L” level to the XACOK terminal (pin 18) . When  
CTLterminal(pin14)issettoLlevel, ACOKterminal(pin5)andXACOKterminal(pin18)arefixedtoHi-Zlevel.  
(1) AC adapter presence  
If you connect as shown in the figure below the presence of AC adapter can be easily detected because the  
signal is output from the ACOK terminal (pin 5) to microcomputer etc. In this case, if the CTL terminal is set to  
“L” level, IC becomes the standby state (ICC = 0 µA Typ).  
Connection example of detecting AC adapter presence  
micon  
AC adapter  
ACIN  
ACOK  
XACOK  
7
5
18  
<AC Comp.>  
+
34  
MB39A125/126  
(2) Automatic changing system power supply between AC adapter and battery  
The AC adapter voltage is detected and external switch at input side and battery side can be changed automat-  
ically with the connection as follows. Connect CTL terminal (pin 14) to VCC terminal (pin 21) for this function.  
OFFdutycyclebecomes100% whenCSterminal(pin22)voltageismadetobe0V, ifitisneededafterfullcharge.  
Connection example of automatic changing system power supply between AC adapter and battery  
System  
AC adapter  
Battery  
ACIN  
ACOK  
XACOK  
7
5
18  
<AC Comp.>  
+
VCC  
CTL  
21  
14  
< SOFT>  
VREF  
10 µA  
CS  
22  
micon  
35  
MB39A125/126  
(3) Battery selector function  
When control signal from microcomputer etc. is input to ACIN terminal (pin 7) as shown in the following diagram,  
ACOK terminal (pin 5) output voltage and XACOK terminal (pin 18) output voltage are controlled to select one  
of the two batteries for charge. Connect CTL terminal (pin 14) to VCC terminal (pin 21) for this function. OFF  
duty cycle becomes 100% when CS terminal (pin 22) voltage is made to be 0 V, if it is needed after full charge.  
Connection example of battery selector function  
System  
AC adapter  
ACIN  
ACOK  
XACOK  
A
B
7
5
18  
I
CHG  
<AC Comp.>  
+
RS1  
VCC  
CTL  
21  
14  
Battery1  
Battery2  
< SOFT>  
VREF  
10 µA  
CS  
micon  
22  
36  
MB39A125/126  
(4) When AC Comp. is not used  
When AC Comp. (ACIN (pin 7) , ACOK (pin 5) , and XACOK (pin 18) terminals) is not used as follows, connect  
the ACIN (pin 7) , ACOK (pin 5) , and XACOK (pin 18) terminals to GND terminal (pin 23) .  
And connect VCC terminal (pin 21) to system, as follows, to avoid the reverse current from the battery to the  
VCC terminal (pin 21) .  
Connection example when AC Comp. is not used  
System  
AC adapter  
ACIN  
ACOK  
XACOK  
7
5
18  
A
B
I
CHG  
<AC Comp.>  
+
RS1  
Battery  
VCC  
21  
37  
MB39A125/126  
PHASE COMPENSATION  
Example Circuit  
VIN  
RS2  
15m  
VCC  
21  
<Error Amp 3>  
INE3  
<PWM Comp.>  
16  
<OUT>  
+
Cc  
OUT  
VH  
+
20  
19  
Drive  
VH  
I1  
VBATT  
Ro  
Lo  
RL  
4.2 V  
Rc  
RS1  
33 mΩ  
2.5V  
1.5V  
FB123  
15  
Rin1  
(VCC 6V)  
Co  
ESR  
Bias  
Voltage  
OSC  
Rin2  
Lo : Inductance  
RL : Equivalent series resistance of inductance  
Co : Capacity of condenser  
ESR : Equivalent series resistance of condenser  
Ro : Load resistance  
• Frequency Characteristics of LC filter  
Frequency characteristic of power output LC filter  
(DC gain is included.)  
90  
80  
180  
160  
140  
120  
100  
80  
Cut-off frequency  
gain  
phase  
70  
60  
1
f1 (Hz) =  
50  
Gain  
40  
+
(Ro ESR)  
30  
60  
×
×
2π Lo Co  
20  
40  
+
(Ro RL)  
10  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Phase  
Lo = 15 µH  
Co = 14.1 µF  
Ro = 4.2 Ω  
RL = 30 mΩ  
ESR = 100 mΩ  
1
10  
100  
1k  
10k 100k  
1M  
10M  
Frequency [Hz]  
38  
MB39A125/126  
• Frequency Characteristics of Error Amp  
Total frequency characteristic  
90  
80  
180  
160  
total gain  
70  
AMP Open 140  
Cut-off frequency  
Loop Gain  
total phase  
60  
120  
100  
80  
50  
1
40  
f2(Hz) =  
Gain  
30  
60  
×
×
2π Rc Cc  
20  
40  
10  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Rc = 150 kΩ  
Cc = 3300 pF  
Phase  
10k  
1
10  
100  
1k  
100k  
1M  
Frequency [Hz]  
• Frequency Characteristics of DC/DC converter  
Total frequency characteristic  
90  
The overview of frequency characteristic  
for DC/DC converter can be obtained in  
combination between “Frequency  
Characteristics of LC filter” and  
“Frequency Characteristics of Error Amp ”  
as mentioned above.  
Please note the following point in order to  
