MB90P214APF [FUJITSU]

Microcontroller, 16-Bit, OTPROM, 16MHz, CMOS, PQFP80, PLASTIC, QFP-80;
MB90P214APF
型号: MB90P214APF
厂家: FUJITSU    FUJITSU
描述:

Microcontroller, 16-Bit, OTPROM, 16MHz, CMOS, PQFP80, PLASTIC, QFP-80

可编程只读存储器 微控制器
文件: 总100页 (文件大小:1753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-13501-6E  
16-bit Proprietary Microcontroller  
CMOS  
F2MC-16F MB90210 Series  
MB90214/P214A/P214B/W214A/W214B/V210  
OUTLINE  
The MB90210 series is a line of 16-bit microcontrollers particularly suitable for system control of video cameras,  
VTRs, and copiers. The F2MC-16F CPU integrated in this series is based on the F2MC*-16, while providing  
enhanced instructions for high-level languages and supporting extended addressing modes.  
The MB90210 series incorporates a variety of peripheral resources such as a PWC timer with 4 channels, a 10-  
bit A/D converter with 8 channels, UART serial ports with 3 channels (1 channel for CTS and 1 channel for dual  
input/output pin switching), 16-bit reload timers with 8 channels, and an 8-bit PPG timer with 1 channel.  
MB90P214B/W214B is under development.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
PACKAGE  
80-pin Plastic QFP  
80-pin Ceramic QFP  
(FPT-80P-M06)  
(FPT-80C-C02)  
MB90210 Series  
FEATURES  
F2MC-16F CPU  
• Minimum execution time: 62.5 ns/16-MHz oscillation (using a duty control system)  
• Instruction sets optimized for controllers  
Upward object-compatible with the F2MC-16(H)  
Various data types (bit, byte, word, and long-word)  
Instruction cycle improved to speed up operation  
Extended addressing modes: 25 types  
High coding efficiency  
Access method (bank access with linear pointer)  
Enhanced multiplication and division instructions (with signed instructions added)  
Higher-precision operation using a 32-bit accumulator  
• Extended intelligent I/O service (Automatic transfer function independent of instructions) access area  
expanded to 64 Kbytes  
• Enhanced instruction set applicable to high-level language (C) and multitasking  
System stack pointer  
Enhanced pointer-indirect instructions  
Barrel shift instruction  
Stack check function  
• Increased execution speed: 8-byte instruction queue  
• Powerful interrupt functions: 8 levels and 29 sources  
Integrated Peripheral Resources  
• ROM  
: 64 Kbytes (MB90214)  
EPROM : 64 Kbytes (MB90W214A/W214B)  
OTPROM: 64Kbytes (MB90P214A/P214B)  
• RAM: 3 Kbytes (MB90214)  
4 Kbytes (MB90P214A/P214B/W214A/W214B/V210)  
• General-purpose ports: max. 65 channels  
• PWC timer with time measurement function: 4 channels  
• 10-bit A/D converter: 8 channels  
• UART: 3 channels  
• Including: 1 channel with CTS function  
1 channel with I/O pin switching function  
• 16-bit reload timer  
Toggled output, external clock, and gate functions: 4 channels  
External clock and gate functions: 4 channels  
• 8-bit PPG timer: 1 channel  
• DTP/External-interrupt inputs: 4 channels  
• Write-inhibit RAM: 256 bytes (MB90V210: 512 bytes)  
• Timebase counter: 18 bits  
• Clock gear function  
• Low-power consumption mode  
Sleep mode  
Stop mode  
Hardware standby mode  
2
MB90210 Series  
Product Description  
• MB90214 is a mask ROM product.  
• MB90P214A/P214B are OTPROM products.  
• MB90W214A/W214B are EPROM products. ES only.  
• Operating temperature of MB90P214A/W214A is –40°C to +85°C. (However, the AC characteristics is assured  
in –40°C to +70°C)  
• MB90V210 is a evaluation device for the program development. ES only.  
3
MB90210 Series  
PRODUCT LINEUP  
Part number  
MB90214  
MB90P214A  
MB90P214B  
MB90W214A  
MB90W214B  
MB90V210  
Item  
Classification  
ROM size  
Mask ROM product  
64 Kbytes  
OTPROM product  
64 Kbytes  
EPROM product  
64 Kbytes  
For evaluation  
RAM size  
3 Kbytes  
4 Kbytes  
4 Kbytes  
4 Kbytes  
CPU functions  
The number of instructions:  
Instruction bit length:  
Instruction length:  
412  
8 or 16 bits  
1 to 7 bytes  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
1, 4, 8, 16, or 32 bits  
62.5 ns/16 MHz  
1.0 µs/16 MHz (min.)  
Ports  
I/O ports (N-ch open-drain):  
I/O ports (CMOS):  
Total:  
8
57  
65  
PWC timer  
Number of channels: 4  
16-bit reload timer operation (operating clock cycle: 0.25 µs to 1.31 ms)  
16-bit pulse-width count operation (Allowing continuous/one-shot measurement, H/L width  
measurement, inter-edge measurement, and divided-frequency measurement)  
10-bit  
A/D converter  
Resolution: 10 or 8 bits, Number of inputs: 8  
Single conversion mode (conversion for each input channel)  
Scan conversion mode (continuous conversion for up to 8 consecutive channels)  
Continuous conversion mode (repeated conversion for a selected channel)  
Stop conversion mode (conversion every fixed cycle)  
UART  
Number of channels: 3  
(1 channel with CTS function; 1 channel with I/O pin switching function)  
Clock-synchronous transfer mode  
(full-duplex double buffering, 7- to 9-bit data length, 2400 to 62500 bps)  
Asynchronous transfer mode  
(full-duplex double buffering, 7- to 9-bit data length, 2400 to 62500 bps)  
Timer  
Number of channels: 4 channels × 2 types  
16-bit reload timer operation (operating clock cycle: 0.25 µs to 1.05 s)  
8-bit PPG timer  
Number of channels: 1  
8-bit PPG operation (operating clock cycle: 0.25 µs to 6 s)  
DTP/External  
interrupt  
Number of inputs: 4  
External interrupt mode (allowing interrupts to activate at four different request levels)  
Simple DMA start mode (allowing extended I2OS to activate at two different request levels)  
Write-inhibit RAM  
RAM size: 256 bytes (MB90V210: 512 bytes)  
RAM write-protectable with WI pin  
Standby mode  
Gear function  
Package  
Stop mode (activated by software or hardware) and sleep mode  
Machine clock operating frequency switching: 16, 8, 4, or 1 MHz (at 16 MHz oscillation)  
FPT-80P-M06  
FPT-80C-C02  
PGA-256C-A02  
4
MB90210 Series  
DIFFERENCES BETWEEN MB90214 (MASK ROM PRODUCT) AND MB90P214A/P214B/  
W214A/W214B  
Part number  
MB90P214A  
MB90P214B  
MB90W214A  
MB90W214B  
MB90214  
Item  
ROM  
Mask ROM  
64 Kbytes  
OTPROM  
64 Kbytes  
EPROM  
64 Kbytes  
Pin function  
43 pins  
MD2 pin  
MD2/VPP pin  
Note: MB90V210, device used for evaluation, is not warranted for electrical specifications.  
5
MB90210 Series  
PIN ASSIGNMENT  
(Top view)  
X1 65  
40 P67/AN7  
39 P66/AN6  
38 P65/AN5  
V
CC  
66  
P00/D00 67  
68  
P02/D02 69  
37  
36 P63/AN3  
P01/D01  
P64/AN4  
70  
71  
35  
34  
P03/D03  
P04/D04  
P62/AN2  
V
SS  
P05/D05 72  
33 P61/AN1  
P06/D06 73  
32 P60/AN0  
74  
31  
P07/D07  
AVSS  
P10/D08 75  
P11/D09 76  
30 AVRL  
29 AVRH  
P12/D10  
AVCC  
77  
28  
P13/D11 78  
P14/D12 79  
27 PWC3/P47/A23/POUT3  
26 PWC2/P46/A22/POUT2  
80  
25  
P15/D13  
PWC1/P45/A21/POUT1  
(FPT-80P-M06)  
(FPT-80C-C02)  
6
MB90210 Series  
PIN DESCRIPTION  
Pin no.  
Pin name  
QFP*  
Circuit  
type  
Function  
64,  
65  
X0,  
X1  
A
Crystal oscillator pins (16 MHz)  
62  
66  
RST  
VCC  
VSS  
H
External reset request input pin  
Digital circuit power supply pin  
Digital circuit grounding level  
Power supply  
Power supply  
11,  
34,  
63  
67 to 74  
P00 to P07  
D00 to D07  
B
B
General-purpose I/O ports  
These ports are available only in the single-chip mode.  
I/O pins for the lower eight bits of external data bus  
These pins are available in an external-bus mode.  
75 to 80, P10 to P15,  
General-purpose I/O ports  
1,  
2
P16,  
P17  
These ports are available in the single-chip mode and in an  
external-bus mode with the 8-bit data bus specified.  
D08 to D13,  
D14,  
D15  
I/O pins for the upper eight bits of external data bus  
These pins are available in an external-bus mode with the 16-bit  
data bus specified.  
3 to 6  
7 to 10  
12  
P20 to P23  
A00 to A03  
TIN0 to TIN3  
E
E
E
General-purpose I/O ports  
These ports are available only in the single-chip mode.  
Output pins for external address buses A00 to A03  
These pins are available in an external-bus mode.  
16-bit reload timer 1 (ch.0 to ch.3) input pins  
These pins are available when the 16-bit reload timer 1 (ch.0 to  
ch.3) input specification is “enabled”. The data on the pin is read  
as the 16-bit reload timer 1 (ch.0 to ch.3) input (TIN0 to TIN3).  
