MB89130 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89130
型号: MB89130
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总59页 (文件大小:689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12510-9E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89130/130A Series  
MB89131/P131/133A/P133A/135A/  
MB89P135A/PV130A  
DESCRIPTION  
The MB89130/130A series has been developed as a general-purpose version of the F2MC*-8L family consisting  
of proprietary 8-bit, single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a great variety of peripheral functions such  
as timers, a serial interface, an A/D converter, and external interrupts. The MB89130A series also include a  
remote control transmitting output and wake-up interrupt function.  
* : F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• F2MC-8L family CPU core  
• Low-voltage operation (when an A/D converter is not used)  
• Low current consumption (applicable to the dual-clock system)  
• Minimum execution time : 0.95 µs at 4.2 MHz  
• 21-bit timebase timer  
• I/O ports : max. 36 ports  
• External interrupt 1 : 3 channels  
• External interrupt 2 (wake-up function) : 8 channels (only for the MB89130A series)  
• 8-bit serial I/O : 1 channel  
(Continued)  
PACKAGE  
48-pin plastic QFP  
48-pin plastic SH-DIP  
48-pin ceramic MQFP  
(FPT-48P-M13)  
(DIP-48P-M01)  
(MQP-48C-P01)  
MB89130/130A Series  
(Continued)  
• 8/16-bit timer/counter : 1 channel  
• 8-bit A/D converter : 4 channels  
• Remote control transmitting frequency generator (for the MB89130A series only)  
• Low-power consumption modes (stop, sleep, and watch mode)  
• QFP-48 package, SH-DIP-48 package  
• CMOS technology  
PRODUCT LINEUP  
Part number  
MB89131  
MB89133A  
MB89135A  
MB89P133A  
MB89P131  
Item  
Mass-produced products  
(mask ROM products)  
Classification  
One-time PROM products  
8 K × 8 bits  
4 K × 8 bits  
(internal PROM, (internal PROM,  
4 K × 8 bits  
(internal mask  
ROM)  
8 K × 8 bits  
(internal mask  
ROM)  
16 K × 8 bits  
(internal mask  
ROM)  
to be  
programmed  
with general-  
to be  
programmed  
with general-  
ROM size  
purpose EPROM purpose EPROM  
programmer)  
programmer)  
RAM size  
128 × 8 bits  
256 × 8 bits  
128 × 8 bits  
The number of instructions :  
Instruction bit length :  
Instruction length :  
Data bit length :  
Minimum execution time :  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
0.95 µs at 4.2 MHz  
CPU functions  
Minimum interrupt processing time : 8.57 µs at 4.2 MHz  
Output ports (N-ch open-drain  
ports) :  
4 (All also serve as peripherals.)  
Output ports (CMOS) :  
I/O ports (CMOS) :  
8
Ports  
24 (8 ports also serve as peripherals. For  
MB89130A, 16 ports also serve as.)  
36  
Total :  
8/16-bit timer/  
counter  
8-bit timer/counter × 2 channels or a 16-bit event counter  
8 bits  
8-bit serial I/O  
LSB/MSB first selectable  
8-bit resolution × 4 channels  
A/D conversion mode (minimum conversion time : 42 µs at 4.2 MHz)  
Sense mode (minimum conversion time : 11.4 µs at 4.2 MHz)  
Capable of continuous activation by an internal timer  
Reference voltage input  
8-bit A/D converter  
3 independent channels (edge selection, interrupt vector, source flag)  
Rising/falling both edges selectable  
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop  
mode.)  
External interrupt 1  
(Continued)  
2
MB89130/130A Series  
Part number  
MB89131  
MB89133A  
MB89135A  
MB89P133A  
MB89P131  
Item  
External interrupt 2  
(wake-up function)  
8 channels (only for level detection)  
Remote control  
transmitting gener-  
ator  
1 channel  
(Pulse width and cycle selectable by program)  
Standby mode  
Process  
Sleep, stop, and clock mode  
CMOS  
2.2 to 4.0 V (with the dual-clock option)  
2.2 to 6.0 V (with the single-clock option)  
Operating voltage*  
2.7 V to 6.0 V  
* : Varies with conditions such as the operating frequency. (See “ELECTRICAL CHARACTERISTICS”.)  
(Continued)  
3
MB89130/130A Series  
(Continued)  
Part number  
MB89P135  
Item  
MB89PV130A  
Classification  
One-time PROM products  
Piggyback/evaluation product  
16 K × 8 bits  
(internal PROM, to be programmed with  
general-purpose EPROM programmer)  
32 K × 8 bits  
(external ROM)  
ROM size  
RAM size  
512 × 8 bits  
1 K × 8 bits  
The number of instructions  
Instruction bit length  
: 136  
: 8 bits  
Instruction length  
Data bit length  
: 1 to 3 bytes  
: 1, 8, 16 bits  
CPU functions  
Minimum execution time  
Minimum interrupt processing time  
: 0.95 µs at 4.2 MHz  
: 8.57 µs at 4.2 MHz  
Output ports (N-ch open-drain ports)  
Output ports (CMOS)  
: 4 (All also serve as peripherals.)  
: 8  
I/O ports (CMOS)  
: 24 (8 ports also serve as peripherals. For  
Ports  
MB89130A, 16 ports also serve as  
peripherals.)  
: 36  
Total  
8/16-bit timer/  
counter  
8-bit timer/counter × 2 channels or a 16-bit event counter  
8 bits  
8-bit serial I/O  
LSB/MSB first selectable  
8-bit resolution × 4 channels  
A/D conversion mode (minimum conversion time : 42 µs at 4.2 MHz)  
Sense mode (minimum conversion time : 11.4 µs at 4.2 MHz)  
Capable of continuous activation by an internal timer  
Reference voltage input  
8-bit A/D converter  
3 independent channels (selectable edge, interrupt vector, source flag)  
Rising/falling both edges selectable  
Used also for wake-up from the stop/sleep mode. (Edge detection is also permitted in the  
stop mode.)  
External interrupt 1  
External interrupt 2  
(wake-up function)  
8 channels (only for level detection)  
Remote control  
transmitting  
frequency  
1 channel  
(Pulse width and cycle selectable by program)  
generator  
Standby mode  
Process  
Sleep, stop, and clock mode  
CMOS  
Operating voltage  
EPROM for use  
2.7 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C256A-20TVM  
4
MB89130/130A Series  
PACKAGE AND CORRESPONDING PRODUCTS  
Package  
FPT-48P-M13  
DIP-48P-M01  
MQP-48C-P01  
MB89131  
MB89133A  
MB89135A  
MB89P133A  
MB89P131  
×
×
×
×
×
×
×
×
Package  
FPT-48P-M13  
DIP-48P-M01  
MQP-48C-P01  
MB89P135A  
MB89PV130A  
×
×
×
×
×
: Available,  
: Not available  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the OTPROM (one-time PROM) products, verify its differences from the product that  
will actually be used. Take particular care on the following points :  
• The number of register banks available is different among the MB89131, MB89133A/135A and MB89P135A/  
PV130A.  
• The stack area, etc., is set at the upper limit of the RAM.  
