MB89647PFM [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89647PFM
型号: MB89647PFM
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总59页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12505-3E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89640 Series  
MB89643/645/646/647/P647/PV640  
DESCRIPTION  
The MB89640 series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit, single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as  
dual-clock control system, five operating speed control stages, timers, a PWM timer, serial interface, an A/D  
converter, a D/A converter, an external interrupt, and a watch prescaler.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
(Continued)  
PACKAGE  
80-pin Ceramic MQFP  
80-pin Plastic QFP  
80-pin Plastic QFP  
(FPT-80P-M11)  
(FPT-80P-M06)  
(MQP-80C-P01)  
MB89640 Series  
(Continued)  
• Six types of timers  
8-bit PWM timer: 2 channels (also usable reload timer)  
8-bit pulse width counter (continuous measurement capable and applicable to remote control)  
16-bit timer/counter  
21-bit time-base counter  
15-bit watch prescaler  
Two 8-bit serial I/O  
Swichable transfer direction allows communication with various equipment.  
• 8-bit A/D converter: 8 channels  
Sense mode function enabling comparison at 12 instructions  
Activation by external input capable  
• External interrupt 1, external interrupt 2: 9 channels  
• 8-bit D/A converter: 2 channels  
8-bit R-2R type  
• Low-power consumption modes (stop mode, sleep mode, watch mode, subclock mode)  
• Bus interface functions  
Including hold and ready functions  
2
MB89640 Series  
PRODUCT LINEUP  
Part number  
MB89643  
MB89645  
MB89646  
MB89647  
MB89P647  
MB89PV640  
Parameter  
Piggyback/  
Classification  
Mass production products  
(mask ROM products)  
One-time  
PROM product  
evaluation product  
for evaluation and  
development  
32 K × 8 bits  
(internal PROM,  
programming with  
general-purpose  
programmer)  
ROM size  
8 K × 8 bits  
16 K × 8 bits  
24 K × 8 bits 32 K × 8 bits  
32 K × 8 bits  
(external ROM)  
(internalmask (internalmask (internalmask (internalmask  
ROM)  
ROM)  
ROM)  
ROM)  
RAM size  
256 × 8 bits  
512 × 8 bits  
768 × 8 bits  
1 K × 8 bits  
CPU functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
Data bit length:  
Minimum execution time:  
0.4 µs/10 MHz to 6.4 µs/10 MHz,  
or 61.0 µs/32.768 kHz  
Interrupt processing time:  
3.6 µs/10 MHz to 57.6 µs/10 MHz,  
or 562.5 µs/32.768 kHz  
Ports  
Input ports (CMOS):  
Output ports (CMOS):  
I/O ports (CMOS):  
9 (All also serve as a external interrupt.)  
8 (All also serve as a bus control.)  
24 (8 ports also serve as peripherals,  
16 ports also serve as a bus control.)  
8 (All also serve as peripherals.)  
I/O ports (N-ch open-drain):  
Output ports (N-ch open-drain): 16 (8 ports also serve as peripherals.)  
Total:  
65  
Clock timer  
21 bits × 1 (in main clock mode), 15 bits × 1 (at 32.768 kHz)  
8-bit PWM  
timer  
8-bit reload timer operation × 2 channels  
7/8-bit resolution PWM operation × 2 channels  
8-bit PPG operation × 1 channel  
8-bit pulse  
width counter  
8-bit timer operation (overflow output capable)  
8-bit reload timer operation (toggled output capable)  
8-bit pulse width measurement operation  
(Continuous measurement capable, measurement of “H” width/“L” width/from to /from to capable)  
16-bit timer/  
counter  
16-bit timer operation  
16-bit event counter operation  
8-bit serial I/O  
8 bits × 2 channels  
LSB first/MSB first selectability  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
8-bit A/D  
converter  
8-bit resolution × 8 channels  
A/D conversion mode (conversion time: 44 instructions)  
Sense mode (conversion time: 12 instructions)  
Continuous activation by an external activation or an internal timer capable  
Reference voltage input  
(Continued)  
3
MB89640 Series  
(Continued)  
Part number  
MB89643  
MB89645  
MB89646  
MB89647  
MB89P647  
MB89PV640  
Parameter  
8-bit D/A  
converter  
8-bit resolution × 2 channels, R-2R type  
External interrupt 1,  
External interrupt 2  
9 channels  
Standby modes  
Process  
Watch mode, subclock mode, sleep mode, and stop mode  
CMOS  
Operating  
voltage*1  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
EPROM for use  
MBM27C256A  
-20TV  
*1: Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89643  
MB89645  
MB89646  
MB89647  
MB89P647  
Package  
MB89PV640  
FPT-80P-M11  
FPT-80P-M06  
MQP-80C-P01  
×
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “External Dimensions.”  
4
MB89640 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• On the MB89643 register banks 16 to 32 cannot be used.  
• On the MB89P647, the program area starts from address 8007H but on the MB89PV640 and MB89647 starts  
from 8000H.  
(On the MB89P647, addresses 8000H to 8006H comprise the option setting area, option settings can be read  
by reading these addresses. On the MB89PV640 and MB89647, addresses 8000H to 8006H could also be  
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the  
MB89P647.)  
• The stack area, etc., is set at the upper limit of the RAM.  
• The external areas are used.  
2. Current Consumption  
• In the case of the MB89PV640, add the current consumed by the EPROM which is connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
• However, the current consumption in sleep/stop modes is the same. (For more information, see sections  
Electrical Characteristics” and “Example Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-up resistor cannot be set for P40 to P47 and P50 to P57 on the MB89P647.  
• For all products, P60 to P67 are available for no pull-up resistor when an A/D converter is used.  
• For all products, P50 to P57 are available for no pull-up resistor when a D/A converter is used.  
• Options are fixed on the MB89PV640.  
5
MB89640 Series  
PIN ASSIGNMENT  
(Top view)  
P71/LI1  
P70/LI0  
P83/INT3  
P82/INT2  
P81/INT1  
P80/INT0  
X0A  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P54/BZ  