P24 to P27  
A04 to A07  
TIN4 to TIN7  
General-purpose I/O ports  
These ports are available only in the single-chip mode.  
Output pins for external address buses A04 to A07  
These pins are available in an external-bus mode.  
16-bit reload timer 2 (ch.4 to ch.7) input pins  
These pins are available when the 16-bit reload timer 2 (ch.4 to  
ch.7) input specification is “enabled”. The data on the pin is read  
as the 16-bit reload timer 2 (ch.4 to ch.7) input (TIN4 to TIN7).  
P30  
A08  
General-purpose I/O port  
This port is available in the single-chip mode or when the middle  
address control register setting is “port.”  
Output pin for external address bus A08  
This pin is available in an external-bus mode and when the middle  
address control register set to “address.”  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
7
MB90210 Series  
Pin no.  
Pin name  
QFP*  
Circuit  
type  
Function  
13  
14 to 17  
18  
P31  
E
E
E
General-purpose I/O port  
This port is available in the single-chip mode or when the middle  
address control register setting is “port”, with the 8-bit PPG  
output is disabled.  
A09  
Output pin for external address bus A09  
This pin is available in an external-bus mode and when the middle  
address control register setting is “address.”  
PPG  
PPG timer output pin  
This pin is available when the PPG operation mode control  
register specification is the PPG output pin.  
P32 to P35  
General-purpose I/O ports  
These ports are available in the single-chip mode or when the  
middle address control register setting is “port”, with the 16-bit  
reload timer 1 (ch.0 to ch.3) output is disabled.  
A10 to A13  
TOUT0 to TOUT3  
P36  
Output pins for external address buses A10 to A13  
These pins are available in an external-bus mode and when the  
middle address control register setting is “address.”  
16-bit reload timer 1 (ch.0 to ch.3) output pin  
These pins are available when the 16-bit reload timer 1 (ch.0 to  
ch.3) is output operation.  
General-purpose I/O port  
This port is available when the UART (ch.2) clock output is  
disabled either in the single-chip mode or when the middle  
address control register setting is “port.”  
A14  
Output pin for external address bus A14  
This pin is available when the UART (ch.2) clock output is  
disabled in an external-bus mode and when the middle address  
control register setting is “address.”  
SCK3  
UART (ch.2) clock output pin (SCK3)  
This pin is available when the UART (ch.2) clock output is  
enabled.  
UART (ch.2) external clock input pin (SCK3)  
This pin is available when the port is in input mode and the UART  
(ch.2) specification is external clock mode.  
19  
P37  
A15  
SID3  
E
General-purpose I/O port  
This port is available in the single-chip mode or when the middle  
address control register setting is “port.”  
Output pin for external address bus A15  
This pin is available in an external-bus mode and when middle  
address control register setting is “address.”  
UART (ch.2) serial data input pin (SID3)  
Since this input is used whenever the SID3 is in input operation,  
the output by any other function must be suspended unless the  
output is intentionally performed.  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
8
MB90210 Series  
Pin no.  
QFP*  
20  
Circuit  
type  
Pin name  
Function  
P40  
E
General-purpose I/O port  
This port is available when the UART (ch.2) serial data output  
from SOD3 is disabled either in the single-chip mode or when the  
upper address control register setting is “port.”  
A16  
Output pin for external address bus A16  
This pin is available when the UART (ch.2) serial data output  
from SOD3 is disabled in an external-bus mode and when the  
upper address control register setting is “address.”  
SOD3  
P41  
UART (ch.2) serial data output pin (SOD3)  
This pin is available when the UART (ch.2) serial data output is  
enabled.  
21  
E
General-purpose I/O port  
This port is available when the UART (ch.2) clock output is  
disabled either in the single-chip mode or when the upper  
address control register setting is “port.”  
A17  
Output pin for external address bus A17  
This pin is available when the UART (ch.2) clock output is  
disabled in an external-bus mode and when the upper address  
control register setting is “address.”  
SCK2  
UART (ch.2) clock output pin (SCK2)  
This pin is available when the UART (ch.2) clock output is  
enabled.  
UART (ch.2) external clock input pin (SCK2)  
This pin is available when the port is in input mode and the UART  
(ch.2) specification is external clock mode.  
22  
P42  
A18  
SID2  
E
General-purpose I/O port  
This port is available in the single-chip mode or when the upper  
address control register setting is “port.”  
Output pin for external address bus A18  
This pin is available in an external-bus mode and when the upper  
address control register setting is “address.”  
UART (ch.2) serial data input pin (SID2)  
Since this input is used whenever the SID2 is in input operation,  
the output by any other function must be suspended unless the  
output is intentionally performed.  
23  
P43  
E
General-purpose I/O port  
This port is available when the UART (ch.2) serial data output  
from SOD2 is disabled either in the single-chip mode or when the  
upper address control register setting is “port.”  
A19  
Output pin for external address bus A19  
This pin is available when the UART (ch.2) serial data output  
from SOD2 is disabled in an external-bus mode and when the  
upper address control register setting is “address.”  
SOD2  
UART (ch.2) serial data output pin (SOD2)  
This pin is available when the UART (ch.2) serial data output  
from SOD2 is enabled.  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
9
MB90210 Series  
Pin no.  
Pin name  
QFP*  
Circuit  
type  
Function  
24  
PWC0  
E
PWC timer input pin  
Since this input is used whenever the PWC0 timer is in input  
operation, the output by any other function must be suspended  
unless the output is intentionally performed.  
POUT0  
P45  
PWC timer output pin  
This pin is available when the PWC0 is output operation.  
25  
E
General-purpose I/O port  
This port is available in the single-chip mode or when the upper  
address control register setting is “port.”  
A21  
Output pin for external address bus A21  
This pin is available in an external-bus mode and when the upper  
address control register setting is “address.”  
PWC1  
PWC timer data sample input pin  
Since this input is used whenever the PWC1 timer is in input  
operation, the output by any other function must be suspended  
unless the output is intentionally performed.  
POUT1  
P46  
PWC timer output pin  
This pin is available when the PWC1 is output operation.  
26  
E
General-purpose I/O port  
This port is available in the single-chip mode or when the upper  
address control register setting is “port.”  
A22  
Output pin for external address bus A22  
This pin is available in an external-bus mode and when the upper  
address control register setting is “address.”  
PWC2  
PWC timer input pin  
Since this input is used whenever the PWC2 timer is in input  
operation, the output by any other function must be suspended  
unless the output is intentionally performed.  
POUT2  
P47  
PWC timer output pin  
This pin is available when the PWC2 is output operation.  
27  
E
General-purpose I/O port  
This port is available in the single-chip mode or when the upper  
address control register setting is “port.”  
A23  
Output pin for external address bus A23  
This pin is available in an external-bus mode and when the upper  
address control register setting is “address.”  
PWC3  
PWC timer input pin  
Since this input is used whenever the PWC3 timer is in input  
operation, the output by any other function must be suspended  
unless the output is intentionally performed.  
POUT3  
PWC timer output pin  
This pin is available when the PWC3 is output operation.  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
10  
MB90210 Series  
Pin no.  
QFP*  
54  
Circuit  
type  
Pin name  
P50  
Function  
E
E
E
E
General-purpose I/O port  
This port is available in the single-chip mode and when the CLK  
output is disabled.  
CLK  
P51  
RDY  
P52  
HAK  
P53  
HRQ  
CLK output pin  
This pin is available in an external-bus mode with the CLK output  
enabled.  
55  
56  
57  
General-purpose I/O port  
This port is available in the single-chip mode or when the ready  
function is disable.  
Ready signal input pin  
This pin is available in an external-bus mode and when the ready  
function is enabled.  
General-purpose I/O port  
This port is available in the single-chip mode or when the hold  
function is disabled.  
Hold acknowledge output pin  
This pin is available in an external-bus mode and when the hold  
function is enabled.  
General-purpose I/O port  
This port is available in the single-chip mode or when the hold  
function is disabled in an external-bus mode.  
Hold request input pin  
This pin is available in an external-bus mode and when the hold  
function is enabled.  
Since this input is used during this operation at any time, the  
output by any other function must be suspended unless the  
output is intentionally performed.  
58  
P54  
D
General-purpose I/O port  
This port is available in the single-chip mode, in the external bus  
8-bit mode, or when the WRH pin output is disabled.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
CTS0  
UART (ch.0) clear-to-send input pin  
Since this input is used whenever the UART (ch.0) CTS function  
is enabled, the output by any other function must be suspended  
unless the output is intentionally performed.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
WRH  
Write strobe output pin for the upper eight bits of data bus  
This pin is available in the external bus 16-bit mode with the  
WRH pin output enabled in an external-bus mode.  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
11  
MB90210 Series  
Pin no.  
Pin name  
QFP*  
Circuit  
type  
Function  
External interrupt request input pin  
58  
INT3  
D
Since this input is used whenever external interrupts are enabled,  
the output by any other function must be suspended unless the  
output is intentionally performed.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
59  
P55  
E
General-purpose I/O port  
This port is available in the single-chip mode or when the WRL  
pin output is disabled.  
WRL  
Write strobe output pin for the lower eight bits of data bus  
This pin is available in an external-bus mode and when the WRL  
pin output is enabled.  
60  
61  
P56  
RD  
E
D
General-purpose I/O port  
This port is available in the single-chip mode.  
Data bus read strobe output pin  
This pin is available in an external-bus mode.  
