MB42M001PV [FUJITSU]

Analog Circuit, 1 Func, LCC-20;
MB42M001PV
型号: MB42M001PV
厂家: FUJITSU    FUJITSU
描述:

Analog Circuit, 1 Func, LCC-20

文件: 总52页 (文件大小:2780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04–29135–1E  
ASSP  
3ch Capacitive Sensor IC with Internal Non-volatile Memory  
3ch Sensor Conditioner IC  
MB42M001  
DESCRIPTION  
The MB42M001 IC converts changes in the capacitance of a capacitive sensor into changes in the output  
voltage.  
The IC integrates a C-V (Capacitance - Voltage) converter circuit, a voltage amplifier, and a regulator circuit  
and can be adjusted to provide an optimal match with the characteristics of the sensor. The adjustment  
circuit can be controlled externally via a serial interface and the adjustment data can be stored in internal  
non-volatile memory. The IC supports up to three capacitive sensor channels, each of which can be  
adjusted independently.  
APPLICATION  
• Detection of capacitance changes in capacitive sensors  
• 3-axis capacitive acceleration sensors  
• Capacitive pressure sensors  
FEATURES  
• Convert and amplify the changes in the capacitance of a capacitive sensor and output this as an analog  
voltage  
• Can connect up to three capacitive sensor channels  
• Sensor capacitance tolerance: 0 pF to 100 pF(depends on sensitivity setting in IC)  
• Sensor capacitance detection tolerance: 0.05 V/pF to 100 V/pF  
• The C-V conversion gain and offset adjustment can be set via the serial interface  
• Internal non-volatile flash memory (1280 bit) can store the gain and offset adjustment for the C-V  
conversion circuit  
• The temperature characteristics of the sensor can be corrected by adjusting the offset which incorporates  
a temperature coefficient  
• Includes a shutdown function  
• Supply voltage: VDD = 2.7 V to 5.5 V  
• Power supply current in 3ch mode: IDD (normal) = 280 µA@VDD = 3 V, 1ch mode: IDD (normal) =  
220 µA@VDD = 3 V  
Copyright©2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2008.12  
MB42M001  
PIN ASSIGNMENT  
• Package: BCC-32  
(TOP VIEW)  
24 23 22 21 20 19 18  
25  
26  
17  
16  
SIN1C  
SIN2C  
AGND2  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
VOUT_B  
VOUT_C  
VDD  
27  
28  
29  
30  
31  
32  
15  
14  
13  
12  
11  
10  
AGND1  
VREF  
VFA  
SD  
9
VDD_M  
1
2
3
4
5
6
7
8
(LCC-32P-M08)  
Pin  
Pin  
No.  
Pin Name  
Pin Description  
Pin Name  
Pin Description  
No.  
17  
18  
19  
20  
21  
1
TEST_ME Pin for IC shipping test  
TEST_MV Pin for IC shipping test  
VOUT_A A channel output pin  
2
FLT2B  
FLT2A  
B channel output filter 2  
A channel output filter 2  
A channel output filter 1  
B channel output filter 1  
3
CS  
CLK  
DIN  
Serial I/F chip select  
Serial I/F clock input  
Serial I/F data input  
4
FLT1A  
FLT1B  
FLT1C/  
VSRV  
5
6
DOUT  
Serial I/F data output  
22  
23  
C channel output filter 1/VSRV  
7
ALARM Monitor I/O  
VMT Monitor I/O  
VDD_M Powersupplypinformemory  
FLT2C  
C channel output filter 2  
8
24 SIN_COM COM (common) pin of capacitance sensor  
9
25  
26  
27  
28  
29  
30  
31  
32  
SIN1C  
SIN2C  
C channel sensor connection pin  
C channel sensor connection pin  
10  
11  
12  
13  
14  
SD  
VFA  
Shutdown input  
Regulator output  
AGND2 Analog GND pin  
VREF  
Reference voltage output  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
A channel sensor connection pin  
AGND1 Analog GND pin  
VDD Power supply pin  
A channel sensor connection pin  
Digital GND pin  
15 VOUT_C C channel output pin  
16 VOUT_B B channel output pin  
B channel sensor connection pin  
B channel sensor connection pin  
2
DS04–29135–1E  
MB42M001  
DESCRIPTION OF PIN FUNCTIONS  
1. Power Supply Pins  
Pin Name  
I/O  
Description of Pin Function  
VDD is a power supply pin.  
I/O Equivalent Circuit  
VDD_M is a power supply pin for memory.  
• Connect a power supply stabilization capacitor  
close to the IC pin(chip capacitor 1 µF or more).  
[Normal operation]  
Power supply  
VDD_M  
To memory  
circuitpower  
supply  
VDD_M  
(2.7 V to 5.5 V)  
Power  
VDD,  
VDD  
IC  
VDD_M  
supply pins  
To analog  
circuitpower  
supply  
VDD  
[When writing to memory]  
Power supply 5.0 V  
VDD_M  
Power supply (2.7 V to 5.5 V)  
VDD  
IC  
AGND1 and AGND2 are the analog GND pins.  
DGND is the digital GND pin.  
AGND1,  
AGND2,  
DGND  
GND pins  
In the connection to the external power supply,  
connect all GND pin to a common point.  
2. Reference Voltage Source, Regulator Pin  
Pin Name  
I/O  
Description of Pin Function  
I/O Equivalent Circuit  
Capacitor connection pin for the regulator for the  
IC internal circuit.  
VDD (2.7 V to 5.5 V)  
• Connect a capacitor (1 µF or more  
recommended) between the VFA pin and GND  
to stabilize the voltage. Use a ceramic capacitor  
and connect close to the VFA pin.  
To analog  
output pin  
VFA  
VFA  
• The VFA voltage is used as the power supply  
for the internal circuits in the IC (VFA = 2.6 V to  
2.87 V).  
VFA  
Capacitor connection pin for the reference  
voltage for analog circuits.  
VDD / VFA  
Connect a capacitor (1 µF or more  
recommended) between VREF pin and GND to  
stabilize the voltage. Use a ceramic capacitor  
and connect close to the VREF pin.  
To analog  
output pin  
VREF  
VREF  
VREF  
DS04–29135–1E  
3
MB42M001  
3. Pins for Connecting Sensor Element  
Pin Name  
I/O  
Description of Pin Function  
I/O Equivalent Circuit  
These pins connect to the sensor elements.  
1) SIN1A/SIN2A: connection pin for A channel  
2) SIN1B/SIN2B: connection pin for B channel  
3) SIN1C/SIN2C: connection pin for C channel  
VDD / VFA  
SIN1A,  
SIN2A,  
SIN1B,  
SIN2B,  
SIN1C,  
SIN2C  
To analog When the capacitances are such that  
SINxx  
I/O pin  
SIN1x>SIN2x, the output voltage becomes  
positive. (The capacitance is the total  
capacitance internal and external to the IC.)  
Note: Take care to prevent any DC path from the  
SINxx pins. This excludes the case when  
the CV amplifier is in V mode.  
These pins connect to the sensor elements.  
1) When the CV amplifier is operating in C mode  
Connect to the COM (common) pin of the pair  
capacitance sensor. Install a GND shield  
between the SIN_COM pin and SINxx pins if  
possible.  
VDD / VFA  
To analog  
input pin  
SIN_COM  
SIN_COM  
2) Leave open circuit when the CV amplifier is  
operating in V or T mode.  
4. Filter Pins  
Pin Name  
I/O  
Description of Pin Function  
I/O Equivalent Circuit  
These pins connect to the low pass filter  
capacitors.  
1) FLT1A and FLT2A are the connection pins for  
A channel.  
2) FLT1B and FLT2B are the connection pins for  
B channel.  
VFA VDD  
FLT1A,  
FLT2A  
Amp3  
FLT2x  
FLT1x  
Approx.  
110 kΩ  
Approx.  
110 kΩ  
To analog  
output pin  
3) FLT2C is the connection pin for C channel.  
FLT1B,  
FLT2B  
Notes : Connect a capacitance (4.7 nF or more)  
to FLT2x.  
FLT2C  
Amp2  
Connect to FLT1x if needed.  
Example : CFLT1 = 10 nF , CFLT2 = 15 nF  
The function of the FLT1C/VSRV pin is selected  
by the SRV register setting.  
VFA VDD  
Amp3  
FLT2C  
[Function 1 : FLT1C]  
Connect the low pass filter capacitor used for the  
C channel filter.  
FLT1C/  
VSRV  
To analog  
output pin  
Amp2  
FLT1C/  
VSRV  
[Function 2 : VSRV]  
Connect a capacitor (1 µF or more) between the  
AGND pins to stabilize the VSRV voltage which  
uses SRV to bias the CV amplifier.  
VSRV  
4
DS04–29135–1E  
MB42M001  
5. Serial Interface and Shutdown Pins  
Pin Name  
I/O  
Description of Pin Function  
I/O Equivalent Circuit  
Chip select for the serial interface  
• CMOS digital input pin  
VDD  
• With pull-down resistor (250 ktypical)  
• CS = “H”: Enables communication  
• CS = “L”: Disables communication. The DOUT  
pin output goes to “Z”.  
Digital  
input pin  
CS  
CS  
Clock input for the serial interface  
• CMOS digital input pin  
VDD  
• With pull-down resistor (120 ktypical)  
Digital  
input pin  
CLK  
DIN  
CLK  
Data input for the serial interface  
• CMOS digital input pin  
• With pull-down resistor (approx. 500 k)  
VDD  
Digital  
input pin  
DIN  
Data output for the serial interface  
VDD  
1) Tri-state CMOS digital output pin  
When the CS pin is “L”, the DOUT output goes  
to “Z”.  
Digital  
DOUT  
DOUT output pin  
(Tri-state)  
2) Outputs the busy state during serial  
communications or while the sequencer inside  
IC is operating (Normal is Low, busy state is  
High).  
3) Outputs flash memory data.  
Shutdown pin  
• CMOS input pin, no pull-down resistor.  
VDD  
4 types of mode can be selected by combination  
of the SD, DIN and CS pins.  
SD  
For detail, see “POWER-ON AND SHUTDOWN  
FUNCTIONS 4 Operation modes specified by the  
SD pin and serial interface input pins”.  
Digital  
SD  
input pin  
Note: Notation used for logic levels  
“H” : CMOS logical “High” (VDD voltage level), “L”: CMOS logical “Low” (GND voltage level)  
“Z” : High impedance (1 Mor more)  
DS04–29135–1E  
5
MB42M001  
6. Amplifier Output Pins  
Pin Name  
I/O  
Description of Pin Function  
I/O Equivalent Circuit  
Output pins of the sensor conditioner IC.  
VDD  
1) VOUT_A: output pin for A channel  
2) VOUT_B: output pin for B channel  
3) VOUT_C: output pin for C channel  
VOUT_A,  
VOUT_B,  
VOUT_C  
Analog  
output pin  
VOUT_x  
7. Voltage Monitor/Test Pins  
Pin Name  
I/O  
Description of Pin Function  
Voltage monitor pin  
I/O Equivalent Circuit  
IC internal voltages can be monitored by setting  
the AMT register. By backing up the AMT register  
setting in flash memory, the voltage can be  
output from the VMT pin permanently. For  
example, you can output the internal temperature  
sensor voltage or internal reference voltage.  
Normally  
used as an  
analog  
VDD  
output pin  
VMT  
VMT  
Used as an  
analog/  
digital I/O  
pin during  
testing  
Notes: The VMT pin has no output drive  
capability. Since the voltage may vary  
depending on the load resistance,  
provide a load of 500 kor more if the  
voltage precision is needed.  
Although this pin can be set as a test  
input pin by setting the TMR register,  
please do not use this function.  
Alarm detection output pin  
Outputs Low ( = 0 V) when no alarm exists, and  
High ( = VDD) during sequence operation or  
when an alarm is detected.  
• When SD = H, the ALARM output is preset to  
“H”.  
Normally  
used as a  
digital  
VDD  
output pin  
ALARM  
• An alarm is detected if a CRC error occurs  
when writing to flash memory or an error occurs  
