MB81N261647A-22FN [FUJITSU]

DDR DRAM, 16MX16, 0.85ns, CMOS, PDSO66;
MB81N261647A-22FN
型号: MB81N261647A-22FN
厂家: FUJITSU    FUJITSU
描述:

DDR DRAM, 16MX16, 0.85ns, CMOS, PDSO66

时钟 动态存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总50页 (文件大小:1020K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
AE1E  
MEMORY  
CMOS  
256M BIT  
DOUBLE DATA RATE FCRAM™  
MB81N26847A/261647A-22/-24/-30  
CMOS 4-BANK x 67,108,864 BIT  
Fast Cycle Random Access Memory  
with Double Data Rate  
DESCRIPTION  
The Fujitsu MB81N26847A/261647A is a CMOS Fast Cycle Random Access Memory (FCRAM) containing  
268,435,456 memory cells accessible in an 8-bit or 16-bit format. The MB81N26847A/261647A features a fully  
synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which  
enables high performance and simple user interface coexistence. The MB81N26847A/261647A is designed to  
reduce the complexity of using a standard Dynamic RAM (DRAM) which requires many control signal timing  
constraints. The MB81N26847A/261647A uses Double Data Rate (DDR) where data bandwidth is twice of fast  
speed compared with regular SDRAMs.  
The MB81N26847A/261647A is designed using Fujitsu advanced FCRAM Core Technology.  
The MB81N26847A/261647A is ideally suited for Enterprise Servers, Network Systems, Hardware Accelerators,  
Buffers, and other applications where large memory density and high effective bandwidth are required and where  
a simple interface is needed.  
The MB81N26847A/261647A adopts CMOS I/O interface circuitry, 2.5 V Half-strength SSTL-2 interface, which  
is capable of extremely fast data transfer of quality.  
PRODUCT LINE  
MB81N26847A (x8) / MB81N261647A (x16)  
Parameter  
-22  
-24  
-30  
CL = 3  
CL = 2  
154 MHz max  
133 MHz max  
22.5 ns max  
30 ns min  
143 MHz max  
125 MHz max  
24.0 ns max  
32 ns min  
133 MHz max  
100 MHz max  
30.0 ns max  
40 ns min  
Clock Frequency  
Random Access Time  
Random Address Cycle Time  
DQS Access Time From Clock  
Operating Current (IDD1S)  
Power Down Current (IDD2P)  
+/– 0.85 ns max  
170 mA max  
2 mA max  
+/– 0.9 ns max  
165 mA max  
2 mA max  
+/– 1.0 ns max  
150 mA max  
2 mA max  
Notice: FCRAM is a trademark of Fujitsu Limited, Japan.  
(AE1E) 1  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FEATURES  
• Double Data Rate  
• Variable Write Length Control per Byte  
• Distributed Auto-refresh cycle in 7.8 µs  
• 2.5 V CMOS I/O comply with SSTL_2  
(Half Strength Driver)  
• Bi-directional Data Strobe Signal  
• Four independent bank operation  
• Burst read/write operation  
• Programmable burst type, burst length, and  
CAS latency  
• VDD:  
+2.5V Supply ± 0.2V tolerance  
• VDDQ: +2.5V Supply ± 0.2V tolerance  
PACKAGE  
Plastic TSOP(II) Package  
(FPT-66P-M01)  
(Normal Bend)  
Package and Ordering Information  
– 66-pin plastic (400 mil) TSOP-II, order as MB81N26847A/261647A-××FN  
2 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
PIN ASSIGNMENTS AND DESCRIPTIONS #1  
Fig. 1 – MB81N26847A PIN ASSIGNMENTS  
66-Pin TSOP(II)  
(TOP VIEW)  
VDD  
DQ0  
VDDQ  
NC2  
DQ1  
VSSQ  
NC2  
DQ2  
VDDQ  
NC2  
DQ3  
VSSQ  
NC2  
NC1  
VDDQ  
NC2  
NC1  
VDD  
VSS  
66  
65  
64  
63  
62  
61  
60  
1
DQ7  
VSSQ  
NC2  
DQ6  
VDDQ  
NC2  
DQ5  
VSSQ  
NC2  
DQ4  
VDDQ  
NC2  
NC1  
VSSQ  
DQS  
NC1  
VREF  
VSS  
2
3
4
5
6
7
8
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC1  
NC2  
A14  
NC2  
CLK  
CLK  
PD  
A13  
FN  
CS  
NC1  
A12  
NC1  
BA0  
BA1  
A10  
A11  
A9  
39  
38  
37  
36  
35  
34  
A8  
A0  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
VDD  
VSS  
Pin Number  
Symbol  
Function  
1, 3, 9, 15, 18, 33, 55, 61  
2, 5, 8, 11, 56, 59, 62, 65  
6, 12, 34, 48, 52, 58, 64, 66  
VDD, VDDQ  
Supply Voltage  
Data I/O  
DQ0 to DQ7  
VSS, VSSQ  
Ground  
• Upper: A0 to A14  
• Lower: A0 to A7  
21, 22, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42  
A0 to A14  
Address Input  
23  
FN  
CS  
Function Select  
Chip Select  
24  
26, 27  
BA1, BA0  
PD  
Bank Address  
Power Down  
44  
45  
CLK  
CLK  
VREF  
Clock Input  
46  
Clock Input  
49  
51  
Input Reference Voltage  
Data Strobe  
DQS  
NC1  
NC2  
14, 17, 19, 25, 43, 50, 53  
4, 7, 10, 13, 16, 20, 47, 54, 57, 60, 63  
No Connection  
No Connection (Left Open)  
(AE1E) 3  
MB81N26847A/261647A-22/-24/-30 Preliminary  
PIN ASSIGNMENTS AND DESCRIPTIONS #2  
Fig. 2 – MB81N261647A PIN ASSIGNMENTS  
66-Pin TSOP(II)  
(TOP VIEW)  
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC1  
VDDQ  
LDQS  
NC1  
VDD  
VSS  
66  
65  
64  
63  
62  
61  
60  
1
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC1  
VSSQ  
UDQS  
NC1  
VREF  
VSS  
2
3
4
5
6
7
8
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC1  
NC2  
A14  
NC2  
CLK  
CLK  
PD  
A13  
FN  
CS  
NC1  
A12  
NC1  
BA0  
BA1  
A10  
A11  
A9  
39  
38  
37  
36  
35  
34  
A8  
A0  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
VDD  
VSS  
Pin Number  
Symbol  
Function  
1, 3, 9, 15, 18, 33, 55, 61  
VDD, VDDQ  
Supply Voltage  
Data I/O  
• Upper: DQ8 to DQ15  
• Lower: DQ0 to DQ7  
2, 4, 5, 7, 8, 10, 11, 13, 54, 56, 57, 59, 60, 62, 63, 65  
6, 12, 34, 48, 52, 58, 64, 66  
DQ0 to DQ15  
VSS, VSSQ  
Ground  
• Upper: A0 to A14  
• Lower: A0 to A6  
21, 22, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42  
A0 to A14  
Address Input  
23  
FN  
CS  
Function Select  
Chip Select  
24  
26, 27  
BA1, BA0  
PD  
Bank Address  
44  
Power Down  
45  
CLK  
Clock Input  
46  
CLK  
Clock Input  
49  
VREF  
Input Reference Voltage  
Lower Byte Data Strobe  
Upper Byte Data Strobe  
No Connection  
16  
LDQS  
UDQS  
NC1  
51  
14, 17, 19, 25, 43, 50, 53  
20, 47  
NC2  
No Connection (Left Open)  
4 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
BLOCK DIAGRAM #1  
Fig. 3 – MB81N26847A BLOCK DIAGRAM  
CLK  
CLOCK  
To each block  
CLK  
PD  
BUFFER  
Bank-3  
Bank-2  
Enable  
Bank-1  
Bank-0  
CS  
CONTROL  
SIGNAL  
LATCH  
CS  
FN  
R/W  
COMMAND  
DECODER  
DRAM  
CORE  
MODE  
REGISTER  
(8M x 8)  
ADDRESS  
23  
A0 to A14  
BA0,BA1  
ADDRESS  
BUFFER/  
REGISTER  
BURST  
ACCESS  
COUNTER  
BURST  
ADDRESS  
2
I/O  
I/O DATA  
BUFFER/  
REGISTER  
&
DQ0  
to  
DQ7  
DQS  
DQS  
GENERA-  
TOR  
8
VDD  
Clock Buffer  
DLL  
VREF  
VSS / VSSQ  
VDDQ, VSSQ  
(AE1E) 5  
MB81N26847A/261647A-22/-24/-30 Preliminary  
BLOCK DIAGRAM #2  
Fig. 4 – MB81N261647A BLOCK DIAGRAM  
CLK  
CLOCK  
To each block  
CLK  
PD  
BUFFER  
Bank-3  
Bank-2  
Enable  
Bank-1  
Bank-0  
CS  
CONTROL  
SIGNAL  
LATCH  
CS  
FN  
R/W  
COMMAND  
DECODER  
DRAM  
CORE  
MODE  
REGISTER  
(4M x 16)  
ADDRESS  
22  
A0 to A14  
BA0,BA1  
ADDRESS  
BUFFER/  
REGISTER  
BURST  
ACCESS  
COUNTER  
BURST  
ADDRESS  
DQ0  
to  
DQ7  
2
I/O  
I/O DATA  
BUFFER/  
REGISTER  
&
LDQS  
DQ8  
to  
DQ15  
DQS  
GENERA-  
TOR  
16  
VDD  
Clock Buffer  
DLL  
UDQS  
VREF  
VSS / VSSQ  
VDDQ, VSSQ  
6 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTION TRUTH TABLE Note *1  
COMMAND TRUTH TABLE Note *2, and *3  
1st Command  
Function  
Device Deselect  
Notes  
Symbol  
DESL  
RDA  
CS  
H
FN  
X
BA1-0  
X
A14-0  
X
Read (with Auto-close)  
Write (with Auto-close)  
*4  
*4  
L
H
BA  
BA  
UA  
UA  
WRA  
L
L
2nd Command (1 clock after from RDA or WRA command)  
Function  
Notes  
x16  
Symbol  
LAL  
CS  
H
H
L
FN  
X
BA1-0 A14-13  
A12-11  
A10-8  
X
A7  
A6-0  
LA  
LA  
X
X
X
X
V
V
V
X
L
V
X
X
L
X
LA  
X
Lower Address Latch  
*5  
x8  
*6  
*6, *7  
LAL  
X
X
Auto-refresh  
REF  
X
X
Mode Register Set  
MRS  
L
X
L
V
V
Notes: *1. L = Logic Low, H = Logic High, X = either L or H, V = Valid (Specified Value), Hi-Z = High Impedance,  
UA = Upper Address, LA = Lower Address  
*2. All commands are assumed to be valid state transitions.  
*3. All inputs for command are latched on the cross point of clock input where CLK goes to High.  
*4. RDA and WRA commands should only be issued to the back in standby state.  
Refer to Figure 5, STATE DIAGRAM, in page 9.  
*5. LAL command is the same command state as DESL and used at both Read and Write operation.  
A14 to A11 are only used for Variable Write Length control at Write operation.  
Refer to READ and WRITE command table below.  
*6. Required at Power-up Initialization.  
REF and MRS command should only be issued if all banks are in standby state.  
*7. Refer to MODE REGISTER TABLE.  
READ COMMAND TABLE  
Command  
RDA (First)  
CS  
L
FN  
H
BA1  
BA1  
X
BA0  
BA0  
X
A14 to A8  
A7  
UA  
X
A6 to A0  
UA  
UA  
X
x16  
x8  
H
X
LA  
LAL (2nd)  
H
X
X
X
X
LA  
LA  
WRITE COMMAND TABLE  
Command  
CS  
L
FN BA1 BA0  
A14  
A13  