2. Current Consumption  
• When operated at low speed, the product with an OTPROM will consume more current than the product with  
a mask ROM.  
However, the same is current consumption in sleep/stop modes. (For more information, see “ELECTRICAL  
CHARACTERISTICS”.)  
• In the case of the MB89PV130A, added is the current consumed by the EPROM which is connected to the  
top socket.  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary with product.  
Before using options, check “MASK OPITONS”.  
Take particular care on the following point :  
• P40 to P43 must be set to no pull-up resistor when an A/D converter is used.  
• For MB89P135A, pull-up resistor option cannot be set for P40 to P43.  
• Each option is fixed on the MB89PV130A.  
5
MB89130/130A Series  
PIN ASSIGNMENT  
(TOP VIEW)  
AVCC  
RST  
MOD0  
MOD1  
X0  
X1  
VCC  
X0A  
X1A  
P27  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P36/INT2  
P37/BZ/(RCO)  
P00/(INT20)  
P01/(INT21)  
P02/(INT22)  
P03/(INT23)  
P04/(INT24)  
P05/(INT25)  
P06/(INT26)  
P07/(INT27)  
P10  
9
10  
11  
12  
P26  
P25  
P11  
(FPT-48P-M13)  
Note : Parenthesized function is available only for the MB89130A series.  
6
MB89130/130A Series  
(TOP VIEW)  
VSS  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
P07/(INT27)  
P06/(INT26)  
P05/(INT25)  
P04/(INT24)  
P03/(INT23)  
P02/(INT22)  
P01/(INT21)  
P00/(INT20)  
P37/BZ/(RCO)  
P36/INT2  
P35/INT1  
P34/TO/INT0  
P33/EC/SCO  
P32/SI  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
X1A  
X0A  
VCC  
X1  
X0  
MOD1  
MOD0  
RST  
AVCC  
P40/AN0  
P41/AN1  
P42/AN2  
P43/AN3  
AVR  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P31/SO  
P30/SCK  
AVSS  
(DIP-48P-M01)  
Note : Parenthesized function is available only for the MB89130A series.  
7
MB89130/130A Series  
(TOP VIEW)  
AVCC  
RST  
MOD0  
MOD1  
X0  
X1  
VCC  
X0A  
X1A  
P27  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P36/INT2  
P37/BZ/(RCO)  
P00/INT20  
P01/INT21  
P02/INT22  
P03/INT23  
P04/INT24  
P05/INT25  
P06/INT26  
P07/INT27  
P10  
70  
69  
70  
71  
72  
73  
74  
75  
61  
59  
68  
57  
56  
55  
54  
53  
9
10  
11  
12  
P26  
P25  
P11  
(MQP-48C-P01)  
Pin assignment on package top  
Pin no.  
49  
Pin name  
VPP  
Pin no.  
57  
Pin name  
Pin no.  
Pin name  
Pin no.  
73  
Pin name  
OE  
N.C.  
A2  
65  
66  
67  
68  
69  
70  
71  
72  
O4  
O5  
50  
A12  
A7  
58  
74  
N.C.  
A11  
A9  
51  
59  
A1  
O6  
75  
52  
A6  
60  
A0  
O7  
76  
53  
A5  
61  
O1  
O2  
O3  
VSS  
O8  
77  
A8  
54  
A4  
62  
CE  
A10  
N.C.  
78  
A13  
A14  
VCC  
55  
A3  
63  
79  
56  
N.C.  
64  
80  
N.C. : Internally connected. Do not use.  
8
MB89130/130A Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-DIP*1  
QFP*2  
35  
36  
38  
39  
33  
34  
5
6
8
9
3
4
X0  
X1  
A
B
C
Main clock crystal oscillator pins (max. 4.2 MHz)  
Subclock crystal oscillator pins (32.768 kHz)  
X0A  
X1A  
MOD0  
MOD1  
Operation mode selecting pins  
Connect directly to VSS.  
Reset I/O pin  
This pin is of N-ch open-drain output type with pull-up re-  
sistor, and a hysteresis input type. The internal circuit is  
initialized by the input of “L”. “L” is output from this pin by  
an internal reset source as a option.  
32  
2
RST  
D
I
General-purpose I/O ports  
On the MB89130A series, these ports also serve as an ex-  
ternal interrupt input.  
P00 (INT20)  
to  
P07 (INT27)  
16 to 9  
34 to 27  
External interrupt inputs are of hysteresis input type.  
8 to 2, 48 26 to 20, 18  
P10 to P17  
P20 to P27  
E
General-purpose I/O ports  
47 to 40  
17 to 10  
G
General-purpose output ports  
General-purpose I/O port  
24  
42  
P30/SCK  
P31/SO  
P32/SI  
F
F
F
Also serves as the clock I/O for the 8-bit serial I/O. This  
port is of hysteresis input type.  
General-purpose I/O port  
Also serves as a 8-bit serial I/O data output. This port is of  
hysteresis input type.  
23  
22  
41  
40  
General-purpose I/O port  
Also serves as a 8-bit serial I/O data input. This port is of  
hysteresis input type.  
General-purpose I/O port  
Also serves as the external clock input for the 8-bit  
timer/counter. This port is of hysteresis input type. The  
system clock output is provided as an option.  
21  
20  
39  
38  
P33/EC/SCO  
P34/TO/INT0  
F
General-purpose I/O port  
Also serve as the overflow output for the 8-bit timer/  
counter and an external interrupt input. This port is of hys-  
teresis input type.  
F
F
General-purpose I/O ports  
Also serves as an external interrupt input. These ports are  
of hysteresis input type.  
19,  
18  
37,  
36  
P35/INT1,  
P36/INT2  
*1 : DIP-48P-M01  
*2 : FPT-48P-M13  
(Continued)  
9
MB89130/130A Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
General-purpose I/O port  
SH-DIP*1  
QFP*2  
Also serves as a buzzer output. This port is of hysteresis  
input type. On the MB89130A series, this port also serves  
as a remote control output.  
17  
35  
P37/BZ/(RCO)  
F
P40/AN0 to  
P43/AN3  
N-ch open-drain output ports  
Also serve as an analog input for the A/D converter.  
30 to 27  
48 to 45  
H
37  
1
7
VCC  
Power supply pin  
19  
VSS  
Power supply (GND) pin  
A/D converter power supply pin  
Use this pin at the same voltage as VCC.  
31  
26  
25  
1
AVCC  
AVR  
AVSS  
44  
43  
A/D converter reference voltage input pin  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1 : DIP-48P-M01  
*2 : FPT-48P-M13  
10  
MB89130/130A Series  
External EPROM pins (MB89PV130A only)  
Pin no.  
Pin name  
I/O  
Function  
49  
VPP  
O
“H” level output pin  
50  
51  
52  
53  
54  
55  
58  
59  
60  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
O
Address output pins  
61  
62  
63  
O1  
O2  
O3  
I
Data input pins  
64  
VSS  
O
Power supply (GND) pin  
65  
66  
67  
68  
69  
O4  
O5  
O6  
O7  
O8  
I
Data input pins  
ROM chip enable pin  
Outputs “H” during standby.  
70  
71  
73  
CE  
A10  
OE  
O
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
75  
76  
77  
78  
79  
A11  
A9  
A8  
A13  
A14  
O
O
Address output pins  
80  
VCC  
EPROM power supply pin  
56  
57  
72  
74  
Internally connected pins  
Be sure to leave them open.  
N.C.  
11  
MB89130/130A Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
• Crystal or ceramic oscillation type (main clock)  
Circuit for the MB89P133A/P131/P135A/PV130A  
ExternalclockinputselectingversionsofMB89131/  
133A/135A  
X1  
X0  
Oscillation feedback resistor of approximately  
1 M/5 V  
Standby control signal  
