MB89635 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89635
型号: MB89635
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总56页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12515-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89630 Series  
MB89635/T635/636/637/T637/P637/W637/PV630  
DESCRIPTION  
The MB89630 series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit, single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as  
dual-clock control system, five operating speed control stages, a UART, timers, a PWM timer, a serial interface,  
an A/D converter, an external interrupt, and a watch prescaler.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• High-speed operating capability at low voltage  
• Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• Five types of timers  
8-bit PWM timer: 2 channels (Also usable as a reload timer)  
8-bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc.)  
16-bit timer/counter  
21-bit time-base timer  
• UART  
CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits)  
• Serial interface  
Switchable transfer direction to allows communication with various equipment.  
• 10-bit A/D converter  
Activation by an external input capable  
(Continued)  
MB89630 Series  
(Continued)  
• External interrupt: 4 channels  
Four channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Low-power consumption modes  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
Subclock mode  
Watch mode  
• Bus interface function  
With hold and ready function  
PACKAGE  
64-pin Plastic SH-DIP  
64-pin Plastic QFP  
64-pin Plastic QFP  
(DIP-64P-M01)  
(FPT-64P-M06)  
(FPT-64P-M09)  
64-pin Ceramic SH-DIP  
64-pin Ceramic MDIP  
64-pin Ceramic MQFP  
(DIP-64C-A06)  
(MDP-64C-P02)  
(MQP-64C-P01)  
2
MB89630 Series  
PRODUCT LINEUP  
Part number  
MB89635 MB89636  
MB89637 MB89T635 MB89T637 MB89P637 MB89W637  
MB89PV630  
Parameter  
Piggyback/  
evaluation  
product (for  
evaluation  
and  
Classification  
One-time  
PROM  
product  
Mass production products  
(mask ROM products)  
External ROM  
products  
EPROM  
product  
development)  
ROM size  
RAM size  
16 K × 8  
24 K × 8  
bits  
32 K × 8  
32 K × 8 bits  
32 K × 8 bits  
(external  
ROM)  
bits  
bits  
(Internal PROM,  
programming with  
general-purpose  
Fixed to external  
ROM  
(internal  
(internal  
(internal  
mask ROM) mask ROM) mask ROM)  
EPROM programmer)  
1024 × 8  
512 × 8 bits 768 × 8 bits  
bits  
512 × 8  
bits  
1024 × 8 bits  
Number of instructionns:  
Instruction bit length:  
Instruction length:  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
0.4 to 6.4 µs/10 MHz, 61 µs/32.768 kHz  
CPU functions  
Ports  
3.6 to 57.6 µs/10 MHz, 562.5 µs/32.768 kHz  
Input ports:  
5 (All also serve as peripherals.)  
8 (All also serve as peripherals.)  
4 (All also serve as peripherals.)  
8 (All also serve as bus control.)  
28 (27 ports also serve as bus pins and peripherals.)  
53  
Output ports (N-ch open-drain):  
I/O ports (N-ch open-drain):  
Output ports (CMOS):  
I/O ports (CMOS):  
Total:  
Clock timer  
21 bits × 1 (in main clock)/15 bits × 1 (at 32.768 kHz)  
8-bit PWM  
timer  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs to 3.3 ms) × 2  
channels  
7/8-bit resolution PWM operation (conversion cycle: 51.2 µs to 839 ms) × 2 channels  
8-bit pulse  
width count  
timer  
8-bit timer operation (overflow output capable, operating clock cycle: 0.4 to 12.8 µs)  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 to 12.8 µs)  
8-bit pulse width measurement operation (continuous measurement capable,  
measurement of “H” pulse width/ “L” pulse width/ from to /from to capable)  
16-bit timer/  
counter  
16-bit timer operation (operating clock cycle: 0.4 µs)  
16-bit event counter operation (rising edge/falling edge/both edge selectability)  
8-bit serial I/O  
8 bits  
LSB first/MSB first selectability  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
UART  
Switching two I/O systems by software capable  
Transfer data length (6, 7, and 8 bits)  
Transfer rate (300 to 62500 bps. at 10 MHz osciliation)  
10-bit A/D  
converter  
10-bit resolution × 8 channels  
A/D conversion mode (conversion time: 13.2 µs)  
Sense mode (conversion time: 7.2 µs)  
Continuous activation by an external activation or an internal timer capable  
(Continued)  
3
MB89630 Series  
(Continued)  
Part number  
MB89635 MB89636  
Parameter  
MB89637 MB89T635 MB89T637 MB89P637 MB89W637  
MB89PV630  
External  
interrupt input  
4 independent channels (edge selection, interrupt vector, source flag).  
Rising edge/falling edge selectability  
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)  
Standby mode  
Process  
Sleep mode, stop mode, watch mode, and subclock mode  
CMOS  
Operating  
voltage*1  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C256A-20  
EPROM for use  
*1: Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
In the case of the MB89PV630, the voltage varies with the restrictions of the EPROM for use.  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89636  
MB89635  
Package  
MB89637  
MB89P637  
MB89W637  
MB89PV630  
MB89T635  
MB89T637  
DIP-64P-M01  
DIP-64C-A06  
FPT-64P-M06  
FPT-64P-M09  
MDP-64C-P02  
MQP-64C-P01  
×
×
×
×
×
×
×
×*  
×
×
×*  
×
×*  
×
×
×
×
×
×
: Available  
×: Not available  
* : To convert pin pitches, an adapter socket (manufacturer: Sun Hayato Co., Ltd.) is available.  
64SD-64QF2-8L: For conversion from (DIP-64P-M01, DIP-64C-A06, or MDP-64C-P02) to FPT-64P-M09  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89630 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
On the MB89P637/W637, the program area starts from address 8007H but on the MB89PV630 and MB89637  
starts from 8000H.  
(On the MB89P637/W637, addresses 8000H to 8006H comprise the option setting area, option settings can be  
read by reading these addresses. On the MB89PV630/MB89637, addresses 8000H to 8006H could also be used  
as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P637/  
W637.)  
• The stack area, etc., is set at the upper limit of the RAM.  
• The external area is used.  
2. Current Consumption  
• In the case of the MB89PV630, add the current consumed by the EPROM which connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same. (For more information, see sections  
Electrical Characteristics” and “Example Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-up resistor cannot be set for P50 to P53 on the MB89P637 and MB89W637.  
• Options are fixed on the MB89PV630, MB89T635, and MB89T637.  
CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES  
• The MB89630R series is the reduction version of the MB89630 series. For their differences, refer to the  
