MB39C022LPNE1 [FUJITSU]

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10;
MB39C022LPNE1
型号: MB39C022LPNE1
厂家: FUJITSU    FUJITSU
描述:

Switching Regulator, Current-mode, 1.6A, 2400kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10

开关 光电二极管
文件: 总28页 (文件大小:1115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27271-2E  
ASSP for Power Management Applications  
Buck DC/DC Converter +  
Low noise LDO  
MB39C022G/MB39C022J/MB39C022L  
MB39C022N  
DESCRIPTION  
The MB39C022 is a 2 channels power supply IC. It consists of one channel Buck DC/DC Converter and one  
channel LDO regulator. The DC/DC converter has fast transient response with current mode control topology.  
Moreover, the integrated LDO provides an auxiliary output supply for noise sensitive circuit.  
FEATURES  
• Power supply voltage range  
: 2.5 V to 5.5 V  
• For Buck DC/DC included SW FET (CH1) : output 0.8 V to 4.5 V, 600 mA Max DC  
• For LDO (CH2)  
: output 3.30 V (MB39C022G) 300 mA Max DC  
output 2.85 V (MB39C022J) 300 mA Max DC  
output 1.80 V (MB39C022L) 300 mA Max DC  
output 1.20 V (MB39C022N) 300 mA Max DC  
: 0.3 V (2.5%) (CH1)  
• Error amplifier threshold voltage  
• Fast line transient response with current mode topology (CH1)  
• PFM mode at light load current with VO1/VIN1 80% (IO1 10 mA) (CH1)  
• Power-on-reset with 66 ms delay (CH1)  
• Built-in short circuit protect (CH2)  
• Built-in over current protect (CH1, CH2)  
• Built-in thermal protection function  
• Small size plastic SON-10 (3 mm × 3 mm) package  
APPLICATIONS  
• Portable Equipment  
• PND, GPS  
• PMP  
• Mobile TV, USB-dongle (CMMB, DVB-T, DMB-T)  
• Smart-phone  
• MP3  
Copyright©2009 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2009.11  
MB39C022  
PIN ASSIGNMENT  
(TOP VIEW)  
GND1  
10  
LX  
9
VIN1  
EN1  
7
FB  
6
8
1
2
3
4
5
EN2  
VIN2  
VOUT2  
POR  
GND2  
(LCC-10P-M04)  
PIN DESCRIPTIONS  
Block  
CH1 (Buck DC/DC)  
CH2 (LDO)  
Pin No.  
Pin name  
I/O  
Descriptions  
6
9
FB  
LX  
I
CH1 Error Amplifier input pin  
CH1 Inductor connection pin  
CH2 LDO output pin  
O
O
I
3
VOUT2  
EN1  
7
CH1 Control pin (L : shutdown / H : operation)  
CH2 Control pin (L : shutdown / H : operation)  
CH1 Power supply pin  
Control  
1
EN2  
I
8
VIN1  
VIN2  
GND1  
GND2  
POR  
O
2
CH2 Power supply pin  
Power  
10  
5
CH1 Ground pin  
CH2 Ground pin  
Power-on Reset  
4
CH1 Power on reset output pin (NMOS open drain)  
2
DS04-27271-2E  
MB39C022  
I/O TERMINAL EQUIVALENT CIRCUIT DIAGRAM  
VIN1  
EN∗  
POR  
GND2  
GND2  
VIN1  
VIN1  
LX  
FB  
GND1  
GND2  
VIN2  
VOUT2  
GND2  
* : ESD Protection device  
DS04-27271-2E  
3
MB39C022  
BLOCK DIAGRAM  
<<CH1 Buck DC/DC>>  
VIN1  
LX  
Error  
Amp.  
6
8
9
FB  
IO1 (600 mA Max)  
VO1 (0.8 V to 4.5 V)  
ICOMP  
PFM  
PWM  
Logic  
DRV  
Control  
Current  
Limit  
LEVEL  
CONV.  
OSC  
GND1  
10  
VIN or VO1  
POR  
<<CH2: LDO>>  
VIN2  
2
3
Error  
Amp.  
4
VOUT2  
POR  
POR  
IO2 (300 mA Max)  
VO2  
3.3 V: MB39C022G  
2.85 V: MB39C022J  
1.8 V: MB39C022L  
1.2 V: MB39C022N  
OCP/SCP  
VIN  
GND2  
(2.5 V to 5.5 V)  
5
OTP  
VREF  
UVLO  
EN1  
EN2  
7
1
enb1 (H: CH1 ON)  
enb2 (H: CH2 ON)  
<<10 PIN>>  
4
DS04-27271-2E  
MB39C022  
FUNCTION DESCRIPTIONS  
(1) PFM/PWM Logic Control Block (CH1)  
The built-in P-ch and N-ch MOS FETs are controlled for synchronization rectification according to the frequency  
(2.0 MHz) oscillated from the built-in oscillator (square wave oscillation circuit). Under light load, it operates  
intermittently.  
This circuit protects the through current caused by synchronous rectification and the reverse current in  
Discontinuous Conduction Mode.  
Since the PWM control circuit of this IC is in the control method in current mode, the current peak value is  
monitored and controlled as required.  
(2) Level converter and Iout Comparator circuit (CH1)  
The Level converter circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch  
MOS FET. By comparing VIDET obtained through I-V conversion of peak current IPK of ILX with the Error Amp.  