A
• Crystal or ceramic oscillation type (main clock)  
Crystal or ceramic oscillation selecting versions of  
MB89131/133A/135A  
Oscillation feedback resistor of approximately  
1 M/5 V  
X1  
X0  
Standby control signal  
• Crystal and ceramic oscillation type (subclock)  
Circuit for the MB89131/133A/135A  
Oscillation feedback resistor of approximately  
4.5 M/5 V  
X1A  
X0A  
Standby control signal  
X1A  
B
• Crystal and ceramic oscillation type (subclock)  
Circuit for the MB89P131/P133A/P135A/PV130A  
Oscillation feedback resistor of approximately  
4.5 M/5 V  
X0A  
Standby control signal  
C
D
• Output pull-up resistor (P-ch) of approximately  
50 k/5 V  
• Hysteresis input  
R
P-ch  
N-ch  
(Continued)  
12  
MB89130/130A Series  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS output  
R
• CMOS input  
P-ch  
N-ch  
E
• Pull-up resistor optional  
• CMOS output  
R
• Hysteresis input  
P-ch  
N-ch  
F
• Pull-up resistor optional  
• CMOS output  
P-ch  
N-ch  
G
• N-ch open-drain output  
• Analog input  
R
P-ch  
H
N-ch  
• Pull-up resistor optional  
Analog input  
• CMOS output  
• CMOS input  
P-ch  
• The interrupt input is a hysteresis input (available  
only for the MB89130A series) .  
P-ch  
N-ch  
I
Interrupt input  
Only for MB89130A series  
• Pull-up resistor optional  
13  
MB89130/130A Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D Converter  
Connect to be AVCC = VCC and AVSS = AVR = VSS even if the A/D converter are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although operation is assured within the rated range of VCC power supply voltage, a rapid fluctuation of the  
voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC  
is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctu-  
ations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz)  
and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when  
power is switched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
wake-up from stop mode.  
7. Turning on the supply voltage (only for the MB89P135A)  
Power on sharply up to the option enabling voltage (2 V) within 13 clock cycles after starting of oscillation.  
14  
MB89130/130A Series  
PROGRAMMING TO THE EPROM ON THE MB89P131  
The MB89P131 is an OTPROM version of the MB89131.  
1. Features  
• 4-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below.  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
Address  
0000H  
Single chip  
I/O  
0080H  
00C0H  
Not available  
RAM  
0140H  
0000H  
Not available  
Not available  
7000H  
F000H  
PROM  
4 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P131 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
Programming procedure  
(1) Set the EPROM programmer for the MBM27C256A.  
(2) Load program data into the EPROM programmer at 7000H to 7FFFH (note that addresses F000H to FFFFH  
while operating as a single chip correspond to 7000H to 7FFFH in EPROM mode) .  
(3) Program with the EPROM programmer.  
15  
MB89130/130A Series  
PROGRAMMING TO THE EPROM ON THE MB89P133A  
The MB89P133A is an OTPROM version of the MP89133A.  
1. Features  
• 8-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0080H  
0180H  
RAM  
0000H  
Not available  
Not available  
E000H  
FFFFH  
6000H  
PROM  
8 KB  
EPROM  
32 KB  
7FFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P133A functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
Programming procedure  
(1) Set the EPROM programmer for the MBM27C256A.  
(2) Load program data into the EPROM programmer at 6000H to 7FFFH (note that addresses E000H to FFFFH  
while operating as a single chip correspond to 6000H to 7FFFH in EPROM mode) .  
(3) Program with the EPROM programmer.  
16  
MB89130/130A Series  
PROGRAMMING TO THE EPROM ON THE MB89P135A  
The MB89P135A is an OTPROM version of the MB89133A/135A.  
1. Features  
• 16-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0080H  
0280H  
RAM  
Not available  
Not available  
8000H  
0000H  
Vacancy  
(Read value FFH)  
BFF0H  
BFF6H  
3FF0H  
Option area  
3FF6H  
Not available  
Not available  
Vacancy  
(Read value FFH)  
C000H  
4000H  
PROM  
16 KB  
EPROM  
16 KB  
7FFFH  
FFFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P135A functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
Programming procedure  
(1) Set the EPROM programmer for the MBM27C256A.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH  
while operating as a single chip correspond to 4000H to 7FFFH in EPROM mode) .  
(3) Load option data into the EPROM programmer at 3FF0H to 3FF6H.  
(4) Program with the EPROM programmer.  
17  
MB89130/130A Series  
4. Setting OTPROM Options (MB89P135A Only)  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map :  
OTPROM option bit map  
Ad-  
dress  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Clock  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Oscillation  
Vacancy  
Vacancy  
Vacancy  
mode  
selection  
stabilization time  
Reset pin  
output  
1 : Yes  
0 : No  
Power-on  
reset  
1 : Yes  
0 : No  
3FF0H Readable Readable Readable 1 : Single  
00 : 22/FCH 10 : 216/FCH  
01 : 212/FCH 11 : 218/FCH  
and  
writable  
and  
writable  
and  
writable  
clock  
0 : Dual  
clock  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1 : Yes  
0 : No  
Pul-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
3FF1H  
3FF2H  
3FF3H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1 : No  
0 : Yes  
Pull-up  
1 : No  
0 : Yes  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
3FF4H Readable Readable Readable Readable Readable Readable Readable Readable  
and  
and  
and  
and  
and  
and  
and  
and  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
3FF5H Readable Readable Readable Readable Readable Readable Readable Readable  
and  
and  
and  
and  
and  
and  
and  
and  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
3FF6H Readable Readable Readable Readable Readable Readable Readable Readable  
and  
and  
and  
and  
and  
and  
and  
and  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
Note : Each bit is set to ‘1’ as the initialized value, therefore the pull-up option is selected.  
18  
MB89130/130A Series  
HANDLING THE MB89P131/P133A/P135A  
1. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure.  
Program, verify  
Aging  
+150 °C, 48 h  
Data verification  
Assembly  
2. Programming Yield  
Due to its nature, bit programming test can’t be conducted as Fujitsu delivery test.  
