MB89165A-PFS [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89165A-PFS
型号: MB89165A-PFS
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总59页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12405-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89160/160A Series  
MB89161/163/165/P165/PV160/W165  
MB89161A/163A/165A  
DESCRIPTION  
The MB89160 series is a line of the general-purpose, single-chip microcontrollers. In addition to a compact  
instruction set, the microcontrollers contain a variety of peripheral functions such as an LCD controller/driver,  
an A/D converter, timers, a serial interface, PWM timers, and external interrupts.  
FEATURES  
• F2MC-8L family CPU core  
• Dual-clock control system  
• Maximum memory size: 16-Kbyte ROM, 512-byte RAM (max.)  
• Minimum execution time: 0.95 µs/4.2 MHz  
• I/O ports: max. 54 channels  
• 21-bit time-base counter  
• 8/16-bit timer/counter: 2 or 1 channels  
• 8-bit serial I/O: 1 channel  
• External interrupts (wake-up function): Four channels with edge selection plus eight level-interrupt channels  
• 8-bit A/D converter: 8 channels  
• 8-bit PWM timers: 2 channels  
• Watch prescaler (15 bits)  
• LCD controller/driver: 24 segments × 4 commons (max. 96 pixels)  
• LCD driving reference voltage generator and booster (option)  
• Remote control transmission output  
• Buzzer output  
• Power-on reset function (option)  
• Low-power consumption modes (stop, sleep, and watch mode)  
• CMOS technology  
MB89160/160A Series  
PACKAGE  
80-pin Plastic QFP  
80-pin Plastic SQFP  
80-pin Plastic QFP  
(FTP-80P-M06)  
(FTP-80P-M05)  
(FTP-80P-M11)  
80-pin Ceramic QFP  
80-pin Ceramic MQFP  
(FPT-80C-A02)  
(MQP-80C-P01)  
2
MB89160/160A Series  
PRODUCT LINEUP  
Part number  
MB89161/  
MB89163/  
MB89165/  
MB89P165 MB89W165 MB89PV160  
Parameter  
MB89161A*1 MB89163A*1 MB89165A*1  
Classification  
Mass production products  
(mask ROM products)  
One-time  
PROM  
product  
EPROM  
product  
Piggyback/  
evaluation  
product (for  
development)  
ROM size  
4 K × 8 bits  
(internal  
mask ROM)  
8 K × 8 bits  
(internal mask (internal  
ROM)  
16 K × 8 bits  
16 K × 8 bits  
32 K × 8 bits  
(external  
ROM)  
(internal PROM, programming  
with general-purpose EPROM  
programmer)  
mask ROM)  
RAM size  
128 × 8 bits  
256 × 8 bits  
512 × 8 bits  
CPU functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
Data bit length:  
Minimum execution time:  
136  
8 bits  
1 to 3 bytes  
1, 8,16 bits  
0.95 µs/4.2 MHz  
Interrupt processing time: 9 µs/4.2 MHz  
Ports  
I/O port (N-ch open-drain): 8 (6 ports also serve as peripherals, 3 ports  
are a heavy-current drive type.)  
Output ports (N-ch open-drain): 28 (16 ports also serve as segment pins, 2 ports  
serve as booster capacitor connection pins,  
2 ports serve as common pins.)*3  
(8 ports also serve as an A/D input)  
I/O ports (CMOS):  
Output ports (CMOS):  
Total:  
16 (12 ports also serve as an external interrupt)  
2 (Also serve as peripherals)  
54 (max.)  
Timer/counter  
Serial I/O  
8-bit timer operation (toggled output capable, operating clock cycle 1.9 µs to 486 µs)  
16-bit timer operation (toggled output capable, operating clock cycle 1.9 µs to 486 µs)  
8 bits  
LSB first/MSB first selectability  
One clock selectable from four operation clocks  
(one external shift clock, three internal shift clocks: 1.9 µs, 7.6 µs, 30.4 µs)  
LCD controller/  
driver  
Common output:  
Segment output:  
Bias power supply pins:  
LCD display RAM size:  
Booster for LCD driving:  
4 (max.)  
24 (max.) *3  
4
Without a  
booster for  
LCD driving  
24 × 4 bits  
Built-in (product with a booster)*3  
Dividing resistor for LCD driving: Built-in (an external resistor  
selectability)  
A/D converter  
8-bit resolution × 8 channels  
A/D conversion mode (conversion time 43 µs/4.2 MHz (44 instruction cycles))  
Sense mode (conversion time 11.9 µs/4.2 MHz)  
Continuous activation by an internal timer capable  
Reference voltage input  
(Continued)  
3
MB89160/160A Series  
(Continued)  
Part number  
Parameter  
MB89161/  
MB89163/  
MB89165/  
MB89P165 MB89W165 MB89PV160  
MB89161A*1 MB89163A*1 MB89165A*1  
PWM timer 1,  
PWM timer 2  
8 bits × 2 channels  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.95 µs to  
124 ms)  
8-bit resolution PWM operation (conversion cycle: 243 µs to 32 s)  
External interrupt 1  
(wake-up function)  
4 independent channels (edge selectability)  
Rising edge/falling edge selectability  
Used also for wake-up from stop/sleep mode.  
(Edge detection is also permitted in stop mode.)  
External interrupt 2  
Buzzer output  
“L” level interrupts × 8 channels  
1 (7 frequencies are selectable by the software.)  
Remote control  
transmission  
output  
1 (Pulse width and cycle are software selectable.)  
Standby modes  
Process  
Subclock mode, sleep mode, stop mode, and watch mode  
CMOS  
Operating voltage*2  
2.2 V to 6.0 V (single clock)/  
2.7 V to 6.0 V  
2.2 V to 4.0 V (dual clock)  
MBM27C256A-  
20TV  
EPROM for use  
*1: Products with an internal booster.  
*2: Varies with conditions such as the operating frequency. (The operating voltage of the A/D converter is assured  
separately. See section “Electrical Characteristics.”)  
*3: See section “Mask Options.”  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89161  
MB89161A  
MB89163  
MB89163A  
MB89165  
MB89165A  
Package  
MB89PW165 MB89W165  
MB89PV160  
FPT-80P-M05  
FPT-80P-M06  
FPT-80P-M11  
MQP-80C-P01  
FPT-80C-A02  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89160/160A Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• On the MB89161/A and MB89163/A, the upper half of each register bank cannot be used.  
• The stack area, etc., is set at the upper limit of the RAM.  
2. Current Consumption  
• In the case of the MB89PV160, add the current consumed by the EPROM which is connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in the sleep/stop modes is the same. (For more information, see section  
Electrical Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-up resistor cannot be set for P20 to P27 on the MB89P165.  
• A pull-up resistor is not selectable for P40 to P47 and P60 to P67 if they are used as LCD pins.  
• Options are fixed on the MB89PV160.  
5
MB89160/160A Series  
PIN ASSIGNMENT  
(Top view)  
P46/SEG22*7  
P47/SEG23*7  
AVSS  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG1  
SEG0  
P71/COM3*8  
P70/COM2*8  
COM1  
COM0  
V3  
VCC  
V2  
AVR  
AVCC  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
VSS  
P57/AN7  
X1  
X0  
MOD1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V1  
V0  
P33*2/C0*1  
P32*2/C1*1  
