MB89PV680 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89PV680
型号: MB89PV680
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总43页 (文件大小:657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12525-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89680 Series  
MB89689/P689/W689/PV680  
OUTLINE  
The MB89680 series is a line of single-chip microcontrollers. In addition to a compact instruction set, the  
microcontrollers contain a variety of peripheral functions such as dual-clock control system, four operating speed  
control stages, timers, PWM timer, a serial interface, a UART, an A/D converter, and an external interrupt.  
FEATURES  
• F2MC-8L family CPU core  
• Dual-clock control system  
• Maximum memory space: 64 Kbytes  
• Minimum execution time: 0.5 µs/8 MHz  
• Interrupt processing time: 4.5 µs/8 MHz  
• I/O ports: max. 85 channels  
• 21-bit timebase counter  
• 8-bit PWM timer  
• 8/16-bit timer  
• UART  
• Serial I/O with 1-byte buffer  
• 8-bit A/D converter  
• Pulse width counter  
• Modem signal output  
• External interrupts: 16 channels  
• Power-on reset function  
• Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)  
• CMOS technology  
PACKAGE  
100-pin Plastic QFP  
(FPT-100P-M06)  
100-pin Ceramic QFP  
100-pin Ceramic MQFP  
(FPT-100C-A02)  
(MQP-100C-P01)  
MB89680 Series  
PRODUCT LINEUP  
Part number  
MB89689  
MB89P689  
MB89W689  
MB89PV680  
Piggyback/  
evaluation product  
(for development)  
Item  
Classification  
Mass-produced  
product  
(mask ROM product)  
One-time PROM  
product  
EPROM product  
ROM size  
60 K × 8 bits  
(internal mask ROM) (internal PROM)  
60 K × 8 bits  
60 K × 8 bits  
(internal EPROM)  
60 K × 8 bits  
(external ROM)  
RAM size  
2.0 K × 8 bits  
Instruction bit length  
Instruction length  
Data bit length  
8 bits  
1 byte to 3 bytes  
1, 8, 16 bits  
136  
Number of instructions  
Clock generator  
Built-in  
Minimum execution time  
Interrupt processing time  
0.5 µs/8 MHz to 8 µs/8 MHz, 61 µs/32.768 kHz  
4.5 µs/8 MHz to 72 µs/8 MHz, 562.5 µs/32.768 kHz  
Ports  
Output ports (N-ch open-drain):  
Output ports (CMOS):  
I/O ports (N-ch open-drain):  
I/O ports (CMOS):  
21 (8)  
8 (0)  
8 (6)  
( ) indicate dual function  
ports  
48 (29)  
Total:  
85 (43)  
8-bit PWM timer  
8/16-bit timer/counter  
8-bit serial I/O  
8-bit A/D converter  
UART  
8 bits × 1 channel  
8 bits × 2 channels, or 16 bits × 1 channel  
With 1-byte buffer × 1 channel  
8 bits × 8 channels  
Full-duplex double buffer  
Transfer data length: 6 bits to 8 bits  
8 baud rates selectability, external clock available  
Pulse width counter  
5-bit noise reduction circuit  
Pulse edge detectable and selectable (rising, falling, and both edges)  
Software modem  
transmission circuit  
1200-bps/2400-bps modem output  
External interrupt  
Timebase timer  
Watch prescaler  
Standby mode  
Process  
16 channels  
21 bits  
15 bits  
Watch mode, subclock mode, sleep mode, and stop mode  
CMOS  
Power supply voltage*  
EPROM for use  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C512-20TV  
* : Varies with conditions such as the operating frequency. (See section “ELECTRICAL CHARACTERISTICS.”)  
2
MB89680 Series  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89689  
MB89P689  
Package  
MB89W689  
MB89PV680  
FPT-100P-M06  
FPT-100C-A02  
MQP-100C-P01  
×
×
×
×
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
2. Current Consumption  
In the case of the MB89PV680, add the current consumed by the EPROM which is connected to the top socket.  
When operated at low speed, the product with an OTPROM or an EPROM will consume more current than  
the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same.  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product. Before using  
options check section “Mask Options.” Take particular care on the following points:  
• Options are fixed on the MB89PV680.  
3
MB89680 Series  
PIN ASSIGNMENT  
(Top view)  
VCC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P97/INL7  
P96/INL6  
P95/INL5  
P94/INL4  
P93/INL3  
P92/INL2  
P91/INL1  
P90/INL0  
P87  
P86  
P85  
P84  
P83  
X1A  
X0A  
MOD0  
MOD1  
X0  
X1  
VSS  
RST  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P82  
P81  
P80  
P77  
P76  
P75/BSO2  
P74/BSI2  
P73/BSK2  
VSS  
P72/UO2  
P71/UI2  
P70/UCK2  
P67/BSO1  
P66/BSI1  
P65/BSK1  
P64  
P63/MSKO  
(FPT-100P-M06)  
(FPT-100C-A02)  
4
MB89680 Series  
(Top view)  
VCC  
P97/INL7  
P96/INL6  
P95/INL5  
P94/INL4  
P93/INL3  
