MB89W867 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89W867
型号: MB89W867
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总51页 (文件大小:689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12504-5E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89860/850 Series  
MB89865/867/P867/W867  
MB89855/857/P857/W857/T855  
DESCRIPTION  
The MB89860/850 series has been developed as a general-purpose version of the F2MC*-8L family consisting  
of proprietary 8-bit, single-chip, microcontrollers.  
In addition to the F2MC-8L CPU core which can operate at low voltage but at high speed, the microcontrollers  
contain a variety of peripheral functions such as a timer unit, PWM timers, a UART, a serial interface, a 10-bit  
A/D converter, and an external interrupt.  
The MB89860/850 series is applicable to a wide range of applications from welfare products to industrial  
equipment, including portable devices.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• Various package options  
QFP package (80 pins): MB89860  
SDIP package (64 pins): MB89850  
• High-speed processing at low voltage  
Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V  
(Continued)  
PACKAGE  
80-pin Ceramic QFP  
64-pin Plastic SH-DIP  
80-pin Plastic QFP  
64-pin Plastic SH-DIP  
(FPT-80P-M06)  
(DIP-64P-M01)  
(FPT-80C-A02)  
(DIP-64C-A06)  
MB89860/850 Series  
(Continued)  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• 8-bit PWM timers: 2 channels  
Also usable as a reload timer  
• UART  
Full-duplex double buffer  
Synchronous and asynchronous data transfer  
• 8-bit serial I/O  
Switchable transfer direction allows communication with various equipment.  
• 10-bit A/D converter  
Conversion time: 13.2 µs  
Activation by an external input or a timer unit capable  
• External interrupt: 4 channels  
Four channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Low-power consumption modes  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
• Bus interface functions  
Including hold and ready functions  
• Timer unit  
Outputs non-overlap three-phase waveforms to control an AC inverter motor.  
Also usable as a PWM timer (4 channels)  
2
MB89860/850 Series  
PRODUCT LINEUP  
Part number  
MB89P857  
MB89P867  
MB89855  
MB89T855  
MB89865  
MB89857  
MB89867  
MB89W857 MB89W867  
Parameter  
Classification  
One-time PROM pruducts/  
EPROM products, also  
used for evaluation  
Mass production products (mask ROM products)  
ROM size  
16 K × 8 bits  
(internal mask ROM)  
Note: In MB89T855, no  
internal ROM can be used but  
external ROM is used.  
32 K × 8 bits  
(internal mask ROM)  
32 K × 8 bits  
(internal PROM,  
programming with general-  
purpose EPROM  
programmer)  
RAM size  
512 × 8 bits  
1 K × 8 bits  
CPU functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
0.4 µs/10 MHz  
3.6 µs/10 MHz  
Ports  
Input ports:  
5 (All also serve as peripherals)  
Output ports (N-ch open drain): 8 (All also serve as peripherals)  
I/O ports (N-ch open drain):  
Output ports (CMOS):  
I/O ports (CMOS):  
Total:  
15 (MB89860 series only)  
8 (All also serve as bus control pins)  
32 (All also serve as bus pins or peripherals)  
68 (53 pins for MB89850 series)  
Timer unit  
10-bit up/down count timer × 1  
Compare registers with buffer × 4  
Compare timer unit clear register with buffer × 1  
Zero detection pin control  
4 output channels  
Non-overlap three-phase waveform output  
Independent three-phase dead-time timer  
8-bit PWM timer 1,  
8-bit PWM timer 2  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs to  
25.6 µs)  
8-bit resolution PWM operation (conversion cycle: 102 µs to 6.528 ms)  
UART  
8 bits  
Clock synchronous/asynchronous data transfer capable  
8-bit serial I/O  
8 bits  
LSB first/MSB first selectability  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
10-bit A/D converter  
External interrupt  
10-bit resolution × 8 channels  
A/D conversion time: 13.2 µs  
Continous activation by a compare channel 0 in timer unit or an external activation capable  
4 independent channels (edge selection, interrupt vector, source flag)  
Rising edge/falling edge selectability.  
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)  
Standby modes  
Process  
Sleep mode, stop mode  
CMOS  
Operating voltage*  
2.7 V to 6.0 V  
2.7 V to 5.5 V  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
3
MB89860/850 Series  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89855  
MB89865  
MB89T855  
Package  
MB89W857  
MB89867  
MB89W867  
MB89857  
MB89P867  
MB89P857  
DIP-64P-M01  
DIP-64C-A06  
FPT-80P-M06  
FPT-80C-A02  
×
×
×
×
×
×
×
×
×
×
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the OTPROM (one-time PROM) products (also used for evaluation), verify its differences  
from the product that will actually be used.  
Take particular care on the following point:  
• The stack area, etc., is set at the upper limit of the RAM.  
2. Current Consumption  
When operated at low speed, the product with an OTPROM or an EPROM will consume more current than the  
product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same.  
3. Mask Options  
In the MB89P857/W857/P867/W867/T855, no option can be set.  
Before using options check section “Mask Options.”  
Take particular care on the following point:  
• A pull-up resistor can be set for P00 to P07, P10 to P17 and P20 to P27 only at single-chip mode.  
4
MB89860/850 Series  
PIN ASSIGNMENT  
(Top view)  
P31/SO1  
P30/SCK1  
P47/TRGI  
P46/Z  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VCC  
P32/SI1  
P33/SCK2  
P34/SO2  
P35/SI2  
P36/PTO1  
P37/PTO2  
VSS  
P45/Y  
P44/X  
P43/RTO3/W  
P42/RTO2/V  
P41/RTO1/U  
P40/RTO0  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
9
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
P21/HAK  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
AVR  
AVSS  
P64/DTTI  
P63/INT3/ADST  
P62/INT2  
P61/INT1  
P60/INT0  
RST  
MOD0  
MOD1  
X0  
X1  
VSS  
P27/ALE  
(DIP-64P-M01)  
(DIP-64C-A06)  
5
MB89860/850 Series  
(Top view)  
P82  
P81  
P80  
P76  
P75  
P74  
P73  
P72  
P71  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
N.C.  
P40/RTO0  
P41/RTO1/U  
P42/RTO2/V  
P43/RTO3/W  
P44/X  
VSS  
P45/Y  
P46/Z  
VCC  
P47/TRGI  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3/ADST  
P64/DTTI  
P30/SCK1  
P31/SO1  
P32/SI1  
P33/SCK2  
P34/SO2  
P35/SI2  
P36/PTO1  