P31/PWM1  
P30/RCO/BUZ  
X1A  
X0A  
P27/PWM2*3  
P26*3  
MOD0  
RST  
P00/INT20  
P25/SCK  
(FPT-80P-M11)  
*1: For products with a booster circuit  
*2: For products without a booster circuit  
*3: N-ch open-drain heavy-current drive type  
*4 to *7: Selected using the mask option (in units of 4 pins)  
*8: Selected using the mask option (in units of 2 pins)  
Note: For more information on mask option combinations of *4 to *8, see section Mask Options."  
6
MB89160/160A Series  
(Top view)  
P44/SEG20*7  
P45/SEG21*7  
P46/SEG22*7  
P47/SEG23*7  
AVSS  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG3  
SEG2  
SEG1  
SEG0  
P71/COM3*8  
P70/COM2*8  
COM1  
COM0  
V3  
VCC  
V2  
V1  
V0  
P33*2/C0*1  
P32*2/C1*1  
P31/PWM1  
P30/RCO/BUZ  
X1A  
X0A  
P27/PWM2*3  
P26*3  
P25/SCK  
P24/SO  
P23/SI  
AVR  
AVCC  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
VSS  
P57/AN7  
X1  
X0  
MOD1  
MOD0  
RST  
P00/INT20  
P01/INT21  
P02/INT22  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
(FPT-80P-M06)  
(FPT-80C-A02)  
*1: For products with a booster circuit  
*2: For products without a booster circuit  
*3: N-ch open-drain heavy-current drive type  
*4 to *7: Selected using the mask option (in units of 4 pins)  
*8: Selected using the mask option (in units of 2 pins)  
Note: For more information on mask option combinations of *4 to *8, see section “Mask Options.”  
7
MB89160/160A Series  
(Top view)  
P46/SEG22*7  
P47/SEG23*7  
AVSS  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG1  
SEG0  
P71/COM3*8  
P70/COM2*8  
COM1  
COM0  
V3  
VCC  
V2  
AVR  
AVCC  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
VSS  
P57/AN7  
X1  
X0  
MOD1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V1  
V0  
P33*2/C0*1  
P32*2/C1*1  
P31/PWM1  
P30/RCO/BUZ  
X1A  
X0A  
P27/PWM2*3  
P26*3  
MOD0  
RST  
P00/INT20  
P25/SCK  
(FPT-80P-M05)  
*1: For products with a booster circuit  
*2: For products without a booster circuit  
*3: N-ch open-drain heavy-current drive type  
*4 to *7: Selected using the mask option (in units of 4 pins)  
*8: Selected using the mask option (in units of 2 pins)  
Note: For more information on mask option combinations of *4 to *8, see section “Mask Options.”  
8
MB89160/160A Series  
(Top view)  
P44/SEG20*7  
P45/SEG21*7  
P46/SEG22*7  
P47/SEG23*7  
AVSS  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG3  
SEG2  
SEG1  
SEG0  
P71/COM3*8  
P70/COM2*8  
COM1  
AVR  
AVCC  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
COM0  
V3  
101  
102  
103  
104  
105  
106  
107  
108  
109  
93  
92  
91  
90  
89  
88  
87  
86  
85  
9
V
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
V2  
V1  
V0  
P33*2/C0*1  
P32*2/C1*1  
P31/PWM1  
P30/RCO/BUZ  
X1A  
V
SS  
P57/AN7  
X1  
X0  
MOD1  
MOD0  
RST  
P00/INT20  
P01/INT21  
P02/INT22  
X0A  
P27/PWM2*3  
P26*3  
P25/SCK  
P24/SO  
P23/SI  
(MQP-80C-P01)  
*1: For products with a booster circuit  
*2: For products without a booster circuit  
*3: N-ch open-drain heavy-current drive type  
*4 to *7: Selected using the mask option (in units of 4 pins)  
*8: Selected using the mask option (in units of 2 pins)  
Note: For more information on mask option combinations of *4 to *8, see section “Mask Options.”  
Pin assignment on package top (MB89PV160 only)  
Pin no.  
81  
Pin name  
N.C.  
VPP  
Pin no.  
89  
Pin name  
A2  
Pin no.  
97  
Pin name  
N.C.  
O4  
Pin no.  
105  
Pin name  
OE  
82  
90  
A1  
98  
106  
N.C.  
A11  
A9  
83  
A12  
A7  
91  
A0  
99  
O5  
107  
84  
92  
N.C.  
O1  
100  
101  
102  
103  
104  
O6  
108  
85  
A6  
93  
O7  
109  
A8  
86  
A5  
94  
O2  
O8  
110  
A13  
A14  
VCC  
87  
A4  
95  
O3  
CE  
111  
88  
A3  
96  
VSS  
A10  
112  
N.C.: Internally connected. Do not use.  
9
MB89160/160A Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
SQFP*1  
MQFP*3  
Pin name  
Function  
QFP*2  
QFP*4  
16  
15  
18  
17  
19  
18  
17  
20  
19  
21  
X0  
X1  
A
Main clock crystal oscillator pins  
CR oscillation selectability (mask products only)  
MOD0  
MOD1  
RST  
C
D
Operating mode selection pins  
Connect directly to VSS.  
Reset I/O pin  
This pin is an N-ch open-drain output type with a  
pull-up resistor, and a hysteresis input type. “L” is  
output from this pin by an internal reset source. The  
internal circuit is initialized by the input of “L”.  
20 to 27  
28 to 31  
22 to 29  
30 to 33  
P00/INT20 to  
P07/INT27  
E
E
General-purpose I/O ports  
Also serve as an external interrupt 2 input (wake-up  
function).  
External interrupt 2 input is hysteresis input.  
P10/INT10 to  
P13/INT13  
General-purpose I/O ports  
Also serve as an external interrupt 1 input. External  
interrupt 1 input is hysteresis input.  
32 to 35  
36  
34 to 37  
38  
P14 to P17  
P20/EC  
F
General-purpose I/O ports  
H
N-ch open-drain general-purpose I/O port  
Also serves as the external clock input for the timer.  
The peripheral is a hysteresis input type.  
37  
38  
39  
40  
P21  
I
I
N-ch open-drain general-purpose I/O port  
P22/TO  
N-ch open-drain general-purpose I/O port  
Also serves as a timer output.  
39  
41  
P23/SI  
H
N-ch open-drain general-purpose I/O port  
Also serves as the data input for the serial I/O. The  
peripheral is a hysteresis input type.  
40  
41  
42  
43  
P24/SO  
I
N-ch open-drain general-purpose I/O port  
Also serves as the data output for the serial I/O.  
P25/SCK  
H
N-ch open-drain general-purpose I/O port  
Also serves as the clock I/O for the serial I/O. The  
peripheral is a hysteresis input type.  
42  
43  
44  
45  
P26  
I
I
N-ch open-drain general-purpose I/O port  
P27/PWM2  
N-ch open-drain general-purpose I/O port  
Also serves as the square wave or PWM wave  
output for the 8-bit PWM timer 2.  
49  
51  
P33  
C0  
J
Functions as an N-ch open-drain general-purpose  
output port only in the products without a booster.  
Functions as a capacitor connection pin in the  
products with a booster.  
(Continued)  
*1: FPT-80P-M05  
*2: FPT-80P-M11  
*3: MQP-80C-P01  
*4: FPT-80P-M06  
10  
MB89160/160A Series  
(Continued)  
Pin no.  
Circuit  
type  
SQFP*1  
MQFP*3  
Pin name  
P32  
Function  
QFP*2  
QFP*4  
48  
50  
J
Functions as an N-ch open-drain general-purpose  
output port only in the products without a booster.  
C1  
G
Functions as a capacitor connection pin in the  
products with a booster.  
47  
46  
49  
48  
P31/PWM1  
General-purpose output-only port  
Also serves as the square wave or PWM wave  
output for the 8-bit PWM timer 1.  
P30/RCO/BUZ  
G
General-purpose output-only port  
Also serves as a buzzer output and a remote  
control transmission frequency output.  