A12  
UA  
A11  
A10-8  
UA  
X
A7  
UA  
X
A6 to A0  
UA  
WRA (First)  
L
X
X
BA1 BA0  
UA  
UA  
UA  
x16  
x8  
H
X
X
X
X
LVW0 LVW1 UVW0 UVW1  
VW0 VW1  
LA  
LAL (2nd)  
H
X
X
X
LA  
LA  
(AE1E) 7  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTION TRUTH TABLE (continued)  
VW TRUTH TABLE (Effective during Write mode) Note 8  
Function  
Write All Words  
Notes  
VW0  
L
VW1  
X
BL=2  
BL=4  
Write First One Word  
Reserved  
H
X
*9  
L
L
Write All Words  
H
L
Write First Two Words  
Write First One Word  
L
H
H
H
*8. LVW and UVW controls DQ0-7 and DQ8-15, respectively. Unless specifically noted, VW represents both  
LVW and UVW in later descriptions.  
*9. Must not be used  
PD TRUTH TABLE  
Power Down Table  
*11  
DQ  
PD  
Current  
State  
Function  
Power Down Entry  
Notes Command  
CS FN BA1 BA0  
A14-0  
(n-1) (n)  
Standby  
PDEN  
H
L
L
L
H
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power Down Power Down Continue  
Power Down Power Down Exit  
PDEX  
L
H
L
Active  
Self-refresh Entry  
*10  
REF  
H
L
Self-refresh Self-refresh Continue  
Self-refresh Self-refresh Exit  
Read / Write Illegal  
L
X
H
X
SELFX  
L
H
L
H
other than  
Illegal  
other than  
above  
H
L
any  
above  
*10. PD can be brought to Low within tFPDL from REF command for Self-refresh entry.  
*11. PD has asynchronous OE function but its AC parameters wil not be guaranteed.  
8 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
STATE DIAGRAM  
Fig. 5 – STATE DIAGRAM (Simplified for Single Bank Operation)  
AUTO  
REFRESH  
PD = L  
MODE  
REGISTER  
SELF-  
REFREESH  
SELFX  
PD = H  
REF  
MRS  
WRA  
RDA  
DESL  
(Standby)  
ACTIVE  
ACTIVE  
LAL  
LAL  
PDEN  
PDEX  
POWER  
DOWN  
WRITE  
READ  
SymbolDefinitions:  
One Time State  
Command Input  
Automatic Sequence  
(AE1E) 9  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTIONAL DESCRIPTION  
FCRAMTM  
The FCRAM is an acronym of Fast Cycle Random Access Memory and provides very fast random cycle time. The  
FCRAM also provides low latency and low power consumption than regular DRAMs.  
DDR, Double Data Rate Function  
The regular SDRAM read and write cycle have only used the rising edge of external clock input. When clock signal  
goes to High from Low at the read mode, the read out data will be available at every rising clock edge after the  
specified latency up to burst length. The MB81N26847A/261647A DDR FCRAM features a twice of data transfer  
rate within the same clock period by transferring data at every rising and falling clock edge.  
CLOCK (CLK, CLK)  
The MB81N26847A/261647A adopts differential clock scheme. CLK is a master clock and its rising edge is used  
to latch all command and address inputs. CLK is a complementary clock input.  
The MB81N26847A/261647A implements Delay Locked Loop (DLL) circuit. This internal DLL tracks the signal cross  
point between CLK and CLK and generate some clock cycle delay for the output buffer control at Read mode.  
The internal DLL circuit requires some Lock-on time for the stable delay time generation. In order to stabilize the  
delay, a constant stable clock input for lLOCK period is required during the Power-up initialization and a constant stable  
clock input for lLOCK period is also required after Self-refresh exit as specified lLOCK prior to RDA command.  
POWER DOWN (PD)  
PD is a synchronous input signal and enables low power mode; Power Down and Self-refresh mode.  
The Power Down mode is entered when PD is brought to Low while all banks are in idle state and exited when it  
return to High.  
PD must be brought to Low within the timing between tFPDL(min) and tFPDL(max) to Self-refresh mode.  
When PD is bourght to Low after lPDV, FCRAM perform Auto-refresh and enter Power Down mode.  
During the Power Down and Self-refresh mode, both CLK and CLK are disabled after specified time.  
PD does not have a Clock Suspend function unlike CKE pin of regular SDRAMs, and it is illegal to bring PD into  
Low if any read or write operation is being performed. For the detail, refer to STATE DIAGRAM.  
It is recommended to maintain PD to be Low until VDD gets in the specified operating range in order to assure the  
power-up initialization.  
CHIP SELECT (CS) and FUNCTION SELECT (FN)  
Unlike regular SDRAMs’ command input signals, the MB81N26847A/261647A has only two control signals; CS  
and FN.  
Each operation is determined by two consecutive command input. Refer to FUNCTION TRUTH TABLE in page 7.  
10 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTIONAL DESCRIPTION (continued)  
BANK ADDRESS (BA0, BA1)  
The MB81N26847A/261647A has four internal banks. Bank selection by BA occurs at Read (RDA) or Write (WRA)  
command.  
ADDRESS INPUTS (A0 to A14)  
Address input selects an arbitrary location of each memory cell matrix within each bank. MB81N26847A/261647A  
adopts an address multiplexer in order to reduce the pin count of the address lines. At either RDA or WRA command,  
fifteen Upper addresses are initially latched as well as two bank addresses and the remainder of Lower addresses  
are then latched by an LAL command. Refer to FUNCTIONAL TRUTH TABLE.  
DATA STROBE (DQS)  
DQSis a bi-directional signal and used as data strobe. During Read operation, DQS provides the read data strobe  
signal that is intended to use input data strobe signal at the receiver circuit of the controller(s). It turns Low before  
first data is coming out and toggle High to Low or Low to High till end of burst read. Refer to the timing diagrams.  
The CAS Latency is specified to the first Low to High transition of this DQS output.  
During the write operation, DQS is used to latch corresponding byte of write data signals. As well as the behavior  
of read data strobe, the first rising edge of DQS input latches first input data and following falling edge of DQS signal  
latches second input data. This sequence shall be continued till end of burst count. Therefore, DQS must be provided  
from the driver circuit of the controller that drives write data.  
Note that DQS input signal should not be tristated from High at the end of write mode, and LDQS and UDQS of  
MB81N261647 are for Lower Byte Data (DQ0-7) and Upper Byte Data (DQ8-15), respectively.  
DATA INPUTS AND OUTPUTS (DQn)  
Input data is latched by DQS input signal and written into memory at the clock following the write command input.  
Output data is obtained together with DQS output signals at programmed read CAS latency.  
The polarity of the output data is identical to that of the input. Data is valid from DQS output signal transition (tQSQ)  
till next transition as specified in Data Valid Time from DQS (tQSQV).  
READ (RDA) and LOWER ADDRESS LATCH (LAL)  
The MB81N26847A/261647A adopts two consecutive command input scheme. The read or write operation is  
determined at first RDA or WRA command input from Standby state of the bank to be accessed.  
Refer to Figure 5, STATE DIAGRAM in page 9.  
The read mode is entered when RDA command is asserted with Bank Address and Upper Address input and LAL  
command with Lower Address input must be followed at next clock input. The output data is then valid after  
programmed CAS Latency (CL) from a clock at LAL command till end of burst. The read mode is automatically  
exited after lRC, Random Cycle Latency.  
Refer to FUNCTION TRUTH TABLE.  
(AE1E) 11  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTIONAL DESCRIPTION (continued)  
WRITE (WRA), LOWER ADDRESS LATCH (LAL) and VERIABLE WRITE LENGTH  
The write mode is entered and exited as the same manner as read mode. The input data store is started at the  
rising edge of DQS input from CL-1 till end of burst count. Refer to FUNCTION TRUTH TABLE.  
The MB81N26847A/261647A write operation has a feature of “on-the-fly” Variable Write Length (VW) at every LAL  
command input following WRA command.  
Unlike Data Mask (DM) of regular DDR SDRAM, VW does not provide random data mask capability and the VW  
controls the burst counter for the write burst and its burst length is set by a combination of two control addresses,  
VW0 and VW1, and programmed Burst Length condition. Refer to VW TRUTH TABLE in page 8.  
The data in masked address location remain unchanged.  
Note that the DQS signal input must be continued till end of burst length set by Burst Length (BL) at standard mode  
register field regardless of actual write burst count set by VW.  
During read cycle, the VW field is inactive and does not have any effect on read operation.  
BURST MODE OPERATION AND BURST TYPE  