stabilize the frequency characteristics of  
DC/DC converter .  
Cut-off frequency of DC/DC converter  
should be set to half or less of the  
triangular wave oscillator frequency.  
180  
80  
70  
total gain  
160  
140  
120  
100  
80  
AMP Open  
Loop Gain  
total phase  
60  
50  
40  
30  
60  
20  
40  
Gain  
10  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Phase  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
Triangular wave frequency  
Notes : 1) Please review the Error Amp frequency characteristics, when LC filter parameter is modified.  
2) When the ceramic capacitor is used as smoothing capacitor Co, phase margin is reduced because ESR  
of the ceramic capacitor is extremely small as shown in “Frequency Characteristics of LC filter which is  
using low ESR”.  
Therefore, change phase compensation of Error Amp or create resistance equivalent to ESR using  
pattern.  
39  
MB39A125/126  
• Frequency Characteristics of LC filter which is using low ESR  
Frequency characteristic of power output LC filter  
(DC gain is included.)  
90  
80  
180  
160  
140  
120  
100  
80  
gain  
phase  
Cut-off frequency  
70  
60  
1
50  
f1 (Hz) =  
Gain  
40  
+
(Ro ESR)  
30  
60  
×
×
2π Lo Co  
20  
40  
+
(Ro RL)  
10  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Lo = 15 µH  
Co = 14.1 µF  
Ro = 4.2 Ω  
RL = 30 mΩ  
ESR = 100 mΩ  
Phase  
10  
1
100  
1k  
10k 100k  
1M  
10M  
Frequency [Hz]  
<3Pole2Zero>  
DC/DC output  
< Additional ESR>  
Board Pattern  
or connected  
resistor  
+
40  
MB39A125/126  
PROCESSING WITHOUT USING OF THE CURRENT AMP1 AND AMP2  
When Current Amp is not used, connect the +INC1 terminal (pin 13) , +INC2 terminal (pin 24) , INC1 terminal  
(pin 12) , and INC2 terminal (pin 1) to VREF terminal (pin 6) , and then leave OUTC1 terminal (pin 10) and  
OUTC2 terminal (pin 2) open.  
Connection when Current Amp is not used  
13  
+INC1  
+INC2  
12  
1
INC1  
INC2  
24  
10  
2
OUTC1  
OUTC2  
”open”  
6
VREF  
PROCESSING WITHOUT USING OF THE ERROR AMP1 AND AMP2  
When Error Amp is not used, leave FB123 terminal (pin 15) open, connect the INE1 terminal (pin 8) and INE2  
terminal (pin 4) to GND, and connect +INE1 terminal (pin 9) and +INE2 terminal (pin 3) to VREF terminal (pin 6) .  
Connection when Error Amp is not used  
23  
GND  
9
3
+INE1  
+INE2  
8
4
INE1  
INE2  
”open”  
16  
6
FB123  
VREF  
41  
MB39A125/126  
PROCESSING WITHOUT USING OF THE CS TERMINAL  
When soft-start function is not used, leave the CS terminal (pin 22) open.  
Connection when no soft-start time is specified  
”open”  
22  
CS  
42  
MB39A125/126  
I/O EQUIVALENT CIRCUIT  
<Reference voltage block>  
<Power supply control block>  
21  
VCC  
1.235 V  
+
14  
CTL  
ESD  
protection  
element  
6
VREF  
ESD  
37.8  
kΩ  
33.1  
kΩ  
51  
kΩ  
12.35  
kΩ  
protection  
element  
GND  
23  
GND  
<Soft-start block>  
<Triangular wave  
<Error amplifier block (Error Amp1) >  
oscillator block>  
VREF  
(5.0 V)  
VCC  
VREF  
VCC  
(5.0 V)  
22  
CS  
+
INE1 8  
FB123  
17  
RT  
GND  
GND  
GND  
9
+INE1  
<Error amplifier block (Error Amp2) >  
<Error amplifier block (Error Amp3) >  
VCC  
VCC  
VREF  
(5.0 V)  
CS  
INE2 4  
FB123  
16  
15  
FB123  
4.2 V  
GND  
GND  
3
+INE2  
<Current detection amplifier block  
(Current Amp1) >  
<Current detection amplifier block  
(Current Amp2) >  
VCC  
VCC  
INC1 12  
INC2  
1
10  
2
OUTC2  
OUTC1  
GND  
GND  
13 +INC1  
24 +INC2  
(Continued)  
43  
MB39A125/126  
(Continued)  
<PWM comparator block>  
<Output block>  
VCC  
VCC  
20  
OUT  
FB123  
CT  
VH  
GND  
GND  
<AC adapter voltage detection block>  
ACIN  
7
VCC  
VREF  
5
18  
XACOK  
ACOK  
(5.0 V)  
GND  
<Bias voltage block> <Invalidity current prevention block> <Output voltage switching function block>  
<MB39A125> <MB39A126>  
VCC  
11  
OUTD  
SEL  
11  
33.1 k  
19  
VH  
51 k  
GND  
GND  
GND  
44  
MB39A125/126  
APPLICATION EXAMPLE 1  
MB39A125  
I
IN  
to System  
Q2  
C15  
0.22 µF  
R20  
56 kΩ  
R17  
51  
RS1  
0.015  
kΩ  
100 kΩ  
R18  
R19  
24  
R14  
15 kΩ  
kΩ  
Q3  
R15  
68 kΩ  
ACOK  
XACOK  
ACIN  
R16  
7
5
18  
10 kΩ  
<AC Comp.>  
+
INE1  
8
C8  
R5  
100 kΩ  
6800 pF  
<Current Amp 1>  
VREF  
R6  
10 kΩ  
10  
OUTC1  