P55/SCK2  
P56/SO2  
P57/SI2  
VSS  
P40  
P41  
VCC  
P42  
P43  
P44  
P45  
P46  
X1A  
MOD0  
MOD1  
X0  
X1  
VSS  
RST  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P47  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P30/ADST  
P31/SCK1  
P32/SO1  
P33/SI1  
P34/EC  
P35/PWC  
(FPT-80P-M11)  
6
MB89640 Series  
(Top view)  
P73/LI3  
P72/LI2  
P71/LI1  
P70/LI0  
P83/INT3  
P82/INT2  
P81/INT1  
P80/INT0  
X0A  
1
2
3
4
5
6
7
8
64  
P52/PWM  
P53/PTO2  
P54/BZ  
P55/SCK2  
P56/SO2  
P57/SI2  
VSS  
P40  
P41  
VCC  
P42  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
101  
102  
103  
104  
105  
106  
107  
108  
109  
93  
92  
91  
90  
89  
88  
87  
86  
85  
9
X1A  
MOD0  
MOD1  
X0  
X1  
VSS  
RST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P43  
P44  
P45  
P46  
P47  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
P30/ADST  
P31/SCK1  
P32/SO1  
P33/SI1  
P34/EC  
P35/PWC  
P36/WTO  
P37/PTO1  
Each pin inside the dashed line is for the  
MB89PV640 only.  
(FPT-80P-M06)  
(MQP-80C-P01)  
• Pin assignment on package top (MB89PV640 only)  
Pin no.  
81  
Pin name  
N.C.  
VPP  
Pin no.  
89  
Pin name  
A2  
Pin no.  
97  
Pin name  
N.C.  
O4  
Pin no.  
Pin name  
OE  
105  
106  
107  
108  
109  
110  
111  
112  
82  
90  
A1  
98  
N.C.  
A11  
A9  
83  
A12  
A7  
91  
A0  
99  
O5  
84  
92  
N.C.  
O1  
100  
101  
102  
103  
104  
O6  
85  
A6  
93  
O7  
A8  
86  
A5  
94  
O2  
O8  
A13  
A14  
VCC  
87  
A4  
95  
O3  
CE  
88  
A3  
96  
VSS  
A10  
N.C.: Internally connected. Do not use.  
7
MB89640 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
QFP*2  
QFP*1  
MQFP*3  
11  
12  
9
13  
14  
11  
12  
16  
X0  
A
C
D
Main clock crystal oscillator pins (Max. 10 MHz)  
X1  
MOD0  
MOD1  
RST  
Operating mode selection pins  
Connect directly to VCC or VSS.  
10  
14  
Reset I/O pin  
This pin is an N-ch open-drain output type with pull-up  
resistor, and a hysteresis input type. “L” is output from this  
pin by an internal reset source. The internal circuit is  
initialized by the input of “L”.  
38 to 31  
30 to 23  
40 to 33  
32 to 25  
P00/AD0 to  
P07/AD7  
E
General-purpose I/O ports  
Also serve as multiplex pins of lower address output and  
data I/O.  
P10/A08 to  
P17/A15  
E
General-purpose I/O ports  
Also serve as an upper address output.  
22,  
21,  
18,  
15  
24,  
23,  
20,  
17  
P20/BUFC,  
P21/HAK,  
P24/CLK,  
P27/ALE  
G
General-purpose output-only ports  
Also serve as a bus control signal output.  
20,  
19  
22,  
21  
P22/HRQ,  
P23/RDY  
E
E
F
General-purpose output-only ports  
Also serve as a bus control signal input.  
17,  
16  
19,  
18  
P25/WR,  
P26/RD  
General-purpose output-only ports  
Also serve as a bus control signal output.  
46  
48  
P30/ADST  
General-purpose I/O port  
Also serves as an A/D converter external activation. This  
port is a hysteresis input type.  
45  
47  
P31/SCK1  
F
F
F
General-purpose I/O port  
Also serves as the clock I/O for the serial I/O 1. This port  
is a hysteresis input type.  
44,  
43  
46,  
45  
P32/SO1,  
P33/SI1  
General-purpose I/O ports  
Also serve as the data output for the serial I/O 1. These  
ports are a hysteresis input type.  
42  
44  
P34/EC  
General-purpose I/O port  
Also serves as the external clock input for the 16-bit timer/  
counter. This port is a hysteresis input type.  
(Continued)  
*1: FPT-80P-M11  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
8
MB89640 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
QFP*2  
QFP*1  
MQFP*3  
41  
43  
42  
41  
P35/PWC  
F
F
F
General-purpose I/O port  
Also serves as the measured pulse input for the 8-bit pulse  
width counter. This port is a hysteresis input type.  
40  
39  
P36/WTO  
P37/PTO1  
General-purpose I/O port  
Also serves as the toggle output for the 8-bit pulse width  
counter. This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the toggle output for the 1-channel PWM  
timer.  
55, 54,  
52 to 47  
57, 56,  
54 to 49  
P40 to P47  
P50/DA1  
L
N-ch medium-voltage open-drain output-only ports  
64  
66  
65  
64  
63  
62  
61  
60  
59  
K
N-ch open-drain I/O port  
Also serves as a D/A channel 1 output. This port is a  
hysteresis input type.  
63  
P51/DA2  
P52/PWM  
P53/PTO2  
P54/BZ  
K
H
H
H
H
H
H
I
N-ch open-drain I/O port  
Also serves as a D/A channel 2 output. This port is a  
hysteresis input type.  
62  
N-ch open-drain I/O port  
Also serves as the PWM output by the two PWM timers.  
This port is a hysteresis input type.  
61  
N-ch open-drain I/O port  
Also serves as the toggle output for the 2-channel PWM  
timer. This port is a hysteresis input type.  
60  
N-ch open-drain I/O port  
Also serves as a buzzer output. This port is a hysteresis  
input type.  
59  
P55/SCK2  
P56/SO2  
P57/SI2  
N-ch open-drain I/O port  
Also serves as the clock I/O for the serial I/O 2. This port  
is a hysteresis input type.  
58  
N-ch open-drain I/O port  
Also serves as the data output for the serial I/O 2. This  
port is a hysteresis input type.  
57  
N-ch open-drain I/O port  
Also serves as the data input for the serial I/O 2. This port  
is a hysteresis input type.  
77 to 70  
79 to 72 P60/AN0 to  
P67/AN7  
N-ch open-drain output-only ports  
Also serve as the analog input for the A/D converter.  
These ports are a hysteresis input type.  
2, 1,  
80 to 78  
4 to 1, 80 P70/LI0 to  
P74/LI4  
J
Input-only ports  
Also serve as external interrupt 1 input. These ports are a  
hysteresis input type.  
*1: FPT-80P-M11  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
9
MB89640 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
QFP*2  
QFP*1  
MQFP*3  
7
8
9
10  
X0A  
X1A  
VCC  
B
Subclock oscillator pins (32.768 kHz)  
53  
55  
Power supply pin  
13, 56  
66  
15, 58  
68  
VSS  
Power supply (GND) pin  
AVCC  
A/D converter power supply pin  
Use this pin at the same voltage as VCC.  
67, 68  
65  
69, 70  
67  
AVRH, AVRL  
DAVC  
A/D converter reference voltage input pins  