P37/PTO2  
9
P70  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
MOD0  
MOD1  
X0  
X1  
VSS  
RST  
P27/A L E  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
(FPT-80P-M06)  
(FPT-80C-A02)  
6
MB89860/850 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
X0  
Function  
SH-DIP*1  
QFP*2  
13  
30  
31  
28  
29  
27  
A
B
C
Crystal oscillator pins (10 MHz)  
14  
X1  
11  
MOD0  
MOD1  
RST  
Operating mode selection pins  
Connect directly to VCC or VSS.  
12  
16  
Reset I/O pin  
This pin is an N-ch open-drain output type with a pull-up  
resistor, and a hysteresis input type. “L” is output from this  
pin by an internal reset source. The internal circuit is  
initialized by the input of “L”.  
56 to 49  
48 to 41  
40  
40 to 33 P00 /AD0 to  
P07/AD7  
D
D
F
F
General-purpose I/O ports  
When an external bus is used, these ports function as  
multiplex pins of lower address output and data I/O.  
32 to 25 P10 /A08 to  
P17/A15  
General-purpose I/O ports  
When an external bus is used, these ports function as  
upper address output.  
24  
23  
P20/BUFC  
P21/HAK  
General-purpose output port  
When an external bus is used, this port can also be used  
as a buffer control output.  
39  
General-purpose output port  
When an external bus is used, this port can also be used  
as a hold acknowledge output.  
38  
37  
36  
35  
34  
33  
2
22  
21  
20  
19  
18  
17  
48  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
D
D
F
F
F
F
E
General-purpose output port  
When an external bus is used, this port can also be used  
as a hold request input.  
General-purpose output port  
When an external bus is used, this port functions as a  
ready input.  
General-purpose output port  
When an external bus is used, this port functions as a  
clock output.  
General-purpose output port  
When an external bus is used, this port functions as a  
write signal output.  
General-purpose output port  
When an external bus is used, this port functions as a  
read signal output.  
P27/ALE  
P30/SCK1  
General-purpose output port  
When an external bus is used, this port functions as an  
address latch signal output.  
General-purpose I/O port  
Also serves as the clock I/O for the UART.  
This port is a hysteresis input type.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-80P-M06, FPT-80C-A02  
7
MB89860/850 Series  
(Continued)  
Pin no.  
Circuit  
Pin name  
Function  
General-purpose I/O port  
type  
SH-DIP*1  
QFP*2  
1
47  
P31/SO1  
E
Also serves as the data output for the UART.  
This port is a hysteresis input type.  
63  
62  
61  
60  
59  
58  
10  
46  
45  
44  
43  
42  
41  
63  
P32/SI1  
E
E
E
E
E
E
E
E
General-purpose I/O port  
Also serves as the data input for the UART.  
This port is a hysteresis input type.  
P33/SCK2  
P34/SO2  
P35/SI2  
General-purpose I/O port  
Also serves as the clock I/O for the 8-bit serial I/O.  
This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the data output for the 8-bit serial I/O.  
This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the data input for the 8-bit serial I/O.  
This port is a hysteresis input type.  
P36/PTO1  
P37/PTO2  
P40/RTO0  
General-purpose I/O port  
Also serves as the pulse output for the 8-bit PWM timer 1.  
This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the pulse output for the 8-bit PWM timer 2.  
This port is a hysteresis input type.  
General-purpose I/O port  
Also serves as the pulse output for the timer unit.  
This port is a hystereisis input type.  
9,  
8,  
7
62,  
61,  
60  
P41/RTO1/U,  
P42/RTO2/V,  
P43/RTO3/W  
General-purpose I/O ports  
Also serve as the pulse output for the timer unit or a non-  
overlap three-phase waveform output.  
These ports are a hysteresis input type.  
6,  
5,  
4
59,  
57,  
56  
P44/X,  
P45/Y,  
P46/Z  
E
E
General-purpose I/O ports  
Also serve as a non-overlap three-phase output.  
These ports are a hysteresis input type.  
3
54  
P47/TRGI  
General-purpose I/O port  
Also serves as the trigger input for the timer unit.  
This port is a hysteresis input type.  
11 to 18  
26 to 24  
69 to 76 P50/AN0 to  
P57/AN7  
H
I
N-ch open-drain output ports  
Also serve as the analog input for the A/D converter.  
53 to 51 P60/INT0 to  
P62/INT2  
General-purpose input ports  
Also serve as an external interrupt input.  
These ports are a hysteresis input type.  
23  
50  
P63/INT3/  
ADST  
I
General-purpose input port  
Also serves as an external interrupt input and as the  
activation trigger input for the A/D converter.  
This port is a hysteresis input type.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-80P-M06, FPT-80C-A02  
(Continued)  
8
MB89860/850 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-DIP*1  
QFP*2  
22  
49  
P64/DTTI  
I
General-purpose input port  
Also serves as a dead-time timer disable input.  
This port is a hysteresis input type.  
DTTI input is with a noise canceller.  
10 to 4  
P70 to P76  
G
G
N-ch open-drain I/O ports  
These ports are a hysteresis input type.  
3 to 1, 80, P80 to P87  
68 to 65  
N-ch open-drain I/O ports  
These ports are a hysteresis input type.  
64  
32, 57  
19  
55  
15, 58  
77  
VCC  
Power supply pin  
VSS  
Power supply (GND) pins  
AVCC  
AVR  
AVSS  
A/D converter power supply pin  
A/D converter reference voltage input pin  
20  
78  
21  
79  
A/D converter power supply (GND) pin  
Use this pin at the same voltage as VSS.  
64  
N.C.  
Internally connected pin  
Be sure to leave it open.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-80P-M06, FPT-80C-A02  
9
MB89860/850 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• At an oscillation feedback resitor of approximately  
1 M/5.0 V  
X1  
X0  
Standby control signal  
B
C
• At an output pull-up resistor (P-ch) of approximately  
50 k/5.0 V  
R
• Hysteresis input  
P-ch  
N-ch  
D
• CMOS output  
• CMOS input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional (Mask ROM products)  
• At a pull-up resistor of approximately 50 k/5.0 V  
E
• CMOS output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional (Mask ROM products)  
• At a pull-up resistor of approximately 50 k/5.0 V  
(Continued)  
10  
MB89860/850 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS output  
R
P-ch  
P-ch  
• Pull-up resistor optional (Mask ROM products)  
N-ch  
• At a pull-up resistor of approximately 50 k/5.0 V  
G