MB89630R series data sheet.  
• The the MB89630 and MB89630R series consist of the following products:  
MB89630 series  
MB89635  
MB89T635  
MB89636  
MB89637  
MB89P637 MB89W637 MB89PV630  
MB89630R series MB89635R MB89T635R MB89636R  
MB89T637R  
5
MB89630 Series  
PIN ASSIGNMENT  
(Top view)  
1
VCC  
P31/UO1  
P30/UCK1  
P43/PTO1  
P42/UI2  
P41/UO2  
P40/UCK2  
P53/PTO2  
P52  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
P32/UI1  
P33/SCK1  
P34/SO1  
P35/SI1  
P36/PWC  
P37/WTO  
VSS  
3
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
VCC  
A14  
A13  
A8  
VPP  
A12  
A7  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
4
5
6
A6  
7
A9  
A5  
8
A11  
A4  
9
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
P21/HAK  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
P27/ALE  
P51/BZ  
A3  
OE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P50/ADST  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
AVCC  
A10  
A2  
A1  
CE  
O8  
O7  
O6  
O5  
O4  
A0  
O1  
O2  
O3  
VSS  
AVR  
AVSS  
Each pin inside  
the dashed line is  
for MB89PV630 only.  
P74/EC  
P73/INT3  
P72/INT2  
P71/INT1/X0A*  
P70/INT0/X1A*  
RST  
MOD0  
MOD1  
X0  
X1  
VSS  
(DIP-64P-M01)  
(DIP-64C-A06)  
(MDP-64C-P02)  
*: When the dual-clock system is selected.  
(Top view)  
P51/BZ  
P50/ADST  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
AVCC  
AVR  
AVSS  
P74/EC  
P73/INT3  
P72/INT2  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
(FPT-64P-M09)  
*: When the dual-clock system is selected.  
6
MB89630 Series  
(Top view)  
P52  
P51/BZ  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P37/WTO  
VSS  
P50/ADST  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
AVCC  
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
85  
86  
87  
88  
89  
90  
91  
92  
93  
77  
76  
75  
74  
73  
72  
71  
70  
69  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
AVR  
AVSS  
P74/EC  
P73/INT3  
P72/INT2  
P71/INT1/X0A*  
P70/INT0/X1A*  
Each pin inside the dashed line  
is for MB89PV630 only.  
(FPT-64P-M06)  
(MQP-64C-P01)  
*: When the dual-clock system is selected.  
• Pin assignment on package top (MB89PV630 only)  
Pin no.  
65  
Pin name  
N.C.  
VPP  
Pin no.  
73  
Pin name  
A2  
Pin no.  
81  
Pin name  
N.C.  
O4  
Pin no.  
89  
Pin name  
OE  
66  
74  
A1  
82  
90  
N.C.  
A11  
A9  
67  
A12  
A7  
75  
A0  
83  
O5  
91  
68  
76  
N.C.  
O1  
84  
O6  
92  
69  
A6  
77  
85  
O7  
93  
A8  
70  
A5  
78  
O2  
86  
O8  
94  
A13  
A14  
VCC  
71  
A4  
79  
O3  
87  
CE  
95  
72  
A3  
80  
VSS  
88  
A10  
96  
N.C.: Internally connected. Do not use.  
7
MB89630 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-DIP*1  
MDIP*2  
QFP1*4  
MQFP*5  
QFP2*3  
30  
31  
28  
29  
27  
22  
23  
20  
21  
19  
23  
24  
21  
22  
20  
X0  
X1  
A
D
C
Main clock crystal oscillator pins  
MOD0  
MOD1  
RST  
Operating mode selection pins  
Connect directly to VCC or VSS  
Reset I/O pin  
This pin is an N-ch open-drain output type with a  
pull-up resistor, and a hysteresis input type. “L” is  
output from this pin by an internal reset source.  
The internal circuit is initialized by the input of “L”.  
56 to 49 48 to 41 49 to 42 P00/AD0 to  
P07/AD7  
F
General-purpose I/O ports  
When an external bus is used, these ports  
function as the multiplex pins of the lower address  
output and the data I/O.  
48 to 41 40 to 33 41 to 34 P10/A08 to  
P17/A157  
F
General-purpose I/O ports  
When an external bus is used, these ports  
function as an upper address output.  
40  
39  
38  
32  
31  
30  
33  
32  
31  
P20/BUFC  
P21/HAK  
P22/HRQ  
H
General-purpose output-only port  
When an external bus is used, this port can also  
be used as a buffer control output by setting the  
BCTR.  
H
F
General-purpose output-only port  
When an external bus is used, this port can also  
be used as a hold acknowledge by setting the  
BCTR.  
General-purpose output-only port  
When an external bus is used, this port can also  
be used as a hold request input by setting the  
BCTR.  
37  
36  
35  
34  
29  
28  
27  
26  
30  
29  
28  
27  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
F
H
H
H
General-purpose output-only port  
When an external bus is used, this port functions  
as a ready input.  
General-purpose output-only port  
When an external bus is used, this port functions  
as a clock output.  
General-purpose output-only port  
When an external bus is used, this port functions  
as a write signal output.  
General-purpose output-only port  
When an external bus is used, this port functions  
as a read signal output.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*2: MDP-64C-P02  
*4: FPT-64P-M06  
*5: MQP-M64C-P01  
*3: FPT-64P-M09  
8
MB89630 Series  
(Continued)  
Pin no.  
QFP2*3  
25  
Circuit  
type  
Pin name  
P27/ALE  
Function  
SH-DIP*1  
MDIP*2  
QFP1*4  
MQFP*5  
33  
26  
H
G
General-purpose output-only port  
When an external bus is used, this port functions as  
an address latch signal output.  
2
58  
59  
P30/UCK1  
General-purpose I/O port  
Also serves as the clock I/O 1 for the UART. This  
port is a hysteresis input type.  
1
57  
55  
58  
56  
P31/UO1  
P32/UI1  
F
General-purpose I/O port  
Also serves as the data output 1 for the UART.  
63  
G
General-purpose I/O port  
Also serves as the data input 1 for the UART. This  
port is a hysteresis input type.  
62  
54  
55  
P33/SCK1  
G
General-purpose I/O port  
Also serves as the data input for the 8-bit serial  
I/O. This port is a hysteresis input type.  
61  
60  
53  
52  
54  
53  
P34/SO1  
P35/SI1  
F
General-purpose I/O port  
Also serves as the data output for the 8-bit serial I/O.  
G
General-purpose I/O port  
Also serves as the data input for the 8-bit serial  
I/O. This port is a hysteresis input type.  
59  
51  
52  
P36/PWC  
G
General-purpose I/O port  
Also serves as the measured pulse input for the  
8-bit pulse width counter. This port is a hysteresis  
input type.  
58  
6
50  
62  
51  
63  
P37/WTO  
P40/UCK2  
F
General-purpose I/O port  
Also serves as the toggle output for the 8-bit pulse  
width counter.  
G
General-purpose I/O port  
Also serves as the clock I/O 2 for the UART. This  
port is a hysteresis input type.  
5
4
61  
60  
62  
61  
P41/UO2  
P42/UI2  
F
General-purpose I/O port  
Also serves as the data output 2 for the UART.  
G
General-purpose I/O port  
Also serves as the data input 2 for the UART. This  
port is a hysteresis input type.  
3
10  
9
59  
2
60  
3
P43/PTO1  
P50/ADST  
P51/BZ  
F
K
J
General-purpose I/O port  
Also serves as the toggle output for the 8-bit PWM  
timer.  
General-purpose I/O port  
Also serves as an A/D converter external activation.  