when transferring data from memory to  
registers.  
ALARM  
Used as an  
analog/  
digital I/O  
pin during  
testing  
Note : Although this pin can be set as a test input  
pin by setting the TMR register, please do  
not use this function.  
Test pins for flash memory.  
Connect to GND or leave open circuit.  
TEST_MV, Analog/  
TEST_ME, digitalinput  
TEST_MN pin  
TEST_Mx  
Note: There is no package pin that corresponds  
to the TEST_MN terminal (TEST_MN is a  
pad on the IC chip only).  
6
DS04–29135–1E  
MB42M001  
BLOCK DIAGRAM  
Note: The TEST_MN terminal can use only wafer (chip) product.  
DS04–29135–1E  
7
MB42M001  
Block Description  
• CV-Amp / Drv (capacitance-voltage conversion amplifier)  
CV-Amp is an amplifier that converts capacitance changes to a voltage. Drv is a drive circuit used to provide  
voltage pulses to capacitance sensor elements. The conversion gain is expresed as V/pF and is defined as  
the conversion of the change in capacitance at input pin SINxx to a change in voltage.  
(1 V/pF value of 1 indicates that an output of 1 V represents a capacitance change C = 1pF.)  
The CVA, COF, and CVM registers specify the detection sensitivity and range adjustments for the CV-Amp.  
• Amp1 (Amplifier1)  
• Voltage amplifier for the CV-Amp output signal.  
• The VGA1 register adjusts the Amp1 gain and the VOF1 register adjusts the offset prior to the Amp1 input.  
• Amp2 (Amplifier2)  
• A buffer amplifier. (Gain × 2)  
• The VOF2 register adjusts the offset after the Amp2 output. The TOF register adjusts the temperature  
characteristics of the Amp2 output offset.  
• Amp3 (Amplifier3)  
• An output amplifier. (Gain × 7)  
• The FLT1x and FLT2x pins on the Amp3 input are provided to connect the capacitor for a low pass filter.  
• VREG, VBGR, VTMP, VREF (bias circuit)  
• VREG outputs the VFA voltage from the internal regulator circuit in the IC.  
• VBGR, VTMP, and VREF are reference voltage sources in the IC. The voltages are adjusted by the TREF  
and VREF registers.  
• Monitor/TEST (Monitor/Test circuit)  
• A test circuit used to monitor voltages in the IC.  
• The AMT register is used to select and test the voltage to monitor.  
• OSC (Internal oscillator circuit)  
• An oscillator circuit for the CV-Amp and digital circuits.  
• POR (Power-on reset)  
• A power-on reset circuit.The internal circuits are reset at power-on or via the SD pin.  
• Digital I/F, Test (Serial interface, memory circuit test)  
• There include testing of the digital circuits for the serial interface, access circuits for the internal IC  
registers and non-volatile memory, and digital circuits.  
• E2PROM (Flash Memory)  
• Small non-volatile memory. Used to store the adjusted register data.  
8
DS04–29135–1E  
MB42M001  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Typ  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min  
Max  
Power supply voltage  
VDD  
VDD = VDD_M  
0.3  
+ 6  
V
V
VDD + 0.3  
and  
5.7 V  
Pinsbelongingtothe  
PinVDD applied  
voltage pin group  
VIO5  
0.3  
Pin voltage  
VFA is the voltage  
for the internal  
regulator in the IC  
(approx. 2.5V to 3 V)  
VFA + 0.5  
and  
Pins belonging to  
the PinVFA applied  
voltage pin group  
VIO3  
0.3  
V
4.0 V  
Output current  
IIO  
5  
+ 5  
mA  
Storage temperature  
TST  
55  
+ 125  
°C  
Operating  
temperature  
TOP  
40  
+ 85  
°C  
[Pin group: PinVDD]  
VOUT_A, VOUT_B, VOUT_C, VMT, ALARM, SD, CS, CLK, DIN, DOUT, TEST_MV, TEST_ME  
[Pin group: PinVFA]  
VFA, FLT1A. FLT2A. FLT1B, FLT2B, FLT2C, FLT1C/VSRV, VREF, SIN_COM, SIN1A, SIN2A, SIN1B, SIN2B,  
SIN1C, SIN2C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Condition  
VDD = VDD_M  
Unit  
Remarks  
Min  
Typ  
Max  
VDD  
2.7  
3.3  
5.5  
V
V
Power supply  
voltage  
VDD_M pin voltage for flash  
memory programming  
VDDM  
4.5  
5
5.5  
External serial  
interface clock  
fCLK  
100  
300  
kHz  
No. of flash  
memory rewrites  
VDD = 5.0 V, Ta = + 25°C  
2000 Times  
Ta1  
Ta2  
VDD 2.7 V  
VDD 2.9 V  
30  
40  
+ 25  
+ 25  
+ 85  
+ 85  
°C  
°C  
Operating  
temperature  
Ambient  
temperature  
Notes: • When data is written to flash memory, pin VDD_M on the IC must be set to 5 V.  
• If flash memory programming (Write) is operated when the VDD_M voltage is outside the range  
(4.5 V to 5.5 V), the data stored in the flash memory cannot be held for a long time.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
onthedatasheet.Usersconsideringapplicationoutsidethelistedconditionsareadvisedtocontact  
their representatives beforehand.  
DS04–29135–1E  
9
MB42M001  
ELECTRICAL CHARACTERISTICS  
1. Supply Voltage, Reference Voltage  
(Unless specified, VDD = VDD_M = 2.7 V to 5.5 V, Ta = + 25°C )  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Remarks  
VDD = VDD_M = 3 V,  
No input signal  
Register standard setting  
IDD3  
280  
µA  
VDD = VDD_M = 3 V,  
No input signal  
Register 1 channel mode  
setting  
Power supply  
current  
IDD31  
220  
µA  
*
VDD = VDD_M = 5 V,  
No input signal  
Register standard setting  
IDD5  
IDSD3  
IDSD5  
310  
µA  
µA  
VDD = VDD_M = 3 V,  
No input signal  
SD = 3 V  
Power supply  
current  
shutdown  
Does not  
include pin leak  
current*  
VDD = VDD_M = 5 V,  
No input signal  
SD = 5 V  
µA  
Regulator  
output  
VFA voltage  
VFA  
VDD = 3.0 V  
2.67  
V
Reference  
voltage output  
VREF voltage  
VREF  
0.6  
0.6  
V
V
Internal  
Register AMT = 05H,  
after TREF register  
adjusted  
temperature  
sensor output  
voltage  
VMT1  
1.97  
mV/°C  
Register AMT = 06H,  
after TREF register  
adjusted  
VMT voltage  
Internal BGR  
voltage  
VMT2  
1.223  
V
Register AMT = 07H,  
after VREF register  
adjusted  
Internal  
reference  
voltage  
VMT3  
0.6  
V
* : Standard measurement conditions  
• For the register settings, set the bias voltage adjustment in VREF and TREF, set the CV conversion  
amplifier adjustment in CVA and COF, and set the other registers to “00”.  
• Set the pins or connect to external components as specified in the table below.  
Pin Type  
Logic input pin  
Logic output pin  
Pin Name  
CS, CLK, DIN, SD  
Pin Condition  
GND  
DOUT  
Open  
SIN1A, SIN2A, SIN1B, SIN2B,  
SIN1C, SIN2C, SIN_COM  
Analog input pin  
Open or sensor capacitance  
Analog output pin  
Filter pin 1  
VOUT_A, VOUT_B, VOUT_C  
FLT1A, FLT1B, FLT1C/VSRV  
FLT2A, FLT2B, FLT2C  
Open  
Open or external capacitor  
External capacitor (chip capacitor 1µF)  
External capacitor (chip capacitor 1µF or more)  
Open  
Filter pin 2  
Reference voltage output VFA, VREF  
Monitor pin  
Test pin  
VMT, ALARM  
TEST_MV, TEST_ME  
GND or open  
10  
DS04–29135–1E  
MB42M001  
2. Sensor Capacitance Conditions, C-V Conversion Gain Characteristics  
[C-V amplifier/C mode operation]  
(Unless specified, VDD = VDD_M = 2.7 V to 5.5 V, Ta = + 25°C )  
Parameter  
Sensor  
capacitance  
tolerance  
Symbol  
CSIN  
Condition  
Min  
Typ  
Max Unit  
Remarks  
Capacitance  
between package  
input pin and  
CVA register setting is  
N>144  
0
100*  
pF  
external circuit  
Sensor  
capacitance  
offset tolerance  
Difference  
COF and VOF registers  
adjustment is required  
CSOF  
50*  
0
+ 50* pF between pair  
capacitances  
Detectable  
range of sensor  
capacitance  
changes  
Sensitivity adjustments for  
each register are required  
For a final change  
in output of 1 V  
CD  
0.01*  
20*  
pF  
C-V conversion  
gain  
VOUT (final output)  
converted value  
ACVO  
0.05*  
100* V/pF  
kHz 1ch mode  
C-V conversion  
drive frequency  
fDRV  
24  
* : The rated values for sensor capacitance vary depending on the parasitic capacitance and sensitivity  
settings.  
The detection sensitivity and tolerance vary depending on the sensor element structure, equivalent circuit  
of detected capacitance, number of channels, IC settings, and similar.  
• Example of Capacitance Sensor Connection  
• The tolerance for the detected capacitance and  
parasitic capacitance increase or decrease  
depending on the sensor element and IC settings.  
Sensor elements  
SIN_COM  
Cs1_C  
• An indicative tolerance for a CVA register value of  
N is:  
Tolerance < (N × 0.625 + 10) pF  
SIN1C  
SIN2C  
Cp_COM  
Cp2_C  
Cp2_A  
Cp2_B  
Cp1_C  
Cs2_C  
Cs1_A  
MB42M001  
SIN1A  
SIN2A  
Note: The actual value will vary depending on the  
conditions.  
Cp1_A  
Cp1_B  
Cs2_A  
Cs1_B  
SIN1B  
SIN2B  
Example: Setting condition: Set CVA register to  
N>144  
Cs2_B  
Parameter  
Capacitances  
Tolerance  
Detected  
capacitance  
Cs1_*, Cs2_*  
< 100 pF  
Cp1_*, Cp2_*  
Cp_COM  
< 100 pF  
< 100 pF  
Parasitic  
capacitance  
DS04–29135–1E  
11  
MB42M001  
3. Voltage Amplifier, Output Characteristics  
(Unless specified, VDD = VDD_M = 2.7 V to 5.5 V, Ta = + 25°C )  
Parameter  
Voltage  
amplifier gain  
adjustment  
Symbol  
AVGA  
Condition  
Min  
Typ  
Max  
Unit  
Remarks  
Based on the register VGA  
adjustment of the total gain  
for Amp1 to Amp3  
14  
112  
Times  
VOUT_xoutput  
offset  
adjustment  
VOUT_x output voltage  
after registers VOF1 and  
VOF2 are adjusted  
VOF  
VTOF  
fvout  
0
0
mV  
*
*
*
VOUT_x output voltage  
after register TOF adjusted  
(A channel: 255 adjustment  
steps)  
(B and C channels: 31  
adjustment steps)  
VOUT_xoutput  
offset  
temperature  
adjustment  
mV/  
°C  
VOUT_xoutput  
response  
frequency  
100  
Hz  
Internal resistor  
approx. 110 kΩ  
Filter1 (LPF)  
Filter2 (LPF)  
fLPF1  
fLPT2  
CFLT1 = 10 nF  
CFLT2 = 15 nF  
145  
96  
0
Hz  
Hz  
Internal resistor  
approx. 110 kΩ  
3.6 V < VDD < 5.5 V  
VOUT < 20mV  
mA  
mA  
0.4 V < VOUT  
VOUT < VDD 0.4 V  
*
VOUT_xoutput  
drive capability  
IOUTL  
2.7 V < VDD < 3.6 V  
VOUT < 40 mV  
0
VDD −  
0.1  
VOUT_xoutput  
voltage range  
VOUTD  
IOUT =  
0.1 mA  
0.1  
V
*
aF  
CNZ1  
4
8
rms/ 1 ch operation  
Hz  
Low-passnoise  
input converted  
value  
Band width frequency <  
100 Hz  
aF  
CNZ23  
rms/ 3 ch operation  
Hz  
* : “VOUT_x” is VOUT_A, VOUT_B, and VOUT_C pins.  
12  
DS04–29135–1E  
MB42M001  
4. Digital I/O Block  
(Unless specified, VDD = VDD_M = 2.7 V to 5.5 V, Ta = + 25°C )  
Parameter  
Symbol  
VIH  
Condition  
Min  
Typ  
Max  
Unit Remarks  
VDD × 0.7  
+ 0.4  
V
Input voltage CLK,  
DIN, CS, and SD  
pins  
VDD ×  
0.3 0.4  
VIL  
V
IIH  
IIL  
VDD = 5 V, VIH = 5 V  
VDD = 5 V, VIL = 0 V  
1.0  
µA  
µA  
Input current SD  
pin  
1.0  
With  
µA pull-down  
resistor  
IIH  
VDD = 5V, VIH = 5 V  
60  
Input current CLK,  