• N-ch open-drain output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional (Mask ROM products)  
• At a pull-up resistor of approximately 50 k/5.0 V  
H
• N-ch open-drain output  
• Analog input  
P-ch  
N-ch  
Analog input  
I
• Hysteresis input  
• Pull-up resistor optional (Mask ROM products)  
• At a pull-up resistor of approximately 50 k/5.0 V  
R
11  
MB89860/850 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pin  
Be sure to leave (internally connected) N.C. pin open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and  
wake-up from stop mode.  
12  
MB89860/850 Series  
PROGRAMMING TO THE EPROM ON THE MB89P867/W867/P857/W857  
The MB89P867/W867/P857/W857 are an OTPROM version of the MB89860/850 series.  
1. Features  
• 32-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
EPROM mode  
( Corresponding addresses on the EPROM programmer)  
0080H  
0480H  
RAM  
Not available  
8000H  
0000H  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P867/W867/P857/W857 functions equivalent to the MBM27C256A. This allows the  
PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot  
be used) by using the dedicated socket adapter.  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0000H to 7FFFH (note that addresses 8000H to FFFFH  
while operating as a single chip assign to addresses 0000H to 7FFFH in EPROM mode.)  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
13  
MB89860/850 Series  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. Erasure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000 µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having  
wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
7. EPROM Programmer Socket Adapter  
Package  
DIP-64P-M01  
FPT-80P-M01  
Compatible socket adapter  
ROM-64SD-28DP-8L*  
ROM-80QF-28DP-8L2  
* : Connect the adapter jumper pin to VSS when using.  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
14  
MB89860/850 Series  
BLOCK DIAGRAM  
X0  
X1  
Time-base timer  
Oscillator  
Clock controller  
P37/PTO2  
P36/PTO1  
8-bit PWM timer 2  
8-bit PWM timer 1  
Reset circuit  
(WDT)  
RST  
P35/SI2  
P34/SO2  
P33/SCK2  
8-bit serial I/O  
UART  
CMOS I/O port  
8
8
P00/AD0  
to P07/AD7  
P32/SI1  
P31/SO1  
P30/SCK1  
P10/A08  
to P17/A15  
MOD0  
MOD1  
External bus  
interface  
CMOS I/O port  
CMOS I/O port  
P27/ALE  
P26/RD  
P47/TRGI  
P46/Z  
P45/Y  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
P44/X  
P43/RTO3/W  
P42/RTO2/V  
P41/RTO1/U  
P40/RTO0  
6
Timer unit  
CMOS output port  
(Dead-time timer)  
P64/DTTI  
4
3
RAM  
External interrupt  
Input port  
P60/INT0  
to P62/INT2  
F2MC-8L  
CPU  
P63/INT3/ADST  
AVR  
AVCC  
AVSS  
ROM  
8
8
Other pins  
VCC , VSS × 2  
P50/AN0  
to P57/AN7  
10-bit A/D converter  
N-ch open-drain output port  
Part number  
MB89865/855/T855*1  
MB89857/867  
RAM size  
512 bytes  
1 Kbyte  
ROM size  
16 Kbytes  
32 Kbytes  
2
*
7
8
P70 to P76  
P80 to P87  
N-ch open-drain I/O port  
Port 7 and port 8  
32 Kbytes  
(EPROM)  
MB89W857/P867  
1 Kbyte  
*2: Not included in the MB89850 series.  
*1: In the MB89T855, an external ROM can be used.  
15  
MB89860/850 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89860/850 series offer a memory space of 64 Kbytes for storing all of I/O, data,  
and program areas. The I/O area is located at the lowest address. The data area is provided immediately above  
the I/O area. The data area can be divided into register, stack, and direct areas according to the application.  
The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables  
of interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89860/850 series is structured as illustrated below.  
Memory Space  
MB89867/857  
MB89865  
MB89855/T855*2  
MB89W867/P867  
MB89W857/P857  
0000H  
0080H  
0000H  
0080H  
I/O  
I/O  
RAM  
512 B  
RAM  
1 KB  
0100H  
0100H  
Register  
Register  
0200H  
0280H  
0200H  
0480H  
External area  
External area  
8000H  
C000H  
FFFFH  
1
*
ROM  
1
*
32 KB  
ROM  
16 KB  
FFFF H  
*1: The ROM area is an external area depending on the mode.  
*2: In the MB89T855, an external ROM can be used.  
16  
MB89860/850 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
When the instruction is an 8-bit data processing instruction, the lower byte is used.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
17  
MB89860/850 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set to the shift-out value in the case of a shift instruction.  
18  
MB89860/850 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89860/850 series. The bank currently in use  
is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
19  
MB89860/850 Series  
I/O MAP  
Address  
00H  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
01H  
DDR0  
Port 0 data direction register  
Port 1 data register  
02H  
(R/W)  
(W)  
PDR1  
03H  
DDR1  
Port 1 data direction register  
Port 2 data register  
04H  
(R/W)  
(W)  
PDR2  
05H  
BCTR  
External bus pin control register  
Vacancy  
06H  
07H  
Vacancy  
08H  
(R/W)  
(W)  
STBC  
WDTC  
TBTC  
Standby control register  
Watchdog timer control register  
Time-base timer control register  
Vacancy  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
(R/W)  
(R/W)  
(W)  
PDR3  
DDR3  
PDR4  
DDR4  
PDR5  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
(R/W)  
(W)  
Port 4 data direction register  
Port 5 data register  
(R/W)  
11H  
Vacancy  
12H  
(R)  
PDR6  
PDR7  
PDR8  
Port 6 data register  
13H  
Vacancy  
14H  
(R/W)  
(R/W)  
Port 7 data register  
15H  
Vacancy  
16H  
Port 8 data register  
17H to 1BH  
1CH  
1DH  
1EH  
1FH  
20H  
Vacancy  
(R/W)  
(W)  
CTR1  
CMR1  
CTR2  
CMR2  
SMC  
PWM control register 1  
PWM compare register 1  
PWM control register 2  
PWM compare register 2  
UART serial mode control register  
UART serial rate control register  
UART serial status/data register  
UART serial data register  
Serial mode register  
Serial data register  
(R/W)  
(W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
21H  
SRC  
22H  
SSD  
23H  
SIDR/SODR  
SMR  
24H  
25H  
SDR  
(Continued)  
20  
MB89860/850 Series  
(Continued)  
Address  
Read/write  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
Register name  
EIC1  
Register description  
External interrupt control register 1  
External interrupt control register 2  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register (H)  