D/A converter power supply pin  
Use this pin at the same voltage as VCC.  
69  
71  
AVSS  
Analog circuit power supply pin  
Use this pin at the same voltage as VSS.  
3 to 6  
5 to 8  
P83/INT3 to  
P80/INT0  
J
Input-only ports  
Also serve as an external interrupt 2 input. These ports  
are a hysteresis input type.  
*1: FPT-80P-M11  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
10  
MB89640 Series  
• External EPROM pins (MB89PV640 only)  
Pin no.  
Pin name  
VPP  
I/O  
O
Function  
82  
“H” level output pin  
Address output pins  
83  
84  
85  
86  
87  
88  
89  
90  
91  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
O
93  
94  
95  
O1  
O2  
O3  
I
Data input pins  
96  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
98  
99  
100  
101  
102  
O4  
O5  
O6  
O7  
O8  
103  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
104  
105  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
107  
108  
109  
A11  
A9  
A8  
O
Address output pins  
110  
111  
112  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
81  
92  
N.C.  
Internally connected pins  
Be sure to leave them open.  
97  
106  
11  
MB89640 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Standby control signal  
Standby control signal  
Remarks  
A
Main clock  
X1  
X0  
• At an oscillation feedback resistor of approximately  
1 M/5.0 V  
B
Subclock  
X1A  
X0A  
• At an oscillation feedback resistor of approximately  
4.5 M/5.0 V  
C
D
• At an output pull-up resistor (P-ch) of approximately  
R
50 k/5.0 V  
• Hysteresis input  
P-ch  
N-ch  
E
• CMOS output  
• CMOS input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
(Continued)  
12  
MB89640 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
• CMOS output  
G
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
H
• N-ch open-drain output  
• Hysteresis input  
R
P-ch  
N-ch  
• Pull-up resistor optional  
I
• N-ch open-drain output  
• Analog input  
R
P-ch  
P-ch  
N-ch  
Analog input  
• Pull-up resistor optional  
• Hysteresis input  
J
R
• Pull-up resistor optional  
(Continued)  
13  
MB89640 Series  
(Continued)  
Type  
Circuit  
Remarks  
• N-ch open-drain output  
K
R
• Hysteresis input  
• Analog output  
P-ch  
P-ch  
N-ch  
Analog output  
Enable  
• Pull-up resistor optional  
L
• N-ch open-drain output  
• Medium voltage  
R
P-ch  
N-ch  
• Pull-up resistor optional  
14  
MB89640 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVRH) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVRH = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and  
wake-up from stop mode.  
15  
MB89640 Series  
PROGRAMMING TO THE EPROM ON THE MB89P647  
The MB89P647 is an OTPROM version of the MB89640 series.  
1. Features  
• 32-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single chip  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
I/O  
0080H  
RAM  
0180H  
Not available  
Not available  
8000H  
8007H  
0000H  
Option area  
0007H  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
• Precautions  
(1) The program area of the MB89P647 is 7 bytes smaller than that of the MB89PV640 and MB89647 to provide  
an option area. Note this point during program development.  
(2) During normal operation, the option data is read when the option area is read from the CPU.  
3. Programming to the EPROM  
In EPROM mode, the MB89P647 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH  
while operating as internal ROM mode assign to 0007H to 7FFFH in EPROM mode).  
Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each  
corresponding option, see “7. Setting OTPROM Options.”)  
(3) Program with the EPROM programmer.  
16  
MB89640 Series  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. EPROM Programmer Socket Adapter  
Package  
Compatible socket adapter  
ROM-80QF-28DP-8L2  
FPT-80P-M06  
FPT-80P-M11  
ROM-80QF2-28DP-8L  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or VCC  
and VSS can stabilize programming operations.  
17  
MB89640 Series  
7. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map:  
• OTPROM option bit map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Single/dual-  
clock system  
Oscillation stabilization time  
Reset pin  
output  
1: Yes  
Power-on  
reset  
1: Yes  
2: No  
00: 24/FCH 10: 214/FCH  
01: 217/FCH 11: 218/FCH  
Readable and Readable and Readable and 1: Dual clock  
writable  
0000H  
0001H  
0002H  
0003H  
0004H  
0005H  
0006H  
writable  
writable  
2: Single clock  
2: No  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P67  
P66  
P65  
P64  
P63  
P62  
P61  
P60  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P74  
P73  
P72  
P71  
P70  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable and Readable and Readable and  
writable  
writable  
writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
P83  
P82  
P81  
P80  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable and Readable and Readable and Readable and  
writable writable writable writable  
Notes: Set each bit to 1 to erase.  
Do not write 0 to the vacant bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
18  
MB89640 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part number  
LCC-32 (Rectangle)  
ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
3. Memory Space  
Memory space in each mode, such as 32-Kbyte PROM is diagrammed below.  
Address  
0000H  
Single chip  
Corresponding addresses on the EPROM programmer  
I/O  
0080H  
0480H  
RAM  
Not available  
Not available  
8000H  
8007H  
0000H  
Not available  
0007H  
PROM  
32 KB  
EPROM  
32 KB  
7FFFH  
FFFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
19  
MB89640 Series  
BLOCK DIAGRAM  
Main clock  
oscillator  
X0  
X1  
CMOS I/O port  
Clock controller  
8-bit pulse width  
counter  
P36/WTO  
P35/PWC  
Subclock oscillator  
(32.768 kHz)  
X0A  
X1A  
16-bit timer/counter  
Serial I/O 1  
P34/EC  
Reset circuit  
RST  
P33/SI1  
P32/SO1  
P31/SCK1  
P30/ADST  
P37/PTO1  
P52/PWM  
P53/PTO2  
P57/SI2  
P56/SO2  
P55/SCK2  
Time-base  