DIN and CS pins  
IIL  
VDD = 5 V, VIL = 0 V  
IOH = − 1 mA  
1.0  
µA  
Output voltage  
DOUTandALARM  
pins  
VOH  
VDD 0.4  
V
VOL  
IOL = 1 mA  
0.4  
V
VDD = 5 V, VOH =  
VDD 0.4 V  
Output current  
DOUTandALARM  
pins  
IOH  
IOL  
1.0  
1.0  
mA  
mA  
µA  
VDD = 5 V, VOL = 0.4 V  
VDD = 5 V, VIH = 5 V  
CS pin = 0 V  
IOZH  
1.0  
High-z input  
current DOUT pin  
VDD = 5 V, VIL = 0 V  
CS pin = 0 V  
IOZL  
1.0  
µA  
5. Flash Memory Block  
Parameter Symbol  
(VDD = VDD_M = 5.0 V, Ta = + 25°C )  
Condition  
Min  
Typ  
Max  
Unit Remarks  
From issuing an 8-byte data  
write  
Write time  
write time command until the write  
operation completes:  
fCLK = 300 kHz  
63.8  
ms  
From issuing an 8-byte data  
read  
read time command until the read  
operation completes:  
fCLK = 300 kHz  
Read time  
217  
µs  
DS04–29135–1E  
13  
MB42M001  
6. Serial Interface I/O Timing  
(Unless specified, VDD = VDD_M = 2.7 V to 5.5 V, Ta = + 25°C )  
Parameter  
CLK clock frequency  
CLK “L” time  
Symbol  
fCLK  
Min  
Typ  
Max  
300  
Unit  
kHz  
µs  
Remarks  
tLow  
1.3  
1.3  
CLK “H” time  
tHigh  
µs  
Rising time  
tr  
0.3  
0.3  
µs  
CLK, DIN, CS  
CLK, DIN, CS  
Falling time  
tf  
µs  
Data setup time  
Data hold time  
tSU:data  
tHD:data  
tbus  
0.1  
0
µs  
µs  
Data bus switching time  
CS to CLK hold time  
Condition setup time  
1.0  
1.0  
1.0  
µs  
tHD:CS  
tSU:cond  
µs  
µs  
tr  
tf  
tHigh tLow  
tHD:CS  
tHD:CS  
CLK  
DIN  
tsu:cond  
tSU:data tHD:data  
tHD:data  
tSU:data  
DOUT  
HiZ  
HiZ  
tbus  
tbus  
CS  
Since “H” is output from DOUT if the  
sequencer inside IC is operating, start  
communications only after the output goes  
to “L”.  
DOUT goes to “L” immediately after setting CS  
to High, next, the output goes to “Z” on the  
rising edge of the clock.  
14  
DS04–29135–1E  
MB42M001  
SENSOR CONDITIONER FUNCTION  
• The sensor conditioner function sets IC register data to adjust the gains and offsets to correct for the sensor  
characteristics and sensor scatter.  
• A register name and address are defined for each register and adjustment can be performed by modifying  
these register settings via the serial interface.  
Refer to the following chapter “DESCRIPTION OF THE SERIAL INTERFACE” and “HOW to MAKE  
SETTINGS” for information about the register settings.  
DS04–29135–1E  
15  
MB42M001  
1. Memory Map  
This section defines the memory map that represents the continuous address ranges corresponding to the  
registers and the flash memory (non-volatile memory).  
1) Register area: 00H to 57H  
The register area (User area) available to users is 10H to 2FH.  
2) Flash memory (non-volatile memory) area: 58H to FFH  
• The flash memory area available to users is 70H to B7H.  
• The data at addresses 70H to 8FH in flash memory are automatically transferred to addresses 10H to  
2FH in the register area at power-on or when a power-on reset occurs.  
Address  
00H  
08H  
10H  
18H  
20H  
28H  
30H  
38H  
40H  
48H  
50H  
58H  
60H  
68H  
70H  
78H  
80H  
88H  
90H  
98H  
A0H  
A8H  
B0H  
B8H  
C0H  
C8H  
D0H  
D8H  
E0H  
E8H  
F0H  
F8H  
+0  
+1  
+2  
+3  
+4  
+5  
+6  
+7  
mode  
AMT  
CVM  
CTL  
TREF  
VREF  
SRV  
TGA  
CVA (A) CVA (B) CVA (C) COF (A) COF (B) COF (C)  
User  
MOD VGA1 (A) VGA1 (B) VGA1 (C) VOF1 (A) VOF1 (B) VOF1 (C)  
Register  
area  
LTC  
TOF (A) TOF (B) TOF (C) VOF2 (A) VOF2 (B) VOF2 (C)  
FMTM  
DTM  
CTL  
TMR  
Mainte  
CRC  
CRC Module  
CRC  
AMT  
CVM  
TREF  
VREF  
SRV  
TGA  
CVA (A) CVA (B) CVA (C) COF (A) COF (B) COF (C) CRC  
MOD VGA1 (A) VGA1 (B) VGA1 (C) VOF1 (A) VOF1 (B) VOF1 (C) CRC  
LTC TOF (A) TOF (B) TOF (C) VOF2 (A) VOF2 (B) VOF2 (C) CRC  
CRC User  
CRC  
CRC  
Flash  
Memory  
area  
Module  
CRC  
CRC  
CRC Mainte  
CRC  
CRC  
CRC  
Note : CRC : CRC (error checking code) data is added for each block of 8 bytes (7 data bytes + 1 CRC byte).  
16  
DS04–29135–1E  
MB42M001  
2. Register Name List  
Register  
Register  
Name  
Memory  
Address  
Function  
Address*1  
10  
11  
AMT  
Various control settings  
Selects the signal to monitor from the VMT pin.  
70H  
71H  
CTL  
Used to adjust the reference voltage VBGR and the temperature sensor  
voltage VTMP at room temperature ( + 25°C).  
12  
TREF  
VREF  
72H  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
Adjusts the VREF reference voltage in the IC.  
Register 14H and memory 74H have no function.  
73H  
74H  
75H  
76H  
77H  
78H  
79H  
7AH  
7BH  
7CH  
7DH  
7EH  
7FH  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
SRV  
TGA  
Selects the VSRV drive voltage for the CV amplifier.  
Temperature dependence gain adjustment  
Register 17H has no function. Set a CRC*2 code in memory location 77H.  
CVM  
CVA  
Selects the CV amplifier modes.  
Ach Adjusts the CV amplifier conversion gain for A channel.  
Bch Adjusts the CV amplifier conversion gain for B channel.  
Cch Adjusts the CV amplifier conversion gain for C channel.  
Ach Adjusts the sensor input offset for A channel.  
Bch Adjusts the sensor input offset for B channel.  
Cch Adjusts the sensor input offset for C channel.  
Register 1FH has no function. Set a CRC*2 code in memory location 7FH.  
MOD function (A channel output monitor)  
COF  
MOD  
Ach Adjusts the Amplifier 1 gain for A channel.  
VGA1 Bch Adjusts the Amplifier 1 gain for B channel.  
Cch Adjusts the Amplifier 1 gain for C channel.  
Ach Adjusts the pre-input offset for Amplifier 1 for the A channel.  
VOF1 Bch Adjusts the pre-input offset for Amplifier 1 for the B channel.  
Cch Adjusts the pre-input offset for Amplifier 3 for the C channel.  
Register 27H has no function. Set a CRC*2 code in memory location 87H.  
LTC  
Adjusts the linearity for A channel.  
Ach Adjusts the temperature dependence characteristic of A channel.  
Bch Adjusts the temperature dependence characteristic of B channel.  
Cch Adjusts the temperature dependence characteristic of C channel.  
Ach Adjusts the pre-input offset for Amplifier 3 for the A channel.  
TOF  
VOF2 Bch Adjusts the pre-input offset for Amplifier 3 for the B channel.  
Cch Adjusts the pre-input offset for Amplifier 3 for the C channel.  
Register 2FH has no function. Set a CRC*2 code in memory location 8FH.  
54  
TMR  
Enables writing directly from the serial interface to a register.  
None  
*1 : Addresses are in hexadecimal.  
*2 : CRC: CRC (error checking code) data is added for each block of 8 bytes (7 data bytes + 1 CRC byte).  
DS04–29135–1E  
17  
MB42M001  
3. Example Register Setting Order  
Using the following sequence to set registers is recommended:  
1) Preparation  
Initially, set the amplifier gain and offset settings to their default or minimum values.  
Normally, adjustment is performed with the sensor zeroed and at a temperature of + 25°C.  
2) Set Each Register  
To start setting the register data, first set the TMR register.  
Note that turning off the power or a power-on reset initialize the register data.  
(To invoke a power-on reset, change the SD pin from 0 V VDD 0 V.)  
Use the serial interface to set the registers as described in the “How to Create Setting Data” section.  
3) Reference Voltage Circuit Adjustment (Registers: TREF, VREF)  
Measure the VMT pin (Voltage Monitor Test) voltage as you adjust the TREF and VREF registers.  
The VMT pin can be switched between outputting the VBGR (reference voltage), VREF (reference voltage),  
and VTMP (temperature sensor voltage) voltages by changing the AMT register settings. However, the VMT  
pin output voltage is offset from the internal voltage being monitored by the offset voltage of the VMT output  
buffer amplifier.  
First, set the upper 3 bits of the TREF register to adjust the VBGR voltage.  
Next, use the VREF register to adjust the VREF voltage and then use the lower 5 bits of the TREF register  
to adjust the internal temperature sensor.  
4) CV Amplifier Adjustment (Registers: CVA, COF, CVM, SRV)  
Adjust the CVA and COF registers.  
The IC can be adjusted to support a wide range of sensors by setting the CVM and SRV registers.The  
normal settings are CVM = 0 and SRV = 0.  
To monitor the adjustment voltage, set the Amplifier 1 and 2 gains to their minimum settings and then set  
the AMT register to monitor the FLT pin voltage for each channel from the VMT pin.  
First, specify the CV conversion value in the CVA register.As increasing the CV conversion value may  
exceed the tolerance range for the input capacitance, set the CVA register based on the tolerance range for  
the input capacitance. Next, use the COF register to adjust the SIN1 and SIN2 offset capacitance.  
5) Latter Stage Amplifier Adjustment (Registers: VGA, VOF1, VOF2)  
Use the VGA register to adjust the Amplifier 1 gain if the gain is insufficient with CVA only (the normal setting  
is × 1). Use the VOF1 register to adjust the Amplifier 1 input stage offset. Adjust by using the AMT register  
setting to monitor the FLT pin voltage for each channel via the VMT pin.  
Use the VOF2 register to adjust the Amplifier 3 input stage offset. Monitor the output pin VOUT voltage while  
adjusting.  
6) Temperature Dependence Characteristic Adjustment (Register: TOF)  
Adjust the TOF register to apply a linear correction to the offset temperature dependence characteristic.  
18  
DS04–29135–1E  
MB42M001  
4. Adjustment Function Explanation  
The key words used to explain the registers settings are defined as follows:  
• Notation for bit settings  
The following notation is used in the register explanations.  
N (Decimal) (B3, B2, B1, B0),  
S (Sign bit) S  
This indicates that the binary bit setting values, B3, B2, B1, and B0, are converted to decimal.  
N = 23• B3 + 22• B2 + 21• B1 + 20• B0  
When the sign bit S is used, S = 0 indicates positive and S = 1 indicates a negative value.  
• <Optional>  
<Optional> is used in some register explanations.  
This indicates that the <Optional> function can be used but that the characteristics specified in this manual  
are not guaranteed.  
Use the function for prototypes or testing.  
• <Test>  
<Test> is used in some register explanations.  
This indicates that the <Test> function can be used but that the operation is not guaranteed.  
Use the function for testing or similar.  
• Do not set addresses or data that is not described in the register explanations.  
1) Test Mode Settings  
TMR register (Test Mode Register: Permit direct access to registers)  