A/D converter data register (L)  
Vacancy  
26H  
27H  
EIC2  
28H  
ADC1  
29H  
ADC2  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
ADDH  
(R)  
ADDL  
(W)  
(W)  
ZOCTR  
CLRBRH  
CLRBRL  
TCSR  
Zero detection output control register  
Compare clear buffer register (H)  
Compare clear buffer register (L)  
Timer control status register  
Compare interrupt control register  
Timer mode control register  
(W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
31H  
CICR  
32H  
TMCR  
33H  
COER  
Compare/port selection register  
Compare buffer mode control register  
Dead-time timer control register  
Dead-time setting register  
34H  
CMCR  
35H  
DTCR  
36H  
DTSR  
37H  
(R/W)  
(W)  
OCTBR  
OCPBR0H  
OCPBR0L  
OCPBR1H  
OCPBR1L  
OCPBR2H  
OCPBR2L  
OCPBR3H  
OCPBR3L  
Output control buffer register  
Output compare buffer register 0 (H)  
Output compare buffer register 0 (L)  
Output compare buffer register 1 (H)  
Output compare buffer register 1 (L)  
Output compare buffer register 2 (H)  
Output compare buffer register 2 (L)  
Output compare buffer register 3 (H)  
Output compare buffer register 3 (L)  
Vacancy  
38H  
39H  
(W)  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
40H to 7BH  
7CH  
7DH  
7EH  
7FH  
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
Notes: • Do not use vacancies.  
• When a read-modify-write instruction (such as bit set) is used to access a write-only register or a register  
containing a write-only bit, a bit designated by the instruction will have a predetermined value. However,  
a write-only bit included, if any, in bits not defined by the instruction will cause a malfunction. So no access  
to the register should be tried with any read-modefy-write instruction.  
21  
MB89860/850 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Parameter  
Symbol  
VCC  
Unit  
Remarks  
Min.  
Max.  
Power supply voltage  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
V
V
V
*
AVCC  
A/D converter reference input  
voltage  
AVR must not exceed AVCC +  
0.3 V.  
AVR  
VSS + 7.0  
13.0  
MOD1 pins of MB89P867/  
W867 and MB89P857/W857  
Program voltage  
VPP  
Input voltage  
VI  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VSS + 0.3  
20  
V
V
Output voltage  
VO  
“L” level maximum output current IOL  
mA  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P50 to P57, P70 to P76,  
P80 to P87  
IOLAV1  
4
mA  
“L” level average output current  
IOLAV2  
15  
30  
mA P40 to P47  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P50 to P57, P70 to P76,  
P80 to P87  
ΣIOLAV1  
mA  
“L” level total average output  
current  
ΣIOLAV2  
“H” level maximum output current IOH  
50  
–20  
–4  
mA P40 to P47  
mA  
mA  
“H” level average output current  
IOHAV  
“H” level total maximum output  
current  
ΣIOH  
–20  
mA  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
*: Use AVCC and VCC set at the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded.  
Functional operation should be restricted to the conditions as detailed in the operational sections of  
this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
22  
MB89860/850 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min.  
Max.  
Normal operation assurance  
range*  
2.7*  
6.0*  
V
MB89867/865, MB89857/855  
Normal operation assurance  
range*  
MB89P867/W867,  
MB89P857/W855/T855  
VCC  
AVCC  
Power supply voltage  
2.7*  
1.5  
5.5*  
6.0  
V
V
Retains the RAM state in stop  
mode  
A/D converter reference input  
voltage  
AVR  
TA  
0.0  
AVCC  
+85  
V
Operating temperature  
–40  
°C  
*: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1  
and “5. A/D Converter Electrical Characteristics.”  
Note: Connect the MOD0 and MOD1 pins to VCC or VSS.  
6
5.5  
Analog accuracy assured in the  
VCC = AVCC = 3.5 V to 6.0 V range  
5
Operation assurance range  
4
3
2
1
1
2
3
4
5
6
7
8
9
10  
Clock operating frequency (MHz)  
(µs)  
4.0 2.0  
0.8  
0.4  
Minimum execution time (instruction cycle)  
Note: The shaded area is assured only for the MB89865/867/855/857.  
Figure 1 Operating Voltage vs. Clock Operating Frequency  
23  
MB89860/850 Series  
3. DC Characteristics  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
VIH  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
VCC +  
0.3  
P00 to P07, P10 to P17,  
P22, P23  
0.7 VCC  
V
V
V
V
V
“H” level input  
voltage  
RST, P30 to P37,  
P40 to P47, P60 to P64,  
P70 to P76, P80 to P87  
VCC +  
0.3  
VIHS  
VIL  
0.8 VCC  
VSS –  
0.3  
P00 to P07, P10 to P17,  
P22, P23  
0.3 VCC  
0.2 VCC  
“L” level input  
voltage  
RST, P30 to P37,  
P40 to P47, P60 to P64,  
P70 to P76, P80 to P87  
VSS –  
0.3  
VILS  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47  
“H” level output  
voltage  
IOH = –2.0  
mA  
VOH  
2.4  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P50 to P57, P70 to P76,  
P80 to P87  
VOL1  
VOL2  
IOL = 1.8 mA  
IOL = 15 mA  
0.4  
1.5  
V
V
“L” level output  
voltage  
P40 to P47  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P60 to P64,  
P70 to P76, P80 to P87,  
MOD0, MOD1  
Input leackage  
current  
0.0 V < VI <  
VCC  
ILI1  
±5  
µA  
With pull-  
kΩ  
Pull-up resistance RPULL  
RST  
VI = 0.0 V  
25  
50  
100  
up resistor  
FC = 10 MHz  
Normal  
operation  
mode  
ICC  
15  
18  
mA  
(External  
clock)  
VCC  
FC = 10 MHz  
Sleep mode  
(External  
clock)  
Power supply  
current  
ICCS  
ICCH  
IA  
6
6
8
mA  
µA  
mA  
pF  
Stop mode  
TA = +25°C  
10  
FC = 10 MHz,  
when A/D  
conversion is  
activated  
AVCC  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
f = 1 MHz  
10  
24  
MB89860/850 Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
16 tXCYL*  
ns  
* : tXCYL is the oscillation cycle (1/FC) to input to the X0 pin.  
t ZLZH  
RST  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Max.  
Parameter  
Symbol  
tR  
Condition  
Unit  
Remarks  
Min.  
Power supply rising time  
Power supply cut-off time  
50  
ms Power-on reset function only  
ms Due to repeated operations  
tOFF  
1
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.  
tOFF  
tR  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
25  
MB89860/850 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Clock frequency  
Symbol  
FC  
Pin  
Condition  
Unit  
Remarks  
Min.  
1
Max.  
10  
MHz  
ns  
X0, X1  
Clock cycle time  
tXCYL  
100  
1000  