P92/INL2  
P91/INL1  
P90/INL0  
P87  
P86  
P85  
P84  
P83  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
X1A  
X0A  
MOD0  
MOD1  
X0  
X1  
VSS  
O7  
O8  
01  
N.C.  
A0  
RST  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CE  
A10  
OE  
N.C.  
A11  
A9  
A1  
P82  
P81  
P80  
P77  
A2  
A3  
P76  
P75/BSO2  
P74/BSI2  
P73/BSK2  
VSS  
P72/UO2  
P71/UI2  
P70/UCK2  
P67/BSO1  
P66/BSI1  
P65/BSK1  
P64  
A4  
A5  
A8  
A6  
P63/MSKO  
(MQP-100C-P01)  
• Pin assignment on package top (MB89PV680 only)  
Pin no.  
101  
Pin name  
N.C.  
A15  
A12  
A7  
Pin no.  
109  
Pin name  
A2  
Pin no.  
117  
Pin name  
N.C.  
O4  
Pin no.  
125  
Pin name  
OE  
102  
110  
A1  
118  
126  
N.C.  
A11  
A9  
103  
111  
A0  
119  
O5  
127  
104  
112  
N.C.  
O1  
120  
O6  
128  
105  
A6  
113  
121  
O7  
129  
A8  
106  
A5  
114  
O2  
122  
O8  
130  
A13  
A14  
VCC  
107  
A4  
115  
O3  
123  
CE  
131  
108  
A3  
116  
VSS  
124  
A10  
132  
N.C.: Internally connected. Do not use.  
5
MB89680 Series  
PIN DESCRIPTION  
Pin no.  
Pin name  
Circuit type  
Function  
QFP*1, MQFP*2  
1
VCC  
A
Power supply pin  
2
X1A  
Subclock crystal oscillator pins (32.768 kHz)  
3
X0A  
4
MOD0  
MOD1  
X0  
B
A
Operating mode selection pins  
Connect to VSS (GND) when using.  
5
6
7
Main clock crystal oscillator pins (8 MHz)  
X1  
8
VSS  
C
D
D
F
Power supply (GND) pin  
Reset input pin  
9
RST  
10 to 17  
18 to 25  
26 to 33  
34 to 38  
39  
P00 to P07  
P10 to P17  
P20 to P27  
P40 to P44  
P30/PWM  
General-purpose I/O ports  
General-purpose I/O ports  
General-purpose output ports  
General-purpose output ports  
I
E
General-purpose I/O port  
Also serve as an 8-bit PWM.  
40  
41  
P31/BUZR  
P32/MSKI  
E
E
E
E
General-purpose I/O port  
Also serve as a buzzer output.  
General-purpose I/O port  
Also serve as a pulse width counter.  
42,  
43  
P33,  
P34  
General-purpose I/O ports  
44,  
45,  
46  
P35/UCK1,  
P36/UI1,  
P37/UO1  
General-purpose I/O ports  
Also serve as a UART I/O 1.  
47,  
48,  
49  
P60/TMO1,  
P61/TMO2,  
P62/TCLK  
E
General-purpose I/O ports  
Also serve as an 8/16-bit timer.  
50  
51  
VCC  
E
Power supply pin  
P63/MSKO  
General-purpose I/O port  
Also serve as a modem output.  
52  
P64  
E
E
General-purpose I/O port  
53,  
54,  
55  
P65/BSK1,  
P66/BSI1,  
P67/BSO1  
General-purpose I/O ports  
Also serve as a serial I/O 1 with 1-byte buffer.  
(Continued)  
*1: FPT-100P-M06, FPT-100C-A02  
*2: MQP-100C-P01  
6
MB89680 Series  
(Continued)  
Pin no.  
Pin name  
Circuit type  
Function  
QFP*1, MQFP*2  
56,  
57,  
58  
P70/UCK2,  
P71/UI2,  
P72/UO2  
H
General-purpose I/O ports  
Also serve as a UART I/O 2.  
59  
VSS  
H
Power supply (GND) pin  
60,  
61,  
62  
P73/BSK2,  
P74/BSI2,  
P75/BSO2  
General-purpose I/O ports  
Also serve as a serial I/O 2 with 1-byte buffer.  
63,  
64  
P76,  
P77  
H
General-purpose I/O ports  
65 to 72  
73 to 80  
P80 to P87  
I
General-purpose output ports  
P90/INL0 to  
P97/INL7  
E
General-purpose I/O ports  
External interrupt input is hysteresis input.  
81 to 83  
PA0/INL8 to  
PA2/INLA  
E
General-purpose I/O ports  
External interrupt input is hysteresis input.  
84  
VSS (AVSS)  
G
(A/D converter) power supply (GND) pin  
85 to 92  
P50/AN00 to  
P57/AN07  
General-purpose I/O ports  
Also serve as an analog input.  
93  
94  
95  
VCC (AVCC)  
AVR  
(A/D converter) power supply pin  
A/D converter reference voltage input pin  
N.C.  
Internally connected pins  
Be sure to leave them open.  
96 to 100  
PA3/INLB,  
PA4/INT0 to  
PA7/INT3  
E
General-purpose I/O ports  
External interrupt input is hysteresis input.  
*1: FPT-100P-M06, FPT-100C-A02  
*2: MQP-100C-P01  
7
MB89680 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Main clock (A2)  
(At an oscillation feedback resistor of approximately  
1 M/5.0 V)  
• Subclock (A1)  
(At an oscillation feedback resistor of approximately  
4.5 M/5.0 V  
X1, X1A  
X0, X0A  
*
* The subclock circuit in the MB89PV680  
contains no oscillation feedback resistor.  
Standby control signal  
B
C
• At an output pull-up resistor (P-ch) of approximately  
50 k/5.0 V  
• Hysteresis input  
R
P-ch  
N-ch  
D
• CMOS output  
• CMOS input  
R
P-ch  
• Pull-up resistor optional  
P-ch  
N-ch  
E
• CMOS output  
• Hysteresis input  
• Pull-up resistor optional  
R
P-ch  
P-ch  
N-ch  
(Continued)  
8
MB89680 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS output  
P-ch  
N-ch  
G
• N-ch open-drain output  