output, the Iout Comparator turns off the built-in P-ch MOS FET via the PWM Logic Control circuit.  
(3) Error Amp. circuit (CH1)  
The error amplifier (Error Amp.) detects the output voltage from the DC/DC converter and output to the current  
comparators (ICOMP). The output voltage setting resistor externally connected to FB allows an arbitrary output  
voltage to be set.  
(4) LDO Block (CH2)  
The integrated low noise low dropout regulator (LDO) is available up to 300 mA current capability and 700 mA  
over current protection (OCP) 350 mA short circuit protection (SCP). The LDO output VOUT2 requires a 4.7 μF  
capacitor for MB39C022G and MB39C022N and a 1.0 μF capacitor for MB39C022J and MB39C022L for stability.  
MB39C022G, MB39C022J, MB39C022L and MB39C022N have fixed 3.3 V, 2.85 V, 1.8 V and 1.2 V output  
voltages respectively, eliminating the need for an external resistor divider.  
(5) POR Block  
The POR circuit monitors the VO1 through the FB pin voltage. When the FB pin voltage reaches 97% of VFBTH,  
POR pin becomes high level after the hold time of 66 ms. The POR pin is an open-drain output and pulled up  
to VIN or VO1 with an external resistor.  
Timing Chart : (POR pin pulled up to VIN with resistor)  
VUVLO  
VIN  
EN1  
VTH × 97%  
FB  
POR  
thold  
thold  
VUVLO : UVLO threshold voltage (VTLH = 2.050 V)  
VTH : FB pin threshold voltage (VTH = 0.3 V)  
DS04-27271-2E  
5
MB39C022  
(6) Reference Voltage Block (VREF)  
A high accuracy reference voltage is generated with BGR (bandgap reference) circuit.  
(7) Under Voltage Lockout Protection Circuit Block (UVLO)  
The circuit protects against IC malfunction and system destruction/deterioration in a transitional state or a  
momentary drop of when the internal reference voltage starts. It detects a voltage drop at the VIN1 pin and stops  
IC operation. When voltages at the VIN1 pin exceed the threshold voltage of the under voltage lockout protection  
circuit, the system is restored.  
(8) Over Temperature Protection Block (OTP)  
The circuit protects an IC from heat-destruction. If the junction temperature reaches 135 °C, the circuit turns off  
the CH1 and CH2 operation, When the junction temperature comes down to + 110 °C, the CH1 and CH2 are  
returned to the normal operation.  
(9) Control Block (CTL)  
• Control function table  
EN1  
L
EN2  
L
CH1 and POR  
CH2  
OFF  
OFF  
ON  
VREF, UVLO, OTP  
OFF  
ON  
OFF  
ON  
ON  
ON  
H
L
L
H
OFF  
ON  
H
H
ON  
6
DS04-27271-2E  
MB39C022  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
VIN1 pin  
Unit  
Max  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
VIN1  
VIN2  
VFB  
+ 6.0  
VIN1 + 0.3  
VIN1 + 0.3  
+ 6.0  
V
V
V
V
V
V
V
A
A
Power supply voltage  
VIN2 pin  
FB pin  
Input voltage  
VEN1  
VEN2  
VPOR  
VLX  
EN1 pin  
EN2 pin  
+ 6.0  
POR pull-up voltage  
LX voltage  
POR pin  
LX pin  
+ 6.0  
VIN1 + 0.3  
1.6  
LX peak current  
VOUT2 peak current  
ILX  
LX pin AC  
VOUT2 pin AC  
IO2  
0.8  
2632*1, *2  
980*1, *3  
Ta ≤ + 25 °C  
Power dissipation  
PD  
mW  
1053*1, *2, *4  
392*1, *3, *4  
+ 125  
Ta = + 85 °C  
Storage temperature  
TSTG  
55  
°C  
*1: When mounted on four layer epoxy board of 11.7 cm × 8.4 cm  
*2: At connect the exposure pad and with thermal via (Thermal via 4 pcs).  
*3: At connect the exposure pad and not thermal via.  
*4: Power dissipation value between + 25 °C and + 85 °C is obtained by connecting these two points with a straight  
line  
Notes: • The use of negative voltages below 0.3 V to the GND pin may create parasitic transistors on LSI lines,  
which can cause abnormal operation.  
• If LX terminal is short-circuited to VIN1 or VIN2 or GND line, there is a possibility to destroy it. Such usage  
is prohibit  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
DS04-27271-2E  
7
MB39C022  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
VIN1  
VIN2  
VFB  
VIN1 pin*1, *3, *4, *5  
VIN2 pin*2, *3  
FB pin  
Power supply voltage  
2.5  
3.7  
5.5  
V
0
0.30  
V
V
V
V
A
A
Input voltage  
VEN1  
VEN2  
VO1  
ILX  
EN1 pin  
5.5  
5.5  
4.5  