P57  
General-purpose I/O port  
This port is always available.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
WI  
RAM write disable request input  
Since this input is used during this operation at any time, the  
output by any other function must be suspended unless the  
output is intentionally performed.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
32,  
33,  
35 to 40  
P60,  
P61,  
P62 to P67  
C
F
Open-drain I/O ports  
These ports are available when the analog input enable register  
setting is “port.”  
AN0,  
AN1,  
AN2 to AN7  
10-bit A/D converter analog input pins  
These pins are available when the analog input enable register  
setting is “analog input.”  
41 to 43  
MD0 to MD2  
Operation mode select signal input pins  
Connect these pins directly to VCC or VSS.  
44  
45  
HST  
P70  
G
E
Hardware standby input pin  
General-purpose I/O port  
This port is available when the UART (ch.1) clock output is  
disabled.  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
12  
MB90210 Series  
Pin no.  
QFP*  
45  
Circuit  
type  
Pin name  
SCK1  
Function  
E
UART (ch.1) clock output pin  
This pin is available when the UART (ch.1) clock output is  
enabled.  
UART (ch.1) external clock input pin  
This pin is available when the port is in input mode and the UART  
(ch.1) specification is external clock mode.  
46  
P71  
E
General-purpose I/O port  
This port is always available.  
SID1  
UART (ch.1) serial data input pin  
Since this input is used whenever the UART (ch.1) is in input  
operation, the output by any other function must be suspended  
unless the output is intentionally performed.  
47  
48  
P72  
E
E
General-purpose I/O port  
This port is available when the UART (ch.1) serial data output is  
disabled.  
SOD1  
P73  
UART (ch.1) serial data output pin  
This pin is available when the UART (ch.1) serial data output is  
enabled.  
General-purpose I/O port  
This port is available when the UART (ch.0) clock output is  
disabled.  
SCK0  
UART (ch.0) clock output pin  
This pin is available when the UART (ch.0) clock output is  
enabled.  
UART (ch.0) external clock input pin  
This pin is available when the port is in input mode and the UART  
(ch.0) specification is external clock mode.  
49  
50  
P74  
E
E
D
General-purpose I/O port  
This port is always available.  
SID0  
UART (ch.0) serial data input pin  
Since this input is used whenever the UART (ch.0) is in input  
operation, the output by any other function must be suspended  
unless the output is intentionally performed.  
P75  
General-purpose I/O port  
This port is available when the UART (ch.0) serial data output is  
disabled.  
SOD0  
UART (ch.0) serial data output pin  
This pin is available when the UART (ch.0) serial data output is  
enabled.  
51,  
52  
P80,  
P81  
General-purpose I/O port  
This port is always available.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
* : FPT-80P-M06, FPT-80C-C02  
(Continued)  
13  
MB90210 Series  
(Continued)  
Pin no.  
Pin name  
QFP*  
Circuit  
type  
Function  
External interrupt request input pin  
Since this input is used whenever external interrupts are enabled,  
the output by any other function must be suspended unless the  
output is intentionally performed.  
51,  
52  
INT0,  
INT1  
D
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
53  
P82  
D
General-purpose I/O port  
This port is always available.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
INT2  
External interrupt request input pin  
Since this input is used whenever external interrupts are enabled,  
the output by any other function must be suspended unless the  
output is intentionally performed.  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
ATG  
10-bit A/D converter trigger input pin  
When these pins are open in input mode, through current may  
leak in stop mode/reset mode, be sure to fix these pins to VCC/VSS  
level to use these pins in input mode.  
Power supply  
Power supply  
28  
29  
AVCC  
Analog circuit power supply pin  
This power supply must be turned on or off with a potential equal  
to or higher than AVCC applied to VCC.  
Be sure that AVCC= VCC before use and during operation.  
AVRH  
Analog circuit reference voltage input pin  
This pins must be turned on or off with a potential equal to or  
higher than AVRH applied to AVCC.  
Power supply  
Power supply  
30  
31  
AVRL  
AVSS  
Analog circuit reference voltage input pin  
Analog circuit grounding level  
* : FPT-80P-M06, FPT-80C-C02  
14  
MB90210 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillation feedback resistor: Approx.1 MΩ  
X1  
MB90214  
MB90P214B  
MB90W214B  
X0  
Standby control  
X1  
• Oscillation feedback resistor: Approx.1 MΩ  
MB90P214A  
MB90W214A  
X0  
Standby control  
B
• CMOS-level I/O  
R
Standby control provided  
MB90214: With or without pull-up/pull-down  
reisistor optional  
MB90P214A/P214B: Without pull-up/pull-down  
resistor  
Digital output  
Digital output  
R
MB90W214A/W214B: Without pull-up/pull-down  
resistor  
R
Digital input  
Standby control  
C
• N-ch open-drain output  
• CMOS-level hysteresis input  
A/D control provided  
Digital output  
R
A/D input  
Digital input  
D
• CMOS-level output  
R
R
• CMOS-level hysteresis input  
Standby control not provided  
MB90214: With or without pull-up/pull-down  
reisistor optional  
MB90P214A/P214B: Without pull-up/pull-down  
resistor  
Digital output  
Digital output  
R
MB90W214A/W214B: Without pull-up/pull-down  
resistor  
Digital input  
(Continued)  
15  
MB90210 Series  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS-level output  
E
R
R
• CMOS-level hysteresis input  
Standby control provided  
MB90214: With or without pull-up/pull-down  
reisistor optional  
MB90P214A/P214B: Without pull-up/pull-down  
resistor  
MB90W214A/W214B: Without pull-up/pull-down  
resistor  
Digital output  
Digital output  
R
Digital input  
F
• CMOS-level input with no standby control  
Mask ROM products only:  
MD2: With pull-down resistor  
MD1: With pull-up resistor  
R
MD0: With pull-down resistor  
Digital input  
• COMS-level input with no standby control  
MD2 of OTPROM products/EPROM products  
only  
R
Digital input  
PP power supply  
V
G
• CMOS-level hysteresis input  
Standby control not provided  
• With input analog filter (40 ns Typ.)  
R
Analog filter  
Digital input  
H
• CMOS-level hysteresis input  
Standby control not provided  
• With input analog filter (40 ns Typ.)  
• With pull-up resistor  
Pull-up  
resistor  
R
MB90214: With or without pull-up/pull-down  
resistor optional  
MB90P214A/W214A/P214B/W214B:  
With pull-up resistor  
R
Analog filter  
Digital input  
: P-type transistor  
: N-type transistor  
Note: The pull-up and pull-down resistors are always connected, regardless of the state.  
16  
MB90210 Series  
HANDLING DEVICES  
1. Preventing Latchup  
CMOS ICs may cause latchup when a voltage higher than VCC or lower than VSS is applied to input or output  
pins, or when a voltage exceeding the rating is applied between VCC and VSS.  
If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the  
device. Use meticulous care not to let any voltage exceed the maximum rating.  
Also, take care to prevent the analog power supply (AVCC and AVRH) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Pins when A/D is not Used  
Connect to be AVCC = AVRH = VCC and AVSS = AVRL = VSS even if the A/D converter is not in use.  
4. Precautions when Using an External Clock  
To reset the internal circuit properly by the Low-level input to the RST pin, the “L” level input to the RST pin  
must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.  
5. VCC and VSS Pins  
Apply equal potential to the VCC and VSS pins.  
6. Supply Voltage Variation  
The operation assurance range for the VCC supply voltage is as given in the ratings. However, sudden changes  
in the supply voltage can cause misoperation, even if the voltage remains within the rated range. Therefore, it  
is important to supply a stable voltage to the IC. The recommended power supply control guidelines are that  
the commercial frequency (50 to 60 Hz) ripple variation (P-P value) on VCC should be less than 10% of the  
standard VCC value and that the transient rate of change during sudden changes, such as during power supply  
switching, should be less than 0.1 V/ms.  
7. Notes on Using an External Clock  
When using an external clock, drive the X0 pin as illustrated below. When an external clock is used, oscillation  
stabilization time is required even for power-on reset and wake-up from stop mode.  
Use of External Clock  
MB90210  
X0  
X1  
Note: When using an external clock, be sure to input external clock more than 6 machine cycles after  
setting the HST pin to “L” to transfer to the hardware standby mode.  
17  
MB90210 Series  
8. Power-on Sequence for A/D Converter Power Supplies and Analog Inputs  
Be sure to turn on the digital power supply (VCC) before applying voltage to the A/D converter power supplies  
(AVCC, AVRH, and AVRL) and analog inputs (AN0 to AN7).  
When turning power supplies off, turn off the A/D converter power supplies (AVCC, AVRH, and AVRL) and analog  
inputs (AN0 to AN7) first, then the digital power supply (VCC).  
When turning AVRH on or off, be careful not to let it exceed AVCC.  
18  
MB90210 Series  
PROGRAMMING FOR MB90P214A/P214B/W214A/W214B  
In EPROM mode, the MB90P214A/P214B/W214A/W214B functions equivalent to the MBM27C1000. This  
allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated  
socket adapter (do not use the electronic signature mode).  
1. Program Mode  
When shipped from Fujitsu, and after each erasure, all bits (64 K × 8 bits) in the MB90P214A/P214B/W214A/  
W214B are in the “1” state. Data is written to the ROM by selectively programming “0’s” into the desired bit  
locations. Bits cannot be set to “1” electrically.  
2. Programming Procedure  
(1) Set the EPROM programmer to MBM27C1000.  
(2) Load program data into the EPROM programmer at 10000H to 1FFFFH.  
Note that ROM addresses FF0000H to FFFFFFH in the operation mode in the MB90P214A/P214B/W214A/  
W214B series assign to 10000H to 1FFFFH in the EPROM mode (on the EPROM programmer).  