PWH  
PWL  
Input clock pulse width  
20  
ns External clock  
ns External clock  
X0  
tCR  
tCF  
Input clock rising/falling time  
10  
X0 and X1 Timing Conditions  
tXCYL  
PWH  
PWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Clock Conditions  
When a crystal  
or  
When an external clock is used  
ceramic resonator is used  
X0  
X1  
X0  
X1  
Open  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
µs  
Remarks  
Instruction cycle  
(minimum execution time)  
tinst = 0.4 µs when operating at  
FC = 10 MHz  
tinst  
4/FC  
26  
MB89860/850 Series  
(5) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR Series)  
X0  
X1  
*
FAR  
C1  
C2  
*: Fujitsu Acoustic Resonator  
C1 = C2 = 20 pF±8 pF (built-in FAR)  
Temperature characteristics  
FAR part number  
(built-in capacitor type)  
Initial deviation of  
FAR frequency (TA = +25°C)  
Frequency  
of FAR frequency  
(TA = –25°C to +60°C)  
FAR-C4CB-08000-M02  
FAR-C4CB-10000-M02  
8.00 MHz  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
10.00 MHz  
Inquiry: FUJITSU LIMITED  
27  
MB89860/850 Series  
Sample Application of Ceramic Resonator  
X0  
X1  
*
C1  
C2  
Resonator manufacturer*  
Kyocera Corporation  
Resonator  
KBR-7.68MWS  
KBR-8.0MWS  
CSA8.00MTZ  
Frequency  
7.68 MHz  
8.0 MHz  
R (k)  
C1 (pF)  
33  
C2 (pF)  
33  
33  
33  
Murata Mfg. Co., Ltd.  
8.0 MHz  
30  
30  
Inquiry: Kyocera Corporation  
AVX Corporation  
North American Sales Headquarters: TEL 1-803-448-9411  
AVX Limited  
European Sales Headquarters: TEL 44-1252-770000  
AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters: TEL 852-363-3303  
Murata Mfg. Co., Ltd.  
Murata Electronics North America, Inc.: TEL 1-404-436-1300  
Murata Europe Management GmbH: TEL 49-911-66870  
Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233  
28  
MB89860/850 Series  
(6) Clock Output Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Cycle time  
CLK ↑ → CLK ↓  
Symbol  
tCYC  
tCHCL  
Pin  
Condition  
Unit  
Remarks  
Min.  
Max.  
tXCYL × 2 at 10 MHz  
oscillation  
200  
ns  
ns  
Load  
condition:  
50 pF  
CLK  
Approx. tCYC/2 at  
10 MHz oscillation  
30  
100  
t CYC  
t CHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
29  
MB89860/850 Series  
(7) Bus Read Timing  
(VCC = +5.0 V±10%, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value (10 MHz)  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
Valid address RD ↓  
RD, A15 to A08,  
AD7 to AD0  
1/4 tinst* – 64 ns  
1/2 tinst* – 20 ns  
tAVRL  
tRLRH  
tAVDV  
ns  
time  
RD pulse width  
RD  
ns  
Valid address data  
read time  
AD7 to AD0,  
A15 to A08  
1/2 tinst*  
ns No wait  
RD, AD7 to AD0  
AD7 to AD0, RD  
RD, ALE  
1/2 tinst* – 80 ns  
RD ↓ → data read time tRLDV  
RD ↑ → data hold time tRHDX  
ns No wait  
0
ns  
ns  
ns  
ns  
ns  
ns  
Load  
condition:  
50 pF  
1/4 tinst* – 40 ns  
1/4 tinst* – 40 ns  
1/4 tinst* – 60 ns  
0
RD ↑ → ALE time  
RD ↑ → address invalid time  
RD ↓ → CLK time  
CLK ↓ → RD time  
RD ↓ → BUFC time  
tRHLH  
tRHAX  
tRLCH  
tCLRH  
tRLBL  
RD, A15 to A08  
RD, CLK  
RD, BUFC  
–5  
A15 to A08,  
AD7 to AD0,  
BUFC  
BUFC ↑ → valid  
address time  
tBHAV  
5
ns  
* : For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
0.8 V  
tRHLH  
ALE  
0.8 V  
0.7 VCC  
2.4 V  
0.7 VCC  
0.3 VCC  
2.4 V  
0.8 V  
AD  
0.8 V  
0.3 VCC  
tAVDV  
tRHDX  
2.4 V  
2.4 V  
tCLRH  
0.8 V  
2.4 V  
A
tRLCH  
0.8 V  
0.8 V  
tAVRL  
tRLDV  
tRHAX  
tRLRH  
2.4 V  
RD  
0.8 V  
tRLBL  
tBHAV  
2.4 V  
BUFC  
0.8 V  
30  
MB89860/850 Series  
(8) Bus Write Timing  
(VCC = +5.0 V±10%, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value (10 MHz)  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
Valid address ALE time  
tAVLL  
tLLAX  
1/4 t *1 – 64 ns  
inst  
ns  
ns  
AD7 to AD0,  
ALE, A15 to  
A08  
ALE time address  
invalid time  
5
Valid address WRtime  
1/4 tinst*1 – 60 ns  
1/2 tinst*1 – 20 ns  
inst  
tAVWL  
WR, ALE  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
tWLWH  
WR  
Write data WR time tDVWH  
1/2 t *1 – 60 ns  
AD7 to AD0, WR  
WR, A15 to A08  
AD7 to AD0, WR  
WR, ALE  
Load  
condition:  
50 pF  
WR ↑ → address invalid time  
tWHAX  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 40 ns  
1/4 tinst*1 – 60 ns  
0
WR ↑ → data hold time tWHDX  
WR ↑ → ALE time  
WR ↓ → CLK time  
CLK ↓ → WR time  
ALE pulse width  
tWHLH  
tWLCH  
tCLWH  
tLHLL  
WR, CLK  
tXCYL – 35 ns*2  
tXCYL – 35 ns*2  
ALE  
ALE ↓ → CLK time  
tLLCH  
ALE, CLK  
*1: For information on tinst, see “(4) Instruction Cycle.”  
*2: These characteristics are also applicable to the bus read timing.  
2.4 V  
CLK  
0.8 V  
tLHLL  
tLLCH  
t WHLH  
2.4 V  
ALE  
AD  
A
0.8 V  
0.8 V  
tAVLL  
tLLAX  
2.4 V  
0.8 V  
2.4 V 2.4 V  
0.8 V 0.8 V  
2.4 V  
0.8 V  
tDVWH  
tWHDX  
2.4 V  
tCLWH  
2.4 V  
0.8 V  
tWLCH  
0.8 V  
tAVWL  
tWHAX  
tWLWH  
2.4 V  
WR  
0.8 V  
31  
MB89860/850 Series  
(9) Ready Input Timing  
(VCC = +5.0 V±10%, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
RDY valid CLK time  
CLK ↑ → RDY invalid time  
tYVCH  
tCHYX  
60  
0
ns  
ns  
*
*
RDY,  
CLK  
Load condition:  
50 pF  
* : These characteristics are also applicable to the read cycle.  
2.4 V  
2.4 V  
CLK  
ALE  
AD  
A
Address  
Data  
WR  
t YVCH t CHYX  
0.7 VCC  
0.7 VCC  
RDY  
0.3 VCC  
0.3 VCC  
t YVCH t CHYX  
Note: The bus cycle is also extended in the read cycle in the same manner.  
32  
MB89860/850 Series  
(10) UART and Serial I/O Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
Serial clock cycle time  
tSCYC  
tSLOV  
SCK1,SCK2  
2 tinst*  
µs  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
SCK1, SO1  
SCK2, SO2  
Internal shift  
clock mode  
Load  
condition:  
50 pF  
–200  
200  
ns  
Valid SI1 SCK1 ↑  
Valid SI2 SCK2 ↑  
SI1, SCK1  
SI2, SCK2  
tIVSH  
1/2 tinst*  
1/2 tinst*  
µs  
µs  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
tSHIX  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
tSLSH  
1 tinst*  
µs  
µs  
SCK1, SCK2  
1 tinst*  
External shift  
clock mode  
Load  
condition:  
50 pF  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
SCK1, SO1  
SCK2, SO2  
tSLOV  
tIVSH  
tSHIX  
0
200  
ns  
µs  
µs  
Valid SI1 SCK1 ↑  
Valid SI2 SCK2 ↑  
SI1, SCK1  
SI2, SCK2  
1/2 tinst*  
1/2 tinst*  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
33  
MB89860/850 Series  
Internal Shift Clock Mode  
tSCYC  
SCK1  