• Analog input  
P-ch  
N-ch  
Analog input  
H
• N-ch open-drain output  
• Hysteresis input  
• Pull-up resistor optional  
R
P-ch  
N-ch  
I
• N-ch open-drain output  
• Pull-up resistor optional  
R
P-ch  
N-ch  
9
MB89680 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
could causemalfunctions, even if itoccurs within the rated range. Stabilizingvoltagesupplied totheIC is therefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 Hz to 60 Hz) and the  
transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power  
is switched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
wake-up from stop mode.  
10  
MB89680 Series  
PROGRAMMING TO THE EPROM ON THE MB89P689/W689  
The MB89P689/W689 is an OTPROM version of the MP89680 series.  
1. Features  
• 60-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalent to the MBM27C1001 in EPROM mode (when programmed with the EPROM programmer) and  
supporting the 4-byte programming mode  
2. Memory Space  
Memory space in each mode such as 60-Kbyte PROM, option area is diagrammed below.  
Single chip  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
Address  
00000H  
00000H  
I/O  
00080H  
RAM  
2 KB  
Not available  
00880H  
00FE4H  
Not available  
Option area  
00FE4H  
Option area  
00FFCH  
00FFCH  
01000H  
01000H  
PROM  
60 KB  
PROM  
60 KB  
0FFFFH  
0FFFFH  
Not available  
1FFFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P689 functions equivalent to the MBM27C1001. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
When the operating ROM area for a single chip is 60 Kbytes (1000H to FFFFH) the PROM can be programmed  
as follows:  
• Programming procedure  
(1) Set the EPROM programmer to MBM27C1001.  
(2) Load program data into the EPROM programmer at 1000H to FFFFH.  
Load option data into addresses 0FE4H to 0FFCH of the EPROM programmer. (For information about each  
corresponding option, see “8. Setting PROM Options.”)  
(3) Program to 0FE4H to 0FFCH and 1000H to FFFFH with the EPROM programmer.  
11  
MB89680 Series  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. MB89W689 Erasure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolent lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having wave-  
lengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
12  
MB89680 Series  
7. EPROM Programmer Socket Adapter  
Part no.  
Package  
MB89P689PF  
QFP-100  
Compatible  
socket adapter  
Sun Hayato Co.,  
Ltd.  
ROM-100QF-32DP-8LA  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
8. Setting PROM Options  
The programming procedure is the same as that for the program data. Options can be set by programming  
values at the addresses shown on the memory map. The relationship between bits and options is shown on the  
following bit map:  
• PROM option bit map  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Reset  
output  
1: Yes  
0: No  
Bit 2  
Bit 1  
Bit 0  
Oscillation stabilization time  
Vacancy  
Vacancy  
Vacancy  
Power-on  
reset  
1: Yes  
0: No  
Single/dual-  
clock system  
1: Dual clock  
00FE4H  
11 218/FCH  
01 212/FCH  
10 216/FCH  
Readable  
Readable  
Readable  
3
and writable and writable and writable 2: Single clock  
00 2 /FCH  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
00FE8H  
00FECH  
00FF0H  
00FF4H  
00FF8H  
00FFCH  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P67  
Pull-up  
Readable  
P66  
Pull-up  
Readable  
P65  
Pull-up  
Readable  
P64  
P63  
P62  
P61  
P60  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
and writable and writable and writable  
P97  
P96  
P95  
P94  
P93  
P92  
P91  
P90  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Notes: Note that the option setting area addresses are at intervals of four addresses to support the 4-byte  
programming mode.  
In three bytes between adjacent setup addresses, the value written to the preceding setup address is  
mirrored. Be sure to set the same data in the programmer.  
Each bit is set to ‘1’ as the initialized value.  
13  
MB89680 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C512-20TV  
2. Programming Socket Adapter  
Package  
Adapter socket part number  
LCC-32 (Rectangle)  
ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
3. Memory Space  
Address  
0000H  
MB89PV680  
I/O  
MBM27C512  
0080H  
0100H  
0200H  
Register  
RAM  
2 KB  
0880H  
1000H  
1000H  
FFFFH  
External ROM  
60 KB  
EPROM  
60 KB  
FFFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C512.  
(2) Load program data into the EPROM programmer at 1000H to FFFFH.  