FFFFFFH  
1FFFFH*  
FF0000H  
10000H*  
Operation mode  
EPROM mode  
(Corresponding addresses on the EPROM mode)  
* : Be sure to set the programming, the start address and the stop address on the EPROM programmer to 10000H/1FFFFH.  
(3) Mount the MB90P214A/P214B/W214A/W214B on the adapter socket, then fit the adapter socket onto the  
EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting  
orientations.  
(4) Start programming the program data to the device.  
(5) If programming has not successfully resulted, connect a capacitor of approx. 0.1 µF between VCC and GND,  
between VPP and GND.  
(6) Since the MB90P214A and MB90W214A have CMOS-level input, programming to them may be impossible  
depending on the output level of the general-purpose programmer. In that case, connect a pull-up resistor  
to the adapter socket side.  
Note: The mask ROM products (MB90214) does not support EPROM mode. Data cannot, therefore, be read by  
the EPROM programmer.  
19  
MB90210 Series  
3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer  
Part No.  
Package  
MB90P214B  
QFP-80  
Compatible socket adapter  
Sun Hayato Co., Ltd.  
ROM-80QF-32DP-16F  
Recommended  
programmer  
manufacturer  
and programmer  
name  
R4945A  
(main unit)  
+
R49451A  
(adapter)  
Advantest corp.  
Recommended  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
Advantest Corp.:  
TEL: Except JAPAN (81)-3-3930-4111  
4. Erase Procedure  
Data written in the MB90W214A/W214B are erased (from “0” to “1”) by exposing the chip to ultraviolet rays with  
a wavelength of 2,537 Å through the translucent cover.  
Recommended irradiation dosage for exposure is 10 Wsec/cm2. This amount is reached in 15 to 20 minutes  
with a commercial ultraviolet lamp positioned 2 to 3 cm above the package (when the package surface  
illuminance is 1200 µW/cm2).  
If the ultraviolet lamp has a filter, remove the filter before exposure. Attaching a mirrored plate to the lamp  
increases the illuminance by a factor of 1.4 to 1.8, thus shortening the required erasure time. If the translucent  
part of the package is stained with oil or adhesive, transmission of ultraviolet rays is degraded, resulting in a  
longer erasure time. In that case, clean the translucent part using alcohol (or other solvent not affecting the  
package).  
The above recommended dosage is a value which takes the guard band into consideration and is a multiple of  
the time in which all bits can be evaluated to have been erased. Observe the recommended dosage for erasure;  
the purpose of the guard band is to ensure erasure in all temperature and supply voltage ranges. In addition,  
check the life span of the lamp and control the illuminance appropriately.  
Data in the MB90W214A/W214B are erased by exposure to light with a wavelength of 4000 Å or less.  
Data in the device is also erased even by exposure to fluorescent lamp light or sunlight although the exposure  
results in a much lower erasure rate than exposure to 2537 Å ultraviolet rays. Note that exposure to such lights  
for an extended period will therefore affect system reliability. If the chip is used where it is exposed to any light  
with a wavelength of 4000 Å or less, cover the translucent part, for example, with a protective seal to prevent  
the chip from being exposed to the light.  
Exposure to light with a wavelength of 4,000 to 5,000 Å or more will not erase data in the device. If the light  
applied to the chip has a very high illuminance, however, the device may cause malfunction in the circuit for  
reasons of general semiconductor characteristics. Although the circuit will recover normal operation when  
exposure is stopped, the device requires proper countermeasures for use in a place exposed continuously to  
such light even though the wavelength is 4,000 Å or more.  
20  
MB90210 Series  
5. Recommended Screening Conditions  
High temperature aging is recommended as the pre-assembly screening procedure.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
6. Programming Yeild  
MB90P214A/P214B cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always  
be guaranteed to be 100%.  
7. Pin Assignment in EPROM Mode  
(1) Pins compatible with MBM27C1000  
MB90P214A, MB90P214B,  
MB90W214A, MB90W214B  
MB90P214A, MB90P214B,  
MB90W214A, MB90W214B  
MBM27C1000  
Pin no. Pin name  
MBM27C1000  
Pin no.  
Pin name  
MD2 (VPP)  
P55  
Pin no.  
Pin name  
VCC  
Pin no.  
Pin name  
1
2
VPP  
OE  
43  
59  
19  
16  
10  
9
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PGM  
N.C.  
A14  
A13  
A08  
A09  
A11  
A16  
A10  
60  
P56  
3
A15  
A12  
A07  
A06  
A05  
A04  
A03  
A02  
A01  
A00  
D00  
D01  
D02  
GND  
P37  
4
P34  
18  
17  
12  
13  
15  
20  
14  
58  
74  
73  
72  
71  
70  
P36  
P35  
P30  
P31  
P33  
P40  
P32  
P54  
P07  
P06  
P05  
P04  
P03  
5
P27  
6
P26  
7
8
P25  
8
7
P24  
9
6
P23  
10  
11  
12  
13  
14  
15  
16  
5
P22  
4
P21  
CE  
3
P20  
D07  
D06  
D05  
D04  
D03  
67  
68  
69  
P00  
P01  
P02  
21  
MB90210 Series  
(2) Power supply and ground connection pins  
Type  
Power supply  
Pin no.  
Pin name  
41  
42  
44  
66  
MD0  
MD1  
HST  
VCC  
GND  
11  
30  
31  
34  
56  
57  
62  
63  
VSS  
AVRL  
AVSS  
VSS  
P52  
P53  
RST  
VSS  
(3) Pins other than MBM27C1000-compatible pins  
Pin no.  
64  
Pin name  
Treatment  
X0  
X1  
Pull up to 4.7 k.  
65  
Open  
1
2
21  
to  
P16  
P17  
P41  
to  
27  
28  
29  
32  
33  
35  
to  
40  
45  
to  
P47  
AVCC  
AVRH  
P60  
P61  
P62  
to  
P67  
P70  
to  
Connect a pull-up resistor of approximately 1 Mto each pin.  
50  
51  
to  
53  
54  
55  
61  
75  
to  
P75  
P80  
to  
P82  
P50  
P51  
P57  
P10  
to  
80  
P15  
22  
MB90210 Series  
BLOCK DIAGRAM  
4
PWC0 to PWC3  
/POUT0 to POUT3  
X1  
X0  
7
PWC  
timer  
Clock controller  
RST  
HST  
MD2  
MD1  
MD0  
× 4  
4
Write-inhibit  
RAM  
INT0 to INT3  
WI  
DTP/External  
interrupt  
× 4  
CTS0  
SCK3  
SID3  
D00 to D15  
A00 to A23  
CLK  
RDY  
HAK  
HRQ  
WRH  
WRL  
RD  
SOD3  
SCK2  
SID2  
SOD2  
SCK1  
SID1  
SOD1  
SCK0  
SID0  
13  
47  
UART × 3  
External bus  
interface  
SOD0  
F2MC-16F  
CPU  
16-bit  
timer 1  
× 4  
TOUT0 to  
TOUT3  
TIN0 to  
TIN3  
8
RAM  
ROM  
TIN4 to  
TIN7  
4
16-bit  
timer 2  
× 4  
ATG  
AN0 to  
AN7  
AVCC  
AVRH  
AVRL  
AVSS  
13  
10-bit  
A/D converter  
8 ch.  