14,  
12 to 6  
16,  
14 to 8  
P57/AN7 to  
P50/AN0  
L
N-ch open-drain general-purpose output ports  
Also serve as an analog input.  
2, 1,  
80 to 75  
4 to 1  
80 to 77  
P47/SEG23 to  
P40/SEG16  
J/K  
J/K  
N-ch open-drain general-purpose output ports  
Also serve as an LCD controller/driver segment  
output. Switching between port and segment output  
is done by the mask option.  
74 to 67  
76 to 69  
P67/SEG15 to  
P60/SEG8  
66 to 59  
68 to 61  
SEG7 to SEG0  
K
LCD controller/driver segment output pins  
58,  
57  
60,  
59  
P71/COM3,  
P70/COM2  
J/K  
N-ch open-drain general-purpose output ports  
Also serve as an LCD controller/driver common  
output. Switching between port and common output  
is done by the mask option.  
56,  
55  
58,  
57  
COM1,  
COM0  
K
B
LCD controller/driver common output-only pins  
54,  
52 to 50  
56,  
54 to 52  
V3,  
V2 to V0  
LCD driving power supply pins  
44  
45  
53  
13  
5
46  
47  
55  
15  
7
X0A  
X1A  
VCC  
Subclock crystal oscillator pins (32.768 KHz)  
Power supply pin  
VSS  
Power supply (GND) pin  
AVSS  
A/D converter power supply pin  
Use this pin at the same voltage as VCC.  
4
3
6
5
AVR  
A/D converter reference voltage input pin  
AVSS  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1: FPT-80P-M05  
*2: FPT-80P-M11  
*3: MQP-80C-P01  
*4: FPT-80P-M06  
11  
MB89160/160A Series  
External EPROM pins (MB89PV160 only)  
Pin no.  
Pin name  
I/O  
O
Function  
82  
VPP  
“H” level output pin  
Address output pins  
83  
84  
85  
86  
87  
88  
89  
90  
91  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
O
93  
94  
95  
O1  
O2  
O3  
I
Data input pins  
96  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
98  
99  
100  
101  
102  
O4  
O5  
O6  
O7  
O8  
103  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
104  
105  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
107  
108  
109  
A11  
A9  
A8  
O
Address output pins  
110  
111  
112  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
81  
92  
97  
N.C.  
Internally connected pins  
Be sure to leave them open.  
106  
12  
MB89160/160A Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
Main clock  
• At an oscillation feedback resistor of approximately  
X1  
1 M/5.0 V  
• CR oscillation is selectable (MB8916X/A only).  
X0  
Standby control signal  
B
Subclock  
• At an oscillation feedback resistor of approximately  
4.5 M/5.0 V  
X1A  
X0A  
Standby control signal  
C
D
• At an output pull-up resistor of approximately  
50 k/5.0 V  
R
• Hysteresis input  
P-ch  
N-ch  
E
• CMOS I/O  
• The peripheral is a hysteresis input type.  
R
P-ch  
P-ch  
N-ch  
Port  
• Pull-up resistor optional  
Peripheral  
(Not available on the MB89PV160.)  
(Continued)  
13  
MB89160/160A Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS I/O  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
(Not available on the MB89PV160)  
G
• CMOS output  
P-ch  
• P-ch output is a heavy-current drive type.  
N-ch  
Port  
H
• N-ch open-drain I/O  
• CMOS input  
R
• The peripheral is a hysteresis input type.  
• P21, P26, and P27 are a heavy-current drive type.  
• Pull-up resistor optional  
P-ch  
(Not available on the MB89P165/A, MB89W165/A  
and MB89PV160)  
N-ch  
Port  
Peripheral  
I
• N-ch open-drain output  
• CMOS input  
R
P-ch  
N-ch  
• Pull-up resistor optional  
(Not available on the MB89P165/A, MB89W165/A  
and MB89PV160)  
Port  
J
• N-ch open-drain output  
• Pull-up resistor optional  
R
(Not available on the MB89P165/A, MB89W165/A  
and MB89PV160)  
P-ch  
• P32 and P33 are not provided with a pull-up resistor.  
N-ch  
(Continued)  
14  
MB89160/160A Series  
(Continued)  
Type  
Circuit  
Remarks  
K
• LCD controller/driver segment output  
P-ch  
N-ch  
P-ch  
N-ch  
L
• N-ch open-drain output  
• Analog input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
Analog input  
(Not available on the MB89PV160)  
15  
MB89160/160A Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- to high-voltage pins or if higher than the voltage which shows on “ 1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC to VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pin  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is  
therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations  
(P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the  
transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power  
is switched.  
6. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and  
wake-up from stop mode.  
16  
MB89160/160A Series  
PROGRAMMING TO THE EPROM ON THE MB89P165  
The MB89P165 is an OTPROM version of the MB89160 series.  
1. Features  
• 32-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single-chip  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0080H  
0280H  
RAM  
Not available  
8000H  
0000H  
Not available  
Not available  
Not available  
3FF0H  
Option area  
3FF6H  
Not available  
Not available  
C000H  
FFFFH  
4000H  
PROM  
16 KB  
EPROM  
16 KB  
7FFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P165 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
When the operating area for a single chip is 16 Kbyte (C000H to FFFFH) the PROM can be programmed as follows:  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program into the EPROM programmer at 4000H to 7FFFH.  
(Note that addresses C000H to FFFFH while operating as a single chip assign to 4000H to 7FFFH in EPROM  
mode.)  
Load option data into address 3FF0H to 3FF5H of the EPROM programmer.  
(For information about each corresponding option, see “8. Setting OTPROM Options.”)  
(3) Program with the EPROM programmer.  
17  
MB89160/160A Series  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. EPROM Programmer Adapter Socket  
Package  
FPT-80P-M05  
FPT-80P-M06  
FPT-80P-M11  
Compatible adapter socket  
ROM-80SQF-28DP-8L  
ROM-80QF-28DP-8L3  
ROM-80QF2-28DP-8L2  
7. Erasure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000 µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having  
wavelengths shorter than 4000Å. Although erasure time will be much longer than with UV source at 2537Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
18  
MB89160/160A Series  
8. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming value at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map:  
OTPROM option bit map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Reset pin  
output  
1: Yes  
Clock mode Power-on  
selection reset  
1: Dual clock 1: Yes  
Oscillation stabilization time  
3FF0H  
WTM1  
WTM0  
Readable Readable  
Readable  
0: No  
0: Single  
clock  
0: No  