(3) Program to 1000H to FFFFH with the EPROM programmer.  
14  
MB89680 Series  
BLOCK DIAGRAM  
CMOS I/O  
Timebase timer  
P30/PWM  
P31/BUZR  
8-bit PWM timer  
Reset circuit  
(Watchdog)  
RST  
Buzzer output  
Modem timer  
P32/MSKI  
P33  
P34  
X0  
X1  
Main clock oscillator  
(max 8 MHz)  
P35/UCK1  
P36/UI1  
P37/UO1  
UART  
Clock controller  
X0A  
X1A  
Subclock oscillator  
(32.768 kHz)  
5
N-ch open-drain output port 4  
N-ch open-drain output  
P40 to P44  
8
P00 to P07  
P10 to P17  
P20 to P27  
CMOS I/O port 0  
8
8
8-bit A/D  
converter  
P50/AN00  
to P57/AN07  
8
8
CMOS I/O port 1  
CMOS I/O port 2  
CMOS I/O  
P60/TMO1  
P61/TMO2  
P62/TCLK  
8/16-bit timer  
Modem output  
P63/MSKO  
P64  
P65/BSK1  
P66/BSI1  
P67/BSO1  
8-bit serial I/O  
with 1-byte buffer  
RAM  
P70/UCK2  
P71/UI2  
P72/UO2  
P73/BSK2  
P74/BSI2  
P75/BSO2  
P76  
F2MC-8L  
CPU  
P77  
N-ch open-drain I/O  
ROM  
8
N-ch open-drain output port 8  
CMOS I/O  
P80 to P87  
8
4
4
P90/INL0  
to P97/INL7  
PA0/INL8  
to PA3/INLB  
PA4/INT0  
12  
External interrupt 2  
Other pins  
VCC × 2, VSS × 2  
MOD0, MOD1, N.C.  
AVCC, AVR, AVSS  
to PA7/INT3  
4
External interrupt 1  
15  
MB89680 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89680 series offer 64 Kbytes of memory for storing all of I/O, data, and program  
areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area.  
The data area can be divided into register, stack, and direct areas according to the application. The program  
area is located at exactly the opposite end of I/O area, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89680 series is structured as illustrated below.  
Memory space  
MB89689  
I/O  
MB89P689  
MB89W689  
MB89PV680  
I/O  
0 0 0 0 H  
0 0 0 0 H  
0 0 0 0 H  
I/O  
0 0 7 F H  
0 0 8 0 H  
0 0 7 F H  
0 0 8 0 H  
0 0 7 F H  
0 0 8 0 H  
00FFH  
0 1 0 0 H  
00FFH  
0 1 0 0 H  
00FFH  
0 1 0 0 H  
Register  
Register  
Register  
01FFH  
0 2 0 0 H  
01FFH  
0 2 0 0 H  
01FFH  
0 2 0 0 H  
RAM  
RAM  
RAM  
2.0 KB  
2.0 KB  
2.0 KB  
0 8 7 F H  
0 8 8 0 H  
0 8 7 F H  
0 8 8 0 H  
0 8 7 F H  
0 8 8 0 H  
Vacancy  
Vacancy  
Vacancy  
0FFFH  
1 0 0 0 H  
0FFFH  
1 0 0 0 H  
0FFFH  
1 0 0 0 H  
ROM  
60 KB  
ROM  
60 KB  
External ROM  
60 KB  
FFFFH  
FFFFH  
FFFFH  
16  
MB89680 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating the instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whenthe instructionisan8-bitdataprocessinginstruction, thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
16 bits  
Initial value  
FFFDH  
PC  
A
: Program counter  
: Accumulator  
Indeterminate  
T
: Temporary accumulator Indeterminate  
IX  
: Index register  
: Extra pointer  
: Stack pointer  
: Program status  
Indeterminate  
Indeterminate  
Indeterminate  
EP  
SP  
PS  
I-flag = 0, IL1, 0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the program status register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
17  
MB89680 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for conversion of actual addresses of the general-purpose register area  
Lower OP codes  
RP  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’.  
Cleared to ‘0’ at the reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
0
1
2
3
High  
0
1
1
0
1
1
Low  
N-flag: Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit is  
cleared to ‘0’.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
‘0’ otherwise. Set to the shift-out value in the case of a shift instruction.  
18  
MB89680 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used. The bank currently in use is indicated by the register  
bank pointer (RP).  
Register bank configuration  
This address = 0100H + 2 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
19  
MB89680 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
(R/W)  
(W)  
PDR1  
DDR1  
Port 1 data direction register  
Port 2 data register  
(R/W)  
PDR2  
(Vacancy)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SYCC  
SMC  
System clock control register  
Standby control register  
Watchdog timer control register  
Timebase timer control register  
Watch prescaler control register  
Port 3 data register  
WDTC  
TBTC  
WPCR  
PDR3  
DDR3  
PDR4  
BZCR  
PDR5  
Port 3 data direction register  
Port 4 data register  
Buzzer register  
Port 5 data register  
(Vacancy)  
(R/W)  
(R/W)  
(R/W)  
PDR6  
DDR6  
PDR7  
Port 6 data register  
Port 6 data direction register  
Port 7 data register  
(Vacancy)  
(R/W)  
PDR8  