The burst mode provides faster memory access and MB81N26847A/261647A read and write operations are burst  
oriented. The burst mode is implemented by keeping the same addresses and by automatic strobing least significant  
addresses in every single clock edge till programmed burst length (BL). Access time from clock of burst mode is  
specified as tAC. The internal lower address counter operation is determined by a mode register which defines burst  
type (BT) and burst count length(BL) of 2 or 4 bits of boundary.  
The burst type can be selected eithersequentialor interleave mode. The sequential modeisanincrementaldecoding  
scheme within a boundary address to be determined by count length, it assigns +1 to the previous (or initial) address  
until reaching the end of boundary address and then wraps round to the least significant address(= 0). The interleave  
mode is a scrambled decoding scheme for A0 to A1 of Lower Address depending on the burst length. If the first  
access of lower address is even (0), the next address will be odd (1), or vice-versa.  
BURST ORDER  
Starting Lower Address  
Burst Length  
Sequential  
Interleave  
A1  
A0  
0
0 – 1  
0 – 1  
2
1
1 – 0  
1 – 0  
0
0 – 1 – 2 – 3  
1 – 2 – 3 – 0  
2 – 3 – 0 – 1  
3 – 0 – 1 – 2  
0 – 1 – 2 – 3  
1 – 0 – 3 – 2  
2 – 3 – 0 – 1  
3 – 2 – 1 – 0  
0
1
1
4
0
1
12 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTIONAL DESCRIPTION (continued)  
MODE REGISTER SET (MRS)  
The mode register provides a variety of different operations as specified above and can be programmed MRS  
command following RDA command input if all banks are in standby state. Note that the read operation initiated by  
RDA command is cancelled if MRS command is asserted at next clock input from RDA command instead of LAL  
command required for read operation.  
The MB81N26847A/261647A has two registers; Standard and Extended mode register. The Standard mode register  
has four operation fields; Burst Length, Burst Type, CAS Latency, and Test Mode (This Test Mode must not be used.)  
The Extended mode register has two fields; DLL Enable and Output Driver Strength.  
Refer to MODE REGISTER TABLE in page 15.  
These two registers are selected by BA0 at MRS command entry and each field is also set by the address line at  
MRS command as well. Once those fields are programmed, the contents will be held until re-programmed by another  
MRS command (or part loses power). MRS command should only be issued on condition that all banks are in idle  
state and all outputs are in High-Z. The condition of the mode register is undefined after the power-up stage and it  
is required to set each field after initialization.  
Refer to POWER-UP INITIALIZATION below.  
AUTO-REFRESH (REF)  
The memory core of MB81N26847A/261647A is the same as conventional DRAM’s capacitor cell and requires  
refresh operation to maintain the data written into the cell. The Auto-refresh mode is entered by REF command  
following to WRA command. REF command should only be issued under condition that all banks are in idle state  
and all outputs are in High-Z. Note that the write operation initiated by WRA command is cancelled if REF command  
is asserted at next clock input from WRA command instead of LAL command required for write operation.  
The Auto-refresh command should also be issued within every 7.8 µs period. In case of burst refresh operation,  
more than 8 consecutive auto-refresh should not be performed within 400ns as average of 8 refresh. In other words,  
at least 3.2 µs (8 times 400ns) must be waited for next 8 consecutive refresh operation.  
SELF-REFRESH ENTRY (SELF)  
Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the  
refresh operation until cancelled by SELFX.  
The Self-refresh mode is entered by applying an REF command (that is following WRA command) in conjunction  
with PD = Low (SELF) or PD to bring LOW within the timing between tFPDL (min) and tFPDL (max) from REF command.  
However when PD is brought to Low after lPDV, FCRAM perform Auto-refresh and enter Power Down mode. Note  
that actual Self-refresh mode will be entered after Auto-refresh operation. The DESL command must be kept for at  
least lREFC period and clock input must also be kept for at least lCKD period. Once MB81N26847A/261647A enters  
the self-refresh mode, all inputs except for PD can be either logic high or low level state and outputs will be in a  
High-Z state. During Self-refresh mode, PD = Low should be maintained. SELF command should only be issued  
under condition that all banks are in idle state and all outputs are in High-Z.  
SELF-REFRESH EXIT (SELFX)  
To exit Self-refresh mode, PD must brought to High for at least 2 clock cycles together with DESL condition.  
Refer to Timing Diagram for the detail procedure. It is recommended to issue at least one Auto-refresh command  
just after the lREFC period to avoid the violation of refresh period.  
WARNING:A stable clock for lLOCK period with a constant duty cycle must be supplied prior to applying any command  
other than Auto-refresh command to insure the DLL is locked against the latest device conditions.  
(AE1E) 13  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUNCTIONAL DESCRIPTION (continued)  
POWER-UP INITIALIZATION  
The MB81N26847A/261647A internal condition at and after power-up will be undefined. Since MB81N26847A/  
261647A does not have designated reset function, following procedure must be followed in order to initialize internal  
state machine, DLL, and forcing DRAM to be a standby state.  
1. Apply VDD before or the same time as VDDQ and attempt to maintain PD to be equal or less than 0.2V before  
power supply injection.  
2. Apply VDDQ before or same time as VREF.  
3. Apply VREF.  
4. Start clock after all power supplies reached in a specified operating range and maintain stable condition for  
a minimum of 200µs.  
5. Maintain stable power and clock, apply DESL command with either A8 = Low or A7 = High and take PD to  
High state.  
6. Keep CS = High and set either or both BA = Low. (note *1)  
7. Set CS = Low with BA[10] = A[14−8] = High, A7 = Low for two clocks (MRS command with Reset Address)  
8. Set CS = High and maintain same address input for a minimum of 4 clocks.  
9. Keep CS = High and change one or more address input within BA[10] to A[14−7] and maintain them for a minimum  
of 4 clocks.  
10. Set Extended mode register to enable DLL. (note *2)  
11. Set Standard mode register. (note *2)  
12. Issue Auto-refresh commands twice or more. (note *2)  
13. Issue Write command to all four banks after minimum lLOCK clocks from Extended mode register programming.  
(note *3)  
14. Ready for normal operation.  
Notes: *1. The reset/initialization after Power-up can be also performed if the procedure from step 6 to step 12  
are issued. Refer to RESET CONDITION below.  
*2. These steps can be issued in random order. For example, Auto-refresh command can be issued prior  
to Extended mode register programming of step 10.  
*3. Order of bank address can be arbitrarily but must be write to all banks before normal operation.  
RESET CONDITION  
Clock  
n-13:1 *1  
n
Command  
DESL  
RDA  
CS  
H
L
FN  
X
BA1  
X or L  
X
BA0  
L or X  
X
A14-9  
A8  
L or X  
X
A7  
A6-0  
X
X
X or H  
H
X
X
H
X
L
L
X
n+1  
MRS  
L
H
H
H
X
n+2:5  
n+6  
DESL  
DESL  
DESL  
H
H
H
X
H
H
H
H
X
X
Note *2  
Note *3  
X
n+7:10  
X
X
Notes: *1. DESL condition must be maintained at least 12 clocks.  
*2. At least one address bit must be flipped from previous state.  
*3. Same address input conditions at n+6 state must be maintained at least 4 clocks.  
14 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
MODE REGISTER TABLE  
STANDARD MODE REGISTER  
ADDRESS  
BA1 BA0 A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
STANDARD MODE  
REGISTER  
0*1 0*1  
0
TM  
CL  
BT  
BL  
A2  
A1  
A0  
Burst Length (BL)  
RESERVED  
2
A6  
A5  
0
A4  
X
0
CAS Latency (CL)  
0
0
0
1
RESERVED *2  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
1
2
4
1
1
3
RESERVED  
RESERVED  
X
X
RESERVED  
A3  
Burst Type (BT)  
A7  
0
Test Mode (TM)  
0
1
Sequential (Wrap round, Binary up)  
Interleave (Wrap round)  
Regular Mode (Default)  
1
Test Mode (supplier specific mode) *3  
EXTENDED MODE REGISTER *1  
ADDRESS  
BA1 BA0 A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
EXTENDED MODE  
REGISTER  
0*1 1*1  
RESERVED *4  
OD DE  
A1  
0
Output Driver Strength (OD)  
A0  
DLL Enable (DE)  
Standard Strength *5  
RESERVED *5  
DLL Enable *6  
0
1
1
DLL Disable  
Notes: *1. A combination of BA1 = BA0 = 0 (Low) selects Standard mode register,  