+INC1  
13  
12  
<Error Amp 1>  
+
A
0.2 V  
<UV Comp.>  
×20  
+
+
B
INC1  
+INE1  
R12  
30 kΩ  
INC1  
(Vo)  
9
4
R11  
VCC  
21  
R13  
INE2  
1.1  
20  
kΩ  
V
IN  
<PWM Comp.>  
R8  
100 kΩ  
kΩ  
C10  
C1  
10 µF  
C12 C7  
6800  
+
0.1  
pF  
R7  
<Current Amp 2>  
(8 V to  
25 V)  
µF  
2
<Error Amp 2>  
0.1  
SW2  
<OUT>  
OUTC2  
µF  
A
B
10 kΩ  
Drive  
24  
1
Q1  
+
20  
+INC2  
INC2  
×20  
+
OUT  
R9  
36 kΩ  
I
CHG  
L1  
15 µH  
2.5 V  
1.5 V  
3
VH  
+INE2  
FB123  
Battery  
RS2  
0.033  
R10  
20 kΩ  
19  
15  
(VCC −  
VH  
R3  
D1  
6 V)  
R21  
33  
C4  
C3  
Bias  
kΩ  
100 kΩ  
10 µF  
10 µF  
C13  
22 pF  
Voltage  
R22  
<Error Amp 3>  
200 kΩ  
INE3  
R23  
+
16  
C6  
C14  
2200 pF 47 pF  
<UVLO>  
100 kΩ  
11  
4.2 V  
OUTD  
VREF  
UVLO  
<SOFT>  
VREF  
4.2 V  
Bias  
VCC  
Slope  
Control  
10 µF  
CTL  
<OSC>  
500 kHz Max  
<REF>  
<CTL>  
14  
CS  
22  
C11  
0.22 µF  
VREF  
5.0 V  
C
T
(45 pF)  
17  
6
23  
RT  
R4  
47 kΩ  
VREF  
GND  
C9  
0.22  
µF  
45  
MB39A125/126  
PARTS LIST 1  
MB39A125  
COMPONENT  
ITEM  
Pch FET  
Diode  
SPECIFICATION  
VENDOR  
NEC  
PARTS No.  
µPA2714GR  
RB053L-30  
Q1, Q2, Q3  
VDS = −30 V, ID = −7.0 A  
VF = 0.42 V (Max) , At IF = 3 A  
D1  
L1  
ROHM  
SUMIDA  
Inductor  
15 µH  
3.6 A, 50 mΩ  
CDRH104R-150  
C1, C3, C4  
C6  
C7, C12  
C8, C10  
C9, C11  
C13  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
10 µF  
2200 pF  
0.1 µF  
6800 pF  
0.22 µF  
22 pF  
25 V  
50 V  
50 V  
50 V  
16 V  
50 V  
50 V  
25 V  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
C3225X5R1E106K  
C1608JB1H222K  
C1608JB1H104K  
C1608JB1H682K  
C1608JB1C224K  
C1608CH1H220J  
C1608CH1H470J  
C2012JB1E224K  
C14  
C15  
47 pF  
0.22 µF  
RS1  
RS2  
R3  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
15 mΩ  
33 mΩ  
33 kΩ  
47 kΩ  
100 kΩ  
10 kΩ  
36 kΩ  
20 kΩ  
1.1 kΩ  
30 kΩ  
20 kΩ  
15 kΩ  
68 kΩ  
10 kΩ  
51 kΩ  
24 kΩ  
100 kΩ  
56 kΩ  
200 kΩ  
1%  
KOA  
KOA  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
SL1TTE15LOF  
SL1TTE33LOF  
RR0816P-333-D  
RR0816P-473-D  
RR0816P-104-D  
RR0816P-103-D  
RR0816P-363-D  
RR0816P-203-D  
RR0816P-112-D  
RR0816P-303-D  
RR0816P-203-D  
RR0816P-153-D  
RR0816P-683-D  
RR0816P-103-D  
RR0816P-513-D  
RR0816P-243-D  
RR0816P-104-D  
RR0816P-563-D  
RR0816P-204-D  
1%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
R4  
R5, R8  
R6, R7  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19, R21, R23  
R20  
R22  
Note : NEC  
ROHM  
: NEC Corporation  
: ROHM CO., LTD.  
SUMIDA : Sumida Corporation  
TDK  
KOA  
ssm  
: TDK Corporation  
: KOA Corporation  
: SUSUMU CO., LTD.  
46  
MB39A125/126  
APPLICATION EXAMPLE 2  
MB39A126  
I
IN  
to System  
Q2  
R17  
C15  
RS1  
51  
0.22 µF  
k0.015  
R20  
56 kΩ  
R18  
100 kΩ  
R19  
24  
R14  
kΩ  
15 kΩ  
Q3  
R15  
68 kΩ  
XACOK  
ACOK  
ACIN  
R16  
10 kΩ  
7
5
18  
<AC Comp.>  
+
INE1  
8
C8  
R5  
100 kΩ  
6800 pF  
<Current Amp 1>  
VREF  
R6  
10  
10 kΩ  
OUTC1  
+INC1  
13  
12  
<Error Amp 1>  
A
+
<UV Comp.>  
0.2 V  
×20  
+
+
B
INC1  
+INE1  
R12  
30 kΩ  
INC1  
(Vo)  
9
4
R11  
VCC  
21  
R13  
1.1  
INE2  
20  
kΩ  
V
IN  
<PWM Comp.>  
kΩ  
C10  
C1  
10 µF  
R8  
C12 C7  
6800  
+
100 kΩ  
0.1  
pF  
R7  
<Current Amp 2>  
(8 V to  
25 V)  
µF  
2
<Error Amp 2>  
0.1  
SW2  
<OUT>  
OUTC2  
µF  
A
B
10 kΩ  
Drive  
24  
1
Q1  
+
20  
+INC2  
INC2  
+
×20  
OUT  
R9  
36 kΩ  
I
CHG  
L1  
15 µH  
2.5 V  
1.5 V  
3
VH  
Battery  
+INE2  
R10  
20 kΩ  
RS2  
19  
0.033  
15  
(VCC −  
6 V)  
VH  
R3  
D1  
FB123  
C14  
33  
C3  
C4  
Bias  
Voltage  
kΩ  
10 µF  
10 µF  
C13  
22 pF  
<Error Amp 3>  
47 pF  
R1  
R2  
+
16  
C6  
2200 pF  
INE3  
<UVLO>  
4.2 V/3.15 V  
VREF  
UVLO  
11  
22  
SEL  
Hi : 4 Cells  
Lo : 3 Cells  
<SOFT>  
VREF  
4.2 V  
Bias  
VCC  
Slope  
Control  
10 µF  
CTL  
<OSC>  
500 kHz Max  
<REF>  
<CTL>  
14  
CS  
VREF  
5.0 V  
C
T
C11  
0.22 µF  
(45 pF)  
17  
6
23  
RT  
R4  
47 kΩ  
GND  
VREF  
C9  
0.22  
µF  
47  
MB39A125/126  
PARTS LIST 2  
MB39A126  
COMPONENT  
ITEM  
Pch FET  
Diode  
SPECIFICATION  
VENDOR  
NEC  
PARTS No.  
µPA2714GR  
RB053L-30  
Q1, Q2, Q3  
VDS = −30 V, ID = -7.0 A  
VF = 0.42 V (Max) , At IF = 3 A  
D1  
L1  
ROHM  
SUMIDA  