SCK2  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
External Shift Clock Mode  
t SLSH  
t SHSL  
SCK1  
SCK2  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
t SLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
34  
MB89860/850 Series  
(11) Peripheral Input Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
Peripheral input “H”  
pulse width 1  
tILIH1  
tIHIL1  
2 tinst*  
µs  
µs  
TRGI, DTTI,  
ADST,  
INT0 to INT3  
Load  
condition:  
50 pF  
Peripheral input “L”  
pulse width 1  
2 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
TRGI  
DTTI  
tIHIL1  
tILIH1  
ADST  
INT0 to INT3  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Resolution  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
10  
bit  
Linearity error  
±2.0  
±1.5  
±3.0  
LSB  
LSB  
LSB  
Differential linearity error  
Total error  
AVCC = VCC  
AVSS –  
1.5  
AVSS +  
0.5  
AVSS +  
2.5  
Zero transition voltage  
VOT  
LSB  
LSB  
AN0 to  
AN7  
AVR –  
3.5  
AVR –  
1.5  
AVR +  
0.5  
Full-scale transition voltage VFST  
Interchannel disparity  
0
33 tinst*  
4
LSB  
µs  
µA  
V
A/D mode conversion time  
Analog port input current  
Analog input voltage  
IAIN  
10  
AN0 to  
AN7  
AVR  
AVCC  
Reference voltage  
0
V
AVR  
Reference voltage supply  
current  
AVR = 5.0  
V
IR  
200  
µA  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
35  
MB89860/850 Series  
(1) A/D Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter  
• Linearity error  
The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000 0001”) with  
the full-scale transition point (“11 1111 1111” ´“11 1111 1110”) from actual conversion characteristics  
• Differential linearity error  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error  
The total error indicates the difference between the actual value and theoretical value. This error is caused by  
the zero transition error, full-scale transition error, linearity error, quantization, and noise.  
Theoretical I/O value  
VFST  
Total error  
3FF  
3FE  
3FD  
3FF  
3FE  
3FD  
Actual conversion  
value  
1.5 LSB  
(1 LSB × N + 0.5 LSB)  
004  
003  
002  
001  
004  
003  
002  
001  
VNT  
VOT  
Actual conversion  
value  
1 LSB  
Theoretical value  
0.5 LSB  
AVSS  
AVR  
AVSS  
AVR  
Analog input  
Analog input  
VFST – VOT  
VNT – (1 LSB × N + 0.5 LSB)  
1 LSB =  
(V)  
Total error of digital output “N” =  
1022  
1 LSB  
(Continued)  
36  
MB89860/850 Series  
(Continued)  
Zero transition error  
Full-scale transition error  
Theoretical value  
004  
003  
002  
001  
Actual conversion  
value  
3FF  
3FE  
3FD  
3FC  
Actual conversion  
value  
VFST  
(Measured value)  
Actual conversion  
value  
Actual conversion  
value  
VOT (Measured value)  
Analog input  
AVSS  
AVR  
Analog input  
Linearity error  
Differential linearity error  
Theoretical value  
3FF  
3FE  
3FD  
Actual conversion  
value  
N+1  
N
(1 LSB  
× N + VOT)  
Actual conversion  
value  
V(N + 1)T  
VFST  
(Measured  
value)  
VNT  
004  
003  
002  
001  
N – 1  
N – 2  
VNT  
Actual conversion  
value  
Actual conversion  
value  
Theoretical value  
VOT (Measured value)  
Analog input  
AVSS  
AVR  
Analog input  
VNT – (1 LSB × N + VOT)  
V(N + 1)T – VNT  
Linearity error of digital output “N” =  
Differential linearity error of digital output “N” =  
– 1  
1 LSB  
1 LSB  
37  
MB89860/850 Series  
(2) Precautions  
• Input impedance of the analog input pins  
The A/D converter used for the MB89860/850 series contains a sample hold circuit as illustrated below to  
fetch analog input voltage into the sample hold capacitor for fifteen instruction cycles after activation A/D  
conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance connot be kept low, it is recommended to connect an external capacitor of about  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 64 pF  
.
Anlog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 3 kΩ  
.
Close for 15 instruction cycles  
after activating A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
38  
MB89860/850 Series  
EXAMPLE CHARACTERISTICS  
(1) “L” Level Output Voltage (P00 to P07, P10 to  
P17, P20 to P27, P30 to P37, P50 to P57, P70 to  
P76, and P80 to P87)  
(2) “L” Level Output Voltage (P40 to P47)  
VOL vs. IOL  
VOL vs. IOL  
VOL (V)  
VOL (mV)  
600  
TA = +25˚C  
TA = +25˚C  
0.5  
500  
VCC = 3.0 V  
VCC = 3.0 V  
0.4  
400  
VCC = 4.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
300  
0.3  
VCC = 5.0 V  
VCC = 6.0 V  
200  
0.2  
100  
0.1  
0
0 1 2 3 4 5 6 7 8 9 1011121314151617181920  
IOL (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(4) Pull-up Resistance  
(3) “H” Level Output Voltage (P00 to P07, P10 to  
P17, P20 to P27, P30 to P37, and P40 to P47)  
RPULL vs. VCC  
VCC VOH vs. IOH  
RPULL (k)  
1000  
VCC VOH (V)  
1.0  
TA = +25˚C  
TA = +25˚C  
0.9  
0.8  
0.7  
VCC = 3.0 V  
0.6  
0.5  
100  
VCC = 4.0 V  
VCC = 5.0 V  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 6.0 V  
10 to 1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
IOH (mA)  
1
2
3
4
5
6
VCC (V)  
39  
MB89860/850 Series  
(5) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(6) “H” Level Input Voltage/“L” level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN vs. VCC  
VIN (V)  
5.0  
VIN (V)  
5.0  
TA = +25˚C  
TA = +25˚C  
4.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
VIHS  
3.0  
2.5  
VILS  
2.0  
1.5  
1.0  
0.5  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
VCC (V)  
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
(7) Operating Supply Current vs. Frequency  
(8) Operating Supply Current vs. VCC  
ICC vs. F  
C
ICC vs. VCC  
ICC (mA)  
25  
ICC (mA)  
25  
TA = +25˚C  
TA = +25˚C  
FC = 10 MHz  
20  
15  
10  
5
20  
FC = 8 MHz  
VCC = 5.0 V  
15  
10  
5
FC = 6 MHz  
FC = 4 MHz  
VCC = 3.5 V  
VCC = 3.0 V  
0
0
2
4
6
8
10  
FC (MHz)  
3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VCC (V)  
40  
MB89860/850 Series  
(9) Sleep Power Supply Current vs. Frequency  
(10) Sleep Power Supply Current vs. VCC  
ICCS vs. VCC  
ICCS vs. FC  
ICCS (mA)  
10  
ICCS (mA)  
10  
TA = +25˚C  
TA = +25˚C  
8
8
FC = 10 MHz  
FC = 8 MHz  
6
6
VCC = 5.0 V  
FC = 6 MHz  
4
4
2
0
FC = 4 MHz  
VCC = 3.5 V  
2
VCC = 3.0 V  
0
2
4
6
8
10  
FC (MHz)  
3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VCC (V)  
41  
MB89860/850 Series  
INSTRUCTIONS  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