For this reason, a programming yield of 100% cannot be assured at all times.  
3. EPROM Programmer Socket Adapter  
Recommended programmer manufacturer  
and programmer name  
Minato Electronics Inc.  
1890A  
Compatible socket adapter  
Sun Hayato Co., Ltd.  
Part no.  
Package  
MB89P131PF  
MB89P133APFM  
MB89P133AP  
Recommended  
QFP-48  
ROM-48QF2-28DP-8L  
ROM-48SD-28DP-8L2  
SH-DIP-48  
Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403  
FAX (81) -3-5396-9106  
Minato Electronics Inc. : TEL : USA (1) -916-348-6066  
JAPAN (81) -45-591-5611  
19  
MB89130/130A Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TVM  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer : Sun Hayato  
Co., Ltd.) listed below :  
Package  
Socket adapter part number  
LCC-32 (Square)  
ROM-32LC-28DP-S  
Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403  
FAX (81) -3-5396-9106  
3. Memory Space  
Memory space in each mode, such as 32-Kbyte PROM is diagrammed below.  
Address  
0000H  
Single chip  
Corresponding addresses on the EPROM programmer  
I/O  
0080H  
0480H  
RAM  
Not available  
8000H  
0000H  
PROM  
32 KB  
EPROM  
32 KB  
7FFFH  
FFFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer for the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0000H to 7FFFH.  
(3) Program with the EPROM programmer.  
20  
MB89130/130A Series  
BLOCK DIAGRAM  
X0  
X1  
Timebase timer  
Reset circuit  
Main clock oscillator  
Clock controller  
RST  
(WDT)  
X0A  
X1A  
Subclock oscillator  
(32.768 kHz)  
8-bit timer/counter  
8-bit timer/counter  
P34/TO/INT0  
P33/EC/SCO  
8
CMOS I/O port  
P00/ (INT20)  
to P07/ (INT27)  
*
External interrupt 2  
(wake-up function)  
P30/SCK  
P32/SI  
P31/SO  
8
8-bit serial I/O  
P10 to P17  
P35/INT1  
P36/INT2  
External interrupt 1  
8
Remote control*  
transmitting  
frequency generator  
P20 to P27  
Buzzer output  
CMOS output port  
P37/BZ/(RCO)  
CMOS I/O port  
N-ch open-drain output port  
RAM  
4
4
P40/AN0  
to P43/AN3  
8-bit A/D converter  
F2MC-8L  
CPU  
AVR  
ROM  
AVCC  
AVSS  
The other pins  
MOD0, MOD1, VCC, VSS  
* : Only for the MB89130A series.  
Note : Parenthesized pin function is only for the MB89130A series.  
21  
MB89130/130A Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89130/130A series offer a memory space of 64 Kbytes for storing all of I/O, data,  
and program areas. The I/O area is allocated from the lowest address. The data area is allocated immediately  
abovetheI/Oarea. Thedataareacanbedividedintoregister, stack, anddirectareasaccordingtotheapplication.  
The program area is allocated from exactly the opposite end, that is, near the highest address. The tables of  
interrupt reset vectors and vector call instructions are allocated from the highest address within the program  
area. The memory space of the MB89130/130A series is structured as illustrated below.  
Memory Space  
MB89P133A  
MB89133A  
MB89P131  
MB89131  
MB89135A  
I/O  
MB89P135A  
I/O  
MB89PV130A  
I/O  
0000H  
0000H  
0000H  
0000H  
0000H  
I/O  
I/O  
007FH  
0080H  
007FH  
0080H  
007FH  
0080H  
007FH  
0080H  
007FH  
00C0H  
Vacancy  
RAM  
256 B  
RAM  
256 B  
RAM  
512 B  
RAM  
1 KB  
RAM  
128 B  
00FFH  
0100H  
00FFH  
0100H  
00FFH  
0100H  
00FFH  
0100H  
0100H  
Register  
Register  
Register  
Register  
Register  
013FH  
0140H  
017FH  
0180H  
017FH  
0180H  
01FFH  
0200H  
01FFH  
0200H  
027FH  
0280H  
Vacancy  
Vacancy  
Vacancy  
047FH  
0480H  
Vacancy  
Vacancy  
7FFFH  
8000H  
BFFFH  
C000H  
BFFFH  
C000H  
External  
ROM  
32 KB  
DFFFH  
E000H  
ROM  
16 KB  
ROM  
16 KB  
EFFFH  
F000H  
ROM  
8 KB  
ROM  
4 KB  
FFFFH  
FFFFH  
FFFFH  
FFFFH  
FFFFH  
22  
MB89130/130A Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose  
memory registers. The following registers are provided :  
Program counter (PC) :  
A 16-bit register for indicating the instruction storage positions.  
Accumulator (A) :  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T) : A 16-bit register which is used for arithmetic operations with the accumulator  
When the instruction is an 8-bit data processing instruction, the lower byte is  
used.  
Index register (IX) :  
Extra pointer (EP) :  
Stack pointer (SP) :  
Program status (PS) :  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit pointer for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
16 bits  
PC  
Initial value  
FFFDH  
: Program counter  
: Accumulator  
A
T
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
The other bit values are Indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR) . (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
23  
MB89130/130A Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
Lower OP codes  
RP  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and  
bits for control of CPU operations at the time of an interrupt.  
H-flag : Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag : Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’.  
Cleared to ‘0’ at the reset.  
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level  
is higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag : Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ otherwise.  
Z-flag : Set to ‘1’ when an arithmetic operation results in ‘0’. Cleared to ‘0’ otherwise.  
V-flag : Set to ‘1’ if the complement on ‘2’ overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag : Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
‘0’ otherwise.  
Set to the shift-out value in the case of a shift instruction.  
24  
MB89130/130A Series  
The following general-purpose registers are provided :  
General-purpose registers : An 8-bit resister for storing data  
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains  
eight registers. Up to a total of 8 banks can be used on the MB89131/P131 and a total of 16 banks can be used  
on the MB89133A/P133A/135A and a total of 32 banks can be used on the MB89P135A/PV130A. The bank  
currently in use is indicated by the register bank pointer (RP) .  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
8 banks (MB89131/P131)  
16 banks (MB89133A/P133A/135A)  
32 banks (MB89P135A/PV130A)  
Memory area  
25  
MB89130/130A Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Port 2 data register  
Vacancy  
(R/W)  
(W)  
PDR1  
DDR1  
(R/W)  
PDR2  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
SYCC  
STBC  
WDTC  
TBTC  
WPCR  
PDR3  
DDR3  
PDR4  
BZCR  
System clock control register  
Standby control register  