Inductor  
15 µH  
3.6 A, 50 mΩ  
CDRH104R-150  
C1, C3, C4  
C6  
C7, C12  
C8, C10  
C9, C11  
C13  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
Ceramics Condenser  
10 µF  
2200 pF  
0.1 µF  
6800 pF  
0.22 µF  
22 pF  
25 V  
50 V  
50 V  
50 V  
16 V  
50 V  
50 V  
25 V  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
C3225X5R1E106K  
C1608JB1H222K  
C1608JB1H104K  
C1608JB1H682K  
C1608JB1C224K  
C1608CH1H220J  
C1608CH1H470J  
C2012JB1E224K  
C14  
C15  
47 pF  
0.22 µF  
RS1  
RS2  
R3  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
15 mΩ  
33 mΩ  
33 kΩ  
47 kΩ  
100 kΩ  
10 kΩ  
36 kΩ  
20 kΩ  
1.1 kΩ  
30 kΩ  
20 kΩ  
15 kΩ  
68 kΩ  
10 kΩ  
51 kΩ  
24 kΩ  
100 kΩ  
56 kΩ  
1%  
KOA  
KOA  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
ssm  
SL1TTE15LOF  
SL1TTE33LOF  
RR0816P-333-D  
RR0816P-473-D  
RR0816P-104-D  
RR0816P-103-D  
RR0816P-363-D  
RR0816P-203-D  
RR0816P-112-D  
RR0816P-303-D  
RR0816P-203-D  
RR0816P-153-D  
RR0816P-683-D  
RR0816P-103-D  
RR0816P-513-D  
RR0816P-243-D  
RR0816P-104-D  
RR0816P-563-D  
1%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
R4  
R5, R8  
R6, R7  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
Note : NEC  
ROHM  
: NEC Corporation  
: ROHM CO., LTD.  
SUMIDA : Sumida Corporation  
TDK  
KOA  
ssm  
: TDK Corporation  
: KOA Corporation  
: SUSUMU CO., LTD.  
48  
MB39A125/126  
SELECTION OF COMPONENTS  
Pch MOS FET  
The Pch MOS FET for switching use should be rated for at least +20% more than the input voltage. To minimize  
continuity loss, use a FET with low RDS (ON) between the drain and source. For high input voltage and high  
frequency operation, on-cycle switching loss will be higher so that power dissipation must be considered. In this  
application, the NEC µPA2714GR is used. Continuity loss, on/off switching loss, and total loss are determined  
by the following formulas. The selection must ensure that peak drain current does not exceed rated values.  
Continuity loss : Pc  
2
PC  
= ID × RDS (ON) × Duty  
On-cycle switching loss : PS (ON)  
VD (Max) × ID × tr × fosc  
PS (ON)  
=
6
Off-cycle switching loss : PS (OFF)  
VD (Max) × ID (Max) × tf × fosc  
PS(OFF)  
=
6
Total loss : PT  
PT = PC + PS (ON) + PS (OFF)  
Example) Using the µPA2714GR  
16.8 V setting  
Input voltage VIN (Max) = 25 V, output voltage VO = 16.8 V, drain current ID = 3 A, oscillation frequency fosc = 300 kHz,  
L = 15 µH, drain-source on resistance RDS (ON) =: 18 m, tr=: 15 ns, tf=: 42 ns  
Drain current (Max) : ID (Max)  
VIN Vo  
ID (Max)  
=
=
Io +  
3 +  
tON  
2L  
25 16.8  
2 × 15 × 106  
1
×
×
× 0.672  
300 × 103  
=: 3.6 A  
Drain current (Min) : ID (Min)  
VIN Vo  
ID (Min)  
=
=
Io−  
3−  
tON  
2L  
25 16.8  
2 × 15 × 106  
1
× 0.672  
300 × 103  
=: 2.4 A  
49  
MB39A125/126  
2
PC = ID × RDS (ON) × Duty  
= 32 × 0.018 × 0.672  
=: 0.109 W  
VD × ID × tr × fosc  
PS (ON)  
=
=
6
25 × 3 × 15 × 109 × 300 × 103  
6
=: 0.056 W  
VD × ID (Max) × tf × fosc  
PS(OFF)  
=
=
6
25 × 3.6 × 42 × 109 × 300 × 103  
6
=: 0.189 W  
PT = PC + PS (ON) + PS (OFF)  
=: 0.109 + 0.056 + 0.189  
=: 0.354 W  
The above power dissipation figures for the µPA2714GR are satisfied with ample margin at 2.0 W.  
12.6 V setting  
Input voltage VIN (Max) = 22 V, output voltage VO = 12.6 V, drain current ID = 3 A, oscillation frequency fosc = 300 kHz,  
L = 15 µH, drain-source on resistance RDS (ON) =: 18 m, tr=: 15 ns, tf=: 42 ns  
Drain current (Max) : ID (Max)  
VIN Vo  
ID (Max)  
=
=
Io +  
3 +  
tON  
2L  
22 12.6  
2 × 15 × 106  
1
×
×
× 0.572  
300 × 103  
=: 3.6 A  
Drain current (Min) : ID (Min)  
VIN Vo  
ID (Min)  
=
=
Io −  
3 −  
tON  
2L  
22 12.6  
2 × 15 × 106  
1
× 0.572  
300 × 103  
=: 2.4 A  
50  
MB39A125/126  
2
PC = ID × RDS (ON) × Duty  
= 32 × 0.018 × 0.572  
=: 0.093 W  
VD × ID × tr × fosc  
PS (ON)  
=
=
6
22 × 3 × 15 × 109 × 300 × 103  
6
=: 0.050 W  
VD × ID (Max) × tf × fosc  
PS(OFF)  
=
=
6
22 × 3.6 × 42 × 109 × 300 × 103  
6
=: 0.166 W  
PT  
= PC + PS (ON) + PS (OFF)  
=: 0.093 + 0.050 + 0.166  
=: 0.309 W  
The above power dissipation figures for the µPA2714GR are satisfied with ample margin at 2.0 W.  
The Pch MOS FET for switching use must use the one of more than input voltage +20%.  