Port 8 data register  
(Vacancy)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
PDR9  
DDR9  
PDRA  
DDRA  
Port 9 data register  
Port 9 data direction register  
Port A data register  
Port A data direction register  
(Vacancy)  
(R/W)  
(W)  
CNTR  
PWM control register  
PWM compare register  
COMR  
(Vacancy)  
(R/W)  
SBMR  
Serial mode register with 1 byte buffer  
(Continued)  
20  
MB89680 Series  
(Continued)  
Address  
Read/write  
(R/W)  
(W)  
Register name  
SBFR  
Register description  
23H  
Serial flag register with 1 byte buffer  
SBUFW  
SBUFR  
SBDR  
Serial buffer write register  
24H  
(R)  
Serial buffer read register  
25H  
26H  
(R)  
Serial data register with 1 byte buffer  
Timer 2 control register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
T2CR  
27H  
T1CR  
Timer 1 control register  
28H  
T2DR  
Timer 2 data register  
29H  
T1DR  
Timer 1 data register  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
MODC  
MODA  
Modem output control register  
Modem output data register  
(Vacancy)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
ADC1  
ADC2  
ADCD  
EIE1  
A/D converter control 1 register  
A/D converter control 2 register  
A/D converter data register  
External interrupt 1 enable register  
External interrupt 1 flag register  
External interrupt 2 enable register  
External interrupt 2 flag register  
Modem timer control 1 register  
Modem timer control 2 register  
Modem timer “H” level data register  
Modem timer “L” level data register  
UART serial mode control register  
UART serial rate control register  
UART serial status and data register  
UART serial input data register  
UART serial output data register  
Serial I/O port switching register  
(Vacancy)  
30H  
31H  
EIF1  
32H  
EIE2  
33H  
EIF2  
34H  
MDC1  
MDC2  
MLDH  
MLDL  
SMC  
35H  
36H  
37H  
(R)  
38H  
(R/W)  
(R/W)  
(R/W)  
(R)  
39H  
SRC  
3AH  
3BH  
3CH  
3DH  
3EH to 7BH  
7CH  
7DH  
7EH  
7FH  
SSD  
SIDR  
SODR  
SSEL  
(W)  
(R/W)  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level 1 setting register  
Interrupt level 2 setting register  
Interrupt level 3 setting register  
(Vacancy)  
Note: Do not use (vacancies).  
21  
MB89680 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Remarks  
Value  
Symbol  
Unit  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VSS + 7.0  
V
V
AVCC  
Set VCC = AVCC*  
Power supply voltage  
AVR must not exceed “AVCC +  
0.3 V”.  
AVR  
VSS – 0.3  
VSS + 7.0  
V
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VSS + 7.0  
VCC + 0.3  
V
V
V
Except P4, P7, P8  
P4, P7, P8  
Input voltage  
VI  
Output voltage  
VO  
“L” level maximum output  
current  
IOL  
20  
10  
mA Peak value  
Average value (operating current  
× operating rate)  
“L” level average output current  
IOLAV  
IOL  
IOLAV  
IOH  
mA  
“L” level total maximum output  
current  
120  
40  
mA Peak value  
“L” level total average output  
current  
Average value (operating current  
× operating rate)  
mA  
“H” level maximum output  
current  
–20  
–10  
–60  
–20  
mA Peak value  
Average value (operating current  
× operating rate)  
“H” level average output current  
IOHAV  
IOH  
IOHAV  
mA  
“H” level total maximum output  
current  
mA Peak value  
“H” level total average output  
current  
Average value (operating current  
× operating rate)  
mA  
Power consumption  
Operating temperature  
Storage temperature  
PD  
200  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set to the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
22  
MB89680 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC,  
AVCC  
Normal operation assurance range*  
(MB89689)  
2.2*  
2.7*  
1.5  
6.0*  
V
V
V
VCC,  
AVCC  
Normal operation assurance range*  
(MB89P689/W689/PV680)  
Power supply voltage  
6.0*  
6.0  
VCC,  
AVCC  
Retains the RAM state in stop mode  
A/D converter reference input  
voltage  
AVR  
TA  
0.0  
AVCC  
+85  
V
Operating temperature  
–40  
°C  
* : This values vary with the operating frequency. See Figure 1.  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
6
5
Analog accuracy assured in the  
AVCC = 3.5 V to 6.0 V range  
Operation assurance range  
4
3
2
1
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
Main clock operating frequency (MHz) (at an instruction cycle of 4/FCH)  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent of the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
23  
MB89680 Series  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