See section “Mask Option.”  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF1H  
3FF2H  
3FF3H  
3FF4H  
3FF5H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Readable Readable  
Vacancy Vacancy  
Readable  
Vacancy  
Readable  
Vacancy  
Readable  
Vacancy  
Readable  
Vacancy  
Readable  
Vacancy  
Readable  
Vacancy  
Readable Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Notes: • Set each bit to 1 to erase.  
• Do not write 0 to the vacant bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
19  
MB89160/160A Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part number  
LCC-32 (Rectangle)  
ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
3. Memory Space  
Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.  
Corresponding addresses on the EPROM programmer  
Single chip  
Address  
0000H  
I/O  
0080H  
0280H  
RAM  
Not available  
8000H  
0000H  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0000H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
20  
MB89160/160A Series  
BLOCK DIAGRAM  
Main clock  
oscillator  
X0  
X1  
Time-base timer  
Clock controller  
8-bit timer/counter  
P22/TO  
Subclock oscillator  
(32.768 KHz)  
X0A  
X1A  
8-bit timer/counter  
8-bit PWM timer 2  
P20/EC  
Watch prescaler timer  
Reset circuit  
(WDT)  
P27/PWM2*4  
RST  
8
8
P25/SCK  
P24/SO  
P23/SI  
External interrupt 2  
(Wake-up)  
P00/INT20  
to P07/INT27  
8-bit serial  
CMOS I/O port  
P21*4, P26*4  
N-ch open-drain I/O port  
4
4
4
4
External interrupt 1  
(Wake-up)  
P10/INT10  
to P13/INT13  
P40/SEG16*3  
to P43/SEG19  
N-ch open-drain output port  
8
4
P14 to P17  
P44/SEG20*3  
to P47/SEG23  
CMOS I/O port  
4
4
8
P60/SEG8*3  
RAM  
to P63/SEG11  
LCD  
P64/SEG12*3  
to P67/SEG15  
2
controller/driver  
F2MC-8L  
CPU  
2
P70/COM2*3,  
P71/COM3  
8
2
4
SEG0 to SEG7  
COM0, COM1  
V0 to V3  
ROM  
24 × 4 bits  
VRAM  
N-ch open-drain output port  
P33/C0*2  
P32/C1*2  
8
8
Reference voltage  
P50/AN0  
to P57/AN7  
1
generator and booster*  
8-bit A/D converter  
AVCC  
AVR  
AVSS  
8-bit PWM timer 1  
P31/PWM1  
Remote control output  
P30/RCO/BUZ  
Buzzer output  
Other pins  
MOD0, MOD1, VCC, VSS  
N-ch open-drain I/O port  
(P30 and P31 are a CMOS  
output type.)  
*1: Selected by mask option  
*2: Used as ports without a reference voltage generator and booster  
*3: Functions selected by mask option. (For information on selecting procedure, see section “Mask Options.”)  
*4: Heavy-current drive type  
21  
MB89160/160A Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89160 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89160 series is structured as illustrated below.  
Memory Space  
MB89165/A  
MB89PV160  
I/O  
MB89161/A  
I/O  
MB89163/A  
I/O  
MB89P165  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
I/O  
Not available  
00C0H  
RAM  
256 B  
RAM  
512 B  
RAM  
256 B  
RAM  
128 B  
0100H  
0100H  
0140H  
0100H  
0180H  
0100H  
Register  
Register  
Register  
Register  
0200H  
0280H  
0200H  
0280H  
Not available  
Not available  
Not available  
Not available  
8000H  
C000H  
E000H  
FFFFH  
External ROM  
32 KB  
ROM  
16 KB  
F000H  
FFFFH  
ROM  
8 KB  
ROM  
4 KB  
FFFFH  
FFFFH  
22  
MB89160/160A Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
When the instruction is an 18-bit data processing instruction, the lower byte is used.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divide into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
Vacancy  
Vacancy  
PS  
RP  
Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
23  
MB89160/160A Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set the shift-out value in the case of a shift instruction.  
24  
MB89160/160A Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers. Up to a total of 16 banks can be used on the MB89163 (RAM 256 × 8 bits), and a total of 32  
banks can be used on the MB89165 (RAM 256 × 8 bits). The bank currently in use is indicated by the register  
bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuraiton  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
16 banks (MB89163)  
32 banks (MB89165)  
Memory area  
25  
MB89160/160A Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
(R/W)  
(W)  
PDR1  
DDR1  
Port 1 data direction register  
Port 2 data register  
(R/W)  
(W)  
PDR2  
DDR2  
Port 2 data direction register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SYCC  
STBC  
WDTE  
TBTC  
WPCR  
PDR3  
System clock control register  
Standby control register  
Watchdog timer control register  
Time-base timer control register  
Watch prescaler control register  
Port 3 data register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
PDR4  
PDR5  
BUZR  
Port 4 data register  
Port 5 data register  
Buzzer register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
PDR6  
PDR7  
RCR1  
RCR2  
Port 6 data register  
Port 7 data register  
Remote control transmission register 1  
Remote control transmission register 2  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
T2CR  
T1CR  
T2DR  
T1DR  
SMR  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
Timer 1 data register  
Serial mode register  
Serial data register  
SDR  
CNTR1  
COMP1  
PWM 1 control register  
PWM 1 compare register  
(Continued)  
26  
MB89160/160A Series  
(Continued)  
Address  
Read/write  
(R/W)  
Register name  
CNTR2  
Register description  
PWM 2 control register  
20H  
21H  
(W)  
COMP2  
PWM 2 compare register  
Vacancy  
22H to 2CH  
2DH  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
ADC1  
ADC2  
ADCD  
EIE1  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
External interrupt 1 enable register 1  
External interrupt 1 flag register 1  
External interrupt 2 enable register 2  
External interrupt 2 flag register 2  
Vacancy  
2EH  
2FH  
30H  
31H  
EIF1  
32H  
EIE2  
33H  
EIF2  
34H to 5FH  
60H to 6BH  
6CH to 71H  
72H  
(R/W)  
(R/W)  
VRAM  
LCDR  
Display data RAM  
Vacancy  
LCD controller/driver control register 1  
Vacancy  
73H to 7BH  
7CH  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
ITR  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Interrupt test register  
7DH  
7EH  
(W)  
Access prohibited  
7FH  
Note: Do not use vacancies.  
27  
MB89160/160A Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3 VSS + 7.0  
VSS – 0.3 VSS + 7.0  
VSS – 0.3 VSS + 7.0  
V
V
V
Power supply voltage  
AVCC  
AVR  
AVCC must not exceed VCC + 0.3 V.  
AVR must not exceed AVCC + 0.3 V.  
V0 to V3 on the product without  
booster must not exceed VCC.  
LCD power supply voltage  
V0 to V3 VSS – 0.3 VSS + 7.0  
V
V
V
VI1 must not exceed VSS + 7.0 V.  
All pins except P20 to P27 without  
a pull-up resistor  