0.6  
0.3  
EN2 pin  
0
Output voltage  
Output current  
CH1 : Buck DC/DC*1, *5  
0.8  
LX pin DC  
IVOUT2 VOUT2 pin DC  
Operating ambient  
temperature  
Ta  
40  
+ 25  
+ 85  
°C  
*1 : The minimum VIN1 has to meet two conditions : VIN1 (VIN1 Min) and VIN1 VO1 + 0.5 V  
*2 : The minimum VIN2 has to meet two conditions : VIN2 (VIN2 Min) and VIN2 VO2 + Vdrop (VO2 and Vdrop  
values are specified in “ELECTRICAL CHARACTERISTICS”)  
*3 : VIN1 VIN2  
*4 : VIN1 startup rise time 1 ms is recommended  
*5 : PFM mode at light load current with VO1/VIN1 80% (IO1 10 mA)  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
on the data sheet. Users considering application outside the listed conditions are advised to contact  
their representatives beforehand.  
8
DS04-27271-2E  
MB39C022  
ELECTRICAL CHARACTERISTICS  
(Ta = + 25 °C, VIN1 = VIN2 = 3.7 V)  
Value  
Unit  
Sym-  
bol  
Parameter  
Pin No.  
Condition  
Min  
Typ  
0.3  
0
Max  
Threshold voltage  
Input Bias current  
VTH  
IFB  
6
6
FB pin  
2.5%  
100  
+ 2.5%  
+ 100  
V
FB = 0 V  
nA  
SW PMOS-Tr On  
resistor  
RPON  
RNON  
8,9  
ILX = − 100 mA  
0.35  
0.25  
Ω
Ω
CH1  
[ Buck  
DC/DC ]  
SW NMOS-Tr On  
resistor  
9,10 ILX = 100 mA  
Line regulation  
Load regulation  
Vline1  
VIN1 = 2.5 V to 5.5 V*1  
10  
10  
mV  
mV  
Vload1  
IO1 = 100 mA to 600 mA  
Over current  
protect  
ILIM1  
9
VOUT1 × 0.9  
0.9  
1.2  
1.5  
A
V
V
V
V
IO2 = 0 mA to 300 mA  
MB39C022G  
2.5% 3.30  
2.5% 2.85  
2.5% 1.80  
2.5% 1.20  
+ 2.5%  
+ 2.5%  
+ 2.5%  
+ 2.5%  
IO2 = 0 mA to 300 mA  
MB39C022J  
Output voltage  
VO2  
3
IO2 = 0 mA to 300 mA  
MB39C022L  
IO2 = 0 mA to 300 mA  
MB39C022N  
Line regulation  
Load regulation  
Vline2  
3
3
VIN2 = 2.5 V to 5.5 V*2  
IO2 = 0 mA to 300 mA  
10  
25  
mV  
mV  
Vload2  
IO2 = − 300 mA,  
Drop out voltage  
Vdrop  
3
VIN2 = VO2 :  
200  
mV  
MB39C022G, MB39C022J  
f = 1 kHz  
MB39C022G*3  
70*4  
70*4  
65*4  
65*4  
60*4  
60*4  
55*4  
55*4  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
CH2  
[ LDO ]  
f = 10 kHz  
f = 1 kHz  
MB39C022J*3  
f = 10 kHz  
Power supply  
rejection ratio  
PSRR  
3
f = 1 kHz  
MB39C022L*3  
f = 10 kHz  
f = 1 kHz  
MB39C022N*3  
f = 10 kHz  
Output noise  
voltage  
f = 10 Hz to 100 kHz,  
EN1 = 0 V  
Vnoise  
ILIM2  
3
3
3
55*4  
700  
350  
μVrms  
mA  
Over current  
protect  
VO2 × 0.9  
VO2 = 0 V  
500  
150  
980  
700  
Short circuit  
protect  
ISCP2  
mA  
(Continued)  
DS04-27271-2E  
9
MB39C022  
(Continued)  
(Ta = + 25 °C, VIN1 = VIN2 = 3.7 V)  
Value  
Unit  
Parameter  
Symbol Pin No.  
Condition  
fosc = 2 MHz  
Min  
52.8  
Typ  
66  
Max  
79.2  
0.1  
1
Hold time  
Thold  
VPOR  
IPOR  
4
4
4
ms  
V
Power On  
Reset  
[ POR ]  
Output voltage  
Output current  
POR = 250 μA  
POR = 5.5 V  
μA  
Under Voltage Threshold  
VTHL  
VH  
2, 8 VIN1  
1.95  
2.10  
0.20  
+ 135  
+ 25  
2.25  
V
Lockout  
voltage  
Protection  
Circuit Block  
[ UVLO ]  
Hysteresis  
width  
2, 8  
V
Over  
Stop  
TOTPH  
TOTPHYS  
°C  
°C  
Temperature temperature  
Protection  
Hysteresis  
width  
Block  
[ OTP ]  
Oscillator  
Output  
Block  
fosc  
9
1.6  
2.0  
2.4  
MHz  
frequency  
[ OSC ]  
VIH  
VIL  
1, 7 EN1, EN2 ON  
1, 7 EN1, EN2 OFF  
1, 7 EN1, EN2 = 0 V  
1.5  
0
0.4  
+ 100  
1
V
V
Input voltage  
Input current  
Control Block  
[CTL ]  
IEN  
100  
nA  
μA  
Shut down  
power supply  
current  
ICC1  
8
2
8
2
8
2
8
2
EN1, EN2 = 0 V  
EN1, EN2 = 0 V  
0
ICC1  
ICC2  
ICC2  
ICC3  
ICC3  
ICC4  
ICC4  
0
30  
0
1
μA  
Standby power  
supply current  
(DC/DC)  
60  
EN1 = VIN1, EN2 = 0 V  
IO1 = 0 mA, VFB = VIN1  
μA  
1
General  
Standby power  
supply current  
(LDO)  
10  
60  
0.9  
60  
18  
EN1 = 0 V, EN2 = VIN1  
IO2 = 0 mA  
μA  
120  
1.5  
120  
Power-on  
invalid  
current  
mA  
EN1, EN2 = VIN1,  
VFB = 0.2 V  
μA  
*1 : The minimum VIN1 has to meet two conditions : VIN1 (VIN1 Min) and VIN1 VO1 + 0.5 V  
*2 : The minimum VIN2 has to meet two conditions : VIN2 (VIN2 Min) and VIN2 VO2 + Vdrop (VO2 and Vdrop  
values are specified in “ELECTRICAL CHARACTERISTICS”)  