24  
MB89680 Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin name  
P0, P1  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
VCC + 0.3  
VIH  
0.7 VCC  
V
P3, P6, P9, PA,  
RST, MOD0,  
MOD1, X0, X0A  
“H” level input  
voltage  
VCC + 0.3  
VIHS  
0.8 VCC  
V
VSS + 7.0  
0.3 VCC  
VIHS2  
VIL  
P7  
0.8 VCC  
V
V
VSS 0.3  
P0, P1  
“L” level input  
voltage  
P3, P6, P7, P9, PA,  
RST, MOD0,  
VSS 0.3  
VILS  
0.2 V  
CC  
V
MOD1, X0, X0A  
VSS 0.3  
VSS 0.3  
VSS + 7.0  
VCC + 0.3  
Open-drain  
output pin applied VD  
voltage  
P4, P7, P8  
P5  
V
V
“H” level output  
voltage  
P0 to P3, P6, P9,  
PA  
VOH  
IOH = –2.0 mA  
2.4  
V
P0 to P4, P6 to P9,  
PA  
VOL1  
VOL2  
IOL = 4.0 mA  
IOL = 4.0 mA  
0.4  
0.4  
V
V
“L” level output  
voltage  
RST  
Input leakage  
current (Hi-z  
output leakage  
current)  
P0 to P9, PA,  
MOD0, MOD1  
0.45 V < VI <  
VCC  
ILI  
±5  
µA  
FCH = 8 MHz  
VCC = 5.0 V  
Main clock  
opration  
ICC  
VCC  
13  
26  
mA  
Highest gear  
speed  
FCH = 8 MHz  
VCC = 5.0 V  
Main sleep  
mode  
Highest gear  
speed  
ICCS1  
VCC  
4
8
mA  
Power supply  
current  
FCH = 32.768 kHz  
VCC = 3.0 V  
Subclock  
ICCS2  
VCC  
25  
50  
1
µA  
sleep mode  
TA = +25°C  
Subclock stop  
mode  
ICCH1  
VCC  
µA  
(Continued)  
25  
MB89680 Series  
(Continued)  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
TA = +85°C  
Subclock stop  
mode  
ICCH2  
VCC  
1
10  
µA  
FCL = 32.768 kHz  
VCC = 3.0 V  
Subclock  
ICSB  
VCC  
50  
100  
µA  
µA  
operation  
Power supply  
current  
VCC = 3.0 V  
Watch mode  
ICCT  
VCC  
15  
When A/D  
mA conversion  
is activated  
IA  
AVCC  
1.5  
3.5  
FCH = 8 MHz  
f = 1 MHz  
When A/D  
µA conversion  
is stopped  
IAH  
AVCC  
1
5
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
10  
pF  
26  
MB89680 Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
RST “H” pulse width  
tZLZH  
tZHZL  
48 tXCYL*  
24 tXCYL*  
ns  
ns  
* : tXCYL is the oscillation cycle input to the X0.  
tZLZH  
tZHZL  
RST  
0.8 VCC  
0.2 VCC  
0.2 VCC  
0.2 VCC  
(2) Specifications for Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
50  
Power supply rising time  
Power supply cut-off time  
tR  
1
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time selected.  
For example, when the main clock is operating at FCH = 8 MHz and the oscillation stabilization time is 212/FCH,  
the oscillation stabilization time is 0.5 ms. Therefore, the maximum value of power supply rising time is about  
0.5 ms.  
When increasing the supply voltage during operation, voltage variation should be within twice the intended  
increment so that the voltage rises as smoothly as possible.  
tOFF  
tR  
4.5 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
27  
MB89680 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
name  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Typ.  
Max.  
FCH  
X0, X1  
1
8
MHz Main clock  
kHz Subclock  
Input clock frequency  
X0A,  
X1A  
32.768  
FCL  
125  
1000  
tHCYL  
tLCYL  
X0, X1  
ns  
Main clock  
Subclock  
Clock cycle time  
X0A,  
X1A  
30.5  
µs  
duty*1  
duty1*2  
tCR1  
X0  
30  
30  
70  
70  
%
%
Input clock duty rate  
X1  
X0  
24  
ns  
ns  
ns  
ns  
External clock  
tCF1  
X0  
24  
Input clock rising/falling  
time  
tCR2  
X0A  
X0A  
200  
200  
tCF2  
*1: duty = PWH/tHCYL  
*2: duty1= PWHL/tHCYL  
Main clock timing conditions  
tHCYL  
0.8 VCC  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
PWH  
PWL  
tCR  
tCF  
Main clock configurations  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
FCH  
FCH  
C0  
C1  
28  
MB89680 Series  
Subclock timing conditions  
tLCYL  
0.8 VCC  
0.8 VCC  
0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
PWHL  
PWLL  
tCR  
tCF  
Subclock configurations  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0A  
X1A  
X0A  
X1A  
Open  
FCL  
C1  
C0  
FCL  
(4) Instruction Cycle  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Symbol  
Value (typical)  
Unit  
Remarks  
(4/FCH) tinst = 0.5 µs when operating at  
FCH = 8 MHz  
tinst  
4/FCH, 8/FCH, 16/FCH, 64/FCH  
µs  
Minimum execution time  
(instruction cycle)  
tinst = 61.036 µs when operating at  
FCL = 32.768 kHz  
tinst  
2/FCL  
µs  
29  
MB89680 Series  
(5) Serial I/O Timing  
(AVCC = VCC = 5.0 V ±10%, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Serial clock cycle time  
BSK/UCK  
2 tinst*  
µs  
BSK/UCK ↓ → BSO/UO  
BSK/UCK,  
BSO/UO  
–200  
200  
ns  
time  
Internal shift  
clock mode  
BSI/UI,  
BSK/UCK  