VI1  
VI2  
VSS – 0.3 VCC + 0.3  
VSS – 0.3 VSS + 7.0  
Input voltage  
P20 to P27 without a pull-up  
resistor  
VO1 must not exceed VSS + 7.0 V.  
All pins except P20 to P27, P32,  
P33, P40 to P47, and P60 to P67  
without a pull-up resistor  
VO1  
VSS – 0.3 VCC + 0.3  
V
V
Output voltage  
P20 to P27, P32, P33, P40 to P47,  
and P60 to P67 without a pull-up  
resistor  
VO2  
VSS – 0.3 VSS + 7.0  
IOL1  
10  
20  
mA All pins except P21, P26, and P27  
mA P21, P26, and P27  
“L” level maximum output current  
IOL2  
All pins except P21, P26, P27, and  
power supply pins  
Average value (operating current ×  
operating rate)  
IOLAV1  
4
8
mA  
“L” level average output current  
“L” level total maximum output current  
P21, P26, and P27  
mA Average value (operating current ×  
operating rate)  
IOLAV2  
ΣIOL  
100  
40  
mA Peak value  
Average value (operating current ×  
“L” level total average output current ΣIOLAV  
mA  
operating rate)  
All pins except P30, P31, and  
power supply pins  
IOH1  
–5  
mA  
“H” level maximum output current  
IOH2  
–10  
mA P30 and P31  
(Continued)  
28  
MB89160/160A Series  
(Continued)  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
All pins except P30, P31, and  
power supply pins  
Average value (operating current ×  
operating rate)  
IOHAV1  
–2  
mA  
“H” level average output current  
P30 and P31  
mA Average value (operating current ×  
IOHAV2  
–4  
operating rate)  
“H” level total maximum output current  
“H” level total average output current  
ΣIOH  
–50  
–10  
mA Peak value  
Average value (operating current ×  
ΣIOHAV  
mA  
operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
Precautions: Parmanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Func-  
tional operation should be restricted to the conditions as detailed in the operational sections of this  
data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
2.2*1  
2.2*1  
Max.  
6.0*1  
4.0  
Normal operation assurance range*1  
Dual-clock mask ROM products  
V
V
VCC  
AVCC  
Normal operation assurance range for  
MB89P165/A and MB89W165/A  
Power supply voltage  
2.7  
6.0  
V
1.5  
2.0  
6.0  
V
V
Retains the RAM state in stop mode  
Normal operation assurance range  
AVR  
AVCC  
V0 to V3 pins on the products without a  
booster  
LCD power supply range  
(The optimum value dependent on the  
LCD element in use.)  
LCD power supply voltage V0 to V3  
VSS  
VCC  
V
EPROM program power  
VPP  
VSS + 13.0  
+85  
V
MOD1 pin of the MB89P165  
supply voltage  
Operating temperature  
TA  
–40  
°C  
*1: The minimum operating power supply voltage varies with the execution time (instruction cycle time) setting for  
the operating frequency.  
A/D converter assurance accuracy varies with the operating power supply voltage.  
*2: P32 and P33 are applicable only for procucts of the MB89160 series (without “A” suffix).  
P40 to P47 and P60 to P67 are applicable when selected as ports.  
29  
MB89160/160A Series  
6
5
Analog accurancy  
assured in the AVCC  
= VCC = 3.5 V to 6.0 V  
range  
Operation assurance range  
4
3
2
1
(MHz)  
1
2
3
4
Main clock operating frequency  
(µs)  
4.0  
2.0  
1.0  
Minimum execution time (instruction cycle)  
Note: The shaded area is assured only for the MB8916X/A.  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
(Single-clock MB8916X/A and MB89P165/PV160)  
30  
MB89160/160A Series  
6
5
4
3
2
1
Analog accurancy  
assured in the  
AVCC = VCC = 3.5 V  
to 6.0 V range  
Operation assurance range  
(MHz)  
1
2
3
4
Main clock operating frequency  
(µs)  
4.0  
2.0  
1.0  
Minimum execution time (instruction cycle)  
Figure 2 Operating Voltage vs. Main Clock Operating Frequency (Dual-clock MB8916X/A)  
Figures 1 and 2 indicate the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
31  
MB89160/160A Series  
3. DC Characteristics  
(1) Pin DC characteristics (VCC = +5.0 V)  
(VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
Max.  
P00 to P07,  
P10 to P17,  
P20 to P27  
VIH  
0.7 VCC  
VCC + 0.3  
V
“H” level input  
voltage  
RST,  
MOD0, MOD1,  
EC, SI, SCK,  
INT10 to INT13,  
INT20 to INT27  
VIHS  
0.8 VCC  
VSS 0.3  
VSS 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
V
V
V
P00 to P07,  
P10 to P17,  
P20 to P27  
VIL  
“L” level input  
voltage  
RST,  
MOD0, MOD1,  
EC, SI, SCK,  
INT10 to INT13,  
INT20 to INT27  
VILS  
P20 to P27,  
P33, P32,  
P40 to P47,  
P60 to P67  
P20toP27, P40to  
P47, and P60 to  
P67 without pull-  
up resistor only  
Open-drain  
output pin  
application  
voltage  
VSS 0.3  
VSS + 6.0*2  
VCC + 0.3  
V
VD1  
VSS 0.3  
2.4  
VD2  
P50 to P57  
V
V
V
P00 to P07,  
P10 to P17  
VOH1  
VOH2  
IOH = –2.0 mA  
IOH = –6.0 mA  
“H” level output  
voltage  
P30, P31  
4.0  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P33,  
P40 to P47,  
P50 to P57,  
P60 to P67,  
P70 to P71  
VOL  
IOL = 1.8 mA  
0.4  
V
“L” level output  
voltage  
VOL2  
VOL3  
P21, P26, P27  
RST  
IOL = 8.0 mA  
IOL = 4.0 mA  
0.4  
0.6  
V
V
P00 to P07,  
P10 to P17,  
MOD0, MOD1,  
P30, P31  
Input leakage  
current (Hi-z output  
leakage current)  
Without pull-  
up resistor  
ILI1  
0.45 V < VI < VCC  
±5  
µA  
(Continued)  
32  
MB89160/160A Series  
(Continued)  
(VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P20 to P27,  
P32, P33,  
P40 to P47,  
P60 to P67,  
P70, P71  
Without pull-  
up resistor  
0.45 V < VI < 6.0 V  
0.45 V < VI < VCC  
ILO1  
±1  
µA  
µA  
Open-drain  
output leakage  
current  
Without pull-  
up resistor  
ILO2  
P50 to P57  
±1  
P00 to P07,  
P10 to P17,  
P20 to P27,  
Pull-up  
resistance  
With pull-up  
resistor  
RPULL P40 to P47,  
P50 to P57,  
P60 to P67,  
RST  
VI = 0.0 V  
25  
50  
100  
kΩ  
Common output  
impedance  
RVCOM COM0 to COM3  
RVSEG SEG0 to SEG24  
2.5  
15  
kΩ  
kΩ  
V1 to V3 = +5.0 V  
Segment output  
impedance  
Products  
without  
a booster only  
LCD divided  
resistance  
Between VCC and V0  
RLCD  
300  
500  
750  
kΩ  
µA  
V0 to V3,  
COM0 to COM3,  
SEG0 to SEG23  
LCD controller/driver  
leakage current  
ILCDL  
±1  
VOV3  
VOV2  
V3  
V2  
4.3  
2.9  
4.5  
3.0  
4.7  
3.1  
V
V
Booster for LCD  
driving output voltage  
V1 = 1.5 V  
Products with  
a booster only  
Reference output  
voltage for LCD  
driving  
VOV1  
V1  
IIN = 0 µA  
1.27  
1.5  
1.73  
V
Reference voltage  
input impedance  
Procucts with  
a booster only  
RRIN  
V1  
600  
1000  
10  
1400  
kΩ  
Other than  
VCC, VSS  
Input capacitance CIN  
f = 1 MHz  
pF  
Note: For pins which serve as the segment (SEG8 to SEG24) and ports (P40 to P47, P50 to P57, and P60 to P67),  
see the port parameter when these pins are used as ports and the segment parameter when they are used  