timer  
2-channel 8-bit  
PWM timer  
Watch prescaler  
Serial I/O 2  
Buzzer output  
P54/BZ  
P51/DA2  
P50/DA1  
P00/AD0  
to P07/AD7  
2-channel 8-bit  
D/A converter  
CMOS I/O ports  
8
8
P10/A08  
to P17/A15  
N-ch open-drain I/O port  
DAVC  
Port 4  
Medium-voltage N-ch  
open-drain output port  
MOD0  
MOD1  
External bus  
interface  
P40 to P47  
P27/ALE  
P26/RD  
P67/AN7  
P66/AN6  
P65/AN5  
P64/AN4  
P63/AN3  
P62/AN2  
P61/AN1  
P60/AN0  
AVRH  
N-ch open-drain output port  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
8
8-bit A/D converter  
CMOS output port  
ROM  
AVRL  
AV CC  
AV SS  
F2MC-8L  
CPU  
P74/LI4  
P73/LI3  
P72/LI2  
P71/LI1  
P70/LI0  
CMOS input port  
5
4
External interrupt 1  
RAM  
P83/INT3  
P82/INT2  
P81/INT1  
P80/INT0  
External interrupt 2  
CMOS input port  
Other pins  
V CC, V SS  
20  
MB89640 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89640 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89640 series is structured as illustrated below.  
Memory Space  
MB89P647  
MB89647  
MB89PV640  
I/O  
MB89643  
I/O  
MB89645  
I/O  
MB89646  
I/O  
0000 H  
0080 H  
0000 H  
0080 H  
0000 H  
0080 H  
0000 H  
0080 H  
0100 H  
0000 H  
0080 H  
I/O  
RAM  
1 KB  
RAM  
1 KB  
RAM  
256 B  
RAM  
512 B  
RAM  
768 B  
0100 H  
0200 H  
0100 H  
0200 H  
0100 H  
0180 H  
0100 H  
0200 H  
Register  
Register  
Register  
Register  
Register  
0200 H  
0280 H  
Not available  
0280 H  
0380 H  
0480 H  
8000 H  
8007 H  
0480 H  
8000 H  
8007 H  
External area  
Not available  
External area  
Not available  
External area  
External area  
External area  
A000 H  
FFFF H  
ROM  
32 KB  
External ROM  
32 KB  
C000 H  
FFFF H  
C000 H  
E000 H  
ROM  
24 KB  
Not available  
ROM  
16 KB  
ROM  
8 KB  
FFFF H  
FFFF H  
FFFF H  
Note: Since addresses 8000H to 8006H for the MB89P647 comprise an option area, do not use this area for the  
MB89PV640 and MB89647.  
21  
MB89640 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whentheinstructionisan8-bitdataprocessinginstruction, thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
16 bits  
PC  
Initial value  
FFFDH  
: Program counter  
: Accumulator  
A
T
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
22  
MB89640 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
RP  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set to the shift-out value in the case of a shift instruction.  
23  
MB89640 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers. Up to a total of 16 banks can be used on the MB89643 and a total of 32 banks can be used on  
the MB89645/646/647/P647/PV640. The bank currently in use is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100 H + 8 × (RP)  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
32 banks  
Memory area  
24  
MB89640 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Port 2 data register  
External bus control register  
Vacancy  
(R/W)  
(W)  
PDR1  
DDR1  
(R/W)  
(W)  
PDR2  
BCTR  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
SYCC  
STBC  
WDTC  
TBCR  
WPCR  
PDR3  
DDR3  
PDR4  
BUZR  
PDR5  
PDR6  
PDR7  
PDR8  
System clock control register  
Standby control register  
Watchdog timer control register  
Time-base timer control register  
Watch prescaler control register  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
Buzzer register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Vacancy  
(R)  
Vacancy  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
TMCR  
TCHR  
TCLR  
16-bit timer control register  
16-bit timer count register (H)  
16-bit timer count register (L)  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SMR1  
SDR1  
SMR2  
SDR2  
Serial 1 mode register  
Serial 1 data register  
Serial 2 mode register  
Serial 2 data register  
(Continued)  
25  
MB89640 Series  
(Continued)  
Address  
20H  
Read/write  
(R/W)  
Register name  
ADC1  
Register description  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
Vacancy  
21H  
(R/W)  
ADC2  
22H  
(R/W)  
ADCD  
23H  
24H  
(R/W)  
(W)  
DACR  
DADR1  
DADR2  
D/A converter control register  
D/A converter data register 1  
D/A converter data register 2  
Vacancy  
25H  
26H  
(W)  
27H  
28H  
(R/W)  
(R/W)  
(R/W)  
(W)  
CNTR1  
CNTR2  
CNTR3  
COMR1  
COMR2  
PCR1  
PWM timer control register 1  
PWM timer control register 2  
PWM timer control register 3  
PWM timer compare register 1  
PWM timer compare register 2  
PWC pulse width control register 1  
PWC pulse width control register 2  
PWC reload buffer register  
Vacancy  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
(W)  
(R/W)  
(R/W)  
(R/W)  
PCR2  
RLBR  
30H  
31H  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
EIC1  
EIC2  
EIE2  
EIF2  
External interrupt 1 control register 1  
External interrupt 1 control register 2  
External interrupt 2 enable register  
External interrupt 2 flag register  
Vacancy  
32H  
33H  
34H  
35H to 7AH  
7BH  
7CH  
7DH  
7EH  
7FH  
Vacancy  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
Note: Do not use vacancies.  
26  
MB89640 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
AVCC  
DAVC  
Power supply voltage  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
V
V
*
AVRH must not exceed AVCC +  
0.3 V.  
AVRH  
VSS + 7.0  
A/D converter reference input  
voltage  
AVRL  
VPP  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
13.0  
V
V
AVRL must not exceed AVRH.  
MOD1 pin on MB89P647  
Program voltage  
Input voltage  
P52 to P57 with a pull-up  
resistor and other input ports  
VI  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VSS + 7.0  
V
V
P52 to P57 without a pull-up  
resistor  
VI2  
P40 to P47 and P52 to P57 with  
a pull-up resistor and other  
output ports  
VO  
VSS – 0.3  
VCC + 0.3  
V
Output voltage  
P40 to P47 without a pull-up  
resistor  
VSS – 0.3  
VSS – 0.3  
VSS + 17.0  
VSS + 7.0  
20  
V
VO2  
P52 to P57 without a pull-up  
resistor  
VO3  
V
“L” level maximum output  
current  