This port is a hysteresis input type.  
1
2
General-purpose I/O port  
Also serves as a buzzer output.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*2: MDP-64C-P02  
*4: FPT-64P-M06  
*5: MQP-M64C-P01  
*3: FPT-64P-M09  
9
MB89630 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
General-purpose I/O port  
SH-DIP*1  
MDIP*2  
QFP1*4  
MQFP*5  
QFP2*3  
8
7
64  
63  
1
P52  
P53/PTO2  
J
J
64  
General-purpose I/O port  
Also serves as the toggle output for the 8-bit PWM  
timer.  
11 to 18  
3 to 10  
4 to 11 P60/AN0 to  
P67/AN7  
I
N-ch open-drain output-only ports  
Also serve as an A/D converter analog input.  
26,  
25  
18,  
17  
19,  
18  
P70/INT0/X1A,  
P71/INT1/X0A  
B/E  
Input-only ports  
These ports are a hysteresis input type.  
Also serve as an external interrupt input (at single-  
clock operation).  
Subclock crystal oscillator pins (at dual-clock  
operation)  
24,  
23  
16,  
15  
17,  
16  
P72/INT2,  
P73/INT3  
E
E
Input-only ports  
Also serve as an external interrupt input.  
These ports are a hysteresis input type.  
22  
14  
15  
P74/EC  
General-purpose input port  
Also serves as the external clock input for the  
16-bit timer/counter. This port is a hysteresis input  
type.  
64  
32, 57  
19  
56  
24,49  
11  
57  
25, 50  
12  
VCC  
Power supply pin  
VSS  
Power supply (GND) pin  
AVCC  
AVR  
AVSS  
A/D converter power supply pin  
A/D converter reference voltage input pin  
20  
12  
13  
21  
13  
14  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: MDP-64C-P02  
*4: FPT-64P-M06  
*5: MQP-M64C-P01  
*3: FPT-64P-M09  
10  
MB89630 Series  
External EPROM pins (MB89PV630 only)  
Pin no.  
Pin name  
VPP  
I/O  
Function  
MDIP  
MQFP  
65  
66  
O
O
“H” level output pin  
Address output pins  
66  
67  
68  
69  
70  
71  
72  
73  
74  
67  
68  
69  
70  
71  
72  
73  
74  
75  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
75  
76  
77  
77  
78  
79  
O1  
O2  
O3  
I
Data input pins  
78  
80  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
79  
80  
81  
82  
83  
82  
83  
84  
85  
86  
O4  
O5  
O6  
O7  
O8  
84  
87  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
85  
86  
88  
89  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
87  
88  
89  
91  
92  
93  
A11  
A9  
A8  
O
Address output pins  
90  
91  
92  
94  
95  
96  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
65  
76  
81  
90  
N.C.  
Internally connected pins  
Be sure to leave them open.  
11  
MB89630 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Standby control signal  
Standby control signal  
Remarks  
A
X1  
X0  
• Crystal or ceramic oscillation type (main clock)  
External clock input selection versions of MB89PV630,  
MB89P637, MB89W637, MB89635, MB89T635, MB89636,  
MB89637, and MB89T637  
At an oscillation feedback resistor of approximately  
1 M/5 V  
X1  
X0  
• Crystal or ceramic oscillation type (main clock)  
Oscillation selection versions of MB89PV630, MB89P637,  
MB89W637, MB89635, MB89T635, MB89636, MB89637,  
and MB89T637  
At an oscillation feedback resistor of approximately  
1 M/5 V  
B
• Crystal or ceramic oscillation type (subclock)  
MB89PV630, MB89P637, MB89W637, MB89635,  
MB89636, and MB89637 with dual-clock system  
At an oscillation feedback resistor of approximately  
4.5 M/5 V  
X1A  
X0A  
Standby control signal  
C
• At an output pull-up resistor (P-ch) of approximately  
50 k/5 V  
R
• Hysteresis input  
P-ch  
N-ch  
D
E
• Hysteresis input  
R
• Pull-up resistor optional (except P70 and P71)  
F
• CMOS output  
• CMOS input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional (except P22 and P23)  
(Continued)  
12  
MB89630 Series  
(Continued)  
Type  
Circuit  
Remarks  
G
• CMOS output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
• CMOS output  
H
P-ch  
N-ch  
I
• Analog input  
• CMOS input  
N-ch  
Analog input  
J
R
P-ch  
N-ch  
• Pull-up resistor optional  
• Hysteresis input  
K
R
P-ch  
N-ch  
• Pull-up resistor optional  
13  
MB89630 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (option selection)  
and wake-up from stop mode.  
14  
MB89630 Series  
PROGRAMMING TO THE EPROM ON THE MB89P637  
The MB89P637 is an OTPROM version of the MB89630 series.  
1. Features  
• 32-Kbytes PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode is illustrated below.  
EPROM mode  
(Corresponding addresses  
on the EPROM programmer)  
Normal operating mode  
I/O  
0000H  
0080H  
0100H  
0200H  
Register  
RAM  
0480H  
8000H  
8007H  
External area  
0000H  
0007H  
Option setting area  
Option setting area  
Program area  
(EPROM)  
32 KB  
PROM  
32 KB  
FFFFH  
7FFFH  
3. Programming to the EPPROM  
In EPROM mode, the MB89P637 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer by using the dedicated socket adapter.  
However, the electronic signature mode cannot be used.  
When the operating ROM area for a single chip is 32 Kbytes (8007H to FFFFH) the EPROM can be programmed  
as follows:  
15  
MB89630 Series  
Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH.  
(Note that addresses 8000H to FFFFH in the operating mode assign to 0000H to 7FFFH in EPROM mode).  
(3) Load option data into addresses 0000H to 0006H of the EPROM programmer.  
(For information about each corresponding option, see “8. OTPROM Option Bit Map.”).  
(4) Program with the EPROM programmer.  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. Erasure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000 µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having wave-  
lengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
16  
MB89630 Series  
7. EPROM Programmer Socket Adapter  
Package  
Compatible socket adapter  
DIP-64C-M01  
FPT-64P-M06  
FPT-64P-M09  
ROM-64SD-28DP-8L  
ROM-64QF-28DP-8L  
ROM-64QF2-28DP-8L  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
8. OTPROM Option Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Single/dual- Reset pin  
clock system output  
1: Dual clock 1: Yes  
0: Single clock 0: No  
Power-on  
reset  
1: Yes  
0: No  
Oscillation stabilization (F/CH)  
0000H  
Readable  
Readable  
Readable  
11:218  
10:214  
01:217  
00:24  
and writable and writable and writable  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
Pull-up  
1: No  
P00  
Pull-up  
1: No  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0001H  
0002H  
0003H  
0004H  
0005H  
0006H  
0: Yes  
0: Yes  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P43  
P42  
P41  
P40  
Vacancy  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable and  
writable  
Readable  
Readable  
Readable  
and writable and writable and writable  
Vacancy  
Vacancy  
Vacancy  
P74  