as segments. P32 and P33 are applicable only for products of the MB89160 series (without “A” suffix).  
Applicable as external capacitor connection pins for products of the MB89160A series (with “A” suffix).  
33  
MB89160/160A Series  
(2) Pin DC Characteristics (VCC = +3.0 V)  
(VCC = 3.0 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
2.4  
Typ.  
Max.  
P00 to P07,  
P10 to P17  
VOH1  
VOH2  
IOH = –1.0 mA  
IOH = –3.0 mA  
V
V
“H” level output  
voltage  
P30, P31  
2.4  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P33,  
P40 to P47,  
P50 to P57,  
P60 to P67,  
P70 to P71  
VOL  
IOL = 1.8 mA  
0.4  
V
“L” level output  
voltage  
VOL2  
VOL3  
RST  
IOL = 1.8 mA  
0.4  
0.4  
V
V
P21, P26, P27 IOL = 3.6 mA  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P40 to P47,  
P50 to P57,  
P60 to P67,  
RST  
Pull-up  
resistance  
With pull-up  
resistor  
RPULL  
VI = 0.0 V  
50  
100  
150  
kΩ  
34  
MB89160/160A Series  
(3) Power Supply Current Characteristics (MB8916X)  
(VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min. Typ. Max.  
MB8916X/A,  
MB89PV160  
FCH = 4.2 MHz, VCC = 5.0 V  
tinst*2 = 4/FCH  
Main clock operation mode  
5.0  
8.0  
1.5  
2.4  
0.05  
1.0  
10.0 mA  
ICC1  
15.0 mA MB89PV165  
MB8916X/A,  
MB89PV160  
FCH = 4.2 MHz, VCC = 3.0 V  
tinst*2 = 64/FCH  
Main clock operation mode  
2.0  
2.8  
0.1  
3.0  
mA  
ICC2  
mA MB89P165  
MB8916X/A,  
mA  
FCL = 32.768 kHz, VCC = 3.0 V  
tinst*2 = 2/FCL  
Subclock operation mode  
MB89PV160  
ICCL  
mA MB89PV165  
FCH = 4.2 MHz, VCC = 5.0 V  
tinst*2 = 4/FCH  
Main clock sleep mode  
ICCS1  
ICCS2  
ICCSL  
ICCT  
2.5  
1.0  
25  
5.0  
1.5  
50  
mA  
FCH = 4.2 MHz, VCC = 3.0 V  
tinst*2 = 64/FCH  
Main clock sleep mode  
MB8916X/A,  
mA MB89PV160,  
MB89PV165  
VCC  
Power supply  
current*1  
FCL = 32.768 kHz, VCC = 3.0 V  
tinst*2 = 2/FCL  
Subclock sleep mode  
µA  
MB8916X,  
MB89P165-1XX,  
MB89PV160  
FCL = 32.768 kHz, VCC = 3.0 V  
Watch mode  
10  
15  
µA  
µA  
FCL = 32.768 kHz, VCC = 3.0 V  
• Watch mode  
• During reference voltage  
generator and booster operation  
MB8916XA,  
MB89P165-2XX  
ICCT2  
250  
400  
0.1  
0.1  
1.0  
10  
µA MB8916X  
MB89PV160,  
TA = +25°C, VCC = 5.0 V  
Stop mode  
ICCH  
µA  
MB89P165-1XX  
When A/D  
mA conversion is  
activated  
IA  
AVCC  
FCH = 4.2 MHz, VCC = 5.0 V  
1.0  
3.0  
*1: The power supply current is measured at the external clock, open output pins, and the external LCD dividing  
resistor (or external input for the reference voltage). In the case of the MB89PV160, the current consumed by  
the connected EPROM and ICE is not included.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
35  
MB89160/160A Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V ±10 %, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
RST “L” pulse width  
RST “H” pulse width  
tZLZH  
tZHZL  
48 tXCYL  
24 tXCYL  
ns  
ns  
tZLZH  
tZHZL  
R S T  
0.8 VCC  
0.2 VCC  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
Parameter  
(VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
Power-on reset  
function only  
Power supply rising time  
Power supply cut-off time  
tR  
50  
ms  
ms  
Due to repeated  
operations  
tOFF  
1
Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage  
needs to be varied in the course of operation, a smooth voltage rise is recommended.  
tR  
tOFF  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
36  
MB89160/160A Series  
(3) Clock Timing  
(VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
FCH  
Pin  
X0, X1  
Unit  
Remarks  
Min.  
1
Typ.  
Max.  
4.2  
MHz Main clock  
kHz Subclock  
Clock frequency  
FCL  
X0A, X1A  
X0, X1  
32.768  
tHCYL  
tLCYL  
238  
1000  
ns  
Main clock  
Subclock  
Clock cycle time  
X0A, X1A  
30.5  
µs  
PWH  
PWL  
Input clock pulse width  
X0  
X0  
20  
ns  
ns  
External clock  
Input clock rising/falling  
time  
tCR  
tCF  
24  
Main Clock Timing and Conditions  
t
HCYL  
0.8 VCC  
0.2 VCC  
X0  
PWH  
PWL  
t
CR  
t
CF  
Main Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When the CR  
oscillation option is used  
When an external clock is used  
X0  
X1  
X0  
X1  
X0  
X1  
Open  
FCH  
C1  
FCH  
FCH  
R
C0  
C
37  
MB89160/160A Series  
Subclock Timing and Conditions  
t
LCYL  
0.8 VCC  
X0A  
Subclock Conditions  
When a crystal  
or  
ceramic oscillator is used  
When the single-clock option is used  
X0A  
X1A  
X0A  
X1A  
FCL  
Rd  
Open  
C0  
C1  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
µs  
Remarks  
4/FCH, 8/FCH, 16/FCH,  
64/FCH  
(4/FCH) tinst = 1.0 µs at FCH = 4 MHz  
tinst = 62 µs at FCL = 32.768 kHz  
Instruction cycle  
(minimum execution time)  
tinst  
2/FCL  
µs  
38  
MB89160/160A Series  
(5) Serial I/O Timing  
Parameter  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
2 tinst*  
–200  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
SCK  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Internal clock  
operation  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
SCK  
External  
SCK, SO clock  
200  
operation  
Valid SI SCK ↑  
SI, SCK  
SCK, SI  
1/2 tinst*  
1/2 tinst*  
SCK ↑ → valid SI hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
Internal Clock Operation  
tSCYC  
SCK  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
SO  
2.4 V  
0.8 V  
tIVSH  
tSHIX  
SI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
External Clock Operation  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
SO  
SI  
2.4 V  
0.8 V  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
39  
MB89160/160A Series  
(6) Peripheral Input Timing  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Unit  
Remarks  
Parameter  
Min.  
1 tinst*  
1 tinst*  
2 tinst*  
2 tinst*  
Max.  
Peripheral input “H” pulse width 1  
Peripheral input “L” pulse width 1  
Peripheral input “H” pulse width 2  
Peripheral input “L” pulse width 2  
tILIH1  
tIHIL1  
tILIH2  
tIHIL2  
µs  
µs  
µs  
µs  
INT10 to INT13, EC  
INT20 to INT27  
* : For information on tinst, see “(4) Instruction Cycle.”  
t IHIL1  
t ILIH1  
INT10 to 13,  
EC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
t IHIL2  
t ILIH2  
INT20 to 27  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
40  
MB89160/160A Series  
5. A/D Converter Electrical Characteristics  
(3 MHz, AVCC = VCC = +3.5 V to +6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Resolution  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
8
bit  
Total error  
±1.5  
±1.0  
±0.9  
LSB  
LSB  
LSB  
mV  
Linearity error  
Differential linearity error  
Zero transition voltage  
AVR = AVCC  