Watchdog timer control register  
Timebase timer control register  
Watch prescaler control register  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
Buzzer register  
(R/W)  
(R/W)  
Vacancy  
Vacancy  
(R/W)  
SCGC  
Peripheral control clock register  
Vacancy  
(R/W)  
(R/W)  
RCR1  
RCR2  
Remote control transmitting control register 1*  
Remote control transmitting control register 2*  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
T2CR  
T1CR  
T2DR  
T1DR  
SMR  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
Timer 1 data register  
Serial mode register  
Serial data register  
SDR  
Vacancy  
Vacancy  
(Continued)  
26  
MB89130/130A Series  
(Continued)  
Address  
Read/write  
(R/W)  
Register name  
ADC1  
Register description  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
External interrupt 1 control register 1  
External interrupt 1 control register 2  
Vacancy  
20H  
21H  
(R/W)  
ADC2  
22H  
(R/W)  
ADCD  
23H  
(R/W)  
EIC1  
24H  
(R/W)  
EIC2  
25H  
26H to 31H  
32H  
Vacancy  
(R/W)  
(R/W)  
EIE2  
EIF2  
External interrupt 2 enable register*  
External interrupt 2 flag register*  
Vacancy  
33H  
34H to 7BH  
7CH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
7DH  
7EH  
7FH  
* : Only for the MB89130A series  
Note : Do not use vacancies.  
27  
MB89130/130A Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
AVCC  
VSS 0.3 VSS + 7.2  
VSS 0.3 VSS + 7.2  
VSS 0.6 VSS + 13.0  
V
V
V
*
Power supply voltage  
Program voltage  
AVR  
VPP  
AVR must not exceed VCC + 0.3 V  
Only for the MB89P131/P133A/  
P135A  
Input voltage  
VI  
VO  
IOL  
VSS 0.3 VCC + 0.3  
VSS 0.3 VCC + 0.3  
10  
V
V
Output voltage  
“L” level maximum output current  
mA  
Average value (operating current ×  
operating rate)  
“L” level average output current  
IOLAV  
4
mA  
mA  
“L” level total maximum output cur-  
rent  
ΣIOL  
100  
“L” level total average output cur-  
rent  
Average value (operating current ×  
operating rate)  
ΣIOLAV  
IOH  
20  
–10  
–2  
mA  
mA  
mA  
“H” level maximum output current  
Average value (operating current ×  
operating rate)  
“H” level average output current  
IOHAV  
“H” level total maximum output cur-  
rent  
ΣIOH  
–30  
mA  
mA  
“H” level total average output cur-  
rent  
Average value (operating current ×  
operating rate)  
ΣIOHAV  
–10  
200  
Power consumption  
Operating temperature  
Storage temperature  
PD  
TA  
mW  
°C  
40  
55  
+85  
Tstg  
+150  
°C  
* : Use AVCC and VCC set to the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
28  
MB89130/130A Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Normal operation assurance range*  
MB89131/133A/135A  
2.2*  
2.7*  
6.0*  
V
V
VCC  
AVCC  
Normal operation assurance range*  
MB89P131/P133A/135A/PV130A  
6.0*  
Power supply voltage  
Operating temperature  
1.5  
2.0  
40  
6.0  
AVCC  
+85  
V
Retains the RAM state in the stop mode  
AVR  
TA  
V
°C  
* : These values vary with the operating frequencies and the analog assurance range. See Figure 1 and 2, and  
“5. A/D Converter Electrical Characteristics.”  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
(MB89P131/P133A/P135A/PV130A, and single-clock MB89131/133/133A/135/135A)  
6
5
Operation assurance range  
4
3
2
1
1
2
3
4
Main clock oprating frequency (at an instruction cycle of 4/FCH) (MHz)  
4.0  
2.0  
1.0  
Minimum execution time (Instruction cycle) (µs)  
Note : The shaded area is assured only for the MB89131/133/133A/135/135A.  
29  
MB89130/130A Series  
Figure 2 Operating Voltage vs. Main Clock Operating Frequency  
(Dual-clock MB89131/133/133A/135/135A)  
6
5
4
Operation assurance range  
3
2
1
1
2
3
4
Main clock oprating frequency (at an instruction cycle of 4/FCH) (MHz)  
4.0  
2.0  
1.0  
Minimum execution time (Instruction cycle) (µs)  
Figure 1 and 2 indicate the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the oper-  
ating speed is switched using a gear.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
30  
MB89130/130A Series  
3. DC Characteristics  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Sym-  
Parameter  
bol  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07,  
P10 to P17  
VCC +  
0.3  
VIH  
0.7 VCC  
V
INT20 to INT27  
are available  
only for the  
MB89130A se-  
ries.  
“H” level  
input voltage  
RST,  
P30 to P37,  
INT20 to  
INT27  
VCC +  
3.0  
VIHS  
0.8 VCC  
V
V
V
P00 to P07,  
P10 to P17  
VSS −  
0.3  
VIL  
0.3 VCC  
0.2 VCC  
INT20 to INT27  
are available  
only for the  
MB89130A se-  
ries.  
“L” level  
input voltage  
RST,  
P30 to P37  
INT20 to  
INT27  
VSS −  
0.3  
VILS  
Open-drain  
output pin  
applied  
voltage  
VCC −  
0.3  
VCC +  
0.3  
VD  
P40 to P43  
V
V
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37  
“H” level  
VOH  
IOH = −2.0 mA  
2.4  
output voltage  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P43  
VOL  
IOL = 1.8 mA  
IOL = 4.0 mA  
0.4  
0.6  
V
V
“L” level  
output voltage  
VOL2  
RST  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P43,  
MOD0, MOD1  
Input leakage  
current  
(Hi-z output  
leakage current)  
Without pull-up  
resistor  
ILI1  
0.0 V < VI < VCC  
±5  
µA  
kΩ  
P00 to P07,  
P10 to P17,  
RPULL P30 to P37,  
P40 to P43,  
RST  
Pull-up  
resistance  
VI = 0.0 V  
25  
50  
100  
(Continued)  
31  
MB89130/130A Series  
(Continued)  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Sym-  
bol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
MB89131/  
Min.  
Typ.  
Max.  
4
7
mA  
mA  
FCH = 4.00 MHz  
VCC = 5.0 V  
133A/135A  
ICC1  
MB89P131/  
P133A/P135A  
*2  
tinst = 1.0 µs  
6
10  
FCH = 4.00 MHz  
VCC = 5.0 V  
tinst*2 = 1.0 µs  
Main clock sleep  
mode  
ICCS1  
2
5
mA  
MB89131/  
133A/135A  
50  
1
100  
3
µA  
FCL = 32.768 kHz  
VCC = 3.0 V  
Subclock mode  
ICCL  
MB89P131/  
P133A/P135A  
mA  
VCC (External  
clock opera-  
tion)  
FCL = 32.768 kHz  
VCC = 3.0 V  
Subclock sleep  
mode  
ICCLS  
25  
50  
15  
µA  
µA  
FCL = 32.768 kHz  
VCC = 3.0 V  
Watch mode  
Main clock stop  
mode in dual-  
clock system  
Power supply  
current*1  
ICCT  
TA = +25 °C  
Subclock stop  
mode  
Main clock stop  
mode in single-  
clock system  
ICCH  
1
µA  
FCH = 4 MHz,  
when A/D  
conversion is op-  
erating  
IA  
AVCC  
AVCC  
1
3
1
mA  
FCH = 4 MHz,  
TA = +25 °C,  
when A/D  
IAH  
µA  
conversion is not  
operating  
Other than  
AVCC, AVSS,  
VCC, and VSS  
Input  
capacitance  
CIN  
f = 1 MHz  
10  
pF  
*1 : The power supply current is measured at the external clock.  