a combination of BA1 = 0 and BA0 = 1 (High) selects Extended mode register, and  
a combination of BA1 = BA0 = 1 can only be used at RESET operation.  
*2. The RESERVED field in Standard mode register must not be used.  
*3. Must not be used. A7 = 1 should only be used at power-up initialization and RESET.  
*4. The RESERVED field in Extended mode register must be set as 0.  
*5. A1 of Extended mode register must always be set at 0.  
*6. Must be set at power-up initialization.  
(AE1E) 15  
MB81N26847A/261647A-22/-24/-30 Preliminary  
ABSOLUTE MAXIMUM RATINGS (See WARNING)  
Parameter  
Supply Voltage  
Symbol  
VDD, VDDQ  
VREF  
Value  
–0.3 to +3.6  
–0.3 to +3.6  
–0.3 to VDDQ + 0.3  
–0.3 to VDDQ + 0.3  
±50  
Unit  
V
Input Reference Voltage  
Input Voltage  
V
VIN  
V
Output Voltage  
VOUT  
V
Output Short Circuit Current  
Storage Temperature  
Operating Temperature  
Soldering Temperature(10s)  
IOUT  
mA  
°C  
°C  
°C  
TSTG  
–55 to +150  
0 to +70  
TOPR  
TSOLDER  
260  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
(Referenced to VSS)  
Parameter  
Notes Symbol  
Min.  
2.3  
Typ.  
2.5  
Max.  
2.7  
Unit  
V
VDD  
Supply Voltage  
VDDQ  
2.3  
VDD  
VDD  
V
Input Reference Voltage  
*3  
*5  
VREF  
VDDQ/2 * 96%  
VDDQ/2 VDDQ/2 * 104%  
VDDQ + 0.2  
V
Single Ended DC Input High Level  
VIH(DC)  
VREF + 0.2  
V
Single Ended DC Input Low Level  
Single Ended AC Input High Level  
Single Ended AC Input Low Level  
Differential Clock DC Input Level  
*5  
*6  
*6  
VIL(DC)  
VIH(AC)  
VIL(AC)  
VICK(DC)  
–0.1  
VREF + 0.35  
–0.1  
VREF – 0.2  
VDDQ + 0.2  
VREF – 0.35  
VDDQ + 0.1  
V
V
V
V
–0.1  
Differential DC Input  
Differential Level  
*7  
*7  
VID(DC)  
VID(AC)  
VX(AC)  
0.4  
0.7  
VDDQ + 0.2  
VDDQ + 0.2  
VDDQ/2 + 0.2  
V
V
V
Differential AC Input  
Differential Level  
Differential AC Input Cross  
Point Level  
*8  
*4  
VDDQ/2 – 0.2  
Differential AC Input Signal Offset Level  
Ambient Temperature  
VISO(AC)  
TA  
VDDQ/2 – 0.2  
0
VDDQ/2 + 0.2  
70  
V
°C  
16 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
RECOMMENDED OPERATING CONDITIONS(Continued)  
Notes: *1. Overshoot greater than the VIH(AC) maximum limit is VDD + 0.9V for pulse width < 5 ns. Refer to Figure 6.  
*2. Undershoot greater than the VIL(AC) minimum limit is VSS – 0.9V for pulse width < 5 ns. Refer to Figure 7.  
*3. VREF is expected to track variations in the DC level of VDDQ of the transmitting device.  
Peak-to-Peak noise level on VREF may not exceed +/- 2% of the supplied DC value.  
*4. VISO means {VICK(CLK) + VICK(CLK)} / 2. Refer to Figure 8.  
*5. VIH(DC) and VIL(DC) are levels to maintain the current logic state.  
*6. VIN(AC) and VIL(AC) are levels to change to the new logic state.  
*7. VID is magnitude of the difference between CLK input level and CLK input level.  
*8. The value of VX(AC) is expected to equal VDDQ/2 of the transmitting device.  
*9. In case of external termination, VTT (Termination Voltage) must be within a range of VREF(DC) +/- 0.04V.  
Overshoot and Undershoot Definition  
Fig. 6 – Overshoot Definition  
Fig. 7 – Undershoot Definition  
VDD + 0.9V  
VIH  
Pulse width 5 ns  
50% of pulse amplitude  
VIL(max)  
VIH  
VIL  
VIH(min)  
50% of pulse amplitude  
Pulse width  
5 ns  
VIL  
-0.9V  
Differential Input Signal Definition  
Fig. 8 – Differential Input Signal Offset Voltage (For Clock Input)  
CLK  
VX  
VID(AC)  
CLK  
VICK (CLK)  
VICK (CLK)  
VSS  
|VID(AC)|  
0V Differential  
VISO  
VSS  
VISO (max.)  
VISO (min.)  
(AE1E) 17  
MB81N26847A/261647A-22/-24/-30 Preliminary  
CAPACITANCE  
(TA = 25°C, f = 1 MHz)  
Parameter  
Clock Pin Capacitance  
Symbol  
CIN1  
Min.  
2.5  
2.5  
4.0  
Typ.  
Max.  
Unit  
pF  
4.0  
4.0  
6.0  
1.5  
6.0  
Input Pin Capacitance  
I/O Pin Capacitance  
NC1 Pin Capacitance  
NC2 Pin Capacitance *  
CIN2  
pF  
CI/O  
pF  
CNC1  
CNC2  
pF  
4.0  
pF  
Note:*The NC2 pins have additional capacitance for adjustment of adjacent pin capacitance. The NC2 pins have  
power and Ground clamp.  
18 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
DC CHARACTERISTICS  
(At recommended operating conditions unless otherwise noted.)  
Note *1,*2  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min.  
Max.  
VDDQ = 2.3V for min, 2.7V for max  
VOH = VDDQ-0.4V  
Output Source Current  
IOH  
IOL  
ILI  
-10.0  
mA  
mA  
µA  
VDDQ = 2.3V for min, 2.7V for max  
VOL = +0.4V  
Output Sink Current  
10.0  
-5  
5
0 V < VIN < VDDQ;  
All other pins not under test = 0 V  
Input Leakage Current (any input)  
0 V < VOUT < VDDQ;  
Data out disabled  
Output Leakage Current  
VREF Current  
ILO  
-5  
-5  
5
5
µA  
µA  
IREF  
tCK = min, lRC = min, Burst Length = 4,  
One bank active, Read/Write  
command cycling,  
-22  
170  
Operating Current  
(Average Power Supply  
-24  
-30  
-22  
-24  
-30  
IDD1S  
Address change up to 2 times during  
minimum lRC,  
0 V < VIN < VIL(AC) (max),  
VIH(AC) (min) < VIN < VDDQ  
165  
150  
45  
mA  
mA  
Current)  
*3,*4  
PD = VIH, tCK = min  
All banks idle,  
DESL commands only, Other input  
signals are changed one time during  
four clock inputs,  
0 V < VIN < VIL(AC) (max),  
VIH(AC) (min) < VIN < VDDQ  
Standby Current  
*3  
IDD2N  
40  
35  
PD = VIL(AC), tCK = min  
All banks idle,  
0 V < VIN < VDDQ  
Power Down Current  
IDD2P  
IDD5  
IDD6  
2
mA  
mA  
mA  
*3  
Auto-refresh;  
-22  
-24  
-30  
65  
60  
55  
tCK = min, lREFC = min, tREFI = min,  
Address change up to 2 times during  
minimum lREFC,  
0 V < VIN < VIL(AC) (max),  
VIH(AC) (min) < VIN < VDDQ  
Auto-refresh Current  
(Average Power Supply  
Current)  
*3  
Self-refresh;  
PD = 0.2V,  
0 V < VIN < VDDQ  
Self-refresh Current  
(Average Power Supply Current)  
3
Notes: *1. All voltages referenced to VSS.  
*2. DC characteristics are measured after following the POWER-UP INITIALIZATION procedure.  
*3. IDD depends on the output termination or load conditions, clock cycle rate, and number of address and  
command change within certain period.  
*4. The specified values are obtained with the output open.  
(AE1E) 19  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS  
(Recommended operating conditions unless otherwise noted.) Note *1,*2,*3  
AC PARAMETERS  
22  
Max.  
24  
Max.  
30  
Max.  
Parameter  
Notes  
Symbol  
Unit  
Min.  
6.5  
Min.  
7.0  
Min.  
7.5  
CL = 3  
CL = 2  
10.0  
10.0  
10.0  
10.0  
10.0  
10.5  
ns  
ns  
Clock Period  
tCK  
7.5  
8.0  
10.0  
Input Setup Time (Except for  
LDQS/UDQS and Data)  
*4  
tIS  
1.0  
1.0  
2.2  
1.2  
1.2  
2.6  
1.6  
1.6  
3.4  
ns  
ns  
ns  
Input Hold Time (Except for  
LDQS/UDQS and Data)  
*4  
*4  
tIH  
Command and Address Input  
Pulse Width (each device)  
tIPW  
Data Input Setup Time  
Data Input Hold Time  
*5  
*5  
tDS  
tDH  
0.6  
0.6  
0.6  
0.6  
1.9  
0
0.8  
0.8  
2.3  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Input Pulse Width  
DQS First Input Setup Time  
*5  
tDIPW  
1.9  
*4,*6  
tDSPRES  
CL = 3  
0
1.5  
1.5  
1.6  
1.5  
1.6  
-0.9  
-0.56  
-0.9  
-0.9  
-0.9  
1.6  
2.0  
1.6  
2.0  
-1.0  
-0.64  
-1.0  
-1.0  
-1.0  
DQS Input Falling Edge to  
Clock Setup Time  
*5 tDSS  
CL = 2  
CL = 3  
CL = 2  
1.5  
1.5  
DQS Last Low Input  
(Postamble) Hold Time  
*4 tDSPSTH  
*4,*7  
1.5  
DQS Access Time from CLK  
Data Output skew from DQS  
Data Access Time from CLK  
Data Output in Low-Z  
tCKQS  
tQSQ  
tAC  
tLZ  
tOH  
tHZ  
-0.85  
-0.52  
-0.85  
-0.85  
-0.85  
0.85  
0.52  
0.85  
0.9  
0.56  
0.9  
1.0  
0.64  
1.0  
*5  
*4,*7  
*4,*7,*8  
*4,*7  
Data Output Valid Time  
Data Output in High-Z  
0.85  
0.85  
0.9  
0.9  
1.0  
1.0  
*4,*7,*9  
DQS Output in Low-Z  
(Preamble Setup Time)  
*4,*7,*8  
*4,*7,*9  
tQSLZ  
-0.85  
-0.9  
-1.0  
ns  
DQS Output in High-Z  
tQSHZ  
-0.85  
0
0.85  
-0.9  
0
0.9  
-1.0  
0
1.0  
ns  
ns  
Last Output to PD High Hold Time  
PD Low Input Window for  
tQPDH  
*4,*10  
tFPDL  
-0.5*tCK 10.0 -0.5*tCK 10.0 -0.5*tCK 10.0  
ns  
Self-refresh Entry  
Power Down Exit Time  
Auto-refresh Interval  
Pause Time after Power-up  
Input Transition Time  
*4  
*11  
*12  
*13  
tPDEX  
tREFI  
tPAUSE  
tT  
2.0  
0.4  
200  
0.2  
7.8  
2.0  
0.4  
200  
0.2  
7.8  
3.0  
0.4  
200  
0.2  
7.8  
ns  
µs  
µs  
ns  
1.0  
1.0  
1.0  
20 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
AC PARAMETERS (FREQUENCY DEPENDANT) Note *10  
Parameter  
Clock High Time  
Notes  
*4  
Symbol  
tCH  
Min.  
Max.  
Unit  
ns  
0.45 * tCK  
0.45 * tCK  
0.75 * tCK  
Clock Low Time  
*4  
tCL  
ns  
DQS Low to High Setup Time  
*4,*14  
tDQSS  
1.25 * tCK  