FET which operates when the AC adapter is connected should select FET which satisfies the current decided  
by sense resistance R1 enough. Because FET which operates when the AC adapter is not connected becomes  
a supply by the battery, it is necessary to select FET which satisfies the current of the system enough.  
In this application, the NEC µPA2714GR is used.  
Inductor  
In selecting inductors, it is of course essential not to apply more current than the rated capacity of the inductor,  
but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous  
operation and a considerable drop in efficiency. This can be prevented by choosing a higher inductance value,  
which will enable continuous operation under light-loads.  
Note that if the inductance value is too high, however, direct current resistance (DCR) is increased and this will  
also reduce efficiency. The inductance must be set at the point where efficiency is greatest.  
Note also that the DC superimposition characteristic becomes worse as the load current value approaches the  
rated current value of the inductor, so that the inductance value is reduced and ripple current increases, causing  
loss of efficiency.  
Theselectionofratedcurrentvalueandinductancevaluewillvarydependingonwherethepointofpeakefficiency  
lies with respect to load current.  
Inductance values are determined by the following formulas.  
The L value for all load current conditions is set so that the peak to peak value of the ripple current is 1/2 the  
load current or less.  
51  
MB39A125/126  
Inductance value : L  
2 (VIN Vo)  
L
tON  
Io  
16.8 V output  
Example)  
2 (VIN (Max) Vo)  
L
tON  
Io  
2 × (25 16.8)  
1
×
× 0.672  
3
300 × 103  
12.2 µH  
12.6 V output  
Example)  
2 (VIN (Max) Vo)  
L
tON  
Io  
2 × (22 12.6)  
1
×
× 0.572  
3
300 × 103  
12.0 µH  
Inductance values derived from the above formulas are values that provide sufficient margin for continuous  
operation at maximum load current, but at which continuous operation is not possible at light loads. It is therefore  
necessary to determine the load level at which continuous operation becomes possible. In this application, the  
SUMIDA CDRH104R-150 is used. The following formula is available to obtain the load current as a continuous  
current condition when 15 µH is used.  
The value of the load current satisfying the continuous current condition : Io  
Vo  
Io  
tOFF  
2L  
Example) Using the CDRH104R-150  
15 µH (tolerance 30%) , rated current = 3.6 A  
16.8 V output  
Vo  
Io  
tOFF  
2L  
16.8  
1
×
×
(1 0.672)  
2 × 15 × 106  
300 × 103  
0.61 A  
52  
MB39A125/126  
12.6 V output  
Vo  
Io  
tOFF  
2L  
12.6  
1
×
×
(1 0.572)  
2 × 15 × 106  
300 × 103  
0.60 A  
To determine whether the current through the inductor is within rated values, it is necessary to determine the  
peak value of the ripple current as well as the peak-to-peak values of the ripple current that affects the output  
ripple voltage. The peak value and peak-to-peak value of the ripple current can be determined by the following  
formulas.  
Peak Value : IL  
VIN Vo  
IL  
Io +  
tON  
2L  
Peak-to-peak Value : IL  
VIN Vo  
IL  
=
tON  
L
Example) Using the CDRH104R-150  
15 µH (tolerance 30%) , rated current = 3.6 A  
Peak Value  
16.8 V output  
VIN Vo  
IL  
Io +  
3 +  
tON  
2L  
2516.8  
2 × 15 × 106  
1
×
×
× 0.672  
300 × 103  
3.6 A  
12.6 V output  
VIN Vo  
tON  
IL  
Io +  
3 +  
2L  
22 12.6  
2 × 15 × 106  
1
× 0.572  
300 × 103  
3.6 A  
53  
MB39A125/126  
Peak-to-peak Value  
16.8 V output  
VIN Vo  
IL  
=
=
tON  
L
25 16.8  
15 × 106  
1
×
× 0.672  
300 × 103  
=: 1.22 A  
12.6 V output  
VIN Vo  
L
IL  
=
=
tON  
22 12.6  
15 × 106  
1
×
× 0.572  
300 × 103  
=: 1.2 A  
Flyback diode  
Shottky barrier diode (SBD) is generally used for the flyback diode when the reverse voltage to the diode is less  
than 40V. The SBD has the characteristics of higher speed in terms of faster reverse recovery time, and lower  
forward voltage, and is ideal for achieving high efficiency. As long as the DC reverse voltage is sufficiently higher  
than the input voltage, and the mean current flowing during the diode conduction time is within the mean output  