P73  
P72  
Vacancy  
Vacancy  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
Readable  
and writable and writable  
Readable  
and writable and writable and writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reserved bit  
Readable  
Readable  
Readable  
Readable and Readable  
Readable  
Readable  
Readable  
and writable and writable and writable writable  
and writable and writable and writable and writable  
Notes: Set each bit to 1 to erase.  
Do not write 0 to the blank bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
Always write 1 to the reserved bit.  
17  
MB89630 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TV, MBM27C256A-20CZ  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part number  
ROM-32LC-28DP-YG  
LCC-32 (Rectangle)  
LCC-32(Square)  
ROM-32LC-28DP-S  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
3. Memory Space  
Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single chip  
Corresponding addresses on the EPROM programmer  
I/O  
0080H  
0480H  
RAM  
Not available  
Not available  
8000H  
8006H  
0000H  
Not available  
0006H  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0006H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
18  
MB89630 Series  
BLOCK DIAGRAM  
X0  
X1  
Main clock oscillator  
Subclock oscillator  
(32.768 kHz)  
X0A  
X1A  
21-bit time-base timer  
Clock controller  
CMOS I/O port  
8-bit PWC timer  
P37/WTO  
P36/PWC  
Reset circuit  
(Watchdog timer)  
RST  
P35/SI1  
P34/SO1  
P33/SCK1  
8-bit serial I/O  
Watch prescaler  
CMOS I/O port  
P32/UI1  
P31/UO1  
P00/AD0  
to P07/AD7  
8
8
P30/UCK1  
UART  
P40/UCK2  
P41/UO2  
P42/UI2  
P10/A08  
to P17/A15  
MOD0  
MOD1  
UART baud rate  
generator  
External bus  
interface  
P27/ALE  
P26/RD  
P25/WR  
CMOS I/O port  
P43/PTO1  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
N-ch open-drain I/O port  
8-bit PWM timer  
CMOS output port  
P53/PTO2  
P52  
Buzzer output  
P51/BZ  
RAM  
P50/ADST  
3
AVCC, AVSS,  
10-bit A/D converter  
AVR  
F2MC-8L  
CPU  
8
8
P60/AN0  
to P67/AN7  
N-ch open-drain output port  
Input port  
ROM  
P70/INT0  
P71/INT1  
P72/INT2  
P73/INT3  
4
External interrupt  
Other pins  
VCC × 2, VSS × 2  
16-bit timer/counter  
P74/EC  
19  
MB89630 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89630 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89630 series is structured as illustrated below.  
Memory Space  
MB89637  
MB89T637  
MB89P637  
MB89W637  
MB89635  
MB89T635  
MB89PV630  
I/O  
MB89636  
I/O  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
0100H  
0000H  
0080H  
I/O  
I/O  
RAM  
1 KB  
RAM  
1 KB  
RAM  
512 B  
RAM  
768 B  
0100H  
0200H  
0100H  
0200H  
0100H  
0200H  
0380H  
Register  
Register  
Register  
Register  
0200H  
0280H  
0480H  
8000H  
8007H  
0480H  
External area  
*2  
External area  
*2  
8000H  
8007H  
External area  
External area  
A000H  
C000H  
FFFFH  
ROM*1  
32 KB  
External ROM  
32 KB  
ROM*1  
24 KB  
ROM*1  
16 KB  
FFFFH  
FFFFH  
FFFFH  
*1: The ROM area is an external area depending on the mode.  
The internal ROM cannot be used on the MB89T635 and MB89T637.  
*2: Addresses 8000H to 8006H for the MB89P637 and MB89W637 comprise an option area, do not use  
this area for the MB89PV630 and MB89637.  
20  
MB89630 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A16-bit register which performs arithmetic operations with the accumulator  
Whentheinstructionisan8-bitdataprocessinginstruction, thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A16-bit register for index modification  
A16-bit pointer for indicating a memory address  
A16-bit register for indicating a stack area  
A16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
21  
MB89630 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set to the shift-out value in the case of a shift instruction.  
22  
MB89630 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89653A (RAM 512 × 8 bits). The bank  
currently in use is indicated by the register bank pointer (RP).  
Register Bank Configuraiton  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
23  
MB89630 Series  
I/O MAP  
Read/ Register  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Address  
Register description  
write  
(R/W)  
(W)  
name  
PD07 PD06 PD05 PD04 PD03 PD02 PD01 PD00  
DD07 DD06 DD05 DD04 DD03 DD02 DD01 DD00  
PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10  
DD17 DD16 DD15 DD14 DD13 DD12 DD11 DD10  
PD27 PD26 PD25 PD24 PD23 PD22 PD21 PD20  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
PDR0 Port 0 data register  
DDR0 Port 0 data direction register  
PDR1 Port 1 data register  
DDR1 Port 1 data direction register  
PDR2 Port 2 data register  
BCTR External bus pin control register  
(R/W)  
(W)  
(R/W)  
(W)  
HLD BUF  
Vacancy  
SMC  
SYCC System clock control register  
WT1 WT0 SCS CS1 CS0  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
STBC System clock control register STP SLP SPL RST TMD  
CS  
WTE3 WTE2 WTE1 WTE0  
WDTE Watchdog timer control register  
TBCR Time-base timer control register  
TBOF TBIE  
TBC1 TBC0 TBR  
WCLR  
WPCR Watch prescaler control register WIF WIE  
WS1 WS0  
CHG3 Port 3 switching register  
PDR3 Port 3 data register  
CG35 CG34 CG33  
PD37 PD36 PD35 PD34 PD33 PD32 PD31 PD30  
DDR3 Port 3 data direction register DD37 DD36 DD35 DD34 DD33 DD32 DD31 DD30  
(R/W)  
(W)  
PDR4 Port 4 data register  
DDR4 Port 4 data direction register  
BUZR Buzzer register  
PD43 PD42 PD41 PD40  
DD43 DD42 DD41 DD40  
BUZ1 BUZ0  
PD53 PD52 PD51 PD50  
(R/W)  
(R/W)  
(R/W)  
(R)  
PDR5 Port 5 data register  
PDR6 Port 6 data register  
PDR7 Port 7 data register  
PD67 PD66 PD65 PD64 PD63 PD62 PD61 PD60  
PD74 PD73 PD72 PD71 PD70  
PWC pulse width control register 1  
PWC pulse width control register 2  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W))  
PCR1  
PCR2  
EN  
FC  
TOE IE  
RM TO  
UF  
C0  
IR  
BF  
C1  
W1  
W0  
RLB7 RLB6 RLB5 RLB4 RLB3 RLB2 RLB1 RLB0  
TCR TCS1 TCS0 TCEF TCIE TCS  
RLBR PWC reload buffer register  
TMCR 16-bit timer control register  
TCHR 16-bit timer count register (H)  
TCLR 16-bit timer count register (L)  
TC15 TC14 TC13 TC12 TC11 TC10 TC09 TC08  
TC07 TC06 TC05 TC04 TC03 TC02 TC01 TC00  
Vacancy  
SIOF SIOE  
SD07 SD06 SD05 SD04 SD03 SD02 SD01 SD00  
Vacancy  
Vacancy  
SCKE  
SOE CKS1 CKS0 BDS SST  
(R/W)  
(R/W)  
SMR1 Serial mode register  
SDR1 Serial data register  
(Continued)  
24  
MB89630 Series  
(Continued)  
Read/ Register  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Address  
Register description  
write  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
name  
ADC1  
ADC2  
ADDH  
ADDL  
EIC1  
ADMV  
ADMD  