*3 : VIN2 = VO2 + 1 V, (MB39C022N: VIN2 = 2.5 V), IO2 = 100 mA  
*4 : This value is not be specified. This should be used as a reference to support designing the circuits.  
10  
DS04-27271-2E  
MB39C022  
TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS  
EN2  
EN2  
GND1  
LX  
C2  
VIN2  
VO1  
C4  
C5  
L1  
VO2  
VOUT2  
POR  
VIN1  
EN1  
FB  
VIN  
C1  
POR  
EN1  
R3  
R5  
R6  
C3  
GND2  
Component  
Item  
Specification  
Remarks  
C1  
C2  
C3  
C4  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
10 μF  
4.7 μF  
22 pF  
4.7 μF  
1 μF  
for MB39C022J, MB39C022L  
for MB39C022G, MB39C022N  
C5  
Ceramic capacitor  
4.7 μF  
2.2 μH  
1 MΩ  
L1  
R3  
R5  
R6  
Inductor  
Resistor  
Resistor  
Resistor  
600 kΩ  
200 kΩ  
at VO1 = 1.2 V*  
* : The output voltage of VO1 can be adjusted by the external resistor divider R5.  
(R5 + R6)  
(600 kΩ + 200 kΩ)  
200 kΩ  
VO1 = Vref ×  
= 0.3 V ×  
= 1.2 V  
R6  
DS04-27271-2E  
11  
MB39C022  
APPLICATION NOTES  
[1] Selection of components  
Selection of an external inductor for DC/DC  
This IC is designed to operate well with a 2.2 μH inductor. Choosing larger values would lead to larger overshoot/  
undershoot during load transient. Choosing a smaller value would lead to larger ripple voltage.  
The inductor should be rated for a saturation current higher than the LX peak current value during normal  
operating conditions, and should have a minimal DC resistance. (100 mΩ or less is recommended to improve  
efficiency.)  
LX peak current value IPK is obtained by the following formula.  
VIN VOUT  
D
1
2
(VIN VOUT) × VOUT  
2 × L × fosc × VIN  
IPK = IOUT +  
×
×
= IOUT +  
L
fosc  
L
: External inductor value  
IOUT : Load current (DC)  
VIN : Power supply voltage  
VOUT : Output setting voltage  
: ON- duty to be switched ( = VOUT/VIN)  
fosc : Switching frequency (2.0 MHz)  
D
ex) At VIN = 3.7 V, VOUT = 1.2 V, IOUT = 0.6 A, L = 2.2 μH, fosc = 2.0 MHz  
The maximum peak current value IPK;  
(VIN VOUT) × VOUT  
(3.7 V 1.2 V) × 1.2 V  
IPK = IOUT +  
= 0.6 A +  
= 0.69 A  
2 × L × fosc × VIN  
2 × 2.2 μH × 2 MHz × 3.7 V  
I/O capacitor selection  
• DC/DC's output capacitor's finite equivalent series resistance (ESR) causes ripple voltages on output equal  
to the amount of current variation multiplied by the ESR value. The output capacitor value also has a significant  
impact on the operating stability of the device when used as a DC/DC converter. Therefore, FUJITSU  
MICROELECTRONICS generally recommends C2 = 4.7 μF as DC/DC output capacitor, or a larger capacitor  
value can be used if ripple voltages are not suitable.  
• For DC/DC, select a low ESR for the VIN1/VIN2 input capacitor to suppress dissipation from ripple currents.  
In addition, to reduce startup overshoot for DC/DC and LDO, it is recommended that larger ceramic capacitor  
be used for input capacitors C1 and C4. Recommended values are C1 = 10 μF, C4 = 4.7 μF.  
Types of capacitors  
Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However,  
power supply functions as a heat generator, therefore avoid using capacitor with the F-temperature rating  
( 80% to + 20%). FUJITSU MICROELECTRONICS recommends capacitors with the B-temperature rating  
(
10% to 20%).  
Normal electrolytic capacitors are not recommended due to their high ESR.  
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when  
damaged. If you insist on using a tantalum capacitor, FUJITSU MICROELECTRONICS recommends the type  
with an internal fuse.  
12  
DS04-27271-2E  
MB39C022  
[2] DC/DC Output voltage setting  
The output voltage VO1 of this IC is defined by the external resistive divider R5 & R6. Note that C3 is a capacitor  
used for improving stability. Use a 22 pF cap for C3 should be suitable in all cases.  
R5 + R6  
600 kΩ + 200 kΩ  
200 kΩ  
VO1 = Vref ×  
= 0.3 V ×  
= 1.2 V  
R6  
VO1  
MB39C022  
C3  
R5  
6
FB  
Vref  
(0.3 V)  
-
R6  
+
[3] Power On Reset (POR)  
R3 and R4 are the pull-up resistors for POR (Pin 4). A 1 MΩ resistor is required to placed at either R3 or R4.  