P00 to P07  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
P50 to P57  
P60 to P67  
P70 to P75  
P80 to P82  
65  
I/O port  
8-bit  
PPG timer  
PPG  
23  
MB90210 Series  
PROGRAMMING MODEL  
Dedicated Registers  
AL  
Accumulator  
AH  
USP  
SSP  
User stack pointer  
System stack pointer  
Processor status  
PS  
PC  
Program counter  
USPCU  
SSPCU  
USPCL  
SSPCL  
User stack upper register  
System stack upper register  
User stack lower register  
System stack lower register  
DPR  
Direct page register  
PCB  
DTB  
USB  
SSB  
ADB  
8 bits  
Program bank register  
Data bank register  
User stack bank register  
System stack bank register  
Additional data bank register  
16 bits  
32 bits  
General-purpose Registers  
Max.32 banks  
Upper  
R 7  
R 5  
R 3  
R 1  
R 6  
R 4  
R 2  
R 0  
RW 7  
RW 6  
RL 3  
RL 2  
RL 1  
RL 0  
RW 5  
RW 4  
RW3  
RW 2  
RW 1  
RW 0  
Lower  
000180H + RP × 10H  
16 bits  
MSB  
LSB  
Processor Status (PS)  
ILM  
RP  
I
S
T
N
Z
V
C
C C R  
24  
MB90210 Series  
MEMORY MAP  
Internal ROM  
and external bus  
External ROM  
and external bus  
Single chip  
ROM area  
FFFFFFH  
ROM area  
Address #1  
010000H  
Address #2  
ROM area  
ROM area  
FF bank  
image  
FF bank  
image  
Address #3  
Address #4  
Write-inhibit RAM  
Write-inhibit RAM  
Write-inhibit RAM  
Address #5  
Address #6  
000380H  
: Internal  
RAM  
RAM  
RAM  
Registers  
Registers  
Registers  
000180H  
000100H  
: External  
: No access  
0000C0H  
Peripherals  
Peripherals  
Peripherals  
000000H  
Address #1  
Address #2  
Address #3  
Address #4  
Address #5  
Address #6  
Type  
MB90214  
FF0000H  
004000H  
004000H  
004000H  
001300H  
001200H  
001100H  
001100H  
001100H  
000D00H  
MB90P214A/P214B  
MB90W214A/W214B  
FF0000H  
001300H  
001300H  
001200H  
001300H  
001100H  
001100H  
MB90V210  
(FE0000H)  
25  
MB90210 Series  
I/O MAP  
Register  
name  
Resource  
name  
Address  
Register  
Access  
Initial value  
3
3
3
3
3
3
Port 0 data register  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
PDR0  
PDR1  
PDR2  
PDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
000000H  
000001H  
000002H  
000003H  
000004H  
000005H  
000006H  
000007H  
000008H  
*
Port 0  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
11111111  
––XXXXXX  
–––––XXX  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
*
*
*
*
*
000009H  
to 0FH  
(Reserved area) *1  
3
3
3
3
3
3
000010H  
000011H  
000012H  
000013H  
000014H  
000015H  
000016H  
000017H  
000018H  
*
*
*
*
*
*
Port 0 data direction register  
Port1 data direction register  
Port 2 data direction register  
Port 3 data direction register  
Port 4 data direction register  
Port 5 data direction register  
Analog input enable register  
Port 7 data direction register  
Port 8 data direction register  
DDR0  
DDR1  
DDR2  
DDR3  
DDR4  
DDR5  
ADER  
DDR7  
DDR8  
R/W  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
11111111  
––000000  
–––––000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
000019H  
to 1FH  
(Reserved area) *1  
000020H  
000021H  
Mode control register 0  
Status register 0  
UMC0  
USR0  
R/W  
UART (ch.0)  
00000100  
00010000  
R/W  
R/W  
Input data register 0/output data  
register 0  
UIDR0/  
UODR0  
000022H  
XXXXXXXX  
000023H  
000024H  
000025H  
Rate and data register 0  
Mode control register 1  
Status register 1  
URD0  
UMC1  
USR1  
R/W  
R/W  
R/W  
R/W  
00000000  
00000100  
00010000  
UART (ch.1)  
Input data register 1/output data  
register 1  
UIDR1/  
UODR1  
000026H  
000027H  
XXXXXXXX  
Rate and data register 1  
URD1  
R/W  
00000000  
(Continued)  
26  
MB90210 Series  
Register  
name  
Resource  
name  
Address  
Register  
Access  
Initial value  
000028H  
000029H  
Mode control register 2  
Status register 2  
UMC2  
USR2  
R/W  
R/W  
R/W  
UART (ch.2)  
00000100  
00010000  
XXXXXXXX  
Input data register 2/output data  
register 2  
UIDR2/  
UODR2  
00002AH  
00002BH  
00002CH  
Rate and data register 2  
URD2  
URDR  
R/W  
R/W  
00000000  
–––00000  
UART redirect control register  
UART (ch.0/2)  
00002DH  
to 2FH  
(Reserved area) *1  
000030H  
000031H  
000032H  
000033H  
Interrupt/DTP enable register  
Interrupt/DTP factor register  
Request level setting register  
ENIR  
EIRR  
ELVR  
R/W  
DTP/external  
interrupt  
––––0000  
––––0000  
00000000  
R/W  
R/W  
(Reserved area) *1  
000034H  
000035H  
AD control status register  
ADCS  
R/W  
10-bit A/D  
converter  
00000000  
00000000  
000036H  
to 37H  
AD data register  
ADCD  
TMCSR0  
TMCSR1  
TMCSR2  
TMCSR3  
TMR0  
R/W  
*4  
XXXXXXXX  
0–––––XX  
000038H  
to 39H  
Timer control status register 0  
Timer control status register 1  
Timer control status register 2  
Timer control status register 3  
Timer 0 timer register  
R/W  
R/W  
R/W  
R/W  
R
16-bit reload  
timer 1 (ch.0)  
00000000  
––––0000  
00003AH  
to 3BH  
16-bit reload  
timer 1 (ch.1)  
00000000  
––––0000  
00003CH  
to 3DH  
16-bit reload  
timer 1 (ch.2)  
00000000  
––––0000  
00003EH  
to 3FH  
16-bit reload  
timer 1 (ch.3)  
00000000  
––––0000  
000040H  
000041H  
000042H  
000043H  
000044H  
000045H  
000046H  
000047H  
16-bit reload  
timer 1 (ch.0)  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
(Continued)  
Timer 0 reload register  
Timer 1 timer register  
Timer 1 reload register  
TMRLR0  
TMR1  
W
R
16-bit reload  
timer 1 (ch.1)  
TMRLR1  
W
27  
MB90210 Series  
Register  
name  
Resource  
name  
Address  
Register  
Access  
Initial value  
000048H  
000049H  
00004AH  
00004BH  
00004CH  
00004DH  
00004EH  
00004FH  
000050H  
000051H  
000052H  
000053H  
000054H  
000055H  
000056H  
000057H  
000058H  
000059H  
00005AH  
00005BH  
00005CH  
00005DH  
00005EH  
00005FH  
Timer 2 timer register  
Timer 2 reload register  
Timer 3 timer register  
Timer 3 reload register  
Timer 4 timer register  
Timer 4 reload register  
Timer 5 timer register  
Timer 5 reload register  
Timer 6 timer register  
Timer 6 reload register  
Timer 7 timer register  
Timer 7 reload register  
Timer control status register 4  
TMR2  
TMRLR2  
TMR3  
R
16-bit reload  
timer 1 (ch.2)  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
W
R
16-bit reload  
timer 1 (ch.3)  
TMRLR3  
TMR4  
W
R
16-bit reload  
timer 2 (ch.4)  
TMRLR4  
TMR5  
W
R
16-bit reload  
timer 2 (ch.5)  
TMRLR5  
TMR6  
W
R
16-bit reload  
timer 2 (ch.6)  
TMRLR6  
TMR7  
W
R
16-bit reload  
timer 2 (ch.7)  
TMRLR7  
TMCSR4  
W
R/W  
16-bit reload  
timer 2 (ch.4)  
000060H  
000061H  
000062H  
000063H  
000064H  
000065H  
00000000  
(Reserved area) *1  
Timer control status register 5  
Timer control status register 6  
TMCSR5  
R/W  
16-bit reload  
timer 2 (ch.5)  
00000000  
(Reserved area) *1  
TMCSR6  
R/W  
16-bit reload  
timer 2 (ch.6)  
00000000  
(Continued)  
(Reserved area) *1  
28  
MB90210 Series  
Register  
name  
Resource  
Address  
Register  
Access  
R/W  
Initial value  
name  
Timer control status register 7  
TMCSR7  
16-bit reload  
timer 2 (ch.7)  
000066H  
000067H  
000068H  
000069H  
00006AH  
00006BH  
00006CH  
00006DH  
00006EH  
00000000  
(Reserved area) *1  
PWC0 divide ratio register  
PWC1 divide ratio register  
PWC2 divide ratio register  
PWC3 divide ratio register  
DIVR0  
R/W  
PWC timer  
(ch.0)  
––––––00  
––––––00  
––––––00  
––––––00  
(Reserved area) *1  
DIVR1  
R/W  
PWC timer  
(ch.1)  
(Reserved area) *1  
DIVR2  
R/W  
PWC timer  
(ch.2)  
(Reserved area) *1  
DIVR3  
R/W  
PWC timer  
(ch.3)  
00006FH  
000070H  
000071H  
000072H  
000073H  
000074H  
000075H  
000076H  
000077H  
000078H  
000079H  
00007AH  
00007BH  
00007CH  
00007DH  
00007EH  
00007FH  
(Reserved area) *1  
PWC0 control status register  
PWC0 data buffer register  
PWC1 control status register  
PWC1 data buffer register  
PWC2 control status register  
PWC2 data buffer register  
PWC3 control status register  
PWC3 data buffer register  
PWCSR0  
PWCR0  
PWCSR1  
PWCR1  
PWCSR2  
PWCR2  
PWCSR3  
PWCR3  
R/W  
PWC timer  
(ch.0)  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PWC timer  
(ch.1)  
PWC timer  
(ch.2)  
PWC timer  
(ch.3)  
000080H  
to 87H  
(Reserved area) *1  
000088H  
000089H  
PPG operation mode control register  
PPGC  
R/W  
8-bit PPG timer 00000––1  
(Continued)  
(Reserved area) *1  
29  
MB90210 Series  
Register  
name  
Resource  
name  
Address  
Register  
Access  
Initial value  
00008AH  
00008BH  
PPG reload register  
WI control register  
PRL  
R/W  
8-bit PPG timer  
XXXXXXXX  
XXXXXXXX  
00008CH  
to 8DH  
(Reserved area) *1  
Write-inhibit RAM  
00008EH  
WICR  
R/W  
–––X––––  
00008FH  
to 9EH  
(Reserved area) *1  
Delayed interrupt source generate/  
release register  
DIRR  
R/W  
R/W  
Delayed interrupt  
generation module  
00009FH  
0000A0H  
–––––––0  
0 00 1  
Standby control register  
STBYC  
Low-power  
consumption  
mode  
0000A1H  
to A2H  
(Reserved area) *1  
0000A3H  
0000A4H  
0000A5H  
Middle address control register  
Upper address control register  
External pin control register  
MACR  
HACR  
EPCR  
W
External pin  
########  
########  
##0–0#00  
W
W
0000A6H  
to A7H  
(Reserved area) *1  
0000A8H  
0000A9H  
Watchdog timer control register  
Timebase timer control register  
WTC  
R/W  
R/W  
Watchdog timer XXXXXXXX  
TBTC  
Timebase timer  
1––00000  
0000AAH  
to AFH  
(Reserved area) *1  
0000B0H  
0000B1H  
0000B2H  
0000B3H  
0000B4H  
0000B5H  
0000B6H  
0000B7H  
0000B8H  
0000B9H  
Interrupt control register 00  
Interrupt control register 01  
Interrupt control register 02  
Interrupt control register 03  
Interrupt control register 04  
Interrupt control register 05  
Interrupt control register 06  
Interrupt control register 07  
Interrupt control register 08  
Interrupt control register 09  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
R/W  
Interrupt  
controller  
00000111  
00000111  
00000111  
00000111  
00000111  
00000111  
00000111  
00000111  
00000111  
00000111  
(Continued)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
30  
MB90210 Series  
(Continued)  
Register  
name  
Resource  
name  
Address  
Register  
Access  
Initial value  
0000BAH  
0000BBH  
0000BCH  
0000BDH  
0000BEH  
0000BFH  
Interrupt control register 10  
Interrupt control register 11  
Interrupt control register 12  
Interrupt control register 13  
Interrupt control register 14  
Interrupt control register 15  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interrupt  
controller  
00000111  
00000111  
00000111  
00000111  
00000111  
00000111  
0000C0H  
to FFH  
(External area) *2  
Initial value  
0: The initial value of this bit is 0.  