#vct  
#d8  
#d16  
dir: b  
rel  
@
Register indirect (Example: @A, @IX, @EP)  
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the  
instruction in use.)  
T
TH  
TL  
IX  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
(Continued)  
42  
MB89860/850 Series  
(Continued)  
Symbol  
Meaning  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
CCR  
RP  
Ri  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
Number of instructions  
Number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH immediately before the instruction  
is executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
43  
MB89860/850 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
44  
MB89860/850 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
dH + + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
22  
38 to 3F  
34  
35  
36  
37  
33  
dH + + + +  
dH  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
32  
C8 to CF  
C3  
C2  
C0  
D8 toDF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
dH + + R –  
dH + + R –  
dH + + R –  
+ + + +  
+ + + +  
+ + – +  
(TL) (AL)  
(T) (A)  
13  
03  
C
C
A
A
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
45  
MB89860/850 Series  
(Continued)  
Mnemonic  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) +off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
46  
MB89860/850 Series  
INSTRUCTION MAP  
47  
MB89860/850 Series  
MASK OPTIONS (MB89855/857/865/867)  
Option type  
Power-on reset  
Option selection  
Remarks  
0: Without power-on reset  
1: With power-on reset  
Selects the initial value of the OSCS bit  
in the STBC register during power-on  
reset.  
Initial value of oscillation  
stabilization delay time  
0: 218/FC (s) (Crystal oscillator)  
1: 214/FC (s) (Ceramic oscillator)  
0: Without reset output  
1: With reset output  
Reset pin output  
• Can be set per pin.  
• P70 to P76, and P80 to P87 are used  
in the MB89860 series only.  
• P00 to P07, P10 to P17, and P20 to  
P27 with a pull-up resistor can be set  
only for single-chip mode.  
Pull-up resistor at port pin  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P60 to P64,  
P70 to P76, P80 to P87  
1: Without pull-up resistor  
0: With pull-up resistor  
STANDARD OPTION LIST  
Part number  
Parameter  
MB89P857/W857/  
P867/W867/T855  
Power-on reset  
Available  
218/FC (s)  
Initial value of oscillation  
stabilization delay time  
Output at reset pin  
Available  
Pull-up resistor at port pin  
Not available  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89865PF  
MB89867PF  
MB89P867PF  
80-pin Plastic QFP  
(FPT-80P-M06)  
MB89855P-SH  
MB89T855P-SH  
MB89857P-SH  
MB89P857P-SH  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
80-pin Ceramic QFP  
(FPT-80C-A02)  
MB89W867CF  
ES level only  
ES level only  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
MB89W857C-SH  
48  
MB89860/850 Series  
PACKAGE DIMENSIONS  
80-pin Plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
REF  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
16.30±0.40  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.58(.023)MAX  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
1994 FUJITSU LIMITED F80010S-3C-2  
Dimensions in mm (inches)  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
58.00+00..5252  
+.008  
2.283–.022  
INDEX-1  
17.00±0.25  
(.669±.010)  
INDEX-2  
5.65(.222)MAX  
3.00(.118)MIN  
0.25±0.05  
(.010±.002)  
1.00+00.50  
.039+0.020  
0.45±0.10  
(.018±.004)  
0.51(.020)MIN  
19.05(.750)  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
55.118(2.170)REF  
C
1994 FUJITSU LIMITED D64001S-3C-4  
Dimensions in mm (inches)  
49  
MB89860/850 Series  
80-pin Ceramic QFP  
(FPT-80P-A02)  
0.51(.020) TYP  
17.91(.705)  
TYP  
12.00(.472)  
REF  
16.31(.642)  
TYP  
8.50(.335)TYP  
16.00(.630)  
14.00±0.25  
(.551±.010)  
TYP  
INDEX AREA  
0.80±0.10  
0.35+00..0078  
0.80±0.10  
0.15±0.05  
(.0315±.0040)  
(.014±.003)  
(.0315±.0040)  
(.006±.002)  
18.40(.725) REF  
1.60(.063) TYP  
20.00±0.25  
(.787±.010)  
4.45(.175)MAX  
23.90(.941) TYP  
22.00(.866) TYP  
22.30(.878) TYP  
0.80(.0315) TYP  
C
1994 FUJITSU LIMITED F80014SC-1-2  
Dimensions in mm (inches)  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
56.90±0.56  
(2.240±.022)  
8.89(.350) DIA  
TYP  
R1.27(.050)  
REF  
18.75±0.25  
(.738±.010)  
INDEX AREA  
1.27±0.25  
(.050±.010)  
5.84(.230)MAX  
0.25±0.05  
(.010±.004)  
3.40±0.36  
(.134±.014)  
+0.13  
1.778±0.180  
(.070±.007)  
0.90±0.10  
(.0355±.0040)  
0.46–0.08  
19.05±0.25  
.018+..000035  
(.750±.010)  
0°~9°  
1.45(.057)  
MAX  
55.118(2.170)REF  
C
1994 FUJITSU LIMITED D64006SC-1-2  
Dimensions in mm (inches)  
50  
MB89860/850 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 1015, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211, Japan  
Tel: (044) 754-3753  
Fax: (044) 754-3329  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
Fax: (408) 432-9044/9045  
All Rights Reserved.  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
63303 Dreieich-Buchschlag  
Germany  
Circuit diagrams utilizing Fujitsu products are included as a  
means of illustrating typical semiconductor applications. Com-  
plete information sufficient for construction purposes is not nec-  
essarily given.  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
The information contained in this document has been carefully  
checked and is believed to be reliable. However, Fujitsu as-  
sumes no responsibility for inaccuracies.  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED  
No. 51 Bras Basah Road,  
Plaza By The Park,  
The information contained in this document does not convey  
any license under the copyrights, patent rights or trademarks  
claimed and owned by Fujitsu.  
#06-04 to #06-07  
Singapore 189554  
Tel: 336-1600  
Fujitsu reserves the right to change products or specifications  
without notice.  
Fax: 336-1609  
No part of this publication may be copied or reproduced in any  
form or by any means, or transferred to any third party without  
prior written consent of Fujitsu.  
The information contained in this document are not intended for  
use with equipments which require extremely high reliability  
such as aerospace equipments, undersea repeaters, nuclear con-  
trol systems or medical equipments for life support.  
F9606  
FUJITSU LIMITED Printed in Japan  
51  