ns  
DQS First Low Input Pulse Width  
(Input Preamble Pulse Width)  
*6  
*4,*6  
*5  
tDSPRE  
tDSPREH  
tDSP  
0.4 * tCK  
0.25 * tCK  
0.45 * tCK  
0.45 * tCK  
– 0.25 * tCK  
ns  
ns  
ns  
ns  
ns  
DQS First Low Input Hold Time  
(Input Preamble Hold Time)  
DQS High or Low Input Pulse Width  
[Not applicable to last Postamble]  
0.55 * tCK  
DQS Last Low Input (Postamble)  
Pulse Width  
*5,*15  
tDSPST  
tDSSK  
LDQS to UDQS Input Skew  
[Applicable to MB81N261647A only]  
*5  
*4  
0.25 * tCK  
DQS Preamble Pulse Width  
DQS Pulse Width  
tQSPRE  
tQSP  
0.9 * tCK – 0.2  
0.4 * tCK – 0.2  
0.4 * tCK – 0.4  
1.1 * tCK + 0.2  
ns  
ns  
ns  
Data Output Valid Time from DQS  
tQSQV  
(AE1E) 21  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
LATENCY  
(The latency values on these parameters are fixed regardless of clock period.)  
Parameter  
Note  
Symbol  
CL = 3  
BL = 2  
BL = 4  
Unit  
5
4
5
4
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Random Read/Write Cycle Time (minimum)  
[Applicable to same bank]  
lRC  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
1
1
RDA or WRA to LAL Command Input Delay  
[Applicable to same bank]  
lRCD  
lRAS  
lRBD  
lRWD  
lWRD  
1
1
4
4
LAL to RDA or WRA Command Input Delay (minimum)  
[Applicable to same bank]  
3
3
2
2
Random Bank Access Delay (minimum)  
[Applicable to other bank]  
2
2
2
3
LAL following RDA to WRA Delay Time (minimum)  
[Applicable to other bank]  
2
3
1
1
LAL following WRA to RDA Delay Time (minimum)  
[Applicable to other bank]  
*15  
1
1
PD Low to Input Inactive  
PD High to Input Active  
lPD  
lPDA  
1
1
1
1
CL = 3  
4
4
Power Down mode valid from REF command  
Auto-refresh Cycle Time (minimum)  
lPDV  
lREFC  
lRSC  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
3
3
15  
12  
5
15  
12  
5
Mode Register Set Cycle Time (minimum)  
*16  
4
4
REF Command to Clock Input Disable  
at Self-refresh Entry (minimum)  
lCKD  
16  
16  
tCK  
tCK < 8ns  
200  
300  
200  
300  
tCK  
tCK  
DLL Lock-on Time (Applicable to RDA command)  
lLOCK  
tCK < 10.5 ns  
22 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
Notes: *1. AC characteristics are measured after following the POWER-UP INITIALIZATION procedure and stable  
clock input with constant clock period and with 50% duty cycle.  
*2. Access Times assume input slew rate of 1ns/volt between VREF+0.35V to VREF-0.35V, where VREF is  
VDDQ/2, with parallel termination load conditions. Refer to AC TEST LOAD CIRCUIT in page 23.  
*3. VREF = 1.25V is a typical reference level for measuring timing of input signals.  
Transition times are measured between VIH (min) and VIL (max) unless otherwise noted.  
Refer to AC TEST CONDITIONS in page 23.  
*4. This parameter is measured from the cross point of CLK and CLK input.  
*5. This parameter is measured from signal transition point of DQS input crossing VREF level.  
*6. Not applicable if consecutive write operation within lRBD (min) is performed.  
*7. This parameter depends on the clock jitters.  
*8. Low-Z (Low Impedance State) is specified and measured at VDDQ / 2 +/- 200mV from steady state.  
*9. High-Z is specified where output buffer is no longer driven.  
*10. If the result of nominal calculation with regard to tCK contains more than one decimal place, the result  
should be rounded up to the nearest decimal place.  
e.g., if tCK=6.5ns and formula is 0.5*tCK, the result is rounded up to 3.3ns.  
*11. The tREFI (max) is applicable for equally distributed refresh method.  
The tREFI (min) is applicable for burst refresh method. In such case, more than 8 consecutive auto-  
refresh operation should not be performed within 400ns as average of 8 refresh. In other words, at least  
3.2 µs (8 times 400ns) must be waited for next 8 consecutive refresh operation.  
*12. Specified when the clock input is started on the condition of the stable supply voltage  
*13. Defined as the transition time between VIH(AC) (min) and VIL(AC) (max).  
*14. More than 2 signal edge of DQS should not be input within 1 clock (tCK) cycle.  
*15. The maximum value is not a device limit and is a reference value when minimum lWRD at BL=4 is applied.  
*16. The lRSC is 5 clock cycles before CL programming during power-up sequence.  
(AE1E) 23  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
Fig. 9 – AC TEST LOAD CIRCUIT  
VTT  
Output  
measurement  
point  
RT = 50 Ω  
Output  
Z0 = 50 Ω  
VDDQ  
VDDQ  
VREF  
VREF  
0.5 × VDDQ  
CL = 30 pF  
Device  
Under Test  
VSS  
Note: AC characteristics are measured in this condition. This load circuit is not applicable for DC Test.  
AC TEST CONDITIONS  
Parameters  
Symbol  
VIH  
Value  
VREF + 0.35  
VREF – 0.35  
VDDQ/2  
VDDQ/2  
VREF  
Unit  
V
Input High Level  
Input Low Level  
VIL  
V
Input Reference Level  
Output Timing Measurement Reference Level  
Termination Voltage  
VREF  
VOTR  
VTT  
V
V
V
Input Peak to Peak Swing Level  
Differential Input Level  
Differential Input Reference Level  
Input Slew Rate  
VSWING  
VID(AC)  
Vr  
1.0  
V
1.5  
V
Vx(AC)  
V
SLEW  
1.0  
V/ns  
Fig. 10 – AC TEST TIMING SETUP  
VDDQ  
VIH (AC) min.  
VREF  
VSWING  
VIL (AC) max.  
VSS  
T  
T  
Note: SLEW is measured between VREF+0.35V to VREF–0.35V in a T period.  
24 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
Fig. 11 – AC TIMING of CLK & CLK  
tCK  
tCL  
tCH  
CLK  
CLK  
VX  
VID(AC)  
Note: Reference level for AC timings of clock are the cross point of CLK and CLK as specified in VX.  
Fig. 12 – AC TIMING of Command Input & Address  
tCK  
CLK  
CLK  
VX(AC)  
tIS  
tIH  
tIS  
tIH  
Input  
VIH (AC)  
VIL (AC)  
(Controls &  
Addresses)  
Input Valid  
Input Valid  
VREF  
tIPW  
tIPW  
Note: The cross point of CLK and CLK (VX) is used for command and address input.  
The reference level of single ended input is VREF.  
Fig. 13 – AC TIMING of Write Mode (Data Strobe and Write Data Input)  
tCK  
tCK  
CLK  
CLK  
tIS  
tIH  
VIH (AC)  
VIL (AC)  
Input  
(Controls &  
Addresses)  
tDSS  
tDSP  
tDSS  
LAL (after WRA)  
VREF  
tDQSS  
tDSP  
tDQSS  
tDSPSTH  
tDSPST  
tDSPREH  
tDSPRE  
tDSP  
tDSPRES  
VREF  
DQS Input  
(@BL=4)  
VREF  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
Data Input  
Input Valid  
Input Valid  
Input Valid  
Input Valid  
tDIPW  
tDIPW  
tDIPW  
tDIPW  
Note: The above timing on DQS and Data input assume CL=2 and BL=4.  
The definition point of tDQSS, tDSPRES and tDSPREH at CL=3 shift one clock later from above example.  
(AE1E) 25  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
Fig. 14 – AC TIMING of Write Mode (Data Strobe and Write Data Input)  
tCK  
tCK  
CLK  
CLK  
tIS  
tIH  
VIH (AC)  
VIL (AC)  
Input  
(Controls &  
Addresses)  
LAL (after WRA)  
VREF  
tDSS  
tDSPSTH  
tDSPST  
tDQSS  
tDSPREH  
tDSPRE  
tDSP  
tDSPRES  
VREF  
LDQS Input  
(@BL=2)  
VREF  
tDS  
tDH  
tDS  
tDH  
Data Input  
(DQ0 to DQ7)  
Input Valid  
Input Valid  
tDIPW  
tDIPW  
tDSS  
tDSSK  
tDSSK  
tDSP  
tDQSS  
tDSPSTH  
tDSPST  
tDSPREH  
tDSPRES  
VREF  
UDQS Input  
(@BL=2)  
tDSPRE  
VREF  
tDS  
tDH  
tDS  
tDH  
Data Input  
(DQ8 to DQ15)  
Input Valid  
Input Valid  
tDIPW  
tDIPW  
Note: The above timing on DQS and Data input assume CL=2 and BL=2.  
The definition point of tDQSS, tDSPRES and tDSPREH at CL=3 shift one clock later from above example.  
26 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
Fig. 15 – AC TIMING of Read Mode (Clock to DQS Output Delay Time)  
tCK  
tCK  
CLK  
CLK  
VX  
tCKQS  
(min)  
tCKQS  
(min)  
tCKQS  
(min)  
tCKQS  
(min)  
tQSLZ  
(min)  
tQSHZ  
tQSPRE  
tCKQS  
tCKQS  
tCKQS  
tCKQS  
(max)  
(max)  
(max)  
(max)  
DQS Output  
(@BL=4)  
VTT  
VTT - 0.2 V  
tQSP  
tQSP  
tQSP  
Note: DQS Access time (tQSCK) is measured from the cross point of clock (VX) and VREF.  
The tQSHZ specification is defined at where output buffer is no longer driven.  
The starting point of DQS in Low-Z (tQSHZ specification) is CL-1.  
Fig. 16 – AC TIMING of Read Mode (Clock to Data Output Delay Time)  
tCK  
tCK  
CLK  
CLK  
VX  
tAC  
tOH  
(min)  
tAC  
tAC  
tAC  
(tmLiZn)  
(min)  
(min)  
(min)  
(min)  
tOH  
(max)  
tAC  
tAC  
tAC  
tAC  
(max)  
(max)  
(max)  
(max)  
tHZ  
DQ Data  
Output  
(@BL=4)  
VTT + 0.2 V  
VTT - 0.2 V  
VTT  
(max)  
Note: Access time (tAC) is measured from the cross point of clock (VX) and VREF.  
The tHZ specification is defined at where output buffer is no longer driven.  
Fig. 17 – AC TIMING of Read Mode (DQS Output to Data Output Delay Time)  
DQS Output  
(@BL=4)  
VREF  
tQSQ  
(min)  
tQSQ  
(min)  
tQSQ  
(min)  
tQSQ  
(min)  
tQSQ  