1: The initial value of this bit is 1.  
X: The initial value of this bit is undefined.  
–: This bit is not used. The initial value is undefined.  
: The initial value of this bit varies with the reset source.  
#: The initial value of this bit varies with the operation mode.  
*1: Access inhibited  
*2: The onlyareaavailablefortheexternalaccessbelow address0000FFH isthisarea. Accessestotheseaddresses  
are handled as accesses to an external I/O area.  
*3: When the external bus is enabled, do not access any register not serving as a general-purpose port in the areas  
from address 000000H to 000005H and from 000010H to 000015H.  
*4: Writing to bit 15 is possible. Writing to other bits is used as a test function.  
31  
MB90210 Series  
INTERRUPT SOURCES AND INTERRUPT VECTORS/INTERRUPT  
CONTROL REGISTERS  
Interrupt vector  
Interrupt control register  
EI2OS  
Interrupt source  
support  
No.  
Address  
FFFFDCH  
FFFFD8H  
FFFFD4H  
FFFFD0H  
ICR  
Address  
Reset  
×
×
×
# 08  
# 09  
# 10  
# 11  
08H  
09H  
0AH  
0BH  
INT9 instruction  
Exceptional  
UART interrupt #0  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
000B0H  
000B1H  
000B2H  
000B3H  
000B4H  
000B5H  
000B6H  
000B7H  
000B8H  
000B9H  
000BAH  
UART interrupt #1  
# 12  
# 13  
# 14  
# 15  
# 16  
# 17  
# 18  
# 19  
# 20  
# 21  
# 22  
# 23  
# 24  
# 25  
# 26  
# 27  
# 28  
# 29  
# 30  
# 31  
# 32  
# 33  
# 34  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
FFFFCCH  
FFFFC8H  
FFFFC4H  
FFFFC0H  
FFFFBCH  
FFFFB8H  
FFFFB4H  
FFFFB0H  
FFFFACH  
FFFFA8H  
FFFFA4H  
FFFFA0H  
FFFF9CH  
FFFF98H  
FFFF94H  
FFFF90H  
FFFF8CH  
FFFF88H  
FFFF84H  
FFFF80H  
FFFF7CH  
FFFF78H  
FFFF74H  
UART interrupt #2  
UART interrupt #3  
PWC timer # 0 · count completed  
PWC timer # 0 · overflow  
PWC timer # 1 · count completed  
PWC timer # 1 · overflow  
PWC timer # 2 · count completed  
PWC timer # 2 · overflow  
PWC timer # 3 · count completed  
PWC timer # 3 · overflow  
16-bit reload timer 1 # 0 overflow  
16-bit reload timer 1 # 1 overflow  
16-bit reload timer 1 # 2 overflow  
16-bit reload timer 1 # 3 overflow  
16-bit reload timer 2 # 4 overflow  
16-bit reload timer 2 # 5 overflow  
16-bit reload timer 2 # 6 overflow  
16-bit reload timer 2 # 7 overflow  
A/D converter count completed  
Timebase timer interval interrupt  
UART2 · transmission completed  
UART2 · reception completed  
000BBH  
(Continued)  
32  
MB90210 Series  
(Continued)  
Interrupt vector  
No. Address  
Interrupt control register  
EI2OS  
support  
Interrupt source  
ICR  
Address  
UART1 · transmission completed  
# 35  
23H  
FFFF70H  
FFFF6CH  
ICR12  
0000BCH  
UART1 · reception completed  
UART0 · transmission completed  
UART0 · reception completed  
Delayed interrupt generation module  
Stack fault  
# 36  
# 37  
# 39  
# 42  
24H  
25H  
27H  
2AH  
FFFF68H  
FFFF60H  
FFFF54H  
FFFC00H  
ICR13  
ICR14  
ICR15  
0000BDH  
0000BEH  
0000BFH  
×
×
# 255 FFH  
: EI2OS is supported (with stop request).  
: EI2OS is supported; however, since two interrupt sources are allocated to a single ICR, in case EI2OS is used  
for one of the two, EI2OS and ordinary interrupt are not both available for the other (with stop request).  
: EI2OS is supported; however, since two interrupt sources are allocated to a single ICR, in case EI2OS is used  
for one of the two, EI2OS and ordinary interrupt are not both available for the other (with no stop request).  
2
×
: EI OS is not supported.  
33  
MB90210 Series  
PERIPHERAL RESOURCES  
1. Parallel Ports  
The MB90210 series has 57 I/O pins and 8 open-drain I/O pins.  
Ports 0 to 5, 7, and 8 are I/O ports. Each of these ports serves as an input port when the data direction register  
value is 0 and as an output port when the value is 1.  
Port 6 is an open-drain port, which may be used as a port when the analog input enable register value is 0.  
(1) Register Configuration  
Port data registers 0 to 8 (PDR0 to PDR8)  
Port data register  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: PDR1 000001 H  
PDR3 000003H  
PDR5 000005H  
PDx7  
PDx6  
PDx5  
PDx4  
PDx3  
PDx2  
PDx1  
PDx0  
PDR7 000007H  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
Port data register  
Bit  
7
6
5
4
3
2
1
0
Address: PDR0 000000 H  
PDR2 000002H  
PDx7  
PDx6  
PDx5  
PDx4  
PDx3  
PDx2  
PDx1  
PDx0  
PDRx  
PDR4 000004H  
PDR6 000006H  
PDR8 000008H  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(X)  
(1)  
(X)  
(1)  
(X)  
(1)  
(X)  
(1)  
(X)  
(1)  
(X)  
(1)  
(X)  
(1)  
(X)  
(1) Only for the PDR6  
Note: No register bit is included in bits 7 and 6 of port 7 or bits 7 to 3 of port 8.  
Port direction registers 0 to 5, 7, and 8 (DDR0 to DDR5, DDR7, and DDR8)  
Port direction register  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: DDR1 000011 H  
DDR3 000013H  
DDR5 000015H  
DDx7  
DDx6  
DDx5  
DDx4  
DDx3  
DDx2  
DDx1  
DDx0  
DDR7 000017H  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
( 0)  
Port direction register  
Bit  
7
6
5
4
3
2
1
0
Address: DDR0 000010 H  
DDR2 000012H  
DDx7  
DDx6  
DDx5  
DDx4  
DDx3  
DDx2  
DDx1  
DDx0  
DDRx  
DDR4 000014H  
DDR8 000018H  
Read/write  
Initial value →  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
Note: No register bit is included in bits 7 and 6 of port 7 or bits 7 to 3 of port 8.  
Port 6 has no DDR.  
34  
MB90210 Series  
Analog input enable register (ADER)  
Analog input enable register  
Address: ADER 000016 H  
Bit  
7
6
5
4
3
2
1
0
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
ADER  
Read/write  
Initial value →  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(1) (1) (1) (1) (1) (1) (1) (1)  
(2) Block Diagram  
I/O port (Port 0 to 5, 7, and 8)  
Port data register read  
Port data register  
Port data register write  
Port direction register  
Port direction register write  
Pin  
Port direction register read  
I/O port with an open-drain output (Port 6)  
RMW  
(Read-modify-write instruction)  
Port data register read  
Port data register  
Pin  
Port data register write  
Analog input enable register  
Analog input enable register write  
Analog input enable register read  
35  
MB90210 Series  
2. 16-bit Reload Timer 1 (with Event Count Function)  
The 16-bit reload timer 1 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), an output  
pin (TOUT), and a control register. The input clock can be selected from among three internal clocks and one  
external clock. At the output pin (TOUT), the pulses in the toggled output waveform are output in the reload  
mode; the rectangular pulses indicating that the timer is counting are in the single-shot mode. The input pin  
(TIN) can be used for event input in the event count mode, and for trigger input or gate input in the internal clock  
mode.  
MB90210 series contains four channels for this timer.  
(1) Register Configuration  
Timer control status register (TMCSR)  
Timer control status register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000039H  
00003BH  
00003DH  
00003FH  
CSL1  
CSL0  
MOD2  
MOD1  
ch.2  
ch.3  
Read/write  
Initial value  
(
(
)
)
(
(
)
)
(
(
)
)
(
(
)
)
(R/W) (R/W) (R/W) (R/W)  
(0)  
(0)  
(0)  
(0)  
Timer control status register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000038 H  
00003AH  
00003CH  
00003EH  
MDO0  
OUTE  
OUTL  
RELD  
INTE  
UF  
CNTE  
TRG  
TMCSRx  
ch.2  
ch.3  
Read/write  
Initial value →  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
Timer register (TMR)  
Timer register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000041H  
000045H  
000049H  
00004DH  
ch.2  
ch.3  
Read/write  
Initial value  
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(R)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
Timer register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000040H  
000044H  
000048H  
TMRx  
ch.2  
ch.3  
00004CH  
Read/write  
Initial value  
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(R)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
36  
MB90210 Series  
Reload register (TMRLR)  
Reload register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000043H  
000047H  
00004BH  
00004FH  
ch.2  
ch.3  
Read/write  
Initial value  
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(W)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
Reroal register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000042H  
000046H  
00004AH  
TMRLRx  
ch.2  
ch.3  
00004EH  
Read/write  
Initial value  
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(W)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(2) Block Diagram  
16  
8
16-bit reload register  
16-bit down counter  
Reload  
RELD  
OUTE  
OUTL  
I NTE  
UF  
16  
2
OUT  
CTL.  