A/D converter control register 1 ANS3 ANS2 ANS1 ANS0 ADI  
SIFM AD  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
ADCK  
A/D converter control register 2  
A/D converter data register (H)  
A/D converter data register (L)  
External interrupt control register 1  
External interrupt control register 2  
TIM1 TIM0  
ADIE  
EXT TEST  
ADD9 ADD8  
ADD7 ADD6 ADD5 ADD4 ADD3  
ADD1  
ADD0  
ADD2  
SEL1 EIE1 EIR0 INTE SEL0 EIE0  
SEL3 EIE3 EIR2 SEL2 EIE2  
EIR1  
EIR3  
EIC2  
Vacancy  
Vacancy  
PTX1 PTX2 P7M1 P7M2 SC11 SC10 SC21 SC20  
TPE1 TPE2 CK12 TIR1 TIR2 TIE1 TIE2  
OE2 OE3 CH12  
(R/W) CNTR1 PWM timer control register 1  
(R/W) CNTR2 PWM timer control register 2  
(R/W) CNTR3 PWM timer control register 3  
CM17 CM16 CM15 CM14 CM13  
CM11  
(W)  
(W)  
COMR1 PWM timer compare register 1  
COMR2 PWM timer compare register 2  
CM12  
CM10  
CM27 CM26 CM25 CM24 CM23 CM22 CM21 CM20  
SMDE UCKE  
UART serial mode control register  
(R/W)  
(R/W)  
SMC  
SRC UART serial rate control register  
SSD  
PEN SBL MC1 MC0  
UOE  
CR  
SCS1 SCS0 RC2 RC1 RC0  
TD8/ RD8/  
UART serial status and data register RDRF ORFE TDRE  
2FH  
30H  
(R/W)  
TIE  
RIE  
PSEL  
TP  
RP  
(R)  
(W)  
SIDR UART serial input data register  
SODR  
SID0  
SOD0  
SID7 SID6 SID5 SID4 SID3 SID2 SID1  
SOD7 SOD6 SOD5 SOD4 SOD3 SOD2 SOD1  
UART serial output data register  
31H  
to  
Vacancy  
7BH  
Interrupt level setting register 1 L31  
Interrupt level settingregister 2 L71  
L30  
L70  
L21  
L61  
L20  
L60  
L11  
L51  
L10  
L50  
L90  
L01  
L41  
L81  
L00  
L40  
L80  
7CH  
7DH  
7EH  
7FH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 3 LB1 LB0 LA1 LA0 L91  
Vacancy  
Notes: Do not use vacancies.  
— represents a vacant bit.  
25  
MB89630 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VSS + 7.0  
V
V
*
*
Power supply voltage  
AVCC  
AVR must not exceed  
AVCC + 0.3.  
A/D converter reference input voltage  
Input voltage  
AVR  
VSS – 0.3  
VSS + 7.0  
V
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VSS + 7.0  
VCC + 0.3  
VSS + 7.0  
20  
V
V
Except P50 to P53  
P50 to P53  
VI2  
VO  
VO2  
IOL  
V
Except P50 to P53  
P50 to P53  
Output voltage  
V
“L” level maximum output current  
“L” level average output current  
mA  
Average value (operating  
current × operating rate)  
IOLAV  
IOL  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
“L” level total maximum output current  
“L” level total average output current  
“H” level maximum output current  
“H” level average output current  
“H” level total maximum output current  
“H” level total average output current  
100  
40  
Average value (operating  
current × operating rate)  
IOLAV  
IOH  
–20  
–4  
Average value (operating  
current × operating rate)  
IOHAV  
IOH  
IOHAV  
–50  
–20  
Average value (operating  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
500  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set at the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
Precautions:Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded.  
Functional operation should be restricted to the conditions as detailed in the operational sections of  
this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
26  
MB89630 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max  
Normal operation  
assurance range*  
MB89635/637  
2.2*  
6.0*  
V
VCC  
Normal operation  
assurance range*  
MB89PV630/P637/  
W637/T635/T637  
Power supply voltage  
2.7*  
1.5  
6.0*  
6.0  
V
V
Retains the RAM state in  
stop mode  
AVCC  
A/D converter reference input voltage  
Operating temperature  
AVR  
3.0  
AVCC  
+85  
V
TA  
–40  
°C  
* : These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1  
and “5. A/D Converter Electrical Characteristics.”  
6
5
4
Analog accuracy assured in the  
AVCC = 3.5 V to 6.0 V range  
Operation assurance range  
3
2
1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz)  
4.0 2.0  
Minimum execution time (instruction cycle) (µs)  
Note: The shaded area is assured only for the MB89635/636/637.  
0.8  
0.4  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
27  
MB89630 Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17,  
P22, P23, P31, P34,  
P37, P41, P43,  
P51 to P53  
with pull-up  
resistor  
VIH1  
VIH2  
VIHS  
0.7 VCC  
VCC + 0.3  
V
V
V
P51 to P53  
Withoutpull-up  
resistor  
P51 to P53  
0.7 VCC  
0.8 VCC  
VSS + 6.0  
VCC + 0.3  
“H” level input  
voltage  
RST, MOD0, MOD1,  
P30, P32, P33, P35,  
P36, P40, P42,P50,  
P72 to P74  
P50 with  
pull-up  
resistor  
Withoutpull-up  
resistor  
P50, P70, P71  
0.8 VCC  
VSS + 6.0  
0.3 VCC  
V
V
VIHS2  
P00 to P07, P10 to P17,  
P22, P23, P31, P34,  
P37, P41, P43  
VIL  
VSS 0.3  
P30, P32, P33, P35,  
P36, P40, P42,  
P50 to P53,  
“L” level input  
voltage  
VILS  
VSS 0.3  
0.2 VCC  
V
P70 to P74,  
RST,  
MOD0, MOD1  
Open-drain  
output pin  
application  
voltage  
P50 to P53  
VSS + 6.0  
V
V
V
VD  
VSS 0.3  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37, IOH = –2.0 mA  
P40 to P43  
“H” level output  
voltage  
VOH  
4.0  
P00 to P07, P10 to P17,  
P20 to P27 P30 to P37,  
P40 to P43, P50 to P53,  
“L” level output  
voltage  
IOL = 4.0 mA  
VOL  
0.4  
P60 to P67, RST  
P00 to P07, P10 to P17,  
P20 to P23, P30 to P37,  
P40 to P43, P50 to P53, 0.0 V < VI < VCC  
P70 to P74,  
Input leakage  
current  
(Hi-z output  
leakage  
Withoutpull-up  
resistor  
ILI  
±5  
µA  
kΩ  
MOD0, MOD1  
current)  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43, VI = 0.0 V  
P50 to P53, P72 to P74  
Pull-up  
resistance  
With pull-up  
resistor  
RPULL  
25  
50  
100  
(Continued)  
28  
MB89630 Series  
(Continued)  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
FCH = 10 MHz  
VCC = 5.0 V  
tinst = 0.4 µs  
ICC1  
12  
20  
mA  
*2  
MB89635/T635/  
636/637/T637/  
PV630  
1.0  
1.5  
3
2
2.5  
7
mA  
mA  
mA  
FCH = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
ICC2  
MB89P637/  
W637  
FCH = 10 MHz  
VCC = 5.0 V  
tinst*2 = 0.4 µs  
ICCS1  
FCH = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
ICCS2  
0.5  
1.5  
mA  
MB89635/T635/  
636/637/T637/  
PV630  
50  
100  
700  
µA  
µA  
FCL = 32.768 kHz,  
VCC = 3.0 V  
Subclock mode  
ICCL  
Power supply  
current*1  
VCC  
MB89P637/  
W637  
500  
FCL = 32.768 kHz,  
VCC = 3.0 V  
Subclock sleep  
mode  
ICCLS  
25  
3
50  
15  
µA  
µA  
FCL = 32.768 kHz,  
VCC = 3.0 V  
• Watch mode  
• Main clock stop  
mode at dual-  
clock system  
ICCT  
TA = +25°C  
• Subclock stop  
mode  
• Main clock stop  
mode at single-  
clock system  
ICCH  
1
µA  
(Continued)  
29  
MB89630 Series  
(Continued)  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
FCH = 10 MHz,  
when A/D  
conversion  
is activated  