When R3 has a 1 MΩ resistor and R4 is open; the POR will be connected VIN. When R4 has a 1 MΩ resistor  
and R3 is open; the POR pin will be connected to VO1.  
By default, only R3 require a 1 MΩ resistor while R4 is open.  
DS04-27271-2E  
13  
MB39C022  
[4] Power dissipation and heat considerations  
The DC/DC is so efficient that no consideration is required in most cases. The LDO, on the other hand, would  
be the dominant heat generator due to its inherent efficiency loss. Thus, if the IC is used at a high power supply  
voltage, heavy load, and low LDO output voltage, or high temperature, it requires further consideration.  
The internal loss (Pc) is roughly obtained from the following formula :  
2
PC = PC1 + PC2 = IO1 × (RDC + D × RONP + (1 D) × RONN) + IO2 × Vdrop  
PC1  
PC2  
RDC  
D
: DC/DC continuity loss  
: LDO continuity loss  
: External inductor series resistance ( < 100 mΩ recommended)  
: Switching ON-duty cycle ( = VOUT / VIN)  
: Internal P-ch SW FET ON resistance  
: Internal N-ch SW FET ON resistance  
: DC/DC Load current  
RONP  
RONN  
IO1  
IO2  
: LDO Load current  
Vdrop  
: LDO Dropout voltage  
The loss expressed by the above formula is continuity loss. The internal loss includes the switching loss and the  
control circuit loss as well but they are so small compared to the continuity loss they can be ignored.  
For PC1, consider the scenario with high temperature and heavy load (VIN = 3.7 V, VO1 = 1.2 V, IO1 = 0.6 A, Ta =  
+ 70 °C). Here, RONP =: 0.4 Ω and RONN =: 0.3 Ω according to the graph “MOS FET ON resistance vs. Operating  
ambient temperature”. PC1 = 156 mW.  
For PC2, consider the scenario with low output voltage (MB39C022N), high temperature and heavy load  
(VIN = 3.7 V, VO2 = 1.2 V, IO2 = 0.3 A, Ta = + 70 °C). Here, PC2 = 0.75 W. Note that PC2 >> PC1.  
According to the graph “Power dissipation vs. Operating ambient temperature”, the maximum permissible power  
dissipation at an operating ambient temperature Ta of + 70 °C is 1.4 W. The internal loss is lower than the  
maximum permissible power dissipation.  
14  
DS04-27271-2E  
MB39C022  
[5] Board layout, design example  
Some basic design guidelines should be used when physically placing the MB39C022 on a Printed Circuit Board  
(PCB).  
• Regarding to GND pattern of PCB layout of MB39C022, It needs to separate like AGND (analog ground) and  
PGND (power ground). By separating grounds, it is possible to minimize the switching frequency noise on the  
LDO output.  
• Arrange the input capacitor C1 and C4 as close as possible between VIN1 & PGND pins and VIN2 & AGND  
pins. Make a through hole near the pins of this capacitor if the board has planes for power and GND.  
• Large AC currents flow between this IC and the input capacitor (C1), output capacitor (C2), and external  
inductor (L1). Group these components as close as possible to this IC to reduce the overall loop area occupied  
by this group. Also try to mount these components on the same surface and arrange wiring without through  
hole wiring. Use thick, short, and straight routes to wire the net (The layout by planes is recommended.).  
• The C1 and C2 capacitor returns are connected closely together at the PGND plane.  
• The LDO input capacitor (C4) and LDO output capacitor (C5) are returned to the AGND plane.  
• The analog ground plane and power ground plane are connected at one point.  
• All other signals (EN1, EN2, FB) should be referenced to AGND and have the AGND plane underneath them.  
• The feedback wiring to the VO1 and the VO1 pin should be wired closest to the output capacitor (C2). The  
resistive divider and FB pin is extremely sensitive and should thus be kept wired away from the LX pin of this  
IC as far as possible.  
Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation when  
using the SON-10 package, FUJITSU MICROELECTRONICS recommends providing a thermal via in the  
footprint of the thermal pad.  
Layout Example of IC components  
PGND  
Plane  
VO1  
L1  
PGND  
C2  
AGND Plane  
C4  
VVIINN22  
PGND  