(max)  
tQSQ  
(max)  
tQSQ  
(max)  
tQSQ  
(max)  
DQ Data  
Output  
(@BL=4)  
VTT + 0.2 V  
VTT - 0.2 V  
VTT  
tQSQV  
tQSQV  
tQSQV  
tQSQV  
Note: DQS Output Edge to Data Output Edge Skew Time (tQSQ) is measured from VREF to VREF.  
Data Output Valid Time from DQS (tQSQV) is specified from valid DQS transition crossing VREF to end of data valid.  
(AE1E) 27  
MB81N26847A/261647A-22/-24/-30 Preliminary  
AC CHARACTERISTICS (continued)  
Fig. 18 – AC TIMING of Power Down  
lRC (min), tREFI (max)  
PD  
VREF  
tIH  
tPDEX  
lPDA  
tIS  
lPD  
CLK  
CLK  
RDA /  
WRA  
Command  
DQ  
DESL  
DESL  
Don’t Care  
DESL  
DESL  
tQPDH  
Q
Q
Last Output  
Note: The above timing is for Power Down mode as a reference of PD input condition.  
The setup and hold time of PD High to Low input must comply with tIS and tIH condition for both Power  
Down and Self-refresh entry.  
When is brought to High from Low, tPDEX is applied as a setup time against clock input.  
Fig. 19 – AC TIMING of Pulse Width and Latency  
CLK  
CLK  
VX  
VX  
tREFI, tPAUSE, lxxx (all latencies)  
Input  
(Controls &  
Addresses)  
Command  
Command  
Note: All parameters listed above are measured from the cross point at rising edge of the CLK and falling  
edge of CLK of one command input to next command input.  
28 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS  
TIMING DIAGRAM – 1 : READ @ CL=3  
(Single Bank Access)  
CLK  
CLK  
lRC = 5 clocks (minimum) *1  
DESL  
RDA  
LAL  
RDA  
LAL  
DESL  
Command  
lRCD *2  
lRAS  
DQ  
(Output)  
@BL = 4  
Hi-Z  
Hi-Z  
Hi-Z  
Q1 Q2 Q3 Q4  
Q1 Q2  
CL=3  
CL=3  
DQS  
(Output)  
@BL = 4  
Hi-Z  
DQ  
(Output)  
@BL = 2  
Hi-Z  
Hi-Z  
Hi-Z  
Q1 Q2  
Q1 Q2  
CL=3  
CL=3  
DQS  
(Output)  
@BL = 2  
Hi-Z  
Notes: *1 The random cycle time lRC is 5 clocks regardless of burst length when CL =3.  
*2 The lRCD must be 1 clock.  
(AE1E) 29  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 2 : READ @ CL=2  
(Single Bank Access)  
CLK  
CLK  
lRC = 4 clocks (minimum) *1  
DESL  
RDA  
LAL  
RDA  
LAL  
DESL  
Command  
lRCD *2  
lRAS  
DQ  
(Output)  
@BL = 4  
Hi-Z  
Hi-Z  
Hi-Z  
Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4  
CL=2  
CL=2  
DQS  
(Output)  
@BL = 4  
Hi-Z  
DQ  
(Output)  
@BL = 2  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Q1 Q2  
Q1 Q2  
CL=2  
CL=2  
DQS  
(Output)  
@BL = 2  
Notes: *1 The random cycle time lRC is 4 clocks regardless of burst length when CL=2.  
*2 The lRCD must be 1 clock.  
30 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 3 : WRITE @ CL=3  
(Single Bank Access)  
CLK  
CLK  
lRC = 5 clocks (minimum) *1  
DESL  
WRA  
LAL  
WRA  
LAL  
DESL  
Command  
lRCD *2  
lRAS  
DQ  
(Input)  
Don’t Care  
Don’t Care  
D1 D2 D3 D4  
D1 D2 D3 D4  
@BL = 4  
WL=2 *3  
WL=2  
Invalid  
DQS  
(Input)  
Invalid  
@BL = 4  
DQ  
(Input)  
@BL = 2  
Don’t Care  
Invalid  
Don’t Care  
WL=2  
Don’t Care  
D1 D2  
D1 D2  
WL=2  
DQS  
(Input)  
Invalid  
@BL = 2  
Notes: *1 The random cycle time lRC is 5 clocks regardless of burst length when CL=3.  
*2 The lRCD must be 1 clock.  
*3 The Write Data Latency (WL) is 2 clocks typical when CL=3.  
(AE1E) 31  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 4 : WRITE @ CL=2  
(Single Bank Access)  
CLK  
CLK  
lRC = 4 clocks (minimum) *1  
DESL  
WRA  
LAL  
WRA  
LAL  
DESL  
Command  
lRCD *2  
lRAS  
DQ  
(Input)  
Don’t Care  
Don’t Care  
D1 D2 D3 D4  
D1 D2 D3 D4  
@BL = 4  
WL=1 *3  
WL=1  
DQS  
(Input)  
Invalid  
Invalid  
@BL = 4  
DQ  
(Input)  
@BL = 2  
Don’t Care  
Invalid  
Don’t Care  
Don’t Care  
D1 D2  
D1 D2  
WL=1  
WL=1  
DQS  
(Input)  
Invalid  
@BL = 2  
Notes: *1 The random cycle time lRC is 4 clocks regardless of burst length when CL=2.  
*2 The lRCD must be 1 clock.  
*3 The Write Data Latency (WL) is 1 clock typical when CL=2.  
32 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 5 : READ and WRITE @ CL=3  
(Single Bank Access)  
CLK  
CLK  
lRC = 5 clocks (minimum) *1  
DESL  
lRC = 5 clocks (minimum)  
DESL  
RDA  
LAL  
WRA  
LAL  
RDA  
Command  
lRCD *2  
lRAS  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
@BL = 4  
Q1 Q2 Q3 Q4  
D1 D2 D3 D4  
CL=3  
WL=2  
Hi-Z  
DQS  
@BL = 4  
Low  
Input  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
@BL = 2  
Q1 Q2  
D1 D2  
CL=3  
WL=2  
Hi-Z  
High-Z  
DQS  
@BL = 2  
Low  
Input  
Notes: *1 The random cycle time lRC is 5 clocks regardless of burst length when CL =3.  
*2 The lRCD must be 1 clock.  
(AE1E) 33  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 6 : READ and WRITE @ CL=2  
(Single Bank Access)  
CLK  
CLK  
lRC = 4 clocks (minimum) *1  
lRC = 4 clocks (minimum)  
DESL  
RDA  
LAL  
WRA  
LAL  
DESL  
RDA  
LAL  
Command  
lRCD *2  
lRAS  
Hi-Z  
Hi-Z  
DQ  
@BL = 4  
Q1 Q2 Q3 Q4  
D1 D2 D3 D4  
CL=2  
WL=1  
High-Z  
DQS  
@BL = 4  
Low  
Input  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
@BL = 2  
Q1 Q2  
D1 D2  
CL=2  
WL=1  
Hi-Z  
High-Z  
DQS  
@BL = 2  
Low  
Input  
Notes: *1 The random cycle time lRC is 4 clocks regardless of burst length when CL=2.  
*2 The lRCD must be 1 clock.  
34 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 7 : READ @ CL=3  
(Multiple Bank Access)  
CLK  
CLK  
lRBD = 2 clocks  
(minimum) *1  
lRC *2  
DESL  
RDA  
LAL  
RDA  
LAL  
RDA  
LAL  
RDA  
LAL  
RDA  
LAL  
Command  
lRCD *2  
Bank  
Bank 3  
X
Bank 0  
X
X
Bank 1  
X
Bank 0  
X
Bank 2  
Address  
Bank 3 Data  
Bank 0 Data  
Bank 1 Data  
Q1 Q2  
DQ  
(Output)  
@BL = 4  
Hi-Z  
Hi-Z  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CL=3  
DQS  
(Output)  
@BL = 4  
Bank 3 Data  
Q1 Q2  
Bank 0 Data  
Q1 Q2  
Bank 1 Data  
Q1 Q2  
DQ  
(Output)  
@BL = 2  
Hi-Z  
Hi-Z  
CL=3  
DQS  
(Output)  
@BL = 2  
Notes: *1 The random bank access delay lRBD is 2 clocks minimum.  
*2 Both lRC and lRCD must be satisfied for the same bank.  
(AE1E) 35  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 8 : READ @ CL=2  
(Multiple Bank Access)  
CLK  
CLK  
lRBD = 2 clocks  
(minimum) *1  
lRC *2  
RDA  
RDA  
LAL  
RDA  
LAL  
RDA  
LAL  
LAL  
RDA  
LAL  
DESL  
Command  
lRCD *2  
Bank  
Bank 3  
X
Bank 0  
X
Bank 1  
X
Bank 0  
X
X
Bank 2  
Address  
Bank 3 Data  
Bank 0 Data  
Bank 1 Data  
Bank 0 Data  
DQ  
(Output)  
@BL = 4  
Hi-Z  
Hi-Z  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2  
CL=2  
DQS  
(Output)  
@BL = 4  
Bank 3 Data  
Q1 Q2  
Bank 0 Data  
Q1 Q2  
Bank 1 Data  
Q1 Q2  
Bank 0 Data  
Q1 Q2  
DQ  
(Output)  
@BL = 2  
Hi-Z  
Hi-Z  
CL=2  
DQS  
(Output)  
@BL = 2  
Notes: *1 The random bank access delay lRBD is 2 clocks minimum.  
*2 Both lRC and lRCD must be satisfied for the same bank.  
36 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 9 : WRITE @ CL=3  
(Multiple Bank Access)  
CLK  
CLK  
lRBD = 2 clocks  
lRC *2  
(minimum) *1  
WRA  
WRA  
Bank 3  
LAL  
WRA  
LAL  
DESL  
WRA  
LAL  
WRA  
LAL  
DESL  
Command  
lRCD *2  
Bank  
Address  
X
Bank 0  
X
Bank 1  
X
Bank 0  
X
X
Bank 2  
X
Bank 3 Data  
Bank 0 Data  
Bank 1 Data  
DQ  
(Input)  
@BL = 4  
Don’t Care  
Invalid  
D1 D2 D3 D4 D1 D2 D3 D4  
D1 D2 D3 D4 D1  
WL=2  
DQS  
(Input)  
@BL = 4  
Bank 3 Data  
D1 D2  
Bank 0 Data  
D1 D2  
Bank 1 Data  
D1 D2  
Bank 0 Data  
DQ  
(Input)  
@BL = 2  
Don’t Care  
Invalid  
D1  
WL=2  
DQS  
(Input)  
@BL = 2  
Notes: *1 The random bank access delay lRBD is 2 clocks minimum.  
*2 Both lRC and lRCD must be satisfied for the same bank.  
(AE1E) 37  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 10 : WRITE @ CL=2  
(Multiple Bank Access)  
CLK  
CLK  
lRBD = 2 clocks  
(minimum) *1  
lRC *2  
WRA  
WRA  
LAL  
WRA  
Bank 3  
LAL  
WRA  
LAL  
LAL  
WRA  
LAL  
DESL  
Command  
lRCD *2  
Bank  
Address  
X
Bank 0  
X
Bank 1  
X
Bank 0  
X
X
Bank 2  
Bank 3 Data  
Bank 0 Data  
Bank 1 Data  
Bank 0 Data  
DQ  
(Input)  
@BL = 4  
Don’t Care  
Invalid  
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4  
WL=1  
DQS  
(Input)  
@BL = 4  
Bank 3 Data  
Bank 0 Data  
D1 D2  
Bank 1 Data  
D1 D2  
Bank 0 Data  
D1 D2  
DQ  
(Input)  
@BL = 2  
Don’t Care  
Invalid  
D1 D2  
WL=1  
DQS  
(Input)  
@BL = 2  
Notes: *1 The random bank access delay lRBD is 2 clocks minimum.  
*2 Both lRC and lRCD must be satisfied for the same bank.  
38 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 11 : READ and WRITE @ BL=4  
(Multiple Bank Access)  
CLK  
CLK  
lRCD  
lRCD  
lRCD  
DESL  
RDA  
LAL  
WRA  
LAL  
RDA  
LAL  
DESL  
Command  
lRWD = 3 clocks (minimum) *1  
lWRD = 1 clocks (minimum) *2  
Bank 2  
Bank  
Address  
X
Bank 0  
X
Bank 1  
X
X (Don’t Care)  
X (Don’t Care)  
Hi-Z  
Hi-Z  