IA  
6
mA  
Power supply  
current*1  
AVCC  
FCH = 10 MHz,  
TA = +25°C,  
when A/D  
IAH  
1
µA  
conversion  
is stopped  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
f = 1 MHz  
10  
pF  
*1: The power supply current is measured at the external clock.  
In the case of the MB89PV630, the current consumed by the connected EPROM and ICE is not included.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL  
ns  
tZLZH  
RST  
0.2 VCC  
0.2 VCC  
30  
MB89630 Series  
(2) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Condition  
Unit  
Remarks  
Min.  
Max.  
50  
Power supply rising time  
Power supply cut-off time  
tR  
1
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
Ifpowersupplyvoltageneedstobevariedinthecourseofoperation, asmoothvoltageriseisrecommended.  
tOFF  
tR  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Clock cycle time  
Min.  
1
Max.  
10  
FCH  
X0, X1  
MHz  
kHz  
ns  
FCL  
X0A, X1A  
X0, X1  
32.768  
tHCYL  
tLCYL  
100  
1000  
X0A, X1A  
30.5  
µs  
PWH  
PWL  
X0  
20  
15.2  
10  
ns  
µs  
ns  
External clock  
External clock  
External clock  
Input clock pulse width  
PWLH  
PWLL  
X0A  
X0  
Input clock rising/falling tCR  
time  
tCF  
31  
MB89630 Series  
X0 and X1 Timing and Conditions  
tHCYL  
PWH  
PWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X 0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Main Clock Conditions  
When a crystal  
or  
ceramic reasonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
X0A and X1A Timing and Conditions  
tLCYL  
PWLH  
PWLL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Subclock Conditions  
When a crystal  
or  
ceramic reasonator is used  
When an external clock is used  
X0A  
X1A  
X0A  
X1A  
Open  
32  
MB89630 Series  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
(4/FCH) tinst = 0.4 µs when operating at  
FCH = 10 MHz  
4/FCH, 8/FCH, 16/FCH, 64/FCH  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 61.036 µs when operating at  
FCL = 32.768 kHz  
2/FCL  
µs  
Note: When operating at 10 MHz, the cycle varies with the set execution time.  
(5) Clock Output Timing  
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Clock time  
CLK ↑ → CLK ↓  
tCYC  
CLK  
CLK  
1/2 tinst*  
µs  
µs  
tCHCL  
1/4 tinst* – 70 ns  
1/4 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
tCYC  
tCHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
33  
MB89630 Series  
(6) Bus Read Timing  
(VCC = +5.0 V±10%, 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
RD, A15 to 08,  
AD7 to 0  
Valid address RD time tAVRL  
1/4 tinst*– 64 ns  
1/2 tinst*– 20 ns  
1/2 tinst*  
µs  
RD pulse width  
tRLRH  
RD  
µs  
Valid address data read  
AD7 to 0,  
A15 to 08  
tAVDV  
200  
µs No wait  
time  
RD ↓ → data read time  
RD ↑ → data hold time  
RD ↑ → ALE time  
tRLDV  
tRHDX  
tRHLH  
RD, AD7 to 0  
AD7 to 0, RD  
RD, ALE  
1/2 tinst*– 80 ns  
120  
µs No wait  
0
µs  
µs  
µs  
µs  
ns  
ns  
1/4 tinst*– 40 ns  
1/4 tinst*– 40 ns  
1/4 tinst*– 40 ns  
0
RD, A15 to 08  
RD ↑ → address loss time tRHAX  
RD ↓ → CLK time  
CLK ↓ → RD time  
RD ↓ → BUFC time  
tRLCH  
tCLRH  
tRLBL  
RD, CLK  
RD, BUFC  
–5  
A15 to 08,  
AD7 to 0,  
BUFC  
BUFC ↑ → valid address  
time  
tBHAV  
5
ns  
* : For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
0.8 V  
tRHLH  
ALE  
0.8 V  
0.7 VCC  
0.3 VCC  
2.4 V  
0.7 VCC  
0.3 VCC  
2.4 V  
AD  
0.8 V  
0.8 V  
tRHDX  
tAVDV  
2.4V  
tCLRH  
2.4 V  
0.8 V  
2.4 V  
tRLCH  
A
0.8 V  
0.8V  
tAVRL  
tRHAX  
tRLDV  
tRLRH  
RD  
2.4 V  
0.8 V  
tRLBL  
tBHAV  
2.4 V  
BUFC  
0.8 V  
34  
MB89630 Series  
(7) Bus Write Timing  
Parameter  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
AD7 to 0, ALE  
A15 to 08  
Valid address ALE time tAVLL  
1/4 tinst*1 – 64 ns  
µs  
AD7 to 0, ALE  
A15 to 08  
ALE time address loss  
time  
tLLAX  
5
ns  
Valid address WR time tAVWL  
WR, ALE  
WR  
1/4 tinst*1 – 60 ns  
1/2 tinst*1 – 20 ns  
1/2 tinst*1 – 60 ns  
µs  
µs  
µs  
WR pulse width  
tWLWH  
tDVWH  
Write data WR time  
AD7 to 0, WR  
WR, A15 to  
08  
1/4 tinst*1 – 40 ns  
µs  
WR ↑ → address loss time  
tWHAX  
AD7 to 0, WR  
WR, ALE  
WR ↑ → data hold time  
WR ↑ → ALE time  
WR ↓ → CLK time  
CLK ↓ → WR time  
ALE pulse width  
tWHDX  
tWHLH  
tWLCH  
tCLWH  
tLHLL  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
0
µs  
µs  
µs  
ns  
µs  
µs  
WR, CLK  
ALE  
1/4 tinst*1 – 35 ns  
1/4 tinst*1 – 30 ns  
ALE ↓ → CLK time  
tLLCH  
ALE,CLK  
*1: For information on tinst, see “(4) Instruction Cycle.”  
*2: This characteristics are also applicable to the bus read timing.  
2.4 V  
CLK  
ALE  
AD  
A
0.8 V  
tLHLL  
tLLCH  
tWHLH  
2.4 V  
0.8 V  
0.8 V  
tAVLL  
tLLAX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
tDVWH  
tWHDX  
2.4 V  
tCLWH  
2.4 V  
0.8 V  
tWLCH  
0.8 V  
tAVWL  
tWHAX  
tWLWH  
WR  
2.4 V  
0.8V  
35  
MB89630 Series  
(8) Ready Input Timing  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
60  
Max.  
RDY valid CLK time  
CLK ↑ → RDY loss time  
tYVCH  
tCHYX  
ns  
ns  
*
*
RDY, CLK  
0
* : This characteristics are also applicable to the read cycle.  
CLK  
2.4 V  
2.4 V  
ALE  
AD  
Address  
Data  
A
WR  
tYVCH tCHYX  
RDY  
tYVCH  
tCHYX  
Note: The bus cycle is also extended in the read cycle in the same manner.  
36  
MB89630 Series  
(9) Serial I/O Timing  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
SCK1, UCK1,  
UCK2  
Serial clock cycle time  
tSCYC  
2 tinst*  
µs  
SCK1 ↓ → SO1 time  
UCK1 ↓ → UO1 time  
UCK2 ↓ → UO2 time  
SCK1, SO1  
UCK1, UO1  
UCK2, UO2  
tSLOV  
–200  
200  
ns  
µs  
µs  
Internal  
shift clock  
mode  
Valid SI1 SCK1 ↑  
Valid UI1 UCK1 ↑  
Valid UI2 UCK2 ↑  
SI1, SCK1  
UI1, UCK1  
UI2, UCK2  
tIVSH  
1/2 tinst*  
1/2 tinst*  
SCK1 ↑ → valid SI1 hold time  
UCK1 ↑ → valid UI1 hold time tSHIX  
UCK2 ↑ → valid UI2 hold time  
SCK1, SI1  
UCK1, UI1  
UCK2, UI2  
SCK1, UCK1,  
UCK2  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
tSLSH  
1 tinst*  
1 tinst*  
µs  
µs  
SCK1, UCK1,  
UCK2  
SCK1 ↓ → SO1 time  
UCK1 ↓ → UO1 time  
UCK2 ↓ → UO2 time  
SCK1, SO1  
UCK1, UO1  
UCK2, UO2  
tSLOV  
External  
shift clock  
mode  
0
200  
ns  
µs  
µs  
Valid SI1 SCK1 ↑  
Valid UI1 UCK1 ↑  
Valid UI2 UCK2 ↑  
SI1, SCK1  
UI1, UCK1  
UI2, UCK2  
tIVSH  
1/2 tinst*  
1/2 tinst*  
SCK1 ↓ → valid SI1 hold time  
UCK1 ↓ → valid UI1 hold time tSHIX  
UCK2 ↓ → valid UI2 hold time  
SCK1, SI1  
UCK1, UI1  
UCK2, UI2  
* : For information on tinst, see “(4) Instruction Cycle.”  
37  
MB89630 Series  
Internal Shift Clock Mode  
tSCYC  
SCK1  
UCK1  
UCK2  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO1  
UO1  
UO2  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SI1  
UI1  
UI  