IOL  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Average value (operating  
current × operating rate)  
“L” level average output current  
IOLAV  
IOLAV  
IOL  
IOH  
4
“L” level total average output  
current  
Average value (operating  
current × operating rate)  
40  
“L” level total maximum output  
current  
100  
“H” level maximum output  
current  
–20  
Average value (operating  
current × operating rate)  
“H” level average output current  
IOHAV  
IOHAV  
–4  
“H” level total average output  
current  
Average value (operating  
current × operating rate)  
–20  
“H” level total maximum output  
current  
IOH  
–50  
500  
mA  
Power consumption  
PD  
mW  
(Continued)  
27  
MB89640 Series  
(Continued)  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
–40  
–55  
Max.  
+85  
Operating temperature  
Storage temperature  
TA  
°C  
°C  
Tstg  
+150  
* : Use DAVC and AVCC and VCC set at the same voltage.  
Take care so that DAVC and AVCC does not exceed VCC, such as when power is turned on.  
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded.  
Functional operation should be restricted to the conditions as detailed in the operational sections of  
this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Normal operation assurance range*  
(MB89643/645/646/647)  
2.2*  
6.0*  
V
V
VCC  
AVCC  
DAVC  
Power supply voltage  
Normal operation assurance range*  
(MB89P647/PV640)  
2.7*  
6.0*  
1.5  
3.0  
0.0  
–40  
6.0  
AVCC  
2.0  
V
V
Retains the RAM state in stop mode  
AVRH  
AVRL  
TA  
A/D converter reference input  
voltage  
V
Operating temperature  
+85  
°C  
* : These values vary with the operating frequency and analog assurance range. See Figure 1, “5. A/D Converter  
Electrical Characteristics,” and “6. D/A Converter Electrical Characteristics.”  
28  
MB89640 Series  
6
5
Analog accuracy assured in the  
VCC = AVCC = DAVC = 3.5 V to 6.0 V range.  
Operation assurance range  
4
3
2
1
1.0  
5.0  
10.0  
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz)  
4.0 2.0  
1.0 0.8  
0.5  
0.4  
Minimum execution time (instruction cycle) (µs)  
Note: The shaded area is assured only for the MB89643/645/646/647.  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
29  
MB89640 Series  
3. DC Characteristics  
(AVCC = DAVC = VCC = +5.0 V, AVSS = VSS = 0.0 V, FCH = 10 MHz, FCL = 32.768 kHz, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
P00 to P07, P10 to  
P17, P22, P23  
VCC + 0.3  
VIH  
0.7 VCC  
V
RST, P30 to P37,  
P50, P51, P70 to P74,  
P80 to P83  
“H” level input  
voltage*1  
VCC + 0.3  
VIHS  
0.8 VCC  
V
With pull-up  
resistor  
P52 to P57  
P52 to P57  
Without pull-  
up resistor  
VSS + 6.0  
0.3 VCC  
VIHS2  
0.8 VCC  
V
P00 to P07, P10 to  
P17, P22, P23  
VSS 0.3  
VIL  
V
V
“L” level input  
voltage*1  
RST, P30 to P37,  
P50 to P57, P70 to  
P74, P80 to P83  
VSS 0.3  
VILS  
0.2 VCC  
Without pull-  
up resistor  
VSS 0.3  
VSS 0.3  
VSS + 15.0  
VSS + 6.0  
VD  
P40 to P47  
V
Without pull-  
up resistor  
Open-drain output  
pin application  
voltage  
VD2  
P52 to P57  
P60 to P67  
V
VSS 0.3  
VCC + 0.3  
VD3  
VOH  
V
V
P40 to P47, P52 to  
P57  
With pull-up  
resistor  
“H” level output  
voltage  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37  
IOH = –2.0 mA  
2.4  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67  
VOL  
IOL = +1.8 mA  
IOL = +4.0 mA  
0.4  
0.4  
V
V
“L” level output  
voltage  
VOL2  
RST  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P50 to P57, P70 to P74,  
P80 to P83, MOD0,  
MOD1  
Input leakage  
current (Hi-z output ILI1  
leakage current)  
Without pull-  
up resistor  
0.45 V < VI < VCC  
±5  
µA  
(Continued)  
30  
MB89640 Series  
(AVCC = DAVC = VCC = +5.0 V, AVSS = VSS = 0.0 V, FCH = 10 MHz, FCL = 32.768 kHz, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47,  
P50 to P57, P60 to P64,  
P70 to P74, P80 to P83,  
RST  
Without pull-  
kΩ  
Pull-up resistance  
RPULL  
VI = 0.0 V  
25  
50  
100  
up resistor  
VCC = +5.0 V  
10  
11  
20  
23  
2
mA  
• Main clock  
operation  
ICC1  
MB89P647  
mA  
• High speed*2  
only  
VCC = +3.0 V  
1.5  
2.5  
mA  
• Main clock  
operation  
ICC2  
MB89P647  
5
mA  
• Low speed*3  
only  
VCC = +5.0 V  
• Main clock sleep  
• High speed*2  
ICS1  
3
7
mA  
Power supply  
current  
VCC  
VCC = +3.0 V  
• Main clock sleep  
• Low speed*3  
ICS2  
1
1.5  
50  
mA  
VCC = +3.0 V  
Subclock sleep  
ICS3  
25  
µA  
TA = +25°C  
Subclock stop  
ICCH  
50  
1
10  
100  
3
µA  
µA  
VCC = +3.0 V  
Subclock operation  
(32.768 kHz)  
ICSB  
MB89P647  
only  
mA  
VCC = +3.0 V  
Watch mode  
(32.768 kHz)  
ICCT  
VCC  
15  
3
µA  
Power supply  
current  
• Main clock  
operation  
• High speed*2  
IA  
AVCC  
1
mA  
pF  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance  
CIN  
f = 1 MHz  
10  
*1: Connect MOD0 and MOD1 to VCC or VSS.  
*2: High-speed operation is the operation when the system clock is set to the maximum speed by the system clock  
select bit at 10-MHz clock.  
*3: Low-speed operation is the operation when the system clock is set to the maximum speed by the system clock  
select bit at 10-MHz clock.  
31  
MB89640 Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tXCYL  
ns  
* : tXCYL is the oscillation cycle (1/FCH) to input to the X0 pin.  
tZLZH  
RST  
0.2 V CC  
0.2 V CC  
(2) Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Min. Max.  
Symbol Condition  
Unit  
Remarks  
Parameter  
Power supply rising time  
Power supply cut-off time  
tR  
1
50  
ms  
ms  
tOFF  
Due to repeated operation  
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
For example, when the main clock is operating at 10 MHz (FCH) and the oscillation stabilization time select  
option has been set to 214/FCH, the oscillation stabilization delay time is 1.6 ms and accordingly the maximum  
value of power supply rising time is about 1.6 ms.  
Keep in mind that abrupt changes in power supply voltage may cause a power-on reset. If power supply  
voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.  