DQ  
@CL = 3  
Q1 Q2 Q3 Q4  
D1 D2 D3 D4  
CL=3  
WL=2  
CL=3  
DQS  
@CL = 3  
Low Input  
after Hi-Z  
*2, *3  
Hi-Z  
Hi-Z  
DQ  
@CL = 2  
Q1 Q2  
Q1 Q2  
D3 D4  
D1 D2 D3 D4  
CL=2  
WL=1  
CL=2  
DQS  
@CL = 2  
Low Input  
after Hi-Z  
*2, *3  
Notes: *1 The read to write delay for different bank, lRWD is 3 clocks minimum at BL=4 regardless of CL.  
*2 The lWRD can be 1 clock if maximum tDSPST can be met.  
*3 Low to Low input and output conflict is allowed if maximum tDSPST can be met.  
(AE1E) 39  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 12 : READ and WRITE @ BL=2  
(Multiple Bank Access)  
CLK  
CLK  
lRCD  
lRCD  
lRCD  
RDA  
LAL  
DESL  
WRA  
LAL  
RDA  
LAL  
DESL  
Command  
lRWD = 2 clocks (minimum) *1  
lWRD = 1 clocks (minimum)  
Bank  
Address  
X
Bank 2  
Bank 0  
X
Bank 1  
X
X
X (Don’t Care)  
Hi-Z  
Hi-Z  
DQ  
@CL = 3  
Q1 Q2  
Q1 Q2  
D1 D2  
CL=3  
WL=2  
CL=3  
DQS  
@CL = 3  
Low Input  
after Hi-Z  
Hi-Z  
Hi-Z  
DQ  
@CL = 2  
Q1 Q2  
Q1 Q2  
D1 D2  
CL=2  
WL=1  
CL=2  
DQS  
@CL = 2  
Low Input  
after Hi-Z  
Notes: *1 The read to write delay for different bank, lRWD is 2 clocks minimum at BL=2 regardless of CL.  
40 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 13 : WRITE with VW  
(Example at Single Bank Access with CL=2)  
CLK  
CLK  
lRC = 4 clocks (minimum)  
DESL  
WRA  
UA  
LAL  
WRA  
LAL  
DESL  
Command  
lRCD  
lRAS  
Address  
@BL=4  
LA +  
VW=2  
LA +  
VW=1  
Don’t Care  
UA  
Don’t Care  
Last two data are masked.  
D1 D2 D3 D4  
Last three data are masked.  
DQ  
(Input)  
@BL = 4  
Don’t Care  
Invalid  
Don’t Care  
D1 D2 D3 D4  
WL=1  
WL=1  
DQS  
(Input)  
Invalid  
@BL = 4  
*1  
*1  
Address  
@BL=2  
LA +  
VW=All  
LA +  
VW=1  
Don’t Care  
UA  
UA  
Don’t Care  
All data are written.  
D1 D2  
Last one data is masked.  
D1 D2  
DQ  
(Input)  
@BL = 2  
Don’t Care  
Don’t Care  
Invalid  
Don’t Care  
WL=1  
WL=1  
DQS  
(Input)  
Invalid  
@BL = 2  
*1  
Dn  
Dn  
Valid Data Input  
Masked Data  
Notes: *1 DQS Inputmustbe continued till end ofburstcounteven ifsome oflater data is masked.  
(AE1E) 41  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 14 : MODE REGISTER SET  
(Example at BL=4 with CL=2)  
CLK  
CLK  
lRC = 4 clocks (minimum)  
lRSC = 4 clocks (minimum) *1  
RDA or  
WRA  
2nd  
command  
RDA  
LAL  
DESL  
RDA *2  
MRS  
Valid  
DESL  
Command  
Address  
lRCD  
lRAS  
lRCD  
*3  
BA,UA  
LA  
Don’t Care  
BA,UA  
Don’t Care  
DQ  
(Output)  
@BL = 4  
Hi-Z  
Hi-Z  
Q1 Q2 Q3 Q4  
CL=2  
DQS  
(Output)  
@BL = 4  
Notes: *1 The minimum mode register set cycle time lRSC is the same as minimum lRC.  
Read command (RDA+LAL) should be asserted after lLOCK at the initialization sequence.  
*2 All banks must be in idle state or lRC of last open bank must be satisfied.  
*3 The address information will be ignored when MRS command is asserted at next cycle.  
42 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 15 : POWER DOWN  
(Example at BL=2 with CL=2)  
CLK  
CLK  
tIH  
tIS  
lRC (min), tREFI (max) *1  
*3  
PD  
tQPDH  
lPD *2  
tPDEX  
lPDA *2  
RDA or  
WRA  
RDA  
LAL  
DESL  
Command  
DESL  
Don’t Care  
Don’t Care  
DQ  
(Output)  
@BL = 2  
Hi-Z  
Hi-Z  
Q1 Q2  
CL=2  
DQS  
(Output)  
@BL = 2  
Notes: *1 PD should be brought to High within tREFI (max) to maintain the data written into cell.  
*2 The PD to input enable/disable latency is 1 clock.  
*3 All banks must be in idle state and tQPDH from last read data output must be satisfied.  
TIMING DIAGRAM – 16 : AUTO-REFRESH  
(Example at BL=4 with CL=2)  
CLK  
CLK  
lRC (minimum)  
DESL  
lRCD  
lREFC (minimum)  
DESL  
RDA or  
WRA  
RDA  
LAL  
WRA *1  
REF *2  
Command  
DESL  
DQ  
(Output)  
@BL = 4  
Hi-Z  
Hi-Z  
Q1 Q2 Q3 Q4  
CL=2  
DQS  
(Output)  
@BL = 4  
Notes: *1 All banks must be in idle state or lRC of last open bank must be satisfied.  
*2 The write operation will be cancelled when REF command is asserted.  
(AE1E) 43  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAMS (Continued)  
TIMING DIAGRAM – 17 : SELF-REFRESH ENTRY  
(Example at CL=2)  
*3  
CLK  
CLK  
lCKD = 16clocks (minimum) *1  
tFPDL(min)  
tFPDL(max)  
lPD=1 cycle *4  
PD  
lPDV *5  
WRA  
REF  
Hi-Z  
Command  
DQ, DQS  
DESL  
DESL  
Don’t Care  
lREFC (minimum) *2  
tQPDH  
Notes: *1 Clock input should be continued at least 16 clocks from REF command even though PD is brought  
to Low for Self-refresh entry.  
*2 DESL command must be asserted during lREFC period.  
*3 Clock can be disabled after lCKD period from REF command when PD is brought to Low for Self-refresh.  
*4 lPD is defined from the first clock rising edge after PD is brought to Low.  
*5 PD must be brought to Low within the timing between tFPDL (min) and tFPDL (max) to Self-refresh mode.  
When PD is brought to Low after lPDV, FCRAM perform Auto-refresh and enter Power Down mode.  
44 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
TIMING DIAGRAM 18 : SELF-REFRESH EXIT  
*5  
CLK  
CLK  
tPDEX  
lLOCK (minimum) *4  
PD  
lREFC (min) *1  
lRCD  
lREFC (min)  
DESL  
WRA*2  
Command *3  
RDA *4  
LAL  
Command  
DQ, DQS  
Don’t Care  
DESL *1  
REF*2  
Hi-Z  
Notes: *1 DESL command must be asserted during lREFC period after PD is brought to High.  
*2 One REF command should be asserted just after Self-refresh exit before any other operation.  
*3 Any command other than read command can be issued after Auto-refresh period.  
*4 Read command (RDA + LAL) can be issued after lLOCK period.  
*5 Clock should be stable prior to PD = High if clock input is suspended during Self-refresh.  
(AE1E) 45  
TIMING DIAGRAM 19 : POWER-UP INITIALIZATION and RESET  
CLK  
CLK  
High  
PD  
4 clocks (min)  
1 clock  
1 clock  
5 clocks (min)  
lRCD  
RDA or  
WRA  
2nd  
Command  
Command  
BA[1:0]  
A[14:7]  
DESL  
RDA  
MRS  
DESL  
(Maintail DESL command.)  
Note *3  
Note *4  
X
X
X
1 *1  
Key-1 *1  
X
Key-2 *2  
Valid  
Valid  
BA1 orBA0 =0  
Valid  
Valid  
Valid  
Valid  
A8=0 or A7=1  
Key-2 *2  
A[6:0]  
X
X
X
X
X
X
X
X
X
Don’t Care (X)  
Hi-Z  
DQ, DQS  
Notes: *1 BA[1:0] and A[14:8] must be High (1) and A7 must be Low (0), and those value must be maintained for 4 clocks.  
*2 At least one address must be flipped and maintained at least 5 clocks.  
*3 DESL condition must be maintained for 12 clocks when RESET is being performed.  
*4 Ready for normal operation after RESET or start MRS programming and Auto-refresh at Power-up Initialization.  
MB81N26847A/261647A-22/-24/-30 Preliminary  
PACKAGE DIMENSIONS (TENTATIVE)  
*: Resin protrusion. (Each side: 0.15 (.006) MAX)  
66-pin plastic TSOP (II)  
(FPT-66P-M01)  
66  
34  
Details of "A" part  
0.25(.010)  
0°~8°  
INDEX  
0.45/0.75  
(.018/.030)  
1
33  
LEAD No.  
*22.22±0.10(.875±.004)  
11.76±0.20(.463±.008)  
1.15±0.05(.045±.002)  
(Mounting height)  
10.16±0.10(.400±.004)  
0.145 +00..0035  
.006 +..000012  
"A"  
0.65(.026)  
TYP  
0.24 +00..0078  
0.10±0.05(.004±.002)  
(Stand off)  
M
0.13(.005)  
0.10(.004)  
.009 +..000033  
20.80(.819)REF  
Dimensions in mm (inches)  
(AE1E) 47  
MB81N26847A/261647A-22/-24/-30 Preliminary  
MEMO  
48 (AE1E)  
MB81N26847A/261647A-22/-24/-30 Preliminary  
MEMO  
(AE1E) 49  
MB81N26847A/261647A-22/-24/-30 Preliminary  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
The contents of this document are subject to change without  
notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Electronic Devices  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3347  
Fax: +81-3-5322-3386  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
http://edevice.fujitsu.com/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The products described in this document are designed, and  
manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal  
use, and household use, but are not designed, developed and  
manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured,  
could have a serious effect to the public, and could lead directly  
to death, personal injury, severe physical damage or other loss  
(i.e., nuclear reaction control in nuclear facility, aircraft flight  
control, air traffic control, mass transport control, medical life  
support system, missile launch control in weapon system), or (2)  
for use requiring extremely high reliability (i.e., submersible  
repeater and artificial satellite).  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
http://www.fujitsu-fme.com/  
Asia Pacific  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility  
and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0105  
FUJITSU LIMITED Printed in Japan  
50 (AE1E)  