Valid BSI/UI BSK/UCK ↑  
1/2 tinst*  
1/2 tinst*  
µs  
µs  
BSK/UCK ↑ → valid BSI/UI  
hold time  
BSK/UCK,  
BSI/UI  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
tSLSH  
BSK/UCK  
BSK/UCK  
1 tinst*  
1 tinst*  
µs  
µs  
BSK/UCK ↓ → BSO/UO  
time  
BSK/UCK,  
BSO/UO  
tSLOV  
tIVSH  
tSHIX  
0
200  
ns  
µs  
µs  
External shift  
clock mode  
BSI/UI,  
BSK/UCK  
Valid BSI/UI BSK/UCK ↑  
1/2 tinst*  
1/2 tinst*  
BSK/UCK ↑ → valid BSI/UI  
hold time  
BSK/UCK,  
BSI/UI  
* : For information on tinst, see “(4) Instruction Cycle.”  
Internal shift clock mode  
tSCYC  
2.4 V  
BSK/UCK  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
BSO/UO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
BSI/UI  
0.2 VCC  
External shift clock mode  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
BSK/UCK  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
BSO/UO  
BSI/UI  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
30  
MB89680 Series  
(6) Peripheral Input Timing  
Parameter  
(AVCC = VCC = 5.0 V ±10%, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Unit Remarks  
Min.  
Max.  
Peripheral input “H” level pulse  
width  
INL0 to INLB,  
INT0 to INT3  
tILIH  
tIHIL  
2 tinst*  
µs  
µs  
Peripheral input “L” level pulse  
width  
INL20 to INLB,  
INT0 to INT3  
2 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
tILIH  
tIHIL  
INL0 to INLB  
INT0 to INT3  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
31  
MB89680 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = 3.5 V to 6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit Remarks  
Min.  
Max.  
AVR = AVCC  
= 5.0 V  
Resolution  
8
bit  
Total error  
±1.5  
±1.0  
LSB  
LSB  
Linearity error  
Differential linearity  
error  
V0T  
VFST  
±0.9  
LSB  
AVR = AVCC  
Zero transition  
voltage  
AVss  
–1.0 LSB  
AVss  
+0.5 LSB  
AVss  
+2.0 LSB  
mV  
1 LSB =  
AVR/256  
AVR  
–3.0 LSB  
Full-scale transition  
voltage  
AVR  
–1.5 LSB  
AVR  
0.5  
mV  
Interchannel  
disparity  
44  
12  
LSB  
tinst*  
tinst*  
µA  
A/D mode  
conversion time  
Sense mode  
conversion time  
Analog port input  
current  
AN00to  
AN07  
IAIN  
10  
AN00to  
AN07  
Analog input voltage  
Reference voltage  
0.0  
AVR  
V
IR  
AVR  
AVR  
AVR  
0.0  
100  
AVCC  
300  
1
V
µA  
µA  
Reference voltage  
supply current  
AVR = AVCC  
= 5.0 V  
IRH  
* : For information on tinst, see “(4) Instruction Cycle.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable by the A/D converter  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
32  
MB89680 Series  
Digital output  
Theoretical conversion value  
Actual conversion value  
1111 1111  
1111 1110  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
– 1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT  
V(N + 1)T  
VFST  
Analog input  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The A/D converter used for the MB89890 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx.  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
C
33 pF  
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
R
6 kΩ  
Close for 8 instruction cycles after starting  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
33  
MB89680 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
#vct  
#d8  
#d16  
dir: b  
rel  
@
Register indirect (Example: @A, @IX, @EP)  
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the  
instruction in use.)  
T
TH  
TL  
IX  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
(Continued)  
34  
MB89680 Series  
(Continued)  
Symbol  
Meaning  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
CCR  
RP  
Ri  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
The number of instructions  
The number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
35  
MB89680 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH N ZVC  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
(Ri) (A)  
(A) d8  
(A) (dir)  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
(A) (Ri)  
(dir) d8  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
AH  
XCHW A,T  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
36  
MB89680 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH  
NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
INC Ri  
INCW EP  
INCW IX  
INCW A  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
ANDW A  
ORW A  
XORW A  
CMP A  
D3  
D2  
D0  
01  
11  
63  
73  
53  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
(TL) (AL)  
(T) (A)  
12  
13  
03  
CMPW A  