External Shift Clock Mode  
tSHSL  
tSLSH  
0.8 VCC  
0.8 VCC  
SCK1  
UCK1  
UCK2  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO1  
UO1  
UO2  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
SI1  
UI1  
UI  
0.2 VCC  
38  
MB89630 Series  
(10) Peripheral Input Timing  
Parameter  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tILIH1  
Pin  
PWC, INT0 to INT3,EC  
ADST  
Unit  
Remarks  
Min.  
2 tinst*  
2 tinst*  
28 tinst*  
28 tinst*  
28 tinst*  
28 tinst*  
Max.  
Peripheral input “H” pulse width 1  
Peripheral input “L” pulse width 1  
Peripheral input “H” pulse width 2  
Peripheral input “L” pulse width 2  
Peripheral input “H” pulse width 3  
Peripheral input “L” pulse width 3  
µs  
µs  
tIHIL1  
tILIH2  
tIHIL2  
tILIH3  
tIHIL3  
µs A/D mode  
µs A/D mode  
µs Sense mode  
µs Sense mode  
ADST  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
PWC,  
EC,  
INT0 to INT3  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
tIHIL2  
tILIH2  
(tIHIL3)  
(tILIH3)  
ADST  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
39  
MB89630 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = 3.5 V to 6.0 V, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol  
Unit  
Parameter  
Resolution  
Pin  
Remarks  
Min.  
Max.  
10  
bit  
Linearity error  
±2.0  
±1.5  
±3.0  
LSB  
LSB  
LSB  
mV  
Differential linearity error  
Total error  
At AVCC = VCC  
AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB  
Zero transition voltage  
VOT  
VFST  
AN0 to  
AN7  
Full-scale transition  
voltage  
AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB  
mV  
LSB  
µs  
Interchannel disparity  
4
At 10 MHz  
oscillation  
A/D mode conversion time  
13.2  
Analog port input current  
Analog input voltage  
Reference voltage  
IAIN  
10  
µA  
V
AN0 to  
AN7  
0.0  
0.0  
AVR  
AVCC  
V
AVR  
Reference voltage  
supply current  
IR  
200  
µA AVR = 5.0 V  
Precautions: The smaller the | AVR–AVSS |, the greater the error would become relatively.  
Theoutputimpedanceoftheexternalcircuitfortheanaloginputmustsatisfythefollowingconditions:  
Output impedance of the external circuit < Approx. 10 kΩ  
If the output impedance of the external circuit is too high, an analog voltage sampling time might be  
insufficient (sampling time = 6 µs at 10MHz oscillation.)  
Analog Input Circuit Model  
Analog input  
C0  
Converter  
RON1  
RON2  
C1  
RON1: Approx. 1.5 Ω  
RON2: Approx. 1.5 Ω  
C0: Approx. 60 pF  
C1: Approx. 4 pF  
Note: The values mentioned here should be used as a guideline.  
40  
MB89630 Series  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
• Linearity error  
The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000 0001”) with  
the full-scale transition point (“11 1111 1110” “11 1111 1111”) from actual conversion characteristics  
• Differential linearity error  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values caused by the zero transition error, full-scale  
transition error, linearity error, quantization error, and noise  
Theoretical I/O characteristics  
Total error  
3FF  
3FE  
3FD  
3FF  
3FE  
3FD  
VFST  
Actual conversion  
value  
1.5 LSB  
{1 LSB × N + 0.5 LSB}  
004  
003  
002  
001  
004  
003  
002  
001  
VNT  
VOT  
Actual conversion  
value  
1 LSB  
Theoretical value  
0.5 LSB  
AVR  
AVR  
AVSS  
AVSS  
Analog input  
Analog input  
VFST – VOT  
VNT – {1 LSB × N + 0.5 LSB}  
Digital output N total error =  
1 LSB =  
(V)  
1022  
1 LSB  
(Continued)  
41  
MB89630 Series  
(Continued)  
Zero transition error  
Full-scale transition error  
004  
003  
002  
001  
Theoretical value  
Actual conversion  
value  
3FF  
3FE  
3FD  
3FC  
Actual conversion  
value  
VFST  
(Actual  
measurement)  
Actual conversion  
value  
Actual conversion value  
VOT (Actual measurement)  
Analog input  
AVR  
AVSS  
Analog input  
Differential linearity error  
Theoretical value  
Linearity error  
3FF  
3FE  
3FD  
Actual conversion  
N + 1  
value  
Actual conversion  
value  
{1 LSB × N + VOT}  
V(N + 1)T  
VFST  
(Actual  
N
V
NT  
measurement)  
004  
003  
002  
001  
N – 1  
N – 2  
VNT  
Actual conversion value  
Theoretical value  
Actual conversion value  
VOT (Actual measurement)  
AVR  
– 1  
AVSS  
AVR  
AVSS  
Analog input  
Analog input  
VNT – {1 LSB × N + VOT}  
V(N + 1)T – VNT  
Digital output N differential linearity error =  
Digital output N linearity error =  
1 LSB  
1 LSB  
42  
MB89630 Series  
EXAMPLE CHARACTERISTICS  
(2) “H” Level Output Voltage  
(1) “L” Level Output Voltage  
VOL vs. IOL  
VOL (V)  
VCC – VOH vs. IOH  
TA = +25°C  
VCC – VOH (V)  
1.0  
VCC = 2.5 V  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
VCC = 3.0 V  
0.5  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
VIN vs. VCC  
VIN (V)  
5.0  
5.0  
TA = +25°C  
TA = +25°C  
4.5  
4.5  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.5  
VIHS  
3.0  
2.5  
VILS  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
7
VCC (V)  
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
43  
MB89630 Series  
(5) Power Supply Current (External Clock)  
ICC1 vs. VCC, ICC2 vs. VCC  
ICC (mA)  
16  
ICCS1 vs. VCC, I CCS2 vs. VCC  
ICCS (mA)  
5.0  
Divide by 4 (ICC1)  
FCH = 10 MHz  
TA = +25°C  
FcH = 10 MHz  
TA = +25°C  
4.5  
4.0  
14  
12  
Divide by 4 (ICCS2)  
3.5  
3.0  
10  
8
Divide by 8  
2.5  
2.0  
Divide by 8  
6
4
2
0
Divide by 16  
Divide by 16  
1.5  
1.0  
Divide by 64 (ICCS2)  
Divide by 64 (ICC2)  
0.5  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
ICCLS vs. VCC  
ICCL vs. VCC  
ICCLS (µA)  
50  
ICCL (µA)  
200  
TA = +25°C  
TA = +25°C  
45  
40  
180  
160  
35  
30  
140  
120  
25  
20  
100  
80  
15  
10  
60  
40  
5
0
20  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
(Continued)  
44  
MB89630 Series  
(Continued)  
ICCH vs. VCC  
ICCT vs. VCC  
ICCH (µA)  
2.0  
ICCT (µA)  
20  
TA = +25°C  
TA = +25°C  
1.8  
1.6  
18  
16  
1.4  
1.2  
14  
12  
1.0  
0.8  
10  
8
0.6  
0.4  
6
4
0.2  
0
2
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
(6) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25°C  
100  
10  
1
2
3
4
5
6
VCC (V)  
45  
MB89630 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
46  
MB89630 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
47  
MB89630 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
A
C
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
48  
MB89630 Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
49  
MB89630 Series  
INSTRUCTION MAP  
50  
MB89630 Series  
MASK OPTIONS  
MB89635  
MB89636  
MB89637  
MB89PV630  
MB89T635  
MB89T637  
MB89P637  
MB89W637  
Part number  
No.  
Specifywhen  
ordering  
Set with EPROM  
programmer  
Setting not  
possible  