*2 : For information on tinst, see “ (4) Instruction Cycle” in “4. AC Characteristics.”  
32  
MB89130/130A Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V ± 10%, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL*  
ns  
* : tHCYL is the oscillation cycle (1/FCH) to input to the X0 pin.  
tZLZH  
0.8 VCC  
0.2 VCC  
RST  
0.2 VCC  
(2) Power-on Reset  
(AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Unit Remarks  
Value  
Symbol Condition  
Parameter  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
50  
ms Power-on reset function only  
ms Due to repeated operations  
tOFF  
1
Note : Make sure that power supply rises within the oscillation stabilization time selected.  
For example, when the main clock is operating at 3 MHz (FCH) and the oscillation stabilization time selecting  
option has been set to 212/FCH, the oscillation stabilization time is 1.4 ms. Therefore, the maximum value of  
power supply rising time is about 1.4 ms.  
Rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be  
varied in the course of operation, a smooth voltage rise is recommended.  
tOFF  
tR  
2.0 V  
VCC  
0.2 V  
0.2 V  
0.2 V  
33  
MB89130/130A Series  
(3) Clock Timing  
(VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Typ.  
Symbol  
Pin  
Unit  
Remarks  
Parameter  
Input clock frequency  
Clock cycle time  
Min.  
Max.  
FCH  
FCL  
X0, X1  
X0A, X1A  
X0, X1  
1
4.2  
MHz Main clock  
kHz Subclock  
ns Main clock  
µs Subclock  
32.768  
30.5  
tHCYL  
tLCYL  
238  
30  
1000  
24  
X0A, X1A  
PWH1  
PWL1  
Input clock pulse width  
X0  
X0  
ns External clock  
ns External clock  
tCR1  
tCF1  
Input clock rising/falling time  
• X0 and X1 Timing and Conditions of Applied Voltage  
tHCYL  
PWH1  
PWL1  
tCF1  
tCR1  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.8 VCC  
X0  
0.2 VCC  
• Main Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0 X1  
X0  
X1  
FCH  
C1  
Open  
C0  
FCH  
34  
MB89130/130A Series  
• X0A and X1A Timing and Conditions of Applied Voltage  
tLCYL  
0.8 VCC  
0.8 VCC  
X0A  
• Subclock Conditions  
When a crystal  
or  
When a single-clock option is used  
ceramic resonator is used  
X0A X1A  
X0A  
X1A  
Open  
Rd  
FCL  
C1  
C0  
(4) Instruction Cycle  
Parameter  
Symbol  
Value  
Unit  
Remarks  
(4/FCH) tinst = 1.0 µs when operating at  
FCH = 4 MHz  
4/FCH, 8/FCH, 16/FCH, 64/FCH  
2/FCL  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 61.036 µs when operating at  
FCL = 32.768 kHz  
µs  
35  
MB89130/130A Series  
(5) Recommended Resonator Manufacturers  
• Sample Application of Piezoelectric Resonator (FAR Family) for Main Clock Oscillation Circuit  
X0  
X1  
R
1
2
2
C1  
C2  
Temperature  
characteristics of  
FAR frequency  
Initial deviation of  
FAR frequency  
(TA = +25 °C)  
FAR part number*1  
(built-incapacitortype)  
Frequency Dumping  
Loading  
(MHz)  
resistor  
capacitors*2  
(TA =20°Cto+60°C)  
1000 Ω  
510 Ω  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
FAR-C4CC-02000-L00  
2.00  
3.00  
FAR-C4 C-02000- 20  
FAR-C4 A-03000- 20  
FAR-C4 A-04000- 01  
FAR-C4 A-04000- 21  
FAR-C4CB-04000-M00  
FAR-C4 B-04000- 00  
FAR-C4 B-04194- 00  
1 kΩ  
750 Ω  
Built-in  
4.00  
4.194  
Inquiry : FUJITSU MEDIA DEVICES LIMITED  
36  
MB89130/130A Series  
Sample Application of Ceramic Resonator for Main Clock Oscillation Circuit  
X0  
X1  
R
C1  
C2  
Mask ROM products  
Resonator  
manufacturer*  
Resonator  
KBR-4.0MKS  
Frequency (MHz)  
C1 (pF)  
C2 (pF)  
R
Kyocera Corporation  
4.00  
4.00  
1.00  
33  
33  
Not required  
33 (Built-in) 33(Built-in) 1.5 kΩ  
Matsushita Electronic  
Components Co,. Ltd.  
EFOV4004B  
CSBF1000J  
100  
30  
100  
30  
6.8 kΩ  
CSA4.00MG  
CST4.00MGW  
CSA4.00MGU  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Built-in  
30  
Built-in  
30  
Murata Mfg. Co., Ltd. CST4.00MGWU  
Built-in  
100  
Built-in  
100  
4.00  
4.00  
CSA4.00MGU040  
CST4.00MGWU040  
CSTCS4.00MG  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
CSTCS4.00MGWOC5  
CCR4.0MC3  
TDK Corporation  
(Continued)  
37  
MB89130/130A Series  
(Continued)  
One-time PROM products  
Resonator  
Resonator  
Frequency (MHz) C1 (pF)  
C2 (pF)  
R
manufacturer*  
CSA3.00MG040  
CST3.00MGW040  
CSA4.00MG  
100  
100  
Built-in  
30  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
Not required  
3.00  
Built-in  
30  
30  
CSA4.00MGU  
Murata Mfg. Co., Ltd.  
30  
CST4.00MGWU  
Built-in  
Built-in  
100  
4.00  
100  
CSA4.00MGU040  
CST4.00MGWU040  
CSTCS4.00MG  
Built-in  
Built-in  
Built-in  
Built-in  
Inquiry : Kyocera Corporation  
AVX Corporation  
North American Sales Headquarters : TEL 1-803-448-9411  
AVX Limited  
European Sales Headquarters : TEL 44-1252-770000  
AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters : TEL 852-363-3303  
Matsushita Electronic Components Co., Ltd.  
North America  
Panasonic Industrial Co. : TEL 1-201-348-7000  
Canada  
Matsushita Electric of Canada Ltd. : TEL 905-238-2436  
Europe  
Panasonic Industrial Europe (Continental) : TEL 49-40-8549-2048  
Panasonic Industrial Europe (Nlederlassung Munchen) : TEL 49-89-4800-7150  
Asia  
Panasonic Industry of Asia, Company : TEL 65-299-8400  
Murata Mfg. Co., Ltd.  
Murata Electronics North America, Inc. : TEL 1-404-436-1300  
Murata Europe Management GmbH : TEL 49-911-66870  
Murata Electronics Singapore (Pte.) Ltd. : TEL 65-758-4233  
TDK Corporation  
TDK Corporation of America  
Chicago Regional Office : TEL 1-708-803-6100  
TDK Electronics Europe GmbH  
Components Division : TEL 49-2102-9450  
TDK Singapore (PTE) Ltd. : TEL 65-273-5022  
TDK Hongkong Co., Ltd. : TEL 852-736-2238  
Korea Branch, TDK Corporation : TEL 82-2-554-6633  
38  
MB89130/130A Series  
Sample Application of Crystal Resonator for Subclock Oscillation Circuit  
X0A  
X1A  
Rd  
C1  
C2  
Mask ROM products  
Resonator manufacturer*  
SII  
Resonator  
Frequency (kHz)  
C1 (pF)  
C2 (pF)  
Rd (k)  
DS-VT-200  
32.768  
24  
24  
680  
Inquiry : SII  
Seiko Instruments Inc. (Japan) : TEL 81-43-211-1219  
Seiko Instruments U.S.A. Inc. : TEL 310-517-7770  
Seiko Instruments GmbH : TEL 49-6102-297-122  
(6) Serial I/O Timing  
Parameter  
(VCC = +5.0 V ± 10%, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min.  
2 tinst*  
200  
200  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
SCK  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Internal shift  
clock mode  
Valid SI SCK ↑  
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