Enables the register to be written directly from the serial interface.  
Address: 54H (1 byte access)  
Bit setting  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Normal use status  
Register access mode. Writing to 10H to 2FH is enabled.  
Notes: Setting the bits to any value other than that above is prohibited.  
Setting the data at 54H from A0H back to 00H clears register access mode. Immediately after clearing  
access mode, a power-on reset is invoked and the current register data is lost.  
The data in the flash memory data area (70H to 8FH) is then copied to the register data area (10H  
to 2FH).  
DS04–29135–1E  
19  
MB42M001  
2) Reference Voltage Circuit Adjustment  
VREF (Voltage reference : IC internal reference voltage adjustment)  
Address: 13H  
Bit setting  
Adjusts the VREF reference voltage in the IC.  
Monitor the VREF voltage from the VMT pin and adjust to  
600 mV (Tj = + 25°C).  
The VREF voltage is generated based on the BGR voltage.  
7
6
5
4
3
2
1
0
S
B4 B3 B2 B1 B0  
For no correction  
:S = 0, N = 0  
For correction to + side :S = 0, correction amount =  
about +N × 2.36 mV (N = 1 to 31)  
For correction to - side :S = 1, correction amount =  
about -N × 2.36 mV (N = 0 to 31)  
• N (Decimal) (B4, B3, B2, B1, B0)  
• S (Sign bit) S  
Note : Set the VMT pin to monitor the VREF voltage (see the  
“ 9) Monitor Circuit Selection”).  
TREF (Voltage temperature reference: BGR voltage and IC internal temperature sensor adjustment  
(1) Adjust the internal temperature sensor.  
Set the VMT pin to monitor the VTMP voltage and adjust  
VREF to (600 mV) (Tj = + 25°C).  
Address: 12H  
Bit setting  
7
6
5
4
3
2
1
0
For no correction  
For correction to + side :S = 0, correction amount =  
about +N × 2.9 mV (N = 1 to 15)  
For correction to - side :S = 1, correction amount =  
about -N × 2.9 mV (N = 0 to 15)  
:S = 0, N = 0  
R2 R1 R0  
S
T3 T2 T1 T0  
1) VTMP voltage adjustment  
• N (Decimal) (T3, T2, T1, T0)  
• S (Sign bit) S  
Notes : Set the VMT pin to monitor the TREF voltage (see  
the“ 9) Monitor Circuit Selection”).  
2) VBGR voltage adjustment  
• Select using the R2, R1, and R0 bits  
The adjustment step amounts might not be equal.  
The VTMP voltage change can be estimated as  
VTMP = 1.97 mV/T + 0.6 µV/T2.  
(2) Adjust the VBGR reference voltage in the IC.  
Set the VMT pin to monitor the VBGR voltage and adjust to  
be in the range 1.220 V to (1.223 V) to 1.240 V (Tj = + 25°C).  
Note : Set the VMT pin to monitor the BGR voltage (see the  
“ 9) Monitor Circuit Selection”).  
VBGR Voltage Bit Setting Table  
R2  
*
R1  
0
R0  
0
Correction Amount  
No correction (Standard)  
[Not available] About 30 mV  
Approximately 15mV  
0
0
*
0
1
1
0
1
1
No correction (Standard)  
Approximately + 15 mV  
Approximately + 30 mV  
1
1
0
1
1
0
20  
DS04–29135–1E  
MB42M001  
3) CV Amplifier Adjustment  
CVA (CV-amp: Adjusts the CV amplifier capacitance and voltage conversion gain)  
(1) Use the CVA register to adjust the CV amplifier CV  
(capacitance - voltage) conversion value.  
Address:  
A channel adjustment  
19H  
1AH  
1BH  
B channel adjustment  
C channel adjustment  
Note : The adjustment step amount might not be equal.  
Approximate CV conversion value  
= 16 / ( N+16 ) × Vsrv [V/pF] (N = 16 to 255 )  
Bit setting:  
7
6
5
4
3
2
1
0
• Vsrv is the value specified by the SRV register (the default  
value is about 2.65 V).  
B7 B6 B5 B4 B3 B2 B1 B0  
• The change in CV amplifier output voltage V for a change  
in capacitance of C[pF] can be estimated as V = 16 /  
(N+16) × Vsrv × ∆C.  
N (B7, B6, B5, B4, B3, B2, B1, B0)  
N is the value in decimal.  
• For example, if Vsrv = 2.6 V and CVA = 48, the  
approximate value is V [V] = 0.65 [V/pF] × ∆C [pF].  
(N:0 to 15 is prohibited)  
(2) Ensure that the adjustment does not exceed the  
permitted input range of the CV amplifier.  
The conversion value setting is restricted by the maximum  
total value of all the capacitances connected to CV amplifier  
input. Under all conditions, ensure that 0.5 V< CV amplifier  
output voltage< 0.8 V.  
Since the CV amplifier output voltage cannot be measured  
directly, set the Amplifier 1 gain to 1 and set the Amplifier 2  
gain to 2, then calculate from the FLTxx pin voltage. The FLT  
pin voltage can be monitored from the VMT pin.  
Note : The maximum capacitance value = IC internal  
capacitance + IC package capacitance + Sensor  
connector (wiring) capacitance + Sensor initial  
capacitance + Sensor maximum change capacitance  
(3) CVA expansion mode  
The adjustment amount can be increased by using the A8 bit  
in the VGA register.  
B8 = A8 bit in the VGA register  
N (B8, B7, B6, B5, B4, B3, B2, B1, B0)  
Conversion value = (16 /(N + 16)) × Vsrv [V/pF] (N = 16 to  
511)  
(Continued)  
DS04–29135–1E  
21  
MB42M001  
(Continued)  
COF (CV-amp input offset : CV amplifier input offset capacitance adjustment)  
(1) Use the COF register to adjust the CV amplifier input  
offset  
Address  
A channel adjustment  
1CH  
1DH  
1EH  
B channel adjustment  
C channel adjustment  
Note : The adjustment step amount might not be equal.  
For no correction  
: S = 0, N = 0  
For correction to + side : S = 0, N = 1 to 127  
Correction amount =  
Bit setting  
About +N × 0.0625 pF  
7
6
5
4
3
2
1
0
For correction to - side : S = 1, N = 1 to 127  
Correction amount =  
S
B6 B5 B4 B3 B2 B1 B0  
About-N × 0.0625 pF  
• N (Decimal) (B6, B5, B4, B3, B2, B1,  
B0)  
• S (Sign bit) S  
(2) CV amplifier output voltage is adjusted in the range  
of 500 mV to 599 mV  
Since the CV amplifier output voltage cannot be measured  
directly, set the Amplifier 1 gain to 1 and set the Amplifier 2  
gain to 2, then calculate from the FLT2x pin voltage.  
(3) COF expansion mode  
The adjustment amount can be increased by using (F9, F8,  
F7) in the VGA register.  
• The A channel can expand three bits: B9, B8, and B7.  
N (Decimal) (B9, B8, B7, B6, B5, B4, B3, B2, B1, B0)  
• The B channel and C channel can expand one bit: B7.  
N (Decimal) (B7, B6, B5, B4, B3, B2, B1, B0)  
22  
DS04–29135–1E  
MB42M001  
4) CV Amplifier Mode Settings  
CVM (CV-amp mode: CV amplifier mode settings)  
Address: 18H  
Various CV amplifier modes can be specified. Normally, all of B7 to B0 are set to“0”.  
(1) CV amplifier operating mode  
For selection modes details, see the section describing CV amplifier operation selection.  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
CV amplifier operating mode selection  
Normal use status.  
0
0
0
0
0
0
0
0
Switches to 1 channel mode.  
*
*
*
B4  
*
*
*
*
For B4 = 0 sets normal mode (3ch operation). If B4 = 1, Ach only is  
operated (Bch and Cch are not operated.).  
Sets the CV amplifier to normal operating mode “C mode”.  
A pair capacitance is connected to SIN1 and SIN2 and the common  
pin of the pair is connected to SIN_COM.  
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
1
For the conversion gain setting, see the “3) CV amplifier adjustment”.  
<Test> Set the CV amplifier to “S mode”.  
[Valid only when 1 channel mode is used] Capacitances are  
connected to SIN1 and SIN_COM and SIN2 and SIN_COM  
respectively. (SIN2 side can be opened.)  
When this mode is specified, the capacitance connected to the SIN1  
pin and IC internal capacitance of about 24 pF seem to be in series.  
This increases the permitted capacitance value for the SIN1 pin.  
Note: The linearity becomes worse. The COF adjustment can only be  
adjusted in the negative direction (SIN2 side).  
<Test> Sets the CV amplifier to “T mode”.  
This detects the change in the capacitance connected between SIN1  
and GND.  
The SIN2 pin is left open circuit and the VSRV register is set to 0.6 V.  
The gain setting is adjusted using the CVA register (N<512).  
(Conversion gain = 9.6/(N+16) [V/pF] )  
Note: The accuracy deteriorates because the detected capacitance  
includes all parasitic capacitances inside and outside the IC.  
*
*
*
*
*
*
*
*
*
*
*
*
1
1
0
1
<Test> The CV amplifier is set to “V mode” (Voltage input mode, input  
range = 0 V to VFA+0.3 V).  
Apply the difference voltage between SIN1 and SIN2, and leave  
SIN_COM open circuit.  
The gain setting is adjusted using the CVA register (N<512) (Voltage  
gain = 512/(N+16) [V/V] ).  
*
*
*
*
*
*
*
*
*
B2  
*
*
*
*
*
<Test> Setting B2 = 1 turns off the CV amplifier output.  
<Test> When B3 = 1, the connection between SIN pin and IC internal  
circuit is cut.  
B3  
(Continued)  
DS04–29135–1E  
23  
MB42M001  
(Continued)  
CVM (CV-amp mode: CV amplifier mode settings)  
(2) Performs a test by varying the CV amplifier drive frequency.  
Normally, use B7 = 0, B6 = 0, and B5 = 0.  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
Drive Frequency  
Drive Frequency: Typ. fDRV = 24 kHz, sampling: fDRV/3 (3ch mode),  
fDRV (1ch mode)  
0
0
0
*
*
*
*
*
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
<Optional> Drive frequency: fDRV × 0.67  
<Optional> Drive frequency: fDRV × 0.33  
<Test> Drive frequency: fDRV × 1.3  
<Test> Drive frequency: fDRV × 2  
<Test> The drive oscillation output is stopped (Ach setting).  
<Test> The drive oscillation output is stopped (Bch setting).  
<Test> The drive oscillation output is stopped (Cch setting).  
24  
DS04–29135–1E  
MB42M001  
5) CV Amplifier Drive Condition Setting  
SRV (Sensor drive voltage: CV amplifier drive voltage setting for capacitance detection)  
Address: 15H  
Selects the setting for the VSRV drive voltage of the CV amplifier.  
The CV conversion gain is proportional to the VSRV value. For the VSRV value, either the existing pin  
voltage can be used or the mode in which the FLT1C pin function is changed to the VSRV pin function  
can be selected.  
(1) VSRV voltage selection without using SRV  
Selects the drive voltage for the CV amplifier. Either the VFA pin voltage or VREF pin voltage can be  
selected for the drive voltage.  
Set B3 = 0 and B2 = 0 and use B0 to specify the selection.  
7
6
5
4
3
2
1
0
B
7
B
6
B
5
B
4
B
3
B
2
B
1
B
0
FLT1C/ VSRV Pin, VSRV Voltage Value  
*
*
*
*
*
*
*
*
0
0
0
0
*
*
0 The FLT1C pin functions as FLT1C. Internal VSRV VFA  
1 The FLT1C pin functions as FLT1C. Internal VSRV VREF (0.6 V)  
(2) [Optional] VSRV voltage value selection when SRV is used (No VDD ratiometric)  
When the use of SRV is specified, the FLT1C pin function is switched to the VSRV pin function  
automatically.  
Connect a capacitor of 1µF to the VSRV pin. (Note: The C channel filter is FLT2C only.)  