AGND  
CC11  
C5  
VIN1  
VVOO22  
RR66  
R5  
DS04-27271-2E  
15  
MB39C022  
EXAMPLE OF STANDARD OPERATION CHARACTERISTICS  
(Shown below is an example of characteristics for connection according to “TEST CIRCUIT FOR MEASURING  
TYPICAL OPERATING CHARACTERISTICS”.)  
(1) DC/DC Conversion Efficiency  
CH1 Test Condition :  
EN1 = VIN; EN2 = 0 V  
VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 5.5 V  
0.001  
0.01  
0.1  
1
Load Current IO1 (A)  
(2) DC/DC Load Regulation  
CH1 Test Condition :  
EN1 = VIN; EN2 = 0 V  
VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF  
1.3  
1.28  
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 5.5 V  
1.26  
1.24  
1.22  
1.2  
1.18  
1.16  
1.14  
1.12  
1.1  
0
0.2  
0.4  
0.6  
Load Current IO1 (A)  
16  
DS04-27271-2E  
MB39C022  
(3) DC/DC Line Regulation  
CH1 Test Condition :  
EN1 = VIN; EN2 = 0 V  
VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
IO1 = 0 mA  
IO1 = 300 mA  
IO1 = 600 mA  
1.18  
1.16  
1.14  
1.12  
1.1  
3.2  
3.7  
4.2  
4.7  
5.2  
Input Voltage VIN (V)  
(4) DC/DC Switching Waveform  
CH1 Test Condition :  
EN1 = EN2 = VIN = 3.7 V;  
VO1 = 1.8 V; IO1 = 250 mA; C1 = 10 μF; C2 = 4.7 μF  
VO2 = 3.3 V; IO2 = 150 mA; C4 = C5 = 4.7 μF  
VLx  
5 V/div  
ILx  
100 mA/div  
VO1  
20 mV/div  
VO2  
20 mV/div  
500 ns/div  
DS04-27271-2E  
17  
MB39C022  
(5) LDO Load Regulation  
MB39C022G CH2 Test Condition :  
EN2 = VIN; EN1 = 0 V  
VO2 = 3.3 V; C4 = C5 = 4.7 μF  
3.4  
VIN = 3.7 V  
3.38  
VIN = 4.3 V  
3.36  
VIN = 5.5 V  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
3.22  
3.2  
0.25  
0
0.05  
0.1  
0.15  
0.2  
0.3  
Load Current IO2 (A)  
(6) LDO Line Regulation  
MB39C022G CH2 Test Condition :  
EN2 = VIN; EN1 = 0 V  
VO2 = 3.3 V; C4 = C5 = 4.7 μF  
3.4  
3.38  
IO2 = 0 mA  
3.36  
3.34  
3.32  
3.3  
IO2 = 120 mA  
IO2 = 300 mA  
3.28  
3.26  
3.24  
3.22  
3.2  
3.6  
4.1  
4.6  
5.1  
Input Voltage VIN (V)  
18  
DS04-27271-2E  
MB39C022  
(7) LDO Power Supply Rejection Ratio  
MB39C022G CH2 Test Condition :  
EN2 = VIN = 3.7 V; EN1 = 0 V  
VO2 = 3.3 V; IO2 = 100 mA; C1 = C4 = 0 μF  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
VIN = 3.7 V  
VIN = 4.3 V  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
(8) DC/DC Load Transient Waveforms  
Test Condition :  
VIN = EN1 = EN2 = 3.7 V; VO1 = 1.2 V; C1 = 10 μF; C2 = 4.7 μF; VO2 = 3.3 V; C4 = C5 = 4.7 μF  
T
IO1 = 10 mA to 400 mA  
IO1  
500 mA/div  
VO1  
100 mV/div  
VO2  
IO2 = 150 mA  
20 mV/div  
100 μs/div  
CH1 Load Transient Waveforms  
DS04-27271-2E  
19  
MB39C022  
(9) DC/DC Power MOS FET ON Resistance  
P-ch MOS FET ON Resistance vs.  
Operating Ambient Temperature  
MOS FET ON Resistance vs. Input Voltage  
0.6  
0.5  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
P-ch  
V
IN = 3.7 V  
0.4  
0.3  
0.2  
N-ch  
V
IN = 5.5 V  
0.1  
0.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-50  
0
50  
100  
Input voltage VIN (V)  
Operating Ambient Temperature Ta ( °C)  
N-ch MOS FET ON Resistance vs.  
Operating Ambient Temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
IN = 3.7 V  
V
IN = 5.5 V  
-50  
0
50  
100  
Operating Ambient Temperature Ta ( °C)  
20  
DS04-27271-2E  
MB39C022  
Permissible Power Dissipation vs. Operating Ambient Temperature  
3000  
2630  
2500  
2000  
1500  
1000  
500  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Operating Ambient Temperature Ta ( °C)  
DS04-27271-2E  
21  
MB39C022  
APPLICATION CIRCUITS EXAMPLES  
EXAMPLE 1 (VIN1 = VIN2)  
VIN1 and VIN2 are connected together and POR is pulled up to VIN  
(MB39C022)  
EN2  
EN2  
GND1  
LX  
C2  
VO1  
VIN2  
IO1 600 mA  
C4  
C5  
L1  
VO2  
IO2 300 mA  
VOUT2  
POR  
VIN1  
EN1  
FB  
VIN  
C1  
POR  
EN1  
R3  
R6  
R5  
C3  
GND2  
EXAMPLE 2 (VIN2 = VO1)  
• VIN2 is connected to VO1 and POR is pulled up to VIN  
• It is possible to maximize LDO efficiency by connecting DC/DC Output to LDO supply.  
• Maximum DC/DC output current ( = IO1) is limited by VIN2 input current (=: IO2)  
(MB39C022)  
EN2  
EN2  
GND1  
LX  
C2  
VO1  
VIN2  