AVSS – 1.0 LSB AVSS + 0.5 LSB AVSS + 2.0 LSB  
VOT  
Full-scale transition  
voltage  
AVR – 3.0 LSB AVR – 1.5 LSB  
VFST  
AVR  
mV  
Interchannel disparity  
0.5  
LSB  
A/D mode conversion time  
44 tinst  
µs  
Sense mode  
conversion time  
12 tinst  
µs  
Analog port input current  
Analog input voltage  
Reference voltage  
IAI  
10  
µA  
V
AN0 to  
AN7  
0.0  
2.0  
AVR  
AVCC  
V
AVR = 5.0 V,  
when A/D  
conversion  
is activated  
IR  
100  
1
µA  
µA  
AVR  
Reference voltage  
supply current  
AVR = 5.0 V,  
when A/D  
conversion  
is stopped  
IRH  
(1) A/D Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
When the number of bits is 8, analog voltage can be divided into 28=256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
41  
MB89160/160A Series  
Digital output  
AVR  
256  
1111 1111  
1111 1110  
Actual conversion value  
1 LSB =  
Theoretical conversion value  
VNT (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V(N+1)T VNT  
1  
(1 LSB × N + VOT)  
Defferential linearity error =  
1 LSB  
VNT (1 LSB × N + 1 LSB)  
Total error =  
1 LSB  
Linearity error  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT V(N + 1)T  
VFST  
Analog input  
(2) Precautions  
• Input impedance of analog input pins  
The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the  
sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after  
activating A/D conversion.  
Analog channel selector  
• Error  
The smaller the |AVR – AVSS|, the greater the error would become relatively.  
42  
MB89160/160A Series  
EXAMPLE CHARACTERISTICS  
(1) “L” Level Output Voltage  
VOL1 vs. IOL  
VOL2 vs. IOL  
VOL1 (V)  
VCC = 2.5 V  
VOL2 (V)  
VCC = 3.0 V  
VCC = 2.5 V  
VCC = 2.0 V  
VCC = 2.0 V  
VCC = 3.0 V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC = 4.0 V  
TA = +25°C  
TA = +25°C  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0
2
4
6
8
10 12 14 16 18 20  
IOL (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(2) “H” Level Output Voltage  
VCC VOH1 vs. IOH  
VCC – VOH1 (V)  
VCC VOH2 vs. IOH  
VCC = 2.5 V VCC = 3.0 V  
VCC – VOH2 (V)  
1.0  
VCC = 2.5 V VCC = 3.0 V  
VCC = 2.0 V  
VCC = 2.0 V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = +25°C  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC = 4.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0
–1  
–2  
–3  
–4  
–5  
IOH (mA)  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
IOH (mA)  
43  
MB89160/160A Series  
(3) “H” Level Input Voltage/“L” level Input Voltage  
CMOS input  
CMOS hysteresis input  
VIN (V)  
VIN (V)  
5.0  
5.0  
TA = +25°C  
TA = +25°C  
4.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VIHS  
VILS  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
VCC (V)  
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
(4) Power Supply Current (External Clock)  
ICC1 vs. VCC (Mask ROM products)  
ICC2 vs. VCC (Mask ROM products)  
ICC2 (mA)  
ICC1 (mA)  
7
TA = +25°C  
TA = +25°C  
6
FCH = 4.2 MHz  
2.0  
5
4
3
2
FCH = 4.2 MHz  
FCH = 3 MHz  
FCH = 3 MHz  
1.0  
FCH = 1 MHz  
FCH = 1 MHz  
1
0
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
VCC (V)  
VCC (V)  
(Continued)  
44  
MB89160/160A Series  
ICC2S vs. VCC (Mask ROM products)  
ICC1S vs.VCC (Mask ROM products)  
ICC2S (mA)  
ICC1S (mA)  
3.0  
TA = +25°C  
TA = +25°C  
FCH = 4.2 MHz  
2.0  
1.0  
0
FCH = 3 MHz  
FCH = 4.2 MHz  
FCH = 3 MHz  
2.0  
1.0  
FCH = 1 MHz  
FCH = 1 MHz  
0
1
1
2
3
4
5
6
7
2
3
4
5
6
7
VCC (V)  
VCC (V)  
ICCT vs. VCC  
ICCL vs. VCC (Mask ROM products)  
ICCL (µA)  
ICCT (µA)  
30  
200  
TA = +25°C  
TA = +25°C  
180  
160  
140  
120  
100  
80  
25  
20  
15  
10  
5
FCL = 32.768 kHz  
FCL = 32.768 kHz  
60  
40  
20  
0
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
VCC (V)  
VCC (V)  
(Continued)  
45  
MB89160/160A Series  
(Continued)  
ICCT2 vs. VCC  
ICCSL vs. VCC  
ICCSL (µA)  
ICCT2 (µA)  
1,000  
200  
TA = +25°C  
TA = +25°C  
180  
900  
800  
700  
600  
500  
400  
300  
200  
100  
160  
140  
120  
100  
FCL = 32.768 kHz  
FCL = 32.768 kHz  
80  
60  
40  
20  
0
0
1
1
2
3
4
5
6
7
2
3
4
5
6
7
VCC (V)  
VCC (V)  
IR vs. AVR  
IA vs. AVCC  
IR (µA)  
200  
IA (mA)  
5.0  
TA = +25°C  
FCH = 4 MHz  
TA = +25°C  
180  
160  
4.5  
4.0  
140  
120  
3.5  
3.0  
100  
80  
2.5  
2.0  
60  
40  
1.5  
1.0  
20  
0
1.5  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
AVR (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
AVCC (V)  
(5) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1,000  
500  
100  
50  
TA = +85°C  
TA = +25°C  
TA = –40°C  
10  
1
2
3
4
5
6
7
VCC (V)  
46  
MB89160/160A Series  
INSTRUCTIONS  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation for instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
#vct  
#d8  
#d16  
dir: b  
rel  
@
Register indirect (Example: @A, @IX, @EP)  
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the  
instruction in use.)  
T
TH  
TL  
IX  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
(Continued)  
47  
MB89160/160A Series  
(Continued)  
Symbol  
Meaning  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
CCR  
RP  
Ri  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
Number of instructions  
Number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH immediately before the instruction  
is executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
48  
MB89160/160A Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
49  
MB89160/160A Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
C
A
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
50  
MB89160/160A Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
51  
MB89160/160A Series  
INSTRUCTION MAP  
52  
MB89160/160A Series  
MASK OPTIONS  
Part number  
MB89161/3/5  
MB89P165  
MB89PV160  
Specify when  
ordering masking  
Set with EPROM  
programmer  
Specifying procedure  
Setting not possible  
Slectable per pin  
Pull-up resistors (SEG)  
P00 to P07, P10 to P17,  
P20 to P27, P40 to P47,  
P50 to P57, P60 to P67  
Can be set per pin  
(P20 to P27, P40 to  
P47, and P60 to P67  
are available only for  
without a pull-up  
resistor.)  
(The pull-up resistors for  
P40 to P47 and P60 to  
P67 are only selectable  
when these pins are not  
set as segment outputs.  
When the A/D is used,  
P50 to P57 are must not  
selected.)  
Fixed to without  
pull-up resistor  
Power-on reset (POR)  
With power-on reset  
Without power-on reset  
Fixed to with power-on  
reset  
Selectable  
Selectable  
Selection of oscillation stabilization  
time (OSC)  
Selectable  
OSC  
0
1
2
3
Selectable  
WTM1 WTM0  
• The initial value of the oscillation  
stabilization time for the main clock  