Set B3 = 1 and B2 = 0 and use B1 and B0 to specify the selection.  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
FLT1C/ VSRV Pin, VSRV Voltage Value  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
<Optional> The FLT1C pin functions as VSRV (1 µF connection). VSRV 0.6V  
<Optional> The FLT1C pin functions as VSRV (1 µF connection). VSRV 2.04 V  
<Optional> The FLT1C pin functions as VSRV (1 µF connection). VSRV 0.1 V  
<Optional> The FLT1C pin functions as VSRV (1 µF connection). VSRV 0.05 V  
(3) [Test] VSRV voltage value selection when SRV is used (with VDD ratiometric)  
When the use of SRV is specified, the FLT1C pin function is switched to the VSRV pin function  
automatically.  
Connect a capacitor of 1 µF to the VSRV pin. (Note: The C channel filter is FLT2C only.)  
Set B3 = 1 and B2 = 1 and use B1 and B0 to specify the selection.  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
FLT1C/ VSRV Pin, VSRV Voltage Value  
<Test> The FLT1C pin functions as VSRV (1 µF connection). VSRV VDD × 0.06 V  
<Test> The FLT1C pin functions as VSRV (1 µF connection). VSRV VDD × 0.213 V  
<Test> The FLT1C pin functions as VSRV (1 µF connection). VSRV VDD × 0.378 V  
<Test> The FLT1C pin functions as VSRV (1 µF connection). VSRV VDD × 0.0095 V  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Note : When the SRV function is used, the current dissipation might increase by 20 µA (VDD = 3 V) depending  
on the settings.  
DS04–29135–1E  
25  
MB42M001  
6) Amplifier Gain and Offset Adjustment  
VGA1 (Voltage gain control amp1: Gain adjustment for Amplifier 1 and expansion bit for CVA/COF/CVM)  
(1)The Amplifier 1 gain is adjusted using the VGA register.  
Address  
A channel adjustment  
21H  
22H  
23H  
B2 B1 B0 N (Decimal) (B2, B1, B0)  
B channel adjustment  
C channel adjustment  
(Decimal) (B2, B1, B0)  
• The gain can be set independently for channels A, B, and C.  
N
0
1
2
3
4
5
6
7
Bit setting for A channel  
× 0 × 1 1.62 × 2 3.2 × 4 6.2 × 8  
7
6
5
4
3
2
1
0
Gain  
R
F9 F8 F7 A8 B2 B1 B0  
Note : N = 0 is for testing and therefore the Amplifier 1 signal  
is not transmitted.  
Bit setting for B channel and C channel  
(2) Expansion bit in the CVA register  
7
6
5
4
3
2
1
0
Corresponds to expansion bit B8 in the CVA  
A8  
register.  
M
F7 A8 B2 B1 B0  
See the “3) CV amplifier adjustment”.  
(3) Expansion bit in the COF register  
Corresponds to the expansion bit  
F7  
in the COF register for the B and  
C channels.  
• Bit B7 in the COF register only is used for the B channel and  
C channel.  
See the “3) CV amplifier adjustment”.  
Corresponds to the expansion bit  
F9  
F8  
F7  
in the COF register for the A  
channel.  
• Corresponds to B9, B8, and B7 in the COF register for A  
channel.  
See the “3) CV amplifier adjustment”.  
(4) <Test> CVM register expansion bit  
For an operating mode test (not used normally)  
M
Sets B and C channels to V mode.  
• Normally, M = 0  
• When the B channel register is M = 1, the CV amplifier  
switches to V mode for B channel only.  
• When the C channel register is M = 1, the CV amplifier  
switches to V mode for C channel only.  
(5)<Test> Average mode (for disturbance noise measures)  
For an operating mode test (not used normally)  
The FLT pin voltage is averaged (used in 1ch  
mode).  
R
• Normally, R = 0  
• The detection voltage is averaged. The output noise and  
output voltage are decreased. (The VOUT output voltage is  
increased about 0.3 to 0.5 times normal in 1ch mode.)  
(Continued)  
26  
DS04–29135–1E  
MB42M001  
(Continued)  
VOF1 (Voltage offset control 1: Amplifier 1 input offset adjustment)  
Adjusts the offset from the CV amplifier output to  
Amplifier 1 input.  
Address  
A channel adjustment  
24H  
25H  
26H  
B channel adjustment  
C channel adjustment  
For no correction  
: N = 0  
Positive correction only available:  
N = 1 to 255  
Bit setting  
• N (Decimal) (B6, B5, B4, B3, B2, B1, B0)  
Correction amount = About +N ×  
(Amplifier 1 gain) × 2 × 0.64 mV  
7
6
5
4
3
2
1
0
Notes : The correction amount is the value measured from  
the FLT2x pin. (FLT2x = FLT2A, FLT2B, FLT2C) For  
example, the FLT2x pin voltage is adjusted to be  
between 590 mV to 610 mV.  
B7 B6 B5 B4 B3 B2 B1 B0  
The AMT register can be set so that the FLT2x pin  
can be monitored from the VMT pin.  
The VOF1 adjustment does not allow negative  
corrections. Accordingly, first use the COF register  
adjustment to set in the range 500 mV to 599 mV.  
The adjustment step amount might not be equal.  
VOF2 (Voltage offset control 1: Amplifier 3 input offset adjustment)  
Adjusts the offset from Amplifier 2 output to Amplifier 3  
input.  
Address  
A channel adjustment  
2CH  
2DH  
2EH  
For no correction  
For correction to + side : S = 0, N = 1 to 63  
Correction amount =  
: S = 0, N = 0  
B channel adjustment  
C channel adjustment  
About +N × 5.53 mV  
For correction to - side : S = 1, N = 0 to 63  
Correction amount =  
Bit setting  
7
6
5
4
3
2
1
0
About-N × 5.53 mV  
F
S
B5 B4 B3 B2 B1 B0  
Notes : The correction amount is the value measured from  
the VOUTx pin.  
• N (Decimal) (B5, B4, B3, B2, B1, B0)  
• S (Sign bit) S  
• F Normally set to “0”. If the MOD function  
is used, B7 in the B/C channel register is  
used as the sign bit for the MOD  
function.For details, see the MOD register  
explanation.  
For example, the VOUTx pin voltage is adjusted to  
VDD × 0.5.  
The adjustment step amount might not be equal.  
DS04–29135–1E  
27  
MB42M001  
7) Temperature Dependence Gain Adjustment (Optional function)  
TGA (Temperature gain control amp: Temperature dependence gain adjustment)  
TGA is not used normally. If it is used, set A <Optional> Adjusts the gain temperature characteristic.  
(bit7) to A = 1.  
A first order linear temperature gradient is used as the gain  
Address  
temperature dependence for all channels.  
All channels  
16H  
When TGA is not used : A = 0, S = *, N = *  
For a positive correction slope :  
Bit setting  
A = 1, S = 0, N = 1 to 31  
7
6
5
4
3
2
1
0
Correction amount =  
About +N × 1E-4 [time/°C]  
For a negative correction slope :  
A
S
B4 B3 B2 B1 B0  
• N (Decimal) (B4, B3, B2, B1, B0)  
• S (Sign bit) S  
• A (Available bit) A  
A = 1, S = 1, N = 1 to 31  
Correction amount =  
About -N × 1E-4 [time/°C]  
Note : Positive slope: Gain increases at higher  
temperatures. The correction amount is the change  
in the gain, where the gain at + 25°C is 1.  
Example) For S = 0,N = 31  
Gain  
When the  
temperature  
increases by  
50°C, the gain  
changes by  
+15%.  
Av×1.15  
Av×1.0  
Tempe-  
+75C° rature  
+25C°  
• When the TGA function is used, the current  
dissipation might increase by 20 µA (VDD = 3 V)  
depending on the settings.  
• The adjustment step amount might not be equal.  
28  
DS04–29135–1E  
MB42M001  
8) Temperature Dependence Offset Adjustment  
TOF (Temperature offset control: Temperature dependence offset adjustment)  
Address  
A channel adjustment  
Adjusts the offset voltage temperature dependence  
characteristic.  
A first order linear temperature gradient is used for the output  
offset.  
An 8-bit + sign bit value can be specified for the A channel  
and a 5-bit + sign bit value for the B and C channels.  
29H  
2AH  
2BH  
B channel adjustment  
C channel adjustment  
• Bit setting for A channel  
29H  
When TOF is not used : A = 0, S = *, N = *  
Disables the TOF setting for all  
channels.  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
• N (Decimal) (B7, B6, B5, B4, B3, B2, B1,  
B0)  
• S (Sign bit) SA  
<<SA: Bit 7 at address 2AH>>  
For correction to + side : S = 0  
• A channel : N = 1 to 255,  
Correction amount = About +N × 36 µV/°C  
• B/C channel: N = 1 to 31,  
Correction amount = About +N × 290 µV/°C  
• Bit setting for B channel  
2AH  
For correction to - side: S = 1  
7
6
5
4
3
2
1
0
• A channel : N = 1 to 255,  
Correction amount = About -N × 36 µV/°C  
• B/C channel: N = 1 to 31,  
SA  
A
S
B4 B3 B2 B1 B0  
• N (Decimal) (B4, B3, B2, B1, B0)  
• S (Sign bit) S  
Correction amount = About -N × 290 µV/°C  
Notes: Positive slope: The offset increases at higher  
temperatures.The correction amount is the change  
in offset, where the offset at 25°C is 0.  
SA  
A
A channel sign bit  
TOF available bit  
The correction amount is the value measured from  
the VOUTx pin.  
• Bit setting for C channel  
2BH  
Example) For Ach, S = 0, and N = 88  
7
6
5
4
3
2
1
0
Offset  
When the  
S
B4 B3 B2 B1 B0  
temperature  
increases by  
50°C, the  
Vofs+158mV  
Vofs+0mV  
• N (Decimal) (B4, B3, B2, B1, B0)  
• S (Sign bit) S  
offset changes  
by +158 mV.  
Tempe-  
rature  
+75C°  
+25C°  
When the TOF function is used, the current  
dissipation might increase by 20 µA (VDD = 3 V)  
depending on the settings.  
The adjustment step amount might not be equal.  
DS04–29135–1E  
29  
MB42M001  
9) Monitor Circuit Selection  
AMT (Analog Monitor Test: Controls the monitor circuit for testing)  
Address: 10H  
(1) Selects the signal to monitor from the VMT pin (uses the B2, B1, and B0 bits).  
The VMT (voltage monitor) pin can be set to monitor different signals to allow measurement of the voltages  
being adjusted.  
Since the output is from the internal output buffer, any monitor voltage can be used.  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
Selects the signal to monitor from the VMT pin.  
No VMT buffer output.  
*
*
*
*
*
*
*
*
*
*
0
0
0
1
<Test> Monitors the CV amplifier output voltage.The  
waveform cannot be observed.  
0
0
Monitors the temperature reference voltage from the VMT pin.  
(Slope of about +2 mV/°C) Monitoring the temperature  
reference voltage allows the system to be used as a  
temperature sensor.Check the offset deviation in the VMT  
output and then adjust the TREF (B4 to B0) register.  
*
*
*
*
0
1
0
1
Monitors the BGR voltage (1.223 V) from the VMT pin. Check  
the offset deviation in the VMT output and then adjust the  
TREF (B7 to B5) register.  
*
*
*
*
*
*
*
*
0
0
1
1
1
1
0
1
Monitors the reference voltage VREF pin voltage (600 mV)  
from the VMT pin.Check the offset deviation in the VMT  
output and then adjust the VREF (B4 to B0) register.  
*
*
*
*
*
*
*
*
*
*
*
*
1
1
1
0
0
0
0
1
1
1
0
1
<Test> Monitors the FLT2A pin voltage from the VMT pin.  
<Test> Monitors the FLT2B pin voltage from the VMT pin.  
<Test> Monitors the FLT2C pin voltage from the VMT pin.  
<Test> The temperature sensor output is connected to FLT2A  