相关型号:

MB81N261647A-24FN

DDR DRAM, 16MX16, 0.9ns, CMOS, PDSO66
FUJITSU

MB81N261647A-30FN

DDR DRAM, 16MX16, 1ns, CMOS, PDSO66
FUJITSU
FUJITSU

MB81N26167B-50FN

16MX16 DDR DRAM, 0.75ns, PDSO66, 0.400 INCH, PLASTIC, TSOP2-66
FUJITSU

MB81N26167B-55FN

16M X 16 DDR DRAM, 0.75 ns, PDSO66, 0.400 INCH, PLASTIC, TSOP2-66
FUJITSU

MB81N26167B-60FN

16MX16 DDR DRAM, 0.85ns, PDSO66, 0.400 INCH, PLASTIC, TSOP2-66
FUJITSU

MB81N26847A-22FN

DDR DRAM, 32MX8, 0.85ns, CMOS, PDSO66
FUJITSU

MB81N26847A-24FN

DDR DRAM, 32MX8, 0.9ns, CMOS, PDSO66
FUJITSU

MB81N643289

8 x 256K x 32 BIT DOUBLE DATA RATE FCRAMTM
FUJITSU

MB81N643289-50FN

DDR DRAM, 2MX32, 1.1ns, CMOS, PDSO86, PLASTIC, TSOP2-86
FUJITSU

MB81N643289-60FN

DDR DRAM, 2MX32, 1.3ns, CMOS, PDSO86, PLASTIC, TSOP2-86
FUJITSU

MB81P641647A-12FN

DDR DRAM, 4MX16, 1ns, CMOS, PDSO66
FUJITSU