200  
1 tinst*  
1 tinst*  
0
SCK  
External shift  
clock mode  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
200  
SCK ↑ → valid SI hold time  
200  
* : For information on tinst, see “ (4) Instruction Cycle.”  
39  
MB89130/130A Series  
Internal Shift Clock Mode  
tSCYC  
SCK  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SI  
External Shift Clock Mode  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
tSLOV  
0.2 VCC  
2.4 V  
0.8 V  
SO  
SI  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
40  
MB89130/130A Series  
(7) Peripheral Input Timing  
Parameter  
(VCC = +5.0 V ± 10%, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
2 tinst*  
2 tinst*  
Max.  
Peripheral input “H” level pulse width 1  
Peripheral input “L” level pulse width 1  
tILIH1  
tIHIL1  
µs  
µs  
EC,  
INT0 to INT2  
* : For information on tinst, see “ (4) Instruction Cycle.”  
tIHIL1  
tILIH1  
0.8 VCC  
0.8 VCC  
0.2 VCC  
EC,  
INT0 to INT2  
0.2 VCC  
41  
MB89130/130A Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, FCH = 3 MHz, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Typ.  
Re-  
marks  
Parameter  
Resolution  
Symbol Pin  
Condition  
Unit  
Min.  
Max.  
8
AVR = AVCC = 5.0 V  
bit  
Total error  
±1.5  
±1.0  
LSB  
LSB  
Linearity error  
Differential  
linearity error  
±0.9  
LSB  
mV  
mV  
LSB  
µs  
Zero transition  
voltage  
AVSS −  
AVSS +  
AVSS +  
AVR = AVCC  
VOT  
1.0 LSB 0.5 LSB 2.0 LSB  
1LSB =  
AVR/256  
Full-scaletransition  
voltage  
AVR −  
3.0 LSB 1.5 LSB  
AVR −  
VFST  
AVR  
0.5  
Interchannel  
disparity  
A/D mode  
conversion time  
44 tinst*  
Sense mode  
conversion time  
12 tinst*  
µs  
Analog port input  
current  
IAIN  
10  
µA  
AN0  
to  
AN3  
Analog input  
voltage  
0
AVR  
AVCC  
V
V
Reference voltage  
2.0  
AVR = AVCC = 5.0 V,  
IR  
when A/D conversion  
AVR is operating  
100  
300  
1
µA  
µA  
Reference voltage  
supply current  
AVR = AVCC = 5.0 V,  
when A/D conversion  
is not operating  
IRH  
* : For information on tinst, see “ (4) Instruction Cycle” in “4. AC Characteristics.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable by the A/D converter.  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit : LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit : LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
42  
MB89130/130A Series  
Total error (unit : LSB)  
The difference between theoretical and actual conversion values  
Digital output  
Theoretical conversion value  
1111 1111  
Actual conversion value  
1111 1110  
AVR  
256  
1 LSB =  
(1 LSB × N + VOT)  
VNT (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V(N+1)T VNT  
1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT (1 LSB × N + 1 LSB)  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT V(N+1)T  
VFST Analog input  
43  
MB89130/130A Series  
7. Notes on Using A/D Converter  
lnput impedance of the analog input pins  
The A/D converter used for the MB89130/130A series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k) .  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx.  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 28 pF  
.
Analog input pin  
Comparator  
.
If the analog input  
impedance is higher  
than 10 kΩ, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
R = 9 kΩ  
.
Close for 8 instruction cycles after starting  
A/D conversion.  
Analog channel selector  
Error  
The smaller the | AVR AVSS |, the greater the error would become relatively.  
44  
MB89130/130A Series  
EXAMPLE CHARACTERISTICS  
(1) “L” Level Output Voltage  
(2) “H” Level Output Voltage  
VOL vs. IOL  
VOL (V)  
VCC VOH vs. IOH  
VCC – VOH (V)  
VCC = 2.2 V  
VCC = 2.2 V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
VCC = 2.5 V  
TA = +25 °C  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 3.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
TA = +25 °C  
10  
IOL (mA)  
0
1
2
3
4
5
6
7
8
9
0.0  
0.5 1.0 1.5 2.0 2.5  
3.0  
IOH (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
VIN vs. VCC  
VIN (V)  
5.0  
5.0  
4.5  
4.0  
4.5  
TA = +25 °C  
TA = +25 °C  
4.0  
VIHS  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
VILS  
1.5  
1.0  
0.5  
0
0
1
2
3
4
5
6
7
VCC (V)  
0
1
2
3
4
5
6
7
VCC (V)  
VIHS : Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VILS : Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
(5) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25 °C  
300  
100  
50  
10  
0
1
2
3
4
5
6
7
VCC (V)  
45  
MB89130/130A Series  
(6) Power Supply Current (External Clock)  
ICC1 vs. VCC  
ICCS1 vs. VCC  
ICC (mA)  
5.0  
ICCS1 (mA)  
3
Divide by 4(ICC1)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
FCH = 4.0 MHz  
TA = +25 °C  
FCH = 4.0 MHz  
TA = +25 °C  
Divide by 4(ICCS1)  
Divide by 64  
2.5  
2
1.5  
1
Divide by 64  
1.0  
0.5  
0.0  
0.5  
0.0  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VCC (V)  
VCC (V)  
ICCLS vs. VCC  
ICCL vs. VCC  
ICCL (µA)  
ICCLS (µA)  
200  
50  
TA = +25 °C  
TA = +25 °C  
45  
40  
35  
30  
25  
20  
15  
180  
160  
140  
120  
100  
80  
60  
40  
10  
5
20  
0
1.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VCC (V)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VCC (V)  
ICCT vs. VCC  
IR vs. AVR  
IR (µA)  
ICCT (µA)  
200  
30  
TA = +25 °C  
TA = +25 °C  
180  
160  
25  
20  
15  
10  
5
140  
120  
100  
80  
60  
40  
20  
0
1.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VCC (V)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
AVR (V)  
(Continued)  
46  
MB89130/130A Series  
(Continued)  
ICCH vs. VCC  
IA vs. AVCC  
IA (mA)  
5.0  
ICCH (µA)  
2.0  
1.8  
1.6  
TA = +25 °C  
FCH = 4 MHz  
TA = +25 °C  
4.5  
4.0  
3.5  
3.0  
1.4  
1.2  
2.5  
2.0  
1.0  
0.8  
1.5  
1.0  
0.6  
0.4  
0.5  
0
0.2  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
AVCC (V)  
47  
MB89130/130A Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
48  
MB89130/130A Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
49  
MB89130/130A Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
A
C
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
50  
MB89130/130A Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
51  
MB89130/130A Series  
INSTRUCTION MAP  
52  
MB89130/130A Series  
MASK OPTIONS  
MB89133A  
MB89135A  
MB89P131  
MB89P133A  
Part number  
Specifying procedure  
MB89131  
No.  
Specify when  
Specify when  
ordering masking ordering masking  
Specify when  
ordering masking  
Selectable by pin Selectable by pin  