tOFF  
tR  
2.0 V  
VCC  
0.2 V  
0.2 V  
0.2 V  
32  
MB89640 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Clock cycle time  
Min.  
1
Max.  
10  
FCH  
X0, X1  
MHz  
kHz  
ns  
FCL  
X0A, X1A  
X0, X1  
32.768  
tXCYL  
tLXCYL  
100  
1000  
X0A, X1A  
30.5  
µs  
PWH  
PWL  
X0  
20  
30.5  
10  
ns  
µs  
ns  
External clock  
External clock  
Input clock pulse width  
PWHL  
PWLL  
X0A  
X0  
tCR  
tCF  
Input clock rising/falling time  
X0 and X1 Timing and Conditions  
tXCYL  
PWH  
PWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
0.2 VCC  
X0  
0.2 VCC  
0.2 VCC  
Main Clock Conditions  
When a crystal  
or  
ceramic resonator is used.  
When an external clock is used.  
X0  
X1  
X0  
X1  
Open  
33  
MB89640 Series  
X0A and X1A Timing and Conditions  
tLXCYL  
PWHL  
PWLL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Subclock Conditions  
When a crystal  
or  
ceramic resonator is used.  
When an external clock is used.  
X0A  
X1A  
X0A  
X1A  
Open  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
tinst = 0.4 µs when operating at FCH =  
10 MHz  
4/FCH system clock selection 11  
8/FCH system clock selection 10  
16/FCH system clock selection 01  
64/FCH system clock selection 00  
µs  
tinst = 0.8 µs when operating at FCH =  
10 MHz  
µs  
µs  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 1.6 µs when operating at FCH =  
10 MHz  
tinst = 6.4 µs when operating at FCH =  
10 MHz  
34  
MB89640 Series  
(5) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR series)  
X0  
X1  
FAR*  
* : Fujitsu Acoustic Resonator  
C1 = C2 = 20 pF±8 pF (built-in FAR)  
C1  
C2  
Initial deviation of  
FAR frequency  
(TA = +25°C)  
Temperature characteristic of  
FAR part number  
(built-in capacitor type)  
Frequency  
FAR frequency  
(TA = –20°C to +60°C)  
FAR-C4CB-08000-M02  
FAR-C4CB-10000-M02  
8.00 MHz  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
10.00 MHz  
Inquiry: FUJITSU LIMITED  
35  
MB89640 Series  
Sample Application of Ceramic Resonator  
X0  
X1  
*
C1  
C2  
Resonator manufacturer*  
Kyocera Corporation  
Resonator  
Frequency  
7.68 MHz  
8.0 MHz  
C1 (pF)  
33  
C2 (pF)  
33  
R (k)  
KBR-7.68MWS  
KBR-8.0MWS  
CSA8.00MTZ  
33  
33  
Murata Mfg. Co., Ltd.  
8.0 MHz  
30  
30  
Inquiry: Kyocera Corporation  
• AVX Corporation  
North American Sales Headquarters: TEL 1-803-448-9411  
• AVX Limited  
European Sales Headquarters: TEL 44-1252-770000  
• AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters: TEL 852-363-3303  
Murata Mfg. Co., Ltd.  
• Murata Electronics North America, Inc.: TEL 1-404-436-1300  
• Murata Europe Management GmbH: TEL 49-911-66870  
• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233  
(6) Clock Output Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Cycle time  
CLK CLK ↓  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min.  
Max.  
tXCYL × 2 at 10 MHz  
oscillation  
tCYC  
CLK  
CLK  
200  
ns  
ns  
Approx. tCYL/2 at  
10 MHz oscillation  
tCHCL  
30  
100  
tCYC  
tCHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
36  
MB89640 Series  
(7) Bus Read Timing  
Parameter  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
RD, A15 to  
08, AD7 to 0  
1/4 tinst* – 64 ns  
1/2 tinst* – 20 ns  
1/2 tinst*  
Valid address RD time  
tAVRL  
tRLRH  
tAVDV  
ns  
RD pulse width  
RD  
ns  
AD7 to 0,  
A15 to 08  
Valid address read data  
time  
200  
ns No wait  
1/2 tinst* – 80 ns  
RD ↓ → read data time  
RD ↑ → data hold time  
RD ↑ → ALE time  
tRLDV  
tRHDX  
tRHLH  
tRHAX  
tRLCH  
tCLRH  
tRLBL  
RD, AD7 to 0  
AD7 to 0, RD  
RD, ALE  
120  
ns No wait  
0
ns  
ns  
ns  
ns  
ns  
ns  
1/4 tinst* – 40 ns  
1/4 tinst* – 40 ns  
1/4 tinst* – 40 ns  
0
RD, A15 to 08  
RD, CLK  
RD ↑ → address invalid time  
RD ↓ → CLK time  
CLK ↓ → RD time  
RD, CLK  
RD ↓ → BUFC time  
RD, BUFC  
–5  
A15 to 08,  
AD7 to 0, BUFC  
BUFC Valid address time tBHAV  
5
ns  
* : For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
0.8 V  
tRHLH  
ALE  
0.8 V  
0.7 VCC  
2.4 V  
2.4 V  
0.8 V  
0.7 VCC  
0.3 VCC  
AD  
0.8 V  
0.3 VCC  
tAVDV  
tRHDX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
A
tRLCH  
tRLDV  
tCLRH  
tRHAX  
tAVRL  
tRLRH  
2.4 V  
RD  
0.8 V  
tRLBL  
tBHAV  
2.4 V  
BUFC  
0.8 V  
37  
MB89640 Series  
(8) Bus Write Timing  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
AD7 to 0, ALE,  
A15 to 08  
1/4 tinst*1 – 64 ns*2  
Valid address ALE time  
tAVLL  
ns  
AD7 to 0, ALE,  
A15 to 08  
ALE ↓ → address invalid time tLLAX  
5
ns *2  
1/4 tinst*1 – 60 ns  
1/2 tinst*1 – 20 ns  
1/2 tinst*1 – 60 ns  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
0
Valid address WR time  
WR pulse width  
tAVWL  
tWLWH  
tDVWH  
tWHAX  
tWHDX  
tWHLH  
tWLCH  
tCLWH  
tLHLL  
WR, ALE  
WR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write data WR time  
WR ↑ → address invalid time  
WR ↑ → data hold time  
WR ↑ → ALE time  
WR ↓ → CLK time  
CLK ↓ → WR time  
ALE pulse width  
AD7 to 0, WR  
WR, A15 to 08  
AD7 to 0, WR  
WR, ALE  
WR, CLK  
WR, CLK  
ALE  
1/4 tinst*1 – 35 ns*2  
1/4 tinst*1 – 30 ns*2  
ALE ↓ → CLK time  
tLLCH  
ALE, CLK  
*1: For information on tinst, see “(4) Instruction Cycle.”  
*2: These characteristics are also applicable to the bus read timing.  
2.4 V  
CLK  
0.8 V  
tLHLL  
tLLCH  
tWHLH  
2.4 V  
ALE  
AD  
A
0.8 V  
0.8 V  
tAVLL  
tLLAX  
2.4 V  
2.4 V 2.4 V  
0.8 V 0.8 V  
2.4 V  
0.8 V  
0.8 V  
tWHDX  
tDVWH  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
tCLWH  
tWHAX  
tWLCH  
tAVWL  
tWLWH  
2.4 V  
WR  
0.8 V  
38  
MB89640 Series  
(9) Ready Input Timing  
Parameter  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
60  
Max.  
RDY valid CLK time  
CLK ↑ → RDY invalid time  
tYVCH  
RDY, CLK  
RDY, CLK  
ns  
ns  
*
*
tCHYX  
0
* : These characteristics are also applicable to the read cycle.  
2.4 V  
2.4 V  
CLK  
ALE  
AD  
A
Address  
Data  
WR  
tYVCH tCHYX  
RDY  
tYVCH tCHYX  
Note: The bus cycle is also extended in the read cycle in the same manner.  
39  