and output to VMT.  
*
*
*
*
*
*
*
*
*
*
*
*
1
1
1
1
1
1
0
1
1
1
0
1
<Test> The BGR voltage is connected to FLT2B and output  
to VMT.  
<Test> The VREF voltage is connected to FLT2C and output  
to VMT.  
(2) <Test> Selects the operation of the VMT pin output buffer amplifier (Uses bit B7, B6, B5, and B4)  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
Buffer amplifier mode selection for the VMT pin  
Normal use status  
0
0
0
0
*
*
*
*
<Test> Performs a comparison with VREF (0.6 V) and  
outputs the comparator output from VMT (High = VFA  
voltage).  
0
*
*
1
*
*
*
*
<Test> Performs a comparison with VREF (0.6 V) and  
outputs the comparator output from VMT while also outputing  
a logic value from the ALARM pin (High = VDD).  
1
*
*
1
*
*
*
*
<Test> Used to test the VMT output offset (changes to a  
differential input transistor for the buffer).  
0
0
*
1
*
*
*
*
*
*
*
*
*
*
*
1
<Test> Increases the VMT output drive capability.  
(Continued)  
30  
DS04–29135–1E  
MB42M001  
(Continued)  
AMT (Analog Monitor Test: Controls the monitor circuit for testing)  
(3) <Test> ALARM pin monitor signal test (uses bits B7, B6, and B5)  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
Alarm monitor test for ALARM pin  
Normal use status. CRC errors and the verification result are  
output to the ALARM pin.  
0
1
1
0
0
1
0
1
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
<Test> Outputs only CRC errors to the ALARM pin.  
<Test> Outputs only the verification result to the ALARM pin  
during register transfer from the memory.  
<Test> Uses a pulse output to the ALARM pin for the  
verification result during register transfer from the memory.  
1
1
1
*
*
*
*
*
Note: Setting bits not specified in the table is prohibited.  
“*” indicates either “0” or “1”.  
10) Control settings  
CTL (Control register: Various control settings)  
Address: 11H  
(1) Various functions can be selected (Uses bits B3, B2, B1 and B0 bits).  
7
6
5
4
3
2
1
0
B7 B6 B5 B4 B3 B2 B1 B0  
0
*
*
*
0
0
0
0
Normal use state  
<Test> Selects the gain for amplifier 2.  
*
*
*
*
*
*
*
B0 [B0 = 0 is normally used.]  
B0 = 0: Gain × 2, B0 = 1: Gain × 4  
Reference voltage of amplifier 3 = 0.5 × VDD, VOUT output  
range 0<VOUT<VDD  
*
*
*
*
*
*
*
*
*
*
0
0
0
1
*
Note : Condition: 2.9 V VDD Although the same operation  
as below is performed, there is a possibility that noise  
is improved.  
This setting should be used normally.  
Reference voltage of amplifier 3 = 0.5 × VDD, VOUT output  
range 0<VOUT<VDD  
*
Reference voltage of amplifier 3 = Approx. 1.5 V, VOUT output  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1
*
0
1
*
*
*
*
range 0 V to 4 V (<VDD)  
Reference voltage of amplifier 3 = Approx. 2.5 V, VOUT output  
range 0 V to 5V (<VDD)  
<Test> Stops the internal oscillator and can be used the clock  
from the CLK pin.  
B3  
<Test> Alarm test for the verify check  
Write B7 = 1 to the data at the CTL (Address 71H) memory  
area.  
The alarm will be set at the next power-on or after a power-on  
reset.  
B7  
*
*
*
*
*
*
*
To cancel the alarm, write B7 = 0 to the memory again.  
DS04–29135–1E  
31  
MB42M001  
11) Used to adjust the linearity of the output voltage (Optional function for channel A only)  
LTC (Linearity: Channel A output linearity adjustment)  
LTC is normally not used.  
<Option> Adjusts the linearity of the output voltage of channel A.  
Address  
A first order linear temperature gradient is used as the gain  
temperature dependence for all channels.  
When LTC is not used: Set A1 = 0 and A2 = 0. [Normal state]  
Use the A2, A1 and A0 settings to select the correction curve.  
The adjustment amount can be adjusted in 15 steps using the B3,  
B2, B1 and B0 bits.  
Channel A  
28H  
1
Bit setting  
7
6
5
4
3
2
0
M
A2 A1 A0 B3 B2 B1 B0  
Inclination  
characteristics  
Inclination  
characteristics  
A2 A1 A0  
A2 A1 A0  
• N (Decimal) (B3, B2, B1, B0)  
• Correction characteristics  
selection A2, A1 and A0  
• M (MOD function ON/OFF bit) M  
0
0
0
1
0
0
LTC OFF  
0
0
0
1
1
1
LTC OFF  
Note : See the “12) Channel A output  
voltage monitor test (Optional  
function for channel A only)”.  
RD  
RU  
Input  
Default setting  
7
6
5
4
0
3
0
2
0
1
0
0
0
0
0
0
LD  
1
1
0
1
0
0
1
1
0
1
1
1
LU  
LTC and MOD function are not used.  
CU  
CD  
When using the LTC function, current dissipation may increase by  
20 µA (VDD = 3 V) or so, depending on the settings.  
Adjustment step amount may not be uniform.  
The zero point may shift depending on the register settings.  
In this case, adjust the offset again.  
• Setting the adjustment amount  
Measure the deviation from an ideal straight line at an arbitrary  
point and use the B3, B2, B1 and B0 bits to adjust the correction  
amount.  
For example, when the zero point of the output pin (VOUTx) is 0.5  
× VDD and the full scale point is defined in terms of the potential  
difference from the zero point, the full-scale voltage is  
0.5 × VDD.Also, in terms of the FLT2A pin voltage, it is approx.  
0.6V (0.5 × VDD /7).  
α
Input  
α
Input  
32  
DS04–29135–1E  
MB42M001  
12) Channel A output voltage monitor test (Optional function for channel A only)  
MOD (Modulation: Channel A output monitor)  
The MOD function is not normally used.  
<Option> Monitor the output voltage of channel A multiplied  
by k.  
• ON/OFF setting of the MOD function  
Address  
The MOD function can multiply the output voltage of channel  
A by k and output it from channel B or C.  
Channels B and C  
28H  
ON/OFF setting of the MOD function  
• When the MOD function is not used: M = 0 (Set bit 7 of  
the LTC register to “0”)  
Bit setting  
Only bit7 of the LTC register is used  
7
6
5
4
3
2
1
0
• When the MOD function is used: M = 1 (Set bit 7 of the  
LTC register to “1”)  
M
• M Sets the MOD function ON or OFF.  
When the output is adjusted to “+” inclination M = 1, F = 0,  
Nx = 1 to 15  
• Adjustment amount setting  
Address  
VOUT_B = VOUT_B + (VOUT_A × NB × Approx. 1%)  
VOUT_C = VOUT_C + (VOUT_A × NC × Approx. 1%)  
Channels B and C  
20H  
When the output is adjusted to “-” inclination M = 1, F = 1,  
Nx = 1 to 15  
Bit setting  
VOUT_B = VOUT_B - (VOUT_A × NB × Approx. 1%)  
VOUT_C = VOUT_C - (VOUT_A × NC × Approx. 1%)  
7
6
5
4
3
2
1
0
C3 C2 C1 C0 B3 B2 B1 B0  
• NB (Decimal) (B3, B2, B1 and B0)  
• NC (Decimal) (C3,C2,C1 and C0)  
Notes: • The bit setting should be M = 0 (bit 7 of the LTC  
register) as the MOD function is normally not used.  
• When using the MOD function, current  
• Inclination selection  
Address  
dissipation may increase by 20 µA (VDD = 3 V) or  
so, depending on the settings.  
• Note that this covers multiple addresses.  
• The adjustment step amount may not be uniform.  
Channels B and C 2DH, 2EH  
Bit setting  
Only bit 7 of the VOF2B and VOF2C  
registers are used  
7
F
6
5
4
3
2
1
0
• F Selects the inclination.  
Note : Bits other than B7 are for the VOF2  
register.  
DS04–29135–1E  
33  
MB42M001  
DESCRIPTION OF THE SERIAL INTERFACE  
This document defines read and write operations as described below.  
• Write : Data is transmitted by an external device and received by this IC.  
• Read : Data is transmitted by this IC and received by an external device.  
1. Serial interface connection  
External devices can access the registers and flash memory inside the IC via the serial interface.  
Control the CLK (clock), DIN (data input), DOUT (data out) and CS (chip select) pins and use serial  
handshaking to transmit data one byte (8 bits) at a time.  
Inside the IC  
CMOS input  
CMOS input  
CLK  
DIN  
CMOS input  
Tri-state  
DOUT  
CS  
CMOS input  
3-pin control can be achieved by connecting from the DOUT pin to the DIN pin with a resistor of  
approximately 5 kinserted between them.  
Note: The SD pin should be set to “L” when using the serial interface.  
When in the shutdown state, the DIN, CLK and CS pins should be open or set to the “L” level.  
2. Serial interface “Data valid timing”  
When writing, latch DIN on the rising edge of CLK.  
When reading, read DOUT on the rising edge of CLK.  
CLK  
DIN  
CLK  
DOUT  
Data  
Data  
Data  
Data  
held changed  
readable undefined  
Write operation  
Read operation  
34  
DS04–29135–1E  
MB42M001  
3. Serial interface “Starting/terminating communication mode”  
• Starting communication  
To communicate with the IC, set the CS signal to “H” and then wait for the DOUT output to become “L”.  
Communication will start in synchronization with CLK when CLK is input (rising edge) after the DOUT output  
goes to “L”.  
Disable  
communication  
Enable  
communication  
Communication  
mode  
Ignore data  
CLK  
DIN  
DOUT  
L
H
Z
Z
Z
CS  
If communication is enabled  
If communication is disabled  
• When DOUT signal is “H”  
DOUT goes to “H” if the sequence circuit inside the IC is operating.  
1) If a sequence triggered by a power-on reset is in operation  
It takes around 14 ms from the power-on reset to the end of the sequence operation inside the IC.  
2) If data was written to flash memory  
It takes around 53 ms for the writing of 8 bytes to flash memory to end.  
Terminating communication  
To terminate the communication, change the CS signal from “H” to “L”.  
On detecting the CS signal changing from H L, the IC executes the sequence operation specified by the  
communication, such as writing to flash memory.  
DS04–29135–1E  
35  
MB42M001  
4. Serial interface “Communication format”  
• Communication format  
The period during which CS is High will be counted as one frame.  
Communication during a frame consists of one address byte and one command byte followed by either  
eight bytes or one byte of data.  
address  
command  
data0 to data7  
CLK  
DIN  
to  
to  
to  
DOUT  
CS  
to  
• Communication bit string  
The basic unit for the address, command and data is one byte. Bytes are transmitted/received starting from  
the most significant bit.  
The most significant bit in the bit string (MSB) is B7 and the least significant bit (LSB) is B0.  
MSB  
LSB  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Example) When transferring 8 bytes  
address  
command  
data 0  
data 1  
data 2 to 6  
data 7  
G H  
E F  
I
J K L M N O P  
S T U V W X Y Z  
A B  
C D  
bit No.  
7 6 5 4 3 2 1 0  
BFH  
C0H  
C1H  
C2H  
to  
C7H  
C8H  
A B C D E F G H  
address  
I
J K L M N O P  
S T U V W X Y Z  
• Address:  
Set a 1-byte address value that points to an area that can be accessed by the user.  