Specifying procedure  
Pull-up resistors  
masking  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43,  
P50 to P53, P72 to P74  
Selectable by  
pin  
1
2
Can be set per pin* Fixed to without pull-up resistor  
Setting possible Fixed to with power-on reset  
Power-on reset selection  
With power-on reset  
Selectable  
Selectable  
Selectable  
Without power-on reset  
Selection of the main clock  
oscillation stabilization time  
(at 10 MHz)  
Approx. 218/FCH (Approx. 26.2 ms)  
Approx. 217/FCH (Approx. 13.1 ms)  
Approx. 214/FCH (Approx. 1.6 ms)  
Approx. 24/FCH (Approx. 0 ms)  
FCH : Main clock frequency  
Fixed to 218/FCH  
Setting possible  
3
4
(Approx. 26.2 ms)  
Reset pin output  
Reset output provided  
No reset output  
Setting possible Fixed to with reset output  
MB89PV630-101Single-clock  
system  
Single/dual-clock system  
Single clock  
MB89T635-101 Single-clock  
system  
Dual clock  
MB89T637-101 Single-clock  
system  
Setting possible  
5
Selectable  
MB89PV630-102Dual-clock  
systems  
MB89T635-102 Dual-clock  
systems  
MB89T637-101 Dual-clock  
systems  
* : Pull-up resistors cannot be set for P50 to P53.  
51  
MB89630 Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89635P-SH  
MB89T635P-SH  
MB89636P-SH  
MB89637P-SH  
MB89P637-SH  
MB89T637P-SH  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
MB89635PF  
MB89T635PF  
MB89636PF  
MB89637PF  
MB89P637PF  
MB89T637PF  
64-pin Plastic QFP  
(FPT-64P-M06)  
MB89635PFM  
MB89T635PFM  
MB89636PFM  
MB89637PFM  
MB89T637PFM  
64-pin Plastic QFP  
(FPT-64P-M09)  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
MB89W637C-SH  
MB89PV630C-SH  
MB89PV630CF  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
64-pin Ceramic MQFP  
(MQP-64C-P01)  
52  
MB89630 Series  
PACKAGE DIMENSIONS  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
58.00+00..5252  
2.283+..002028  
INDEX-1  
INDEX-2  
17.00±0.25  
(.669±.010)  
5.65(.222)MAX  
3.00(.118)MIN  
0.25±0.05  
(.010±.002)  
1.00+00.50  
0.45±0.10  
(.018±.004)  
0.51(.020)MIN  
19.05(.750)  
.039+0.020  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
55.118(2.170)REF  
C
1994 FUJITSU LIMITED D64001S-3C-4  
Dimensions in mm (inches)  
64-pin Plastic QFP  
(FPT-64P-M06)  
24.70±0.40(.972±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
51  
33  
0.05(.002)MIN  
(STAND OFF)  
52  
32  
14.00±0.20 18.70±0.40  
(.551±.008) (.736±.016)  
12.00(.472)  
REF  
16.30±0.40  
(.642±.016)  
INDEX  
64  
20  
"A"  
1
19  
LEAD No.  
0.15±0.05(.006±.002)  
Details of "B" part  
1.00(.0394)  
TYP  
0.40±0.10  
(.016±.004)  
M
0.20(.008)  
Details of "A" part  
0.25(.010)  
"B"  
0.30(.012)  
0.18(.007)MAX  
0.63(.025)MAX  
0.10(.004)  
18.00(.709)REF  
22.30±0.40(.878±.016)  
0
10°  
1.20±0.20  
(.047±.008)  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F64013S-3C-2  
53  
MB89630 Series  
64-pin Plastic QFP  
(FPT-64P-M09)  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
+0.20  
48  
33  
32  
1.50–0.10  
.059+..000048  
49  
9.75  
(.384)  
REF  
13.00  
(.512)  
NOM  
1 PIN INDEX  
64  
17  
M
1
16  
Details of "A" part  
0.10±0.10  
LEAD No.  
"A"  
+0.05  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.127–0.02  
0.13(.005)  
+.002  
(STAND OFF)  
.005–.001  
(.004±.004)  
0.50±0.20  
(.020±.008)  
0.10(.004)  
0
10°  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED F64018S-1C-2  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
56.90±0.56  
(2.240±.022)  
8.89(.350) DIA  
TYP  
R1.27(.050)  
REF  
18.75±0.25  
(.738±.010)  
INDEX AREA  
1.27±0.25  
(.050±.010)  
5.84(.230)MAX  
0.25±0.05  
(.010±.004)  
3.40±0.36  
(.134±.014)  
1.778±0.180  
(.070±.007)  
0.90±0.10  
(.0355±.0040)  
0.46+00..0183  
.018+..000035  
19.05±0.25  
(.750±.010)  
0°~9°  
1.45(.057)  
MAX  
55.118(2.170)REF  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED D64006SC-1-2  
54  
MB89630 Series  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
0°~9°  
56.90±0.64  
(2.240±.025)  
15.24(.600)  
TYP  
18.75±0.30  
(.738±.012)  
19.05±0.30  
(.750±.012)  
INDEX AREA  
2.54±0.25  
(.100±.010)  
0.25±0.05  
(.010±.002)  
33.02(1.300)REF  
1.27±0.25  
(.050±.010)  
10.16(.400)MAX  
+0.13  
3.43±0.38  
(.135±.015)  
1.778±0.25  
(.070±.010)  
0.46–0.08  
0.90±0.13  
(.035±.005)  
.018+..000035  
55.12(2.170)REF  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED M64002SC-1-4  
64-pin Ceramic MQFP  
(MQP-64C-P01)  
18.70(.736)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
12.00(.472)TYP  
1.00±0.25  
INDEX AREA  
1.20+00..2400  
.047 +..000186  
(.039±.010)  
1.00±0.25  
(.039±.010)  
1.27±0.13  
(.050±.005)  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.00(.709)  
TYP  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
TYP  
24.70(.972)  
TYP  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.40±0.10  
(.016±.004)  
1.20+00..2400  
.047+..000186  
10.82(.426)  
MAX  
0.15±0.05  
(.006±.002)  
0.50(.020)TYP  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED M64004SC-1-3  
55  
MB89630 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
All Rights Reserved.  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without  
notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
KAWASAKI PLANT, 4-1-1, Kamikodanaka,  
Nakahara-ku, Kawasaki-shi,  
Kanagawa 211-8588, Japan  
Tel: +81-44-754-3763  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
Fax: +81-44-754-3329  
http://www.fujitsu.co.jp/  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, USA  
Tel: +1-408-922-9000  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipments, industrial, communications, and  
measurement equipments, personal or household devices, etc.).  
CAUTION:  
Fax: +1-408-922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Singapore 556741  
Tel: +65-281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
F9602  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89635P-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89635PF

8-bit Proprietary Microcontroller
FUJITSU

MB89635PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89635R

8-bit Proprietary Microcontroller
FUJITSU

MB89635RP-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89635RP-SH

Microcontroller, 8-Bit, MROM, F2MC-8L CPU, 10MHz, CMOS, PDIP64, 17 X 58 MM, 7.64 MM HEIGHT, 1.778 MM PITCH, PLASTIC, SHDIP-64
CYPRESS

MB89635RPF

8-bit Proprietary Microcontroller
FUJITSU

MB89635RPF

Microcontroller, 8-Bit, MROM, F2MC-8L CPU, 10MHz, CMOS, PQFP64, 14 X 20 MM, 3.35 MM HEIGHT, 1 MM PITCH, PLASTIC, QFP-64
CYPRESS

MB89635RPFM

8-bit Proprietary Microcontroller
FUJITSU

MB89635RPMC

暂无描述
FUJITSU

MB89636

8-bit Proprietary Microcontroller
FUJITSU

MB89636P-SH

8-bit Proprietary Microcontroller
FUJITSU