相关型号:

MB89W867CF

8-bit Proprietary Microcontroller
FUJITSU

MB8AA3020

The Fujitsu 20-port 10Gbps Ethernet Switch Chip
FUJITSU

MB8F

Miniature Glass Passivated Single-Phase Surface Mount Flat Bridge Rectifier
PACELEADER

MB8F

Low Profile Miniature Glass Passivated Single-Phase Surface Mount Bridge Rectifier
PFS

MB8F

MB8FMiniature Glass Passivated Single-Phase Surface Mount Flat Bridge Rectifier
ASEMI

MB8F

Silicon Bridge Rectifiers
LGE

MB8F

0.8A SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIER
FORMOSA

MB8F

MINIATURE GLASS PASSIVATED SINGLE-PHASE SURFACE MOUNT BRIDGE RECTIFIER
MDD

MB8M

0.5Amp Single Phase Glass Passivated Bridge Rectifier 50 to 1000 Volts
MCC

MB8M

0.5A Glass Passivated Bridge Rectifier
TAITRON

MB8M

Miniature Glass Passivated Single-Phase Bridge Rectifiers Reverse Voltage 200 to 1000 Volts Forward Current 0.5 Ampere
GOOD-ARK

MB8M

SILICON BRIDGE RECTIFIERS
BL Galaxy Ele