1) Register - User area : 10H to 2FH  
2) Register - For test mode (TMR register) : 54H  
3) Flash memory - User area : 70H to B7H  
• Command  
The command value specifies whether the operation is a read or write.  
1) To write to a register or flash memory : 80H  
2) To read from a register or flash memory : 00H  
Note: For normal use, commands other than 80H or 00H must not be set.  
Setting commands other than 80H or 00H can result in malfunction or damage to other memory areas.  
36  
DS04–29135–1E  
MB42M001  
• Data (data)  
Data is transmitted/received in fixed data length per address (8 bytes or 1 byte).  
The 8th byte is the CRC code.  
Note: A CRC check is only performed for addresses between 60H to A7H and D0H to FFH.  
Address values and data lengths that can be specified by the user  
Specifiable address values  
Data length  
Register User area  
10H  
54H  
70H  
90H  
18H  
20H  
28H  
8
1
8
8
Register For test mode  
Flash memory user area 1  
Flash memory user area 2  
78H  
98H  
80H  
A0H  
88H  
A8H  
B0H  
• CRC coding formula  
CRC code must be appended every 8 bytes when writing to flash memory.  
Each frame has a total of 8 bytes, consisting of 7 bytes of data and 1 byte of CRC code.  
• CRC coding formula - Calculated based on the previous 7 bytes of data.  
Generating polynomial X8+X2+X+1 (1 0000 0111)  
• Alarm function  
1) Alarm detection output  
The alarm function outputs “CRC error” and “verify error” to the ALARM pin.  
The voltage level of the ALARM pin is normally Low but goes High in the event of an error.  
2) Alarm detection timing  
The alarm function only operates when data is automatically transferred from the memory area to the  
register area at power-on or power-on reset.  
Alarm detection will not function even when a CRC or verify error is generated while the memory or  
register is being accessed from the external serial interface.  
Once the alarm output becomes High, it cannot revert to Low level unless the power is turned off and on  
again or a power-on reset is performed.  
3) CRC  
• The CRC code is only checked for addresses marked with “CRC” in the flash memory area on the  
memory map (60H to A7H and D0H to FFH).  
• The serial interface cannot write to a CRC-capable address in flash memory if the CRC values do not  
match.In this case, the write sequence will terminate immediately and the DOUT output will revert to  
“L” within 1ms of CS recovery.  
Read operations are possible regardless of the CRC values.  
• A CRC check is performed when data is automatically transferred from the memory area (CRC-capable  
address) to the register area at power-on or power-on reset; and an alarm is output if the calculated  
CRC values do not match.  
4) Verify  
A verify check is performed by comparing the data in memory (transfer source) with the data in the  
register (transfer destination) when data is automatically transferred from the memory area to the register  
area at power-on or power-on reset; and an alarm is output if these data do not match.  
5) If the alarm does not disappear  
The alarm will disappear when data “00” is written to all CRC-capable addresses in the flash memory  
area (60H to A7H, D0H to FFH).  
DS04–29135–1E  
37  
MB42M001  
• Communication example  
38  
DS04–29135–1E  
MB42M001  
HOW TO CREATE SETTING DATA  
1. Example procedure for creating setting data  
Use a PC or microcontroller to save data from flash memory to an  
external device via the serial interface.  
1:Save the data in flash  
memory to an external  
device  
Use the serial interface to set the TMR register to switch to register  
access mode (transmit “54H 80H A0H” from the serial interface).  
2:Enter the mode in  
which each register  
can be accessed.  
• Set the data in each register from the serial interface.Adjust to  
the optimal data by measuring the analog voltage value.  
• Use a PC or microcontroller to save the data in the register area  
(10H to 2FH) to an external device.  
3:Adjust the data in each  
register  
• Set the same data as the data in the register area (10H to 2FH) to  
the user area of the flash memory area (70H to 8FH) from the  
serial interface. (It is also possible to only write those addresses  
that have been changed)  
4:Write data to flash  
memory  
Note: The VDD_M voltage must be set to 5 V when writing.  
• When the IC restarts after completing this procedure, it will  
operate with the new setting.  
5:Restart  
Note: Data is transferred automatically from flash memory (70H to  
8FH) to the register area (10H to 2FH) by power-on or power-  
on reset.  
DS04–29135–1E  
39  
MB42M001  
2. Conditions for accessing setting data  
Access condition table: Conditions for accessing the user registers and flash memory  
Command  
VDD VDD_M Permitted Address Values  
Value  
Data  
Length  
Remarks  
2.7 V  
to  
5.5 V  
Write  
Read  
Write  
Read  
Write  
VDD  
VDD  
10H 18H 20H 28H  
Read disabled  
80H  
80H  
8
Register User  
area  
2.7 V  
to  
5.5 V  
00H or  
54H  
1
A0H only  
for data  
TMR register  
Read disabled  
2.7 V  
to  
5.5 V  
2.7 V  
to  
5.5 V  
2.7 V  
to  
5.5 V  
2.7 V  
to  
5 V  
VDD  
5 V  
70H 78H 80H 88H  
70H 78H 80H 88H  
80H  
00H  
80H  
00H  
8
8
8
8
Flash memory  
user area 1  
Read  
Write  
Read  
90H 98H A0H A8H B0H  
90H 98H A0H A8H B0H  
Flash memory  
user area 2  
VDD  
5.5 V  
(1) Power supply voltages (VDD, VDD_M)  
The VDD_M voltage must be set to 5 V when writing to a flash memory area.  
The data in flash memory may become corrupted if it is written with a VDD_M voltage of other than 5 V.  
Other than when writing to a flash memory area, the power supply voltage is VDD = VDD_M = 2.7 V to 5.5 V.  
Note:Flashmemoryshouldpreferablybewrittentoatthepowersupplyvoltageof5.0Vandatroomtemperature.  
(2) Address value  
Only those address values shown in the access condition table can be specified.  
Specifying address values other than those shown in the access condition table can result in malfunction  
or damage to other memory areas.  
(3) Data length (No. of bytes of data)  
Use the data length specified in the access condition table.  
Using a data length other than that shown in the access condition table can result in malfunction or damage  
to other memory areas.  
(4) Command value  
Specify a command value permitted by the combination of the address and read/write in the access  
condition table.  
Specifying a command value other than those shown in the access condition table can result in malfunction  
or damage to other memory areas.  
(5) Precautions when writing to the flash memory  
It is prohibited to set the SD pin to “H” or perform serial interface communications while data is being written  
to flash memory.  
Operating such as communications during data writing can result in malfunction or damage to other  
memory areas.  
Note : DOUT goes to “H” from when the data write is started until it is finished.  
(6) CRC code  
The 8th byte of transmitted or received data is the CRC code.  
The serial interface cannot write to CRC-capable addresses in flash memory (60H to A7H, D0H to FFH) if the  
CRC values do not match.In this case, the write sequence terminates immediately and the DOUT output  
reverts to “L” within 1 ms of CS recovery.  
40  
DS04–29135–1E  
MB42M001  
POWER-ON AND SHUTDOWN FUNCTIONS  
The power supply current is shut down by inputting a digital logic signal (High VDD, Low = 0 V) to the SD pin.  
1. Power-on  
1) When controlling the SD pin after VDD power-on  
• The serial interface input pins (CS, CLK and DIN) must be open circuit or 0 V.  
• The power supply voltage must be 2.7 V or higher when switching the SD pin to the normal state  
(HighLow).  
The IC will malfunction if the SD pin is switched to the normal state (HighLow) at a voltage lower than  
2.7 V.  
• The SD pin can be switched to shutdown state (HighLow) regardless of the power supply voltage  
(Shutdown state when SD = High; Normal state when SD = Low).  
2) When using the SD pin shorted to GND  
• When the power supply turns on, ensure that the transition time from 2.2 V to 2.7 V is less than 1ms.  
The IC may malfunction if it takes longer.  
• If the power supply is slow to turn on, control the SD pin separately and switch from High to Low after  
the power supply voltage has reached over 2.7 V.  
VDD [V]  
2.7 V  
2.2 V  
t
Ton 1 ms  
2. Operation startup wait time  
The following describes the process flow and wait times for the analog circuit to come into operation after a  
power-on or while recovering from a shutdown.  
• Power-on (VDD>2.7 V)  
• Recover from shutdown  
A power-on reset is invoked at power-on or when recovering  
Power-on reset  
from shutdown.  
After a power-on reset, the adjustment data is copied  
Data transfer from flash  
automatically from flash memory to the registers. The transfer  
memory to the registers  
takes approx. 7 ms.  
It takes some time for the analog circuit to become stable.This  
Wait time for analog circuit  
stabilization wait time will vary depending on the LPF filter  
operation to stabilize  
(capacitance of the FLTxx pin).  
Example) If the wait time until the analog circuit becomes  
stable is longer than 10ms, then an operation wait  
time of 17 ms or longer is required.  
DS04–29135–1E  
41  
MB42M001  
3. Operation start wait time for the serial interface  
The following describes the process flow and wait times for the analog circuit to come into operation after a  
power-on or while recovering from a shutdown.  
4. Operation modes specified by the SD pin and serial interface input pins  
The “DIN, CLK and CS” pins should be Low or open circuit while in shutdown state (SD = High).  
The table below shows the states invoked by the DIN and CS pin logic levels while in shutdown state (SD =  
High).  
SD DIN CLK CS  
Normal state  
L
*
*
*
Note: A power-on reset is invoked at power-on.  
Shutdown  
Normal  
operation  
H
L
L
L
Note: A power-on reset is invoked after recovering from shutdown.  
Current dissipation can be lowered by temporarily halting the  
analog circuits while maintaining the register values.  
1) Starts in normal operating mode and invokes a power-on reset  
when the power is turned on.  
2) When switched to power-save mode, set DIN to High beforehand  
and then set SD to High to avoid a power-on reset.  
3) When recovering from power-save mode, maintain DIN to High  
and set SD to Low to avoid a power-on reset.  