current level, and as the peak current is within the peak surge current limits, there is no problem. In this application  
the ROHM RB053L-30 are used. The diode mean current and diode peak current can be obtained by the following  
formulas.  
Diode mean current : IDi  
Vo  
IDi  
Io × (1 −  
)
VIN  
Diode peak current : IDip  
Vo  
IDip  
(Io +  
tOFF)  
2L  
Example) Using the RB053L-30  
VR (DC reverse voltage) = 30 V, mean output current = 3.0 A, peak surge current = 70 A,  
VF (forward voltage) = 0.42 V, at IF = 3.0 A  
16.8 V output  
Vo  
IDi  
Io × (1 −  
)
VIN  
3 × (1 0.672)  
0.984 A  
54  
MB39A125/126  
12.6 V output  
Vo  
VIN  
IDi  
Io × (1 −  
)
3 × (1 0.572)  
1.284 A  
16.8 V output  
IDip (Io +  
3.6 A  
12.6 V output  
IDip (Io +  
3.6 A  
Vo  
2L  
tOFF)  
Vo  
2L  
tOFF)  
Charge current sense resistor  
Please note the following in selecting the charge current sense resistance. First of all, meet the electric power  
to the flowing current. However, the conversion efficiency deteriorates because the loss in the sense resistance  
grows when resistance is adjusted to a too big value. The accuracy of the charge current deteriorates because  
the voltage difference of both ends of the sense resistance becomes small when resistance is adjusted to a too  
small value oppositely. 33 mof the KOA SL1TTE33LOF is used in this application. The sense resistance value  
can be determined by the following formulas.  
In this application, 33 mof the KOA SL1TTE33LOF is used.  
Sense resistor : RS2  
+INE1  
RS2  
=
20 × Io  
Example) When the +INE1 terminal (pin 9) voltage is 2 V and the charge current (Io) is 3.0 A  
+INE1  
RS2  
=
20 × Io  
2
=
20 × 3.0  
= 33.3 mΩ  
55  
MB39A125/126  
Input current sense resistor  
Please note the following in selecting the input current sense resistance. First of all, meet the electric power to  
the flowing current. However, the conversion efficiency deteriorates because the loss in the sense resistance  
grows when resistance is adjusted to a too big value. The accuracy of the input current deteriorates because  
the voltage difference of both ends of the sense resistance becomes small when resistance is adjusted to a too  
small value oppositely. 33 mof the KOA SL1TTE33LOF is used in this application. The sense resistance value  
can be determined by the following formulas.  
In this application, 15 mof the KOA SL1TTE15LOF is used.  
Sense resistor : RS1  
+INE2  
RS1  
=
20 × IIN  
Example) When the +INE2 terminal (pin 3) voltage is 1.79 V and the input current (IIN) is 6.0 A  
+INE2  
RS1  
=
=
20 × IIN  
1.79  
20 × 6.0  
= 14.9 mΩ  
56  
MB39A125/126  
REFERENCE DATA  
Conversion efficiency vs. Charging current  
Conversion efficiency vs. Charging current  
(Constant Voltage mode)  
(Constant Voltage mode)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 19 V  
Vo = 12.6 V setting  
VIN = 19 V  
Vo = 16.8 V setting  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Charging current IO (A)  
Charging current IO (A)  
Conversion efficiency vs. Charging voltage  
(Constant Current mode)  
Conversion efficiency vs. Charging voltage  
(Constant Current mode)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 19 V  
VIN = 19 V  
Io = 3 A setting  
Io = 3 A setting  
0
2
4
6
8
10 12 14  
16 18  
0
2
4
6
8
10 12 14  
16 18  
Charging voltage VO (V)  
Charging voltage VO (V)  
Charging voltage vs. Charging current  
Charging voltage vs. Charging current  
20  
18  
16  
14  
12  
10  
8
20  
VIN = 19 V  
18  
16  
14  
12  
10  
8
Vo = 12.6 V setting  
SW2 = OFF  
SW2 = ON  
SW2 = OFF  
SW2 = ON  
6
6
VIN = 19 V  
Vo = 16.8 V setting  
4
4
2
2
0
0
0.0  
0.5 1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
0.0  
0.5 1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
Charging current IO (A)  
Charging current IO (A)  
(Continued)  
57  
MB39A125/126  
Switching waveform (Constant Voltage Mode)  
VO = 12.6 V setting  
VO = 16.8 V setting  
OUT  
OUT  
(V)  
15  
(V)  
15  
OUT  
OUT  
10  
5
10  
5
0
0
V
=
19 V  
16.8 V setting  
V
= 19 V  
IN  
IN  
Pch  
Pch  
Vo  
Io  
SW2  
=
Vo = 12.6 V setting  
Drain  
(V)  
10  
Drain  
(V)  
10  
=
1.5 A  
OFF  
Io = 1.5 A  
Pch  
Drain  
Pch  
Drain  
=
SW2 = OFF  
5
5
0
0
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs)  