GATE  
2
IRQ  
UF  
CSL 1  
CSL 0  
Clock selector  
Clear  
EI2 OSCLR  
CNTE  
TRG  
Retrigger  
2
IN CTL  
Port (TIN)  
EXCK  
3
φ
φ
φ
Port (TOUT)  
Prescaler clear  
21 23 25  
MOD 2  
UART (timer 1 ch.2 output)  
A/D (timer 1 ch.3 output)  
MOD 1  
MOD 0  
Internal clock  
3
37  
MB90210 Series  
3. 16-bit Reload Timer 2 (with Gate Mode)  
The 16-bit reload timer 2 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), and an  
8-bit control register. The input clock can be selected from among four internal clocks.  
The MB90210 series contains four channels for this timer.  
(1) Register Configuration  
Timer control status register (TMCSR)  
Timer control status register  
Bit  
7
6
5
4
3
2
1
0
Address: ch.4  
ch.5  
000060 H  
000062H  
000064H  
000066H  
CSL1  
CSL0  
GATE  
GATL  
RELD  
INTE  
UF  
STRT  
TMCSRx  
ch.6  
ch.7  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
Timer register (TMR)  
Timer register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.4  
ch.5  
000051H  
000055H  
000059H  
00005DH  
ch.6  
ch.7  
Read/write  
Initial value  
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(R)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
Timer register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.4  
ch.5  
000050H  
000054H  
000058H  
00005CH  
TMRx  
ch.6  
ch.7  
Read/write  
Initial value  
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(
R
)
(R)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
Reload register (TMRLR)  
Reload register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.4  
ch.5  
000053H  
000057H  
00005BH  
00005FH  
ch.6  
ch.7  
Read/write  
Initial value  
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(W)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
Reload register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.4  
ch.5  
000052H  
000056H  
00005AH  
00005EH  
TMRLRx  
ch.6  
ch.7  
Read/write  
Initial value  
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(
W
)
(W)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
(X)  
38  
MB90210 Series  
(2) Block Diagram  
16  
4
16-bit reload register  
16-bit down counter  
Reload  
UF  
16  
RELD  
INTE  
2
GATE  
IRQ  
UF  
CSL 1  
Clear  
Clock selector  
STRT  
EI2 OSCLR  
CSL 0  
Clear (RELD = 0)  
2
IN CTL  
Port (TIN)  
φ
φ
φ
φ
2 2 2 5 26 28  
2
GATE  
GATL  
2
39  
MB90210 Series  
4. UART  
The UART is a serial I/O port for synchronous or asynchronous communication with external resources. It has  
the following features:  
• Full duplex double buffer  
• Data transfer synchronous or asynchronous with clock pulses  
• Multiprocessor mode support (Mode 2)  
• Built-in dedicated baud-rate generator (Nine types)  
• Arbitrary baud-rate setting from external clock input or internal timer  
(Use the 16-bit reroad timer 1 channel 2 for internal timer.)  
• Variable data length (7 to 9 bits (without parity bit); 6 to 8 bits (with parity bit))  
• Variable data length (7 to 9 bit no parity, 6 to 8 bit with parity)  
• Error detection function (Framing, overrun, parity)  
• Interrupt function (Two sources for transmission and reception)  
Transfer in NRZ format  
The MB90210 series contains three channels for the UART.  
UART channel 0 has the CTS function.  
UART channel 2 provides dual I/O pin switching.  
(1) Register Configuration  
Serial mode control register (UMC)  
Serial mode control register  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000020 H  
000024H  
000028H  
PEN  
SBL  
MC1  
MC0  
SMDE  
RFC  
SCKE  
SOE  
UMC  
ch.2  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0)  
(W)  
(1)  
(R/W) (R/W)  
(0) (0)  
Status register (USR)  
Status register  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000021 H  
000025H  
000029H  
RDRF  
ORFE  
PE  
TDRE  
RIE  
TIE  
RBF  
TBF  
USR  
ch.2  
Read/write  
Initial value  
(R)  
(0)  
(R)  
(0)  
(R)  
(0)  
(R)  
(1)  
(R/W) (R/W)  
(R)  
(0)  
(R)  
(0)  
(0)  
(0)  
Input data register (UIDR)/output data register (UODR)  
Input data register/output data register  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000022 H  
000026H  
00002AH  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
UIDR (read)/  
UODR (write)  
ch.2  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(X) (X) (X) (X) (X) (X) (X) (X)  
40  
MB90210 Series  
Rate and data register (URD)  
Rate and data register  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000023 H  
000027H  
00002BH  
BCH  
RC3  
RC2  
RC1  
RC0  
BCH0  
P
D8  
URDx  
ch.2  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
UART redirect control register (URDR)  
UART redirect control register  
Bit  
7
6
5
4
3
2
1
0
Address:  
00002C H  
CTE  
CSP  
CTSE  
UDPE  
SEL3  
URDR  
Read/write  
Initial value  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0)  
41  
MB90210 Series  
(2) Block Diagram  
CONTROL BUS  
Reception interrupt  
(To CPU)  
Dedicated baud-rate clock  
16-bit reload timer 1 channel 2  
SCK0 to SCK3  
Transmitting clock pulse  
Transmission interrupt  
(To CPU)  
(internally connected)  
Clock  
selector circuit  
Receiving clock pulse  
External clock  
Reception control circuit  
Transmission control circuit  
SID0 to SID3  
Transmission control  
circuit  
Start bit detector  
Transmission bit  
counter  
Received bit counter  
Recieved parity  
bit counter  
Transmission parity  
counter  
SOD0 to SOD3  
Reception status  
detection circuit  
Reception shifter  
Transmission shifter  
Start of  
End of reception  
transmission  
SIDR  
UODR  
Reception error  
occurence signal for  
EI2OS (To CPU)  
Internal data bus  
PEN  
SBL  
RDRF  
ORFE  
PE  
TDRE  
RIE  
TIE  
BCH  
RC3  
RC2  
RC1  
RC0  
BCH0  
P
MC1  
MC0  
SMDE  
RFC  
SCKE  
SOE  
UMC  
register  
USR  
register  
URD  
register  
RBF  
TBF  
D8  
CONTROL BUS  
42  
MB90210 Series  
5. 10-bit A/D Converter  
The 10-bit A/D converter converts the analog input voltage to a digital value. It has the following features:  
• Conversion time: min.6.125 µs per channel (at 16-MHz machine clock)  
• RC-type successive approximation with built-in sample-and-hold circuit  
• 10-bit or 8-bit resolution  
• Eight analog input channels programmable for selection  
Single conversion mode: Selects and converts one channel.  
Scan conversion mode: Converts multiple consecutive channels (up to eight channels programmable).  
Consecutive conversion mode: Converts a specified channel repeatedly.  
Stop conversion mode: Converts one channel and suspends its own operation until the next activation (allowing  
synchronized conversion start).  
• On completion of A/D conversion, the converter can generate an interrupt request to the CPU. This interrupt  
generation can activate the EI2OS to transfer the A/D conversion result to memory, making the converter  
suitable for continuous operation.  
• Conversion can be activated by software, external trigger (falling edge), and/or timer (rising edge) as selected.  
Use the 16-bit reroad timer 1 channel 3 for the timer.  
(1) Register Configuration  
A/D Control status register (ADCS1 and ADCS0)  
A/D Control status register (Upper byte)  
Bit 15  
BUSY  
14  
13  
12  
11  
10  
9
8
Address:  
000035 H  
INT  
INTE  
PAUS  
STS1  
STS0  
STRT  
ADCS1  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0)  
(W)  
(0)  
(—)  
(0)  
A/D Control status register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address:  
000034 H  
MD1  
MD0  
ANS2  
ANS1  
ANS0  
ANE2  
ANE1  
ANE0  
ADCS0  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
A/D Data registers (ADCD1 and ADCD0)  
A/D Data register (Upper byte)  
Bit 15  
S10  
14  
13  
12  
11  
10  
9
8
Address:  
000037 H  
D9  
D8  
ADCD1  
Read/write  
Initial value  
(W)  
(0)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R)  
(X)  
(R)  
(X)  
A/D Data register (Lower byte)  
Address: 000036 H  
Bit  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADCD0  
Read/write  
Initial value  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
43  
MB90210 Series  
(2) Block Diagram  
AV CC  
AVRH/AVRL  
AV SS  
D/A converter  
MPX  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
Successive  
approximation register  
Comparator  
Sample-and-hold circuit  
A/D data register  
ADCD0, ADCD1  
A/D control status register  
Trigger activation  
Timer activation  
ADCS0, ADCS1  
ATG  
16-bit reload timer 1 channel 3  
(internally connected)  
Operation clock  
Prescaler  
Machine clock (φ)  
44  
MB90210 Series  
6. PWC(Pulse Width Count) Timer  
The PWC (pulse width count) timer is a 16-bit multifunction up-count timer with an input-signal pulse-width count  
function and a reload timer function. The hardware configuration of this module is a 16-bit up-count timer, an  
input pulse divider with divide ratio control register, four count input pins, and a 16-bit control register. Using  
these components, the PWC timer provides the following features:  
• Timer functions:  
An interrupt request can be generated at set time intervals.  