Selectable by pin  
(P40 to P43 must be (P40 to P43 must be (P40 to P43 must be  
fixed to no pull-up fixed to no pull-up fixed to no pull-up  
resistor option when resistor option when resistor option when  
an A/D converter is an A/D converter is an A/D converter is  
Pull-up resistors  
1
2
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43  
used.)  
used.)  
used.)  
Power-on reset  
Power-on reset provided  
No power-on reset  
Selectable  
Selectable  
Selectable  
Selection of oscillation stabilization  
time  
The oscillation stabilization time ini-  
tial value is selectable from 4 types  
given below.  
3
Selectable  
Selectable  
Selectable  
0 : Oscillation stabilization 22/FCH  
1 : Oscillation stabilization 212/FCH  
2 : Oscillation stabilization 216/FCH  
3 : Oscillation stabilization 218/FCH  
Reset pin output  
4
5
6
Reset output enabled  
Reset output disabled  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Not required*1  
Clock mode selection  
Single-clock mode  
Dual-clock mode  
Selection of oscillation circuit type  
Crystal or ceramic oscillation type Selectable  
External clock input type  
Peripheral control clock output func-  
tion*2  
7
Selectable  
Not required*3  
Not required*3  
Not used  
Used  
*1 : Both external clock and oscillation resonator can be used on the OTPROM product.  
*2 : “Used” must be selected when P33 (39 pin) is used as SCO for the peripheral control clock output.  
*3 : The peripheral control clock output function can be used only by software.  
53  
MB89130/130A Series  
Part number  
No.  
MB89P135A  
MB89PV130A  
Specifying procedure  
Set with EPROM programmer  
Setting not possible  
Pull-up resistors  
Selectable by pin  
(P40 to P43 must be fixed to no  
pull-up resistor option.)  
All pins fixed to no pull-up resis-  
tor option  
1
2
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43  
Power-on reset  
Power-on reset provided  
No power-on reset  
Selectable  
Selectable  
Power-on reset provided  
Selection of oscillation stabilization  
wait time  
The oscillation stabilization time ini-  
tial value is selectable from 4 types  
given below.  
3
Oscillation stabilization 218/FCH  
0 : Oscillation stabilization 22/FCH  
1 : Oscillation stabilization 212/FCH  
2 : Oscillation stabilization 216/FCH  
3 : Oscillation stabilization 218/FCH  
Reset pin output  
4
5
6
Reset output enabled  
Reset output disabled  
Selectable  
Selectable  
Reset output enabled  
Dual-clock mode  
Not required*1  
Selection of clock mode selection  
Single-clock mode  
Dual-clock mode  
Selection of oscillation circuit type  
Crystal or ceramic oscillation type Not required*1  
External clock input type  
Peripheral control clock output func-  
tion*2  
7
Not required*3  
Not required*3  
Not used  
Used  
*1 : Both external clock and oscillation resonator can be used.  
*2 : “Used” must be selected when P33 (39 pin) is used as SCO for the peripheral control clock output.  
*3 : The peripheral control clock output function can be used only by software.  
54  
MB89130/130A Series  
MB89P131/P133A STANDARD OPTIONS  
No.  
1
Product option  
Pull-up resistor  
MB89P131-101  
MB89P133A-201  
Not provided for any port  
Provided  
Not provided for any port  
Provided  
2
Power-on reset  
Selection of oscillation stabiliza-  
tion time  
3
2 : Oscillation stabilization 216/FCH 2 : Oscillation stabilization 216/FCH  
4
5
Reset pin output  
Enabled  
Disabled  
Selection of clock mode  
Dual-clock mode  
Dual-clock mode  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89131PFM  
MB89133APFM  
MB89135APFM  
48-pin Plastic QFP  
(FPT-48P-M13)  
MB89P131PFM-101  
MB89P133APFM-201  
MB89P135APFM  
MB89133AP  
MB89P133AP-201  
48-pin Plastic SH-DIP  
(DIP-48P-M01)  
48-pin Ceramic MQFP  
(MQP-48C-P01)  
MB89PV130ACF-ES  
55  
MB89130/130A Series  
PACKAGE DIMENSION  
48-pin Plastic QFP  
(FPT-48P-M13)  
13.10±0.40 SQ  
(.516±.016)  
2.35(.093)MAX  
(Mounting height)  
10.00±0.20 SQ  
(.394±.008)  
0(0)MIN  
(STAND OFF)  
36  
25  
Details of "A" part  
37  
24  
0.15(.006)  
0.20(.008)  
8.80  
(.346)  
REF  
11.50±0.30  
(.453±.012)  
INDEX  
"A"  
0.18(.007)MAX  
0.53(.021)MAX  
48  
13  
Details of "B" part  
1
12  
LEAD No.  
0.80(.0315)TYP  
0.15±0.05  
(.006±.002)  
0.30±0.10  
(.012±.004)  
M
0.16(.006)  
0~10°  
"B"  
0.80±0.30  
(.031±.012)  
0.10(.004)  
C
1994 FUJITSU LIMITED F48023S-1C-1  
Dimensions in mm (inches)  
(Continued)  
56  
MB89130/130A Series  
48-pin Plastic SH-DIP  
(DIP-48P-M01)  
43.69 +00..3200  
1.720 +..001028  
INDEX-1  
INDEX-2  
13.80±0.25  
(.543±.010)  
0.51(.020)MIN  
5.25(.207)  
MAX  
0.25±0.05  
(.010±.002)  
3.00(.118)  
MIN  
1.00 +00.50  
.039 +0.020  
0.45±0.10  
(.018±.004)  
15.24(.600)  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
40.894(1.610)REF  
C
1994 FUJITSU LIMITED D48002S-3C-3  
Dimensions in mm (inches)  
(Continued)  
57  
MB89130/130A Series  
(Continued)  
48-pin Ceramic MQFP  
(MQP-48C-P01)  
17.20(.677)TYP  
15.00±0.25  
(.591±.010)  
1.50(.059)TYP  
1.00(.040)TYP  
8.80(.346)REF  
PIN No.1 INDEX  
14.82±0.35  
(.583±.014)  
0.80±0.22  
(.0315±.0087)  
PIN No.1 INDEX  
1.02±0.13  
(.040±.005)  
10.92 +00..013  
.430 +0.005  
8.71(.343)  
TYP  
7.14(.281)  
TYP  
PAD No.1 INDEX  
4.50(.177)TYP  
1.10 +00..2455  
.043 +..001108  
0.40±0.08  
(.016±.003)  
0.60(.024)TYP  
0.30(.012)TYP  
8.50(.335)MAX  
0.15±0.05  
(.006±.002)  
C
1994 FUJITSU LIMITED M48001SC-4-2  
Dimensions in mm (inches)  
58  
MB89130/130A Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3347  
Fax: +81-3-5322-3386  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
http://www.fujitsu.co.jp/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0008  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89130A

8-bit Proprietary Microcontroller
FUJITSU

MB89130_01

8-bit Proprietary Microcontroller
FUJITSU

MB89131

8-bit Proprietary Microcontroller
FUJITSU

MB89131PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89133

8-bit Proprietary Microcontroller
FUJITSU

MB89133A

8-bit Proprietary Microcontroller
FUJITSU

MB89133AP

8-bit Proprietary Microcontroller
FUJITSU

MB89133AP-SH

Microcontroller, 8-Bit, MROM, F2MC-8L CPU, 4.2MHz, CMOS, PDIP48, 1.778 MM PITCH, PLASTIC, SHDIP-48
FUJITSU

MB89133APFM

8-bit Proprietary Microcontroller
FUJITSU

MB89135

8-bit Proprietary Microcontroller
FUJITSU

MB89135A

8-bit Proprietary Microcontroller
FUJITSU

MB89135APFM

8-bit Proprietary Microcontroller
FUJITSU