IO1 600 mA - IO2  
C4  
C5  
L1  
VO2  
VOUT2  
POR  
VIN1  
EN1  
FB  
IO2 300 mA  
VIN  
C1  
POR  
EN1  
R3  
R6  
C3  
GND2  
R5  
22  
DS04-27271-2E  
MB39C022  
EXAMPLE 3 (POR and RC delay channel control)  
• EN1 is controlled by RC delay and EN2 is controlled by POR output.  
• It is possible to control each channel without signal from MCU  
R3  
(MB39C022)  
EN2  
GND1  
LX  
C2  
VO1  
VIN2  
IO1 600 mA  
C4  
C5  
L1  
VO2  
IO2 300 mA  
VOUT2  
POR  
VIN1  
EN1  
FB  
VIN  
C1  
100 kΩ  
POR  
1 μF  
R5  
R6  
C3  
GND2  
Timing chart  
VIN  
VUVLO  
Vth(POR)  
VO1  
(1.2 V)  
VO2  
tc  
td  
(1.8 V)  
ta  
tb  
Start up control  
ta : RC delay time (28 ms at VIN = 3.7 V, R = 100 kΩ, C = 1 μF)  
tb : POR hold time (66 ms fixed)  
Power down control  
tc, td : depend on internal discharge path and output loading  
DS04-27271-2E  
23  
MB39C022  
USAGE PRECAUTIONS  
1. Never use setting exceeding maximum rated conditions.  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
2. Use the devices within recommended conditions  
It is recommended that devices be operated within recommended conditions.  
Exceeding the recommended operating condition may adversely affect devices reliability.  
Nominalelectricalcharacteristicsarewarrantedwithintherangeofrecommendedoperatingconditionsotherwise  
specified on each parameter in the section of electrical characteristics.  
3. Design the ground line on printed circuit boards with consideration of common impedance.  
4. Take appropriate measures against static electricity.  
The LX pin has less built-in ESD protection than other pins.  
LX pin : 150 V (MM), 1500 V (HBM), Other pins : 200 V (MM), 2000 V (HBM)  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.  
5. Do not apply negative voltages  
The use of negative voltages below 0.3 V may activate parasitic transistors on the device, which can cause  
abnormal operation.  
24  
DS04-27271-2E  
MB39C022  
ORDERING INFORMATION  
Part number  
MB39C022GPN  
MB39C022JPN  
Package  
Remarks  
10-pin plastic SON  
(LCC-10P-M04)  
MB39C022LPN  
MB39C022NPN  
DS04-27271-2E  
25  
MB39C022  
RoHS COMPLIANCE INFORMATION OF LEAD(Pb) FREE VERSION  
The LSI products of FUJITSU MICROELECTRONICS with “E1” are compliant with RoHS Directive, and has  
observed the standard of lead, cadmium, mercury, chromium, polybrominated biphenyls (PBB), and polybromi-  
nated diphenylethers (PBDE).  
A product whose part number has trailing characters “E1” is RoHS compliant.  
26  
DS04-27271-2E  
MB39C022  
PACKAGE DIMENSION  
10-pin plastic SON  
Lead pitch  
0.50 mm  
3.00 mm × 3.00 mm  
Plastic mold  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
0.75 mm MAX  
0.018 g  
(LCC-10P-M04)  
10-pin plastic SON  
(LCC-10P-M04)  
3.00±0.10  
(.118±.004)  
2.40±0.10  
(.094±.004)  
10  
6
INDEX AREA  
1.70±0.10  
(.067±.004)  
3.00±0.10  
(.118±.004)  
0.40±0.10  
(.016±.004)  
1
5
1PIN CORNER  
(C0.30(C.012))  
0.50(.020)  
TYP  
0.25±0.03  
(.010±.001)  
0.75(.030)  
MAX  
0.15(.006)  
0.05(.002)  
0.00 +00..0005  
+.002  
(.000  
)
–.000  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2008 FUJITSU MICROELECTRONICS LIMITED C10004S-c-1-2  
Please check the latest package dimension at the following URL.  
http://edevice.fujitsu.com/package/en-search/  
DS04-27271-2E  
27  
MB39C022  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,  
Shinjuku-ku, Tokyo 163-0722, Japan  
Tel: +81-3-5322-3329  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://www.fmal.fujitsu.com/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm. 3102, Bund Center, No.222 Yan An Road (E),  
Shanghai 200002, China  
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
Korea  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fmc/en/  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fmk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to  
the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear  
facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon  
system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB39C022NPN