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs)  
Switching waveform (Constant Current Mode)  
VO = 12.6 V setting  
VO = 16.8 V setting  
OUT  
OUT  
(V)  
15  
(V)  
15  
OUT  
OUT  
10  
5
10  
5
0
0
Pch  
Pch  
Drain  
(V)  
Drain  
(V)  
V
=
=
19 V  
10.0 V  
V
=
IN  
19 V  
IN  
Vo  
Io  
SW2  
Vo  
Io  
SW2  
=
10.0 V  
Pch  
Drain  
Pch  
Drain  
10  
10  
=
3.0 A setting  
OFF  
=
3.0 A setting  
OFF  
=
=
5
5
0
0
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs)  
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs)  
(Continued)  
58  
MB39A125/126  
Soft-start operating waveform (Constant Current Mode)  
Vo  
(V)  
Vo  
(V)  
VIN = 19 V  
VIN = 19 V  
lo  
(A)  
lo  
18  
16  
14  
12  
10  
18  
16  
14  
12  
10  
Io = 3 A setting  
SW2 = OFF  
Io = 3 A setting  
SW2 = OFF  
(A)  
5
5
4
3
2
1
0
4
3
2
1
0
Vo  
lo  
Vo  
lo  
CTL  
(V)  
10  
CTL  
(V)  
10  
CTL  
5
CTL  
5
0
0
0
10 15 20 25 30 35 40 45 50 (ms)  
0
10 15 20 25 30 35 40 45 50 (ms)  
Soft-start operating waveform (Constant Voltage Mode)  
Vo  
(V)  
Vo  
(V)  
lo  
(A)  
lo  
(A)  
18  
16  
14  
12  
10  
18  
16  
14  
12  
Vo  
Vo  
5
5
4
3
2
1
0
4
3
2
1
0
VIN = 19 V  
VIN = 19 V  
Vo = 16.8 V setting  
SW2 = OFF  
Vo = 16.8 V setting  
SW2 = OFF  
10  
CTL  
(V)  
10  
CTL  
(V)  
10  
lo  
lo  
CTL  
CTL  
0
0
0
5
10 15 20 25 30 35 40 45 50 (ms)  
0
5
10 15 20 25 30 35 40 45 50 (ms)  
(Continued)  
59  
MB39A125/126  
(Continued)  
Load-step response operation waveform  
Load-step response operation waveform  
(C.V mode C.C mode)  
(C.C mode C.V mode)  
Io (A)  
6
Vo (V)  
18  
Io (A)  
Vo (V)  
18  
Vo  
6
5
4
16  
14  
16  
14  
5
Vo  
4
Vo  
Io  
Vo  
12  
10  
12  
10  
3
2
1
0
3
2
1
0
Io  
VIN = 19 V  
Io = 3.0 A setting  
SW2 = OFF  
CC to CV  
VIN = 19 V  
Io = 3.0 A setting  
SW2 = OFF  
CV to CC  
Io  
Io  
(ms)  
(ms)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Load-step response operation waveform  
Load-step response operation waveform  
(C.V mode C.V mode)  
(C.V mode C.V mode)  
Io (A)  
Io (A)  
Vo (V)  
18  
Vo (V)  
18  
16  
14  
6
6
Vo  
Vo  
16  
14  
Vo  
VIN = 19 V  
5
4
5
4
Vo  
Io  
VIN = 19 V  
Vo = 16.8 V setting  
SW2 = OFF  
Vo = 16.8 V setting  
SW2 = OFF  
CV to CV  
CV to CV  
12  
10  
12  
10  
3
2
1
0
3
2
1
0
Io  
Io  
Io  
(ms)  
0
2
4
6
8
10 12 14 16 18 20  
(ms)  
0
2
4
6
8
10 12 14 16 18 20  
60  
MB39A125/126  
USAGE PRECAUTIONS  
• Printed circuit board ground lines should be set up with consideration for common impedance.  
Take appropriate static electricity measures.  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kto 1 Mbetween body and ground.  
• Do not apply negative voltages.  
The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause  
abnormal operation.  
ORDERING INFORMATION  
Part number  
MB39A125PFV  
Package  
Remarks  
24-pin plastic SSOP  
(FPT-24P-M03)  
28-pin plastic QFN  
(LCC-28P-M11)  
MB39A125WQN  
MB39A126PFV  
MB39A126WQN  
24-pin plastic SSOP  
(FPT-24P-M03)  
28-pin plastic QFN  
(LCC-28P-M11)  
61  
MB39A125/126  
PACKAGE DIMENSIONS  
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
24-pin plastic SSOP  
(FPT-24P-M03)  
1
0.17±0.03  
(.007±.001)  
*
7.75±0.10(.305±.004)  
24  
13  
*25.60±0.10 7.60±0.20  
(.220±.004) (.299±.008)  
INDEX  
Details of "A" part  
1.25 +00..1200  
(Mounting height)  
.049 +..000048  
0.25(.010)  
0~8˚  
"A"  
1
12  
0.24 +00..0078  
0.65(.026)  
M
0.13(.005)  
.009 +..000033  
0.50±0.20  
(.020±.008)  
0.10±0.10  
(.004±.004)  
(Stand off)  
0.60±0.15  
(.024±.006)  
0.10(.004)  
C
2003 FUJITSU LIMITED F24018S-c-4-5  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
(Continued)  
62  
MB39A125/126  
(Continued)  
28-pin plastic QFN  
(LCC-28P-M11)  
3.50±0.10  
(.138±.004)  
5.00±0.10  
(.197±.004)  
3.50±0.10  
(.138±.004)  
5.00±0.10  
(.197±.004)  
0.25±0.10  
INDEX AREA  
(.010±.004)  
3-R0.20  
(3-R.008)  
0.40±0.10  
(.016±.004)  
0.50(.020)  
TYP  
1PIN CORNER  
(C0.30(C.012))  
0.08(.003)  
0.80(.032)  
MAX  
0.20(.008)  
0.02+00..0025  
+.002  
.0008  
.0008  
C
2004 FUJITSU LIMITED C28068Sc-2-1  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
63  
MB39A125/126  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0511  
© 2004 FUJITSU LIMITED Printed in Japan  