MB89640 Series  
(10) Serial I/O Timing  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Serial clock cycle time  
SCK1, SCK2  
2 tinst*  
µs  
SCK1, SO1  
SCK2, SO2  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
–200  
200  
ns  
Internal shift  
clock mode  
SI1, SCK1  
SI2, SCK2  
Valid SI1 SCK1 ↑  
Valid SI2 SCK2 ↑  
1/2 tinst*  
1/2 tinst*  
µs  
µs  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
SCK1, SCK2  
SCK1, SCK2  
1 tinst*  
1 tinst*  
µs  
µs  
tSLSH  
SCK1, SO1  
SCK2, SO2  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
tSLOV  
tIVSH  
tSHIX  
0
200  
ns  
µs  
µs  
External shift  
clock mode  
SI1, SCK1  
SI2, SCK2  
Valid SI1 SCK1 ↑  
Valid SI2 SCK2 ↑  
1/2 tinst*  
1/2 tinst*  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
40  
MB89640 Series  
Internal Shift Clock Mode  
tSCYC  
2.4 V  
SCK1  
SCK2  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO1  
SO2  
0.8 V  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
External Shift Clock Mode  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
SCK1  
SCK2  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
41  
MB89640 Series  
(11) Peripheral Input Timing  
(VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
PWC, EC,  
INT0 to INT3  
Peripheral input pulse “H”  
width 1  
tILIH1  
2 tinst*  
µs  
PWC, EC,  
INT0 to INT3  
Peripheral input pulse “L”  
width 1  
tIHIL1  
tILIH2  
tIHIL2  
tILIH2  
tIHIL2  
2 tinst*  
32 tinst*  
32 tinst*  
8 tinst*  
µs  
µs  
µs  
µs  
µs  
Peripheral input pulse “H”  
width 2  
ADST  
ADST  
ADST  
ADST  
A/D mode  
Peripheral input pulse “L”  
width 2  
Peripheral input pulse “H”  
width 2  
Sense mode  
Peripheral input pulse “L”  
width 2  
8 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
0.8 VCC  
0.8 VCC  
0.2 VCC  
PWC  
EC  
0.2 VCC  
INT0 to 3  
tIHIL2  
tILIH2  
0.8 VCC  
0.8 VCC  
0.2 VCC  
ADST  
0.2 VCC  
42  
MB89640 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, FCH = 10 MHz, AVSS = VSS = AVRL = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Resolution  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
8
bit  
Total error  
±3.0  
±1.0  
LSB  
LSB  
Linearity error  
Differential linearity  
error  
±0.9  
LSB  
LSB  
AVRH = AVCC  
Zero transition voltage VOT  
–1.0  
+0.5  
+2.0  
Full-scale transition  
VFST  
AVRH – 4.5 AVRH – 1.5 AVRH + 1.5 LSB  
voltage  
Interchannel disparity  
0.5  
LSB  
tinst*  
A/D mode conversion  
time  
44  
Sense mode  
conversion time  
12  
tinst*  
Analog port input  
current  
IAIN  
10  
µA  
AN0 to  
AN7  
Analog input voltage  
Reference voltage  
0
0
AVRH  
AVCC  
V
V
When A/D  
conversion is  
activated  
AVRH = 5.0 V  
IR  
100  
µA  
µA  
AVRH  
Reference voltage  
supply current  
When A/D  
conversion is  
stopped  
IRH  
1
AVRH = 5.0 V  
* : For information on tinst, see “(4) Instruction Cycle.”  
43  
MB89640 Series  
(1) A/D Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
Digital output  
Theoretical conversion value  
Actual conversion value  
1111 1111  
1111 1110  
(1 LSB × N + VOT)  
AVRH – AVRL  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
– 1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT  
V(N + 1)T  
VFST  
Analog input  
(2) Precautions  
• Input impedance of the analog input pins  
The A/D converter used for the MB89640 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about  
0.1 µF for the analog input pin.  
44  
MB89640 Series  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 kΩ, it is  
recommended to  
contact an external  
capacitor of about  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after activating  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVRH – AVRL |, the greater the error would become relatively.  
6. D/A Converter Electrical Characteristics  
(DAVC = VCC = +3.5 V to +6.0 V, FCH=10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Parameter  
Resolution  
Symbol  
Unit  
Remarks  
Min.  
Max.  
8
bit  
Linearity error  
±1.0  
±0.9  
LSB  
LSB  
kΩ  
DAVC = VCC = 5.0 V  
At no load and  
Differential linearity error  
Output impedance  
20  
IDINA  
IDINS  
0.1  
0.1  
mA conversion cycle of  
D/A analog power supply  
current (for one channel)  
5 µs  
µA  
During power down  
45  
MB89640 Series  
EXAMPLES CHARACTERISTICS  
(1) “L” Level Output Voltage (P00 to P07, P10  
to P17, P20 to P27, P30 to P37, P50 to P57,  
P60 to P67)  
(2) “H” Level Output Voltage (P00 to P07, P10 to  
P17, P20 to P27, P30 to P37)  
VOL (V)  
0.6  
VOL vs. IOL  
VCC–VOH (V)  
1.0  
VCC–VOH vs. IOH  
VCC = 2.5 V  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
TA = +25°C  
0.5  
0.4  
0.3  
0.2  
0.1  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
0
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “L” Level Output Voltage (P40 to P47)  
(4) “H” Level Input Voltage/“L” Level Input Voltage  
(CMOS Input)  
VIN vs. VCC  
VIN (V)  
5.0  
VOL vs. IOL  
VOL (mV)  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TA = +25°C  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC = 5 V  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
IOL (mA)  
0
1
2
3
4
5
6
7
VCC (V)  
46  
MB89640 Series  
(5) “H” Level Input Voltage/“L” Level Input Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
5.0  
TA = +25°C  
4.5  
4.0  
3.5  
VIHS  
3.0  
2.5  
VILS  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
VCC (V)  
VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level  
VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level  
(6) Power Supply Current (External Clock)  
ICC vs. VCC  
ICC vs. VCC  
Main clock operation mode (4/FCH instruction)  
Main clock operation mode (64/FCH instruction)  
ICC (mA)  
ICC (mA)  
XTAL  
XTAL  
15  
14  
3
2
1
10 MHz  
TA = +25°C  
TA = +25°C  
13  
12  
11  
10  
9
8 MHz  
6 MHz  
4 MHz  
10 MHz  
8 MHz  
6 MHz  
4 MHz  
8
7
6
5
4
3
2
2 MHz  
1 MHz  
2 MHz  
1 MHz  
1
0
0
2
3
4
5
6
2
3
4
5
6
VCC (V)  
VCC (V)  
(Continued)  
47  
MB89640 Series  
(Continued)  
ICS1 vs. VCC  
ICS2 vs. VCC  