Buck DC/DC Converter Low Noise LDO
CYPRESS

MB39C022NPNE1

1.6A SWITCHING REGULATOR, 2400kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SON-10
FUJITSU

MB39C031

2ch Buck DC/DC Converter 1ch LDO with I2C Interface and SW FET
CYPRESS

MB39C308

6ch DC/DC Converter IC for LPIA Platform VR
FUJITSU

MB39C308BGF

6ch DC/DC Converter IC for LPIA Platform VR
FUJITSU

MB39C308BGF-E1

Switching Regulator, Current-mode, 4.5A, 840kHz Switching Freq-Max, PBGA208, 9 X 9 MM, 1.30 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, FBGA-208
FUJITSU

MB39C308EVB-11

6ch DC/DC Converter IC for LPIA Platform VR
FUJITSU

MB39C313

4ch System Power Management IC for LCD Panel
FUJITSU

MB39C313APFTH-E1

Power Management Circuit, PDSO28,
CYPRESS

MB39C313EVB-01

4ch System Power Management IC for LCD Panel
FUJITSU

MB39C313PFTH

4ch System Power Management IC for LCD Panel
FUJITSU

MB39C313PFTH-E1

Power Supply Support Circuit, Fixed, 4 Channel, PDSO28, 4.40 X 9.70 MM, 0.65 MM PITCH, 1.20 MM HEIGHT, ROHS COMPLIANT, PLASTIC, TSSOP-28
CYPRESS