相关型号:

MB39A126PFV

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A126WQN

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A130A

MB39A130A 1ch DC/DC Buck Converter IC with Synchronous Rectification
CYPRESS

MB39A130APFT

MB39A130A 1ch DC/DC Buck Converter IC with Synchronous Rectification
CYPRESS

MB39A130APFTE1

Switching Regulator
CYPRESS

MB39A132QN

Battery Charge Controller, Voltage-mode, 0.06A, 2000kHz Switching Freq-Max, 0.50 MM PITCH, PLASTIC, QFN-32
FUJITSU

MB39A132QN-E1

Switching Regulator/Controller, Current/voltage-mode, 1.2A, 2000kHz Switching Freq-Max, PQCC32
FUJITSU

MB39A132QN-G-ERE1

ASSP For Power Management Applications (Rechargeable Battery) Synchronous Rectification DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A134

DC/DC Converter ICfor Charging Li-ion Battery
CYPRESS

MB39A134PFT

DC/DC Converter ICfor Charging Li-ion Battery
CYPRESS

MB39A134PFT-E1

Switching Regulator/Controller, Current/voltage-mode, 0.6A, 2000kHz Switching Freq-Max, PDSO24
FUJITSU

MB39A134PFT-XXXE1

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO24, 4.4 X 6.5 MM, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, TSSOP-24
FUJITSU