Main clock sleep mode (4/FCH instruction)  
Main clock sleep mode (64/FCH instruction)  
ICS2 (µA)  
ICS1 (mA)  
4
XTAL  
10 MHz  
XTAL  
10 MHz  
1,500  
1,000  
500  
0
TA = +25°C  
TA = +25°C  
8 MHz  
8 MHz  
6 MHz  
4 MHz  
3
2
1
6 MHz  
4 MHz  
2 MHz  
1 MHz  
2 MHz  
1 MHz  
0
2
2
3
4
5
6
3
4
5
6
VCC (V)  
VCC (V)  
ICS3 vs. VCC  
Subclock mode  
ICS3 (µA)  
120  
TA = +25°C  
Operation  
100  
80  
60  
40  
20  
Sleep  
Watch  
0
2
3
4
5
6
VCC (V)  
(7) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25°C  
100  
10  
1
2
3
4
5
6
VCC (V)  
48  
MB89640 Series  
INSTRUCTIONS  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
#vct  
#d8  
#d16  
dir: b  
rel  
@
Register indirect (Example: @A, @IX, @EP)  
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the  
instruction in use.)  
T
TH  
TL  
IX  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
(Continued)  
49  
MB89640 Series  
(Continued)  
Symbol  
Meaning  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
CCR  
RP  
Ri  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
Number of instructions  
Number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH immediately before the instruction  
is executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
50  
MB89640 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
51  
MB89640 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
A
C
C A  
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
52  
MB89640 Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
53  
MB89640 Series  
INSTRUCTION MAP  
54  
MB89640 Series  
MASK OPTIONS  
MB89643  
MB89645  
MB89646  
MB89647  
Part number  
MB89P647  
MB89PV640  
No.  
Specify when  
ordering  
Set with EPROM  
programmer  
Setting not  
possible  
Specifying procedure  
Pull-up resistors  
masking  
Selectable per pin  
(P60 to P67 must be set to  
without a pull-up resistor  
when an A/D converter is  
used. P51 and P50 are  
must be set to without a  
pull-up resistor when a D/A  
converter is used.)  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47,  
P50 to P57, P60 to P67,  
P70 to P74, P80 to P83  
Can be set per pin  
(Only P40 to P47  
and P50 to P57  
are without a pull-  
up resistor.)  
Fixed to without  
pull-up resistor  
1
2
3
Power-on reset  
Fixed to with  
power-on reset  
With power-on reset  
Without power-on reset  
Selectable  
Setting possible  
Setting possible  
Main clock oscillation stabilization time  
selection (when operating at 10 MHz)  
Approx. 218/FCH (Approx. 26.2 ms)  
Approx. 217/FCH (Approx. 13.1 ms)  
Approx. 214/FCH (Approx. 1.6 ms)  
Approx. 24/FCH (Approx. 0 ms)  
Fixed to approx.  
218/FCH (Approx.  
26.2 ms)  
Selectable  
FCH: Main clock frequency  
Reset pin output  
With reset output  
Without reset output  
Fixed to with  
reset output  
4
5
Selectable  
Selectable  
Setting possible  
Setting possible  
Selection either single- or dual-clock  
system  
Fixed to dual-  
clock system  
Single clock  
Dual clock  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89647PFM  
MB89646PFM  
MB89645PFM  
MB89643PFM  
MB89P647PFM  
80-pin Plastic QFP  
(FPT-80P-M11)  
MB89647PF  
MB89646PF  
MB89645PF  
MB89643PF  
MB89P647PF  
80-pin Plastic QFP  
(FPT-80P-M06)  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
MB89PV640CF  
55  
MB89640 Series  
PACKAGE DIMENSIONS  
80-pin Plastic QFP  
(FPT-80P-M11)  
16.00±0.20(.630±.008)SQ  
1.50+00..1200  
.059+..000048  
60  
61  
41  
40  
14.00±0.10(.551±.004)SQ  
15.00  
(.591)  
NOM  
12.35  
(.486)  
REF  
1 PIN INDEX  
80  
21  
1
Details of "A" part  
0.10±0.10  
LEAD No.  
"A"  
0.127+00..0025  
20  
(STAND OFF)  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
M
(.004±.004)  
0.13(.005)  
.005+..000012  
0.50±0.20  
(.020±.008)  
0.10(.004)  
0
10°  
C
1994 FUJITSU LIMITED F80016S-1C-2  
Dimensions in mm (inches)  
56  
MB89640 Series  
80-pin Plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
M
0.16(.006)  
Details of "A" part  
Details of "B" part  
0.25(.010)  
"B"  
0.10(.004)  
0.30(.012)  
0
10°  
0.18(.007)MAX  
0.58(.023)MAX  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F80010S-3C-2  
Dimensions in mm (inches)  
57  
MB89640 Series  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
18.70(.736)TYP  
12.00(.472)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
1.50(.059)TYP  
1.00(.040)TYP  
0.80±0.25  
(.0315±.010)  
INDEX AREA  
1.20+00..2400  
4.50(.177)  
TYP  
0.80±0.25  
(.0315±.010)  
.047+..000186  
1.27±0.13  
(.050±.005)  
INDEX AREA  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.40(.724)  
REF  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
24.70(.972)  
TYP  
TYP  
TYP  
INDEX  
6.00(.236)  
TYP  
0.40±0.10  
(.016±.004)  
+0.40  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.40±0.10  
(.016±.004)  
1.20–0.20  
1.50(.059)  
TYP  
+.016  
.047–.008  
1.00(.040)  
TYP  
0.15±0.05 8.70(.343)  
(.006±.002) MAX  
C
1994 FUJITSU LIMITED M80001SC-4-2  
Dimensions in mm (inches)  
58  
MB89640 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
KAWASAKI PLANT, 4-1-1, Kamikodanaka,  
Nakahara-ku, Kawasaki-shi,  
Kanagawa 211-8588, Japan  
Tel: +81-44-754-3763  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
Fax: +81-44-754-3329  
http://www.fujitsu.co.jp/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0005  
FUJITSU LIMITED Printed in Japan  
59  

相关型号:

MB89650AR

8-bit Proprietary Microcontroller
FUJITSU

MB89653APF

8-bit Proprietary Microcontroller
FUJITSU

MB89653APFV

8-bit Proprietary Microcontroller
FUJITSU

MB89653AR

8-bit Proprietary Microcontroller
FUJITSU

MB89655APF

8-bit Proprietary Microcontroller
FUJITSU

MB89655APFV

8-bit Proprietary Microcontroller
FUJITSU

MB89655AR

8-bit Proprietary Microcontroller
FUJITSU

MB89656APF

8-bit Proprietary Microcontroller
FUJITSU

MB89656APFV

8-bit Proprietary Microcontroller
FUJITSU

MB89656AR

8-bit Proprietary Microcontroller
FUJITSU

MB89657A

8-bit Proprietary Microcontroller
FUJITSU

MB89657APF

8-bit Proprietary Microcontroller
FUJITSU