can be set by selecting the values of  
the WTM1 and WTM0 bits on the  
right.  
Fixed to oscillation  
stabilization time of  
216/FCH  
: 22/FCH  
: 212/FCH  
: 216/FCH  
: 218/FCH  
0
0
1
1
0
1
0
1
: 22/FCH  
: 212/FCH  
: 216/FCH  
: 218/FCH  
Main clock oscillation type (XSL)  
Crystal or ceramic resonator  
CR  
Fixed to crystal or  
ceramic  
Selectable  
Selectable  
Selectable  
Crystal or ceramic only  
Selectable  
Reset pin output (RST)  
With reset output  
Fixed to with reset  
output  
Without reset output  
Clock mode selection (CLK)  
Dual-clock mode  
Fixed to dual-clock  
mode  
Selectable  
Single-clock mode  
53  
MB89160/160A Series  
Segment Options  
Part number  
MB89161/3/5  
MB89P165  
MB89PV160  
No.  
Specify when  
ordering masking  
Select by version  
number  
Select by version  
number  
Specifying procedure  
7
Specify by the option  
combinations listed  
below  
LCD output pin configuration  
choices  
SEG = 4:  
Specify as SEG = 4  
–101 : SEG 24 pins  
–201 COM 4 pins  
–101 : SEG 24 pins  
COM 4 pins  
P40 to P47 segment output  
P60 to P67 segment output  
P70, P71 common output  
SEG = 3:  
Specify as SEG = 3  
–102 : SEG 20 pins  
–202 COM 4 pins  
–102 : SEG 20 pins  
COM 4 pins  
P40 to P43 segment output  
P44 to P47 port output  
P60 to P67 segment output  
P70, P71 common output  
SEG = 2:  
Specify as SEG = 2  
Specify as SEG = 1  
–103 : SEG 16 pins  
–203 COM 4 pins  
–103 : SEG 16 pins  
COM 4 pins  
P40 to P47 port output  
P60 to P67 segment output  
P70, P71 common output  
SEG = 1:  
–104 : SEG 12 pins  
COM 2 pins  
–104 : SEG 12 pins  
COM 2 pins  
P40 to P47 port output  
P60 to P63 segment output  
P64 to P67 port output  
P70, P71 port output  
SEG = 0:  
Specify as SEG = 0  
–105 : SEG 8 pins  
COM 2 pins  
–105 : SEG 8 pins  
COM 2 pins  
P40 to P47 port output  
P60 to P67 port output  
P70, P71 port output  
VERSIONS  
Version  
Features  
Mass production  
product  
One-time PROM  
product  
Piggyback/evaluation Number of segment  
Booster  
product  
pins  
MB89P165-201  
-202  
24 (4 commons)  
20 (4 commons)  
16 (4 commons)  
MB89160A series  
Yes  
-203  
MB89P165-101  
MB89PV160-101  
24 (4 commons)  
20 (4 commons)  
16 (4 commons)  
12 (2 commons)  
8 (2 commons)  
-102  
-103  
-104  
-105  
-102  
-103  
-104  
-105  
MB89160 series  
No  
54  
MB89160/160A Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89161-PFV  
MB89161A-PFV  
MB89163-PFV  
MB89163A-PFV  
MB89165-PFV  
80-pin Plastic SQFP  
(FPT-80P-M05)  
MB89165A-PFV  
MB89P165-×××-PFV  
MB89161-PF  
MB89161A-PF  
MB89163-PF  
MB89163A-PF  
MB89165-PF  
80-pin Plastic QFP  
(FPT-80P-M06)  
MB89165A-PF  
MB89P165-×××-PF  
MB89161-PFS  
MB89161A-PFS  
MB89163-PFS  
MB89163A-PFS  
MB89165-PFS  
80-pin Plastic QFP  
(FPT-80P-M11)  
MB89165A-PFS  
MB89P165-×××-PFS  
80-pin Ceramic QFP  
(FPT-80C-A02)  
MB89W165-×××-PF  
MB89PV160-×××-PF  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
Note: For information on ×××, see section “Versions.”  
55  
MB89160/160A Series  
PACKAGE DIMENSIONS  
80-pin plastic LQFP  
(FPT-80P-M05)  
14.00±0.20(.551±.008)SQ  
1.50 +00..1200  
.059 +..000048  
(Mounting height)  
12.00±0.10(.472±.004)SQ  
60  
41  
61  
40  
13.00  
(.512)  
NOM  
9.50  
(.374)  
REF  
INDEX  
80  
21  
1
20  
LEAD No.  
Details of "A" part  
"A"  
0.50±0.08  
(.0197±.0031)  
0.18 +00..0038  
.007 +..000013  
0.127 +00..0025  
.005 +..000012  
0.10±0.10  
(.004±.004)  
(STAND OFF)  
0.50±0.20(.020±.008)  
0.10(.004)  
0
10°  
Dimensions in mm (inches).  
C
1995 FUJITSU LIMITED F80008S-2C-5  
80-pin plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.58(.023)MAX  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED F80010S-3C-2  
56  
MB89160/160A Series  
80-pin plastic LQFP  
(FPT-80P-M11)  
16.00±0.20(.630±.008)SQ  
14.00±0.10(.551±.004)SQ  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
60  
61  
41  
40  
15.00  
(.591)  
NOM  
12.35  
(.486)  
REF  
1 PIN INDEX  
80  
21  
1
Details of "A" part  
0.10±0.10  
LEAD No.  
"A"  
0.127 +00..0025  
.005 +..000012  
20  
(STAND OFF)  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
M
(.004±.004)  
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10(.004)  
0
10°  
Dimensions in mm (inches).  
C
1995 FUJITSU LIMITED F80016S-1C-3  
80-pin ceramic QFP  
(FPT-80C-A02)  
0.51(.020) TYP  
17.91(.705)  
TYP  
12.00(.472)  
REF  
16.31(.642)  
TYP  
8.50(.335)TYP  
16.00(.630)  
14.00±0.25  
(.551±.010)  
TYP  
INDEX AREA  
0.80±0.10  
0.35 +00..0078  
0.80±0.10  
0.15±0.05  
(.0315±.0040)  
(.014±.003)  
(.0315±.0040)  
(.006±.002)  
18.40(.725) REF  
1.60(.063) TYP  
20.00±0.25  
(.787±.010)  
4.45(.175)MAX  
23.90(.941) TYP  
22.00(.866) TYP  
22.30(.878) TYP  
0.80(.0315) TYP  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED F80014SC-1-2  
57  
MB89160/160A Series  
(Continued)  
80-pin ceramic MQFP  
(MQP-80C-P01)  
18.70(.736)TYP  
12.00(.472)TYP  
1.50(.059)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
1.00(.040)TYP  
0.80±0.25  
(.0315±.010)  
INDEX AREA  
1.20 +00..2400  
4.50(.177)  
TYP  
.047 +..000186  
0.80±0.25  
(.0315±.010)  
1.27±0.13  
(.050±.005)  
INDEX AREA  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.40(.724)  
REF  
10.16(.400)  
TYP  
14.22(.560)  
TYP  
0.30(.012)  
TYP  
24.70(.972)  
TYP  
INDEX  
6.00(.236)  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
0.40±0.10  
(.016±.004)  
1.20 +00..2400  
.047 +..000186  
1.50(.059)  
TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
1.00(.040)  
TYP  
0.15±0.05 8.70(.343)  
(.006±.002) MAX  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED M80001SC-4-2  
58  
MB89160/160A Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
KAWASAKI PLANT, 4-1-1, Kamikodanaka,  
Nakahara-ku, Kawasaki-shi,  
Kanagawa 211-8588, Japan  
Tel: +81-44-754-3763  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
Fax: +81-44-754-3329  
http://www.fujitsu.co.jp/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0004  
FUJITSU LIMITED Printed in Japan  
59  

相关型号:

MB89165A-PFV

8-bit Proprietary Microcontroller
FUJITSU

MB89170

8-bit Proprietary Microcontroller
FUJITSU

MB89173

8-bit Proprietary Microcontroller
FUJITSU

MB89173L

8-bit Proprietary Microcontroller
FUJITSU

MB89173LPF

8-bit Proprietary Microcontroller
FUJITSU

MB89173PF

8-bit Proprietary Microcontroller
FUJITSU

MB89174

8-bit Proprietary Microcontroller
FUJITSU

MB89174A

8-bit Proprietary Microcontroller
FUJITSU

MB89174APF

8-bit Proprietary Microcontroller
FUJITSU

MB89174L

8-bit Proprietary Microcontroller
FUJITSU

MB89174LPF

8-bit Proprietary Microcontroller
FUJITSU

MB89180

8-bit Proprietary Microcontroller
FUJITSU