Power-save  
mode  
H
H
L
L
Note: The serial interface cannot access registers or memory in  
power-save mode.  
H
H
L
L
L
H
H
Normal operation  
<Test>  
Pause clock  
H
This termporarily stops the clock in the IC.  
Note: The pause function for the IC internal clock can be used to connect multiple MB42M001s and sensor  
elements.  
42  
DS04–29135–1E  
MB42M001  
APPLICATION CIRCUIT EXAMPLE  
Connection example for a 3ch capacitive sensor (1)  
CFLTx = 10 nF to 100 nF  
Sensor-C  
24 23 22 21 20 19 18  
VOUT_A  
VOUT_B  
VOUT_C  
VDD  
SIN1C  
SIN2C  
AGND2  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
25  
26  
17  
16  
VDD  
15  
14  
13  
12  
11  
10  
27  
28  
29  
30  
31  
32  
Sensor-A  
Sensor-B  
AGND1  
VREF  
VFA  
Package:  
BCC-32  
CVDD  
CVREF  
CVFA  
SD  
GND  
VDD  
VDD_M  
9
1
2
3
4
5
6
7
8
VDD or 5 V  
CVREF :1 µF  
CVFA :1 µF  
CVDD :1 µF  
Serial interface  
Note : About VDD_M  
VDD_M should normally be at the same potential as VDD.  
VDD_M should be 5.0V when writing to the non-volatile memory in the IC.  
DS04–29135–1E  
43  
MB42M001  
Connection example for a 3ch capacitive sensor (2)  
This example shows the operation with a minimum configuration.  
1) Use with the VDD and VDD_M power supply pins connected together.This is necessary to set VDD = 5.0  
V when writing to the non-volatile memory inside the IC.  
2) The serial interface does not need to be connected permanently as it is only used when creating  
adjustment data or when writing to non-volatile memory.  
3) Although the filter capacitance is determined by factors such as the response frequency and noise  
tolerance, it is also possible to use one capacitance for each channel.  
4) Although sensors with a pair capacitance are desirable, capacitive sensors with other than a pair  
capacitance can be supported, depending on the value of the capacitance. The following diagram shows  
an example where a pair capacitance sensor is connected to Ch.A, a single capacitance sensor to Ch.B,  
and a single capacitance sensor and capacitor (with fixed capacitance value) to Ch.C.  
CFLT2 = 10 nF to 100 nF  
Sensor-C  
24 23 22 21 20 19 18  
VOUT_A  
VOUT_B  
VOUT_C  
VDD  
SIN1C  
SIN2C  
AGND2  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
25  
26  
17  
16  
GND  
CVDD  
15  
14  
13  
12  
11  
10  
27  
28  
29  
30  
31  
32  
Sensor-A  
Sensor-B  
VDD  
AGND1  
VREF  
VFA  
Package:  
BCC-32  
CVREF  
CVFA  
SD  
VDD_M  
9
1
2
3
4
5
6
7
8
CVREF :1 µF  
CVFA :1 µF  
CVDD :1 µF  
44  
DS04–29135–1E  
MB42M001  
Connection example for a 3ch capacitive sensor (3)  
The IC should be designed to guard the area between SIN_COM wiring pattern and sensor connection pin  
with the GND pattern and the wiring SIN_COM should be lined as short as possible.  
The following diagram shows an indicative wiring pattern. The actual pattern should be based on the  
positions of the sensor and IC.  
C
FLTx = 10 nF to 100 nF  
Sensor-C  
Sensor-A  
Sensor-B  
VOUT_A  
VOUT_B  
VOUT_C  
VDD  
24 23 22 21 20 19 18  
SIN1C  
SIN2C  
AGND2  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
25  
17  
16  
26  
27  
28  
29  
30  
31  
32  
VDD  
15  
14  
13  
12  
11  
10  
AGND1  
Package:  
BCC-32  
C
VDD  
VREF  
VFA  
SD  
C
VREF  
C
VFA  
GND  
VDD  
VDD  
VDD_M  
9
1
2
3
4
5
6
7
8
C
C
C
VREF :1 µF  
VFA :1 µF  
VDD :1 µF  
Serial interface  
DS04–29135–1E  
45  
MB42M001  
Connection example for a 1ch capacitive sensor  
CFLT2 = 10 nF to 100 nF  
20  
VOUT_A  
VOUT_B  
VOUT_C  
VDD  
24 23 22 21  
19 18  
SIN1C  
SIN2C  
AGND2  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
25  
26  
17  
16  
VDD  
15  
14  
13  
12  
11  
10  
27  
28  
29  
30  
31  
32  
Sensor-A  
AGND1  
Package:  
BCC-32  
CVDD  
VREF  
VFA  
SD  
CVREF  
CVFA  
GND  
VDD  
5 V  
VDD_M  
9
1
2
3
4
5
6
7
8
CVREF :1 µF  
CVFA :1 µF  
CVDD :1 µF  
Serial interface  
Notes : If using other than a pair capacitance sensor, leave one of the SINxx pins open circuit.  
Connect CSRV to FLT1C when using the SRV function.  
46  
DS04–29135–1E  
MB42M001  
Connection example for a 1ch capacitive sensor  
When using the CV amplifier in C mode, the wiring pattern of SIN_COM should preferably be guarded from  
SIN1A and SIN2A by the GND pattern.  
The following diagram shows an indicative wiring pattern. The actual pattern should be based on the  
positions of the sensor and IC.  
CFLT2 = 10 nF to 100 nF  
20  
VOUT_A  
VOUT_B  
VOUT_C  
VDD  
24 23 22 21  
19 18  
SIN1C  
SIN2C  
AGND2  
SIN1A  
SIN2A  
DGND  
SIN1B  
SIN2B  
25  
26  
17  
16  
VDD  
15  
14  
13  
12  
11  
10  
27  
28  
29  
30  
31  
32  
Sensor-A  
AGND1  
VREF  
VFA  
Package:  
BCC-32  
CVDD  
CVREF  
CVFA  
SD  
GND  
VDD_M  
9
1
2
3
4
5
6
7
8
CVREF :1 µF  
CVFA :1 µF  
CVDD :1 µF  
DS04–29135–1E  
47  
MB42M001  
• Application example  
• Use with sensor elements that output a 3ch static capacitance change  
Acceleration sensor, inclination sensor, fall detection, and vibration detection  
• Use with sensor elements that output a 1ch static capacitance change  
Pressure sensor  
• Use with other sensor elements that output a change in static capacitance  
Micro-capacitance detection circuit, etc.  
• Static capacitance change detection and DC differential amplifier  
DC differential amplifier with wide input range  
48  
DS04–29135–1E  
MB42M001  
PRECAUTIONS FOR USING THIS DEVICE  
• Never use settings that exceed the maximum rated conditions, otherwise the LSI may be destroyed.  
Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding  
recommended operating conditions may adversely affect LSI reliability.  
• Inserting the IC backwards or with the incorrect orientation can damage the LSI.  
• Mount the IC in the socket (or board) in the correct orientation indicated by the index mark on the IC  
package.  
Although this device contains an anti-static element to prevent electrostatic breakdown and the circuit  
design has improved electrostatic immunity, observe the following precautions when handling the device.  
(1) When storing and transporting the device, keep it in a container that has anti-static protection or is made  
of conductive material.  
(2) Before handling the device, confirm that the work personnel, jigs and tools have been discharged  
(grounded). Use a conductive sheet on the workbench.  
(3) Working personnel should be grounded with resistance of 250 kto 1 Minserted in series between  
body and ground.  
(4) Before fitting the device into or removing it from the socket, turn the power supply off.  
(5) When handling (such as transporting) a board on which the device is mounted, protect the leads with a  
conductive sheet.  
• Recommended operating conditions are values within which normal LSI operation is warranted.  
Standard electrical characteristics are warranted within the range of recommended operating conditions  
and within the listed conditions for each parameter.  
Operation outside these ranges may adversely affect LSI reliability.  
• Printed circuit board ground lines should be set up with consideration for common impedance.  
ORDERING INFORMATION  
Part number  
MB42M001PV  
Package  
32-pin plastic BCC  
(LCC-32P-M08)  
DS04–29135–1E  
49  
MB42M001  
PACKAGE DIMENSIONS  
Lead pitch  
0.50 mm  
5.00 mm ×× 5.00 mm  
Plastic mold  
32-pin plastic BCC  
Package width ×  
package length  
Sealing method  
Mounting height  
0.80 mm MAX  
(LCC-32P-M08)  
32-pin plastic BCC  
(LCC-32P-M08)  
ꢁ.20(.165)TYP  
0.50(.020)TYP  
0.50 0.10  
5.00 0.10(.1ꢀ7 .00ꢁ)  
0.80(.031)MAX  
(Mount height)  
(.020 .00ꢁ)  
25  
17  
17  
25  
ꢁ.20(.165)  
TYP  
3.00(.118) ꢁ.15(.163)  
5.00 0.10  
(.1ꢀ7 .00ꢁ)  
REF  
REF  
INDEX AREA  
0.50(.020)  
TYP  
0.50 0.10  
(.020 .00ꢁ)  
"A"  
"B"  
"C"  
0.075 0.025  
(.003 .001)  
(Stand off)  
1
1
3.00(.118)REF  
ꢁ.15(.163)REF  
Details of "A" part  
Details of "B" part  
C0.2(.008)  
Details of "C" part  
0.05(.002)  
0.1ꢁ(.006)  
MIN  
0.ꢁ0 0.06  
(.016 .002)  
0.ꢁ5 0.06  
(.018 .002)  
0.ꢁ5 0.06  
(.018 .002)  
0.30 0.06  
0.ꢁ5 0.06  
0.ꢁ5 0.06  
(.012 .002)  
(.018 .002)  
(.018 .002)  
©2001-2008 FUJITSU MICROELECTRONICS LIMITED C32060S-c-3-3  
SD -
Dimensions in mm (inches)  
Please confirm the latest Package dimension by following URL.  
http://edevice.fujitsu.com/package/en-search/  
Note: About wafer delivery  
Delivery can be arranged depending on the number of wafers purchased and the terms and condition  
of purchase.  
50  
DS04–29135–1E  
MB42M001  
MEMO  
DS04–29135–1E  
51  
MB42M001  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,  
Shinjuku-ku, Tokyo 163-0722, Japan  
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://www.fmal.fujitsu.com/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm. 3102, Bund Center, No.222 Yan An Road (E),  
Shanghai 200002, China  
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
Korea  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road,  
Tsimshatsui, Kowloon, Hong Kong  
Tel : +852-2377-0226 Fax : +852-2376-3269  
http://cn.fujitsu.com/fmc/en/  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fmk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incor-  
porating the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or  
any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other  
right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property  
rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages  
arising in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-  
current levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations  
of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB42T28-1.000-0.5/0+50

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-1.0/-30+75

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-1.0/0+50

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-1.5/-10+60

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-1.5/-40+85

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.0/-10+60

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.0/-30+75

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.0/-40+85

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.0/0+50

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.5/-10+60

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.5/-20+70

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ

MB42T28-1.000-2.5/-30+75

HCMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 4 PIN
EUROQUARTZ