RORC A  
A
C
C A  
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
64  
65  
AND A,#d8  
AND A,dir  
(A) (AL) (dir)  
(Continued)  
37  
MB89680 Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH  
NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
C1  
D1  
DECW SP  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH  
NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH  
NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
CLRI  
SETI  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
38  
MB89680 Series  
INSTRUCTION MAP  
39  
MB89680 Series  
MASK OPTIONS  
MB89P689  
MB89W689  
Part number  
No.  
MB89689  
MB89PV680  
Spcify when ordering  
masking  
Set with EPROM  
programmer  
Setting not  
possible  
Specifying procedure  
Pull-up resistors  
P00 to P07,  
P10 to P17,  
Fixed to without a  
pull-up resistor  
1
P30 to P37,  
P60 to P67,  
P90 to P97,  
PA0 to PA7  
Selectable by pin  
Selectable  
Selectable by pin  
Selectable  
Power-on reset (POR)  
With power-on reset  
Without power-on reset  
Fixed to with power-on  
reset  
2
3
Oscillation stabilization time  
selection (OSC)  
The initial value of the main  
clock oscillation stabilization  
time can be set with WTM1  
and WTM0 bit.  
Selectable  
WTM1 WTM0  
Selectable  
WTM1 WTM0  
Fixed to oscillation  
stabilization time of  
218/FCH  
0
0
1
1
0: 23/FCH  
1: 212/FCH  
0: 216/FCH  
1: 218/FCH  
0
0
1
1
0: 23/FCH  
1: 212/FCH  
0: 216/FCH  
1: 218/FCH  
Reset pin output (RST)  
With reset output  
Fixed to with reset  
output  
4
5
Selectable  
Selectable  
Without reset output  
Clock mode selection (CLK)  
Dual-clock mode  
Selectable  
Selectable  
Fixed to dual clock  
Single-clock mode  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89689PF  
MB89P689PF  
100-pin Plastic QFP  
(FPT-100P-M06)  
100-pin Ceramic QFP  
(FPT-100C-A02)  
MB89W689CF  
MB89PV680CF  
100-pin Ceramic MQFP  
(MQP-100C-P01)  
40  
MB89680 Series  
PACKAGE DIMENSIONS  
100-pin Plastic QFP  
(FPT-100P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
80  
51  
81  
50  
12.35(.486)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
31  
100  
"A"  
1
30  
LEAD No.  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.13(.005)  
Details of "A" part  
0.25(.010)  
"B"  
0.10(.004)  
0.30(.012)  
0.18(.007)MAX  
0
10°  
18.85(.742)REF  
0.80±0.20  
(.031±.008)  
0.53(.021)MAX  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F100008-3C-2  
Dimensions in mm (inches)  
100-pin Ceramic QFP  
(FPT-100C-A02)  
0.51(.020) TYP  
17.91(.705)  
TYP  
12.34(.486)  
REF  
16.31(.642)  
TYP  
8.89(.350)DIA  
TYP  
16.00(.630)  
14.00±0.25  
(.551±.010)  
TYP  
INDEX AREA  
0.65±0.15  
(.0256±.0060)  
0.30±0.05  
(.012±.002)  
0.65±0.15  
(.0256±.0060)  
0.15±0.05  
(.006±.002)  
18.85(.742)REF  
1.60(.063) TYP  
20.00±0.25  
(.787±.010)  
4.45(.175)MAX  
23.90(.941) TYP  
22.00(.866) TYP  
22.30(.878) TYP  
0.80(.0315) TYP  
C
1994 FUJITSU LIMITED F100013SC-1-2  
Dimensions in mm (inches)  
41  
MB89680 Series  
100-pin Ceramic MQFP  
(MQP-100C-P01)  
18.70(.736)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
12.35(.486)TYP  
INDEX AREA  
0.65±0.15  
(.0256±.0060)  
1.20+00..2400  
.047+..000186  
0.65±0.15  
(.0256±.0060)  
1.27±0.13  
(.050±.005)  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.85(.742)  
TYP  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
TYP  
24.70(.972)  
TYP  
TYP  
0.30±0.08  
(.012±.003)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.30±0.08  
(.012±.003)  
1.20+00..2400  
.047+..000186  
10.82(.426)  
MAX  
0.15±0.05  
(.006±.002)  
C
1994 FUJITSU LIMITED M100001SC-1-2  
Dimensions in mm (inches)  
42  
MB89680 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9802  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89PV680CF

8-bit Proprietary Microcontroller
FUJITSU

MB89PV713

CMOS 8-BIT SINGLE-CHIP FLEXIBLE MICROCONTROLLER
FUJITSU

MB89PV713C

Microcontroller, 8-Bit, EPROM, F2MC-8 CPU, 8MHz, CMOS, CDIP64
FUJITSU

MB89PV713CF

Microcontroller, 8-Bit, EPROM, F2MC-8 CPU, 8MHz, CMOS, CQFP64
FUJITSU

MB89PV715

CMOS 8-BIT SINGLE-CHIP FLEXIBLE MICROCONTROLLER
FUJITSU

MB89PV800

8-bit Proprietary Microcontroller
FUJITSU

MB89PV800CF

8-bit Proprietary Microcontroller
FUJITSU

MB89PV800CF

Microcontroller, CMOS
CYPRESS

MB89PV820

8-bit Proprietary Microcontroller
FUJITSU

MB89PV820CF

8-bit Proprietary Microcontroller
FUJITSU

MB89PV870

8-bit Proprietary Microcontroller
FUJITSU

MB89PV870CF

8-bit Proprietary Microcontroller
FUJITSU