Pulse signals synchronized with the timer cycle can be output.  
Thereference internalclockcanbeselectedfromamongthreeinternalclocks.  
The time between arbitrary pulse input events can be counted.  
The reference internal clock can be selected from among three internalclocks.  
Various count modes:  
• Pulse-width count functions:  
“H” pulse width (to ) /“L” pulse width (to )  
Rising-edge cycle (to ) /Falling-edge cycle (to )  
Count between edges (or to or )  
Cycle count can be performed by 22n division (n = 1, 2, 3, 4) of the input  
pulse, with an 8 bit input divider.  
An interrupt request can be generated once counting has been performed.  
The number of times counting is to be performed (once or subsequently) can  
be selected.  
The MB90210 series contains four channels for the PWC timer.  
(1) Register Configuration  
PWC control status register (PWCSR)  
PWC control status register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000071 H  
000075H  
000079H  
00007DH  
STRT  
ch.2  
STOP  
EDIR  
EDIE  
OVIR  
OVIE  
ERR  
POUT  
ch.3  
Read/write  
Initial value  
(R/W) (R/W)  
(R)  
(0)  
(R/W) (R/W) (R/W)  
(R)  
(0)  
(R/W)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
PWC control status register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000070 H  
000074H  
000078H  
00007CH  
CKS1  
CKS0  
PIS1  
PIS0  
S/C  
MOD2  
MOD1  
MOD0  
PWCSRx  
ch.2  
ch.3  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
45  
MB90210 Series  
PWC data buffer register (PWCR)  
PWC data buffer register (Upper byte)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Address: ch.0  
ch.1  
000073 H  
000077H  
00007BH  
00007FH  
ch.2  
ch.3  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
PWC data buffer register (Lower byte)  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000072 H  
000076H  
00007AH  
00007EH  
PWCR  
ch.2  
ch.3  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
PWC divide ratio control register (DIVR)  
Divide ratio control register  
Bit  
7
6
5
4
3
2
1
0
Address: ch.0  
ch.1  
000068 H  
00006AH  
00006CH  
00006EH  
DIV1  
DIV0  
DIVR  
ch.2  
ch.3  
Read/write  
Initial value  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R/W) (R/W)  
(0) (0)  
46  
MB90210 Series  
(2) Block Diagram  
PWCR read  
16  
Error detection  
ERR  
PWCR  
16  
16  
Internal clock  
(machine clock/4)  
Reload  
Data transfer  
16  
2 2  
Clock  
Overflow  
Clock  
16-bit up-count timer  
divider  
2 3  
Timer clear  
CKS 1  
CKS 0  
Count enable  
Control circuit  
Divider clear  
Start edge  
select  
End edge Dividing  
PWC0  
PWC1  
PWC2  
PWC3  
select  
ON/OFF  
Count start edge  
Edge  
detection  
Count edge end  
Count end interrupt edge  
PIS 1  
PIS 0  
8-bit  
divider  
PIS 1  
PIS 0  
CKS 1  
CKS 0  
ERR  
Overflow interrupt request  
15  
PWCSR  
Divide ratio  
select  
Overflow  
F.F.  
POUT  
*
2
DIVR  
* : The POUT pins of the MB90210 series are assigned as follows:  
Channel  
ch.0  
POUT pin  
P44/A20/PWC0/POUT0  
PWC  
PWC  
ch.1  
P45/A21/PWC1/POUT1  
P46/A22/PWC2/POUT2  
P47/A23/PWC3/POUT3  
PWC  
PWC  
ch.2  
ch.3  
47  
MB90210 Series  
7. 8-bit PPG Timer  
This block is an 8-bit reload timer module for PPG output by controlling pulse output according to the timer  
operation.  
The hardware configuration of this block is an 8-bit down counter, two 8-bit reload registers, an 8-bit control  
register, and an external pulse output pin. Using these components, the module provides the following features:  
PPG output operation: The module outputs pulse waves of any period and duty factor. It can also be used as  
a D/A converter using an external circuit.  
(1) Register Configuration  
PPG operation mode control register (PPGC)  
Bit  
7
6
5
4
3
2
1
0
PPG operation mode control register  
Address: 000088 H  
PEN  
PCKS  
POE Reserved  
PUF  
Reserved  
PPGC  
Read/write  
Initial value →  
(R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0)  
(—)  
(—)  
(—)  
(—)  
(R/W)  
(1)  
PPG reload registers (PRLL and RRLH)  
PPG reload register  
Address:  
Bit 15  
14  
13  
12  
11  
10  
9
8
00008B H  
PRLH  
Read/write  
Initial value  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(X) (X) (X) (X) (X) (X) (X) (X)  
Bit  
7
6
5
4
3
2
1
0
PPG reload register  
Address:  
00008A H  
PRLL  
Read/write  
Initial value →  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(X) (X) (X) (X) (X) (X) (X) (X)  
48  
MB90210 Series  
(2) Block Diagram  
PPG  
output pin  
(Port section)  
Output enable  
Output A of timebase counter  
Output B of timebase counter  
PPG  
output latch  
Clear  
Invert  
PEN  
Count clock  
selection  
PCNT (Down counter)  
Reload  
L/H selector  
PRLL  
PRLBH  
PRLH  
Low-byte data bus  
High-byte data bus  
PPGC  
Operation  
mode control  
49  
MB90210 Series  
8. DTP/External Interrupt  
The data transfer peripheral (DTP) is located between external peripherals and the F2MC-16F CPU. It receives  
a DMA request or an interrupt request generated by the external peripherals and reports it to the F2MC-16F  
CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels  
of “H” and “L” for extended intelligent I/O service or, and four request levels of “H,” “L,” rising edge and falling  
edge for external interrupt requests.  
(1) Register Configuration  
Interrupt/DTP enable register (ENIR)  
Bit  
7
6
5
4
3
2
1
0
Interrupt/DTP enable register  
Address: 000030H  
EN3  
EN2  
EN1  
EN0  
ENIR  
Read/write  
Initial value →  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R/W) (R/W) (R/W) (R/W)  
(0)  
(0)  
(0)  
(0)  
Interrupt/DTP source register (EIRR)  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Interrupt/DTP source register  
Address: 000031 H  
ER3  
ER2  
ER1  
ER0  
EIRR  
Read/write  
Initial value →  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R/W) (R/W) (R/W) (R/W)  
(0)  
(0)  
(0)  
(0)  
Request level setting register (ELVR)  
Bit  
7
6
5
4
3
2
1
0
Request level setting register  
Address: 000032 H  
LB3  
LA3  
LB2  
LA2  
LB1  
LA1  
LB0  
LA0  
ELVR  
Read/write  
Initial value →  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (0) (0) (0) (0) (0) (0) (0)  
50  
MB90210 Series  
(2) Block Diagram  
4
Interrupt/DTP enable register  
4
4
4
Gate  
Source F/F  
Edge detection circuit  
INT  
Interrupt/DTP source register  
8
Request level setting register  
51  
MB90210 Series  
9. Watchdog Timer and Timebase Timer  
The watchdog timer consists of a 2-bit watchdog counter using carry signals from an 18-bit timebase timer as  
the clock source, a control register, and a watchdog reset control section. The timebase timer consists of an 18-  
bit timer and an interval interrupt control circuit.  
(1) Register Configuration  
Watchdog timer control register (WTC)  
Watchdog timer control register  
Bit  
7
6
5
4
3
2
1
0
Address:  
0000A8H  
PONR  
STBR  
WRST  
ERST  
SRST  
WTE  
WT1  
WT0  
WTC  
Read/write  
Initial value  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(R)  
(X)  
(W)  
(X)  
(W)  
(X)  
(W)  
(X)  
Timebase timer control register (TBTC)  
Timebase timer control register  
Bit 15  
14  
13  
12  
11  
10  
9
8
Reserved  
Address:  
0000A9H  
TBIE  
TBOF  
TBR  
TBC1  
TBC0  
TBTC  
Read/write  
Initial value  
(W)  
(1)  
(—)  
(—)  
(—)  
(—)  
(R/W) (R/W)  
(0) (0)  
(R)  
(0)  
(R/W) (R/W)  
(0) (0)  
52  
MB90210 Series  
(2) Block Diagram  
Oscillation clock  
Clock input  
Timebase timer  
TBTC  
TBC1  
212  
214  
216  
218  
Selector  
TBC0  
TBR  
TBTRES  
214 216 217 218  
S
R
TBIE  
Q
AND  
TBOF  
Timebase  
interrupt  
WTC  
WT1  
Watchdog  
reset  
generator  
2-bit counter  
WDGRST  
Selector  
OF  
To internal reset generator  
WT0  
WTE  
CLR  
CLR  
PONR  
STBR  
WRST  
ERST  
SRST  
From power-on occurence  
From hardware standby  
control circuit  
RST pin  
From RST bit in STBYC  
register  
53  
MB90210 Series  
10. Delayed Interrupt Generation Module  
The delayed interrupt generation module is used to generate an interrupt for task switching. Using this module  
allows an interrupt request to the F2MC-16F CPU to generate or cancel by software.  
(1) Register Configuration  
Delayed interrupt source generate/release register (DIRR)  
Delayed interrupt source generate/release register  
Bit 15  
14  
13  
12  
11  
10  
9
8
Address:  
00009FH  
R0  
DIRR  
Read/write  
Initial value  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R/W)  
(0)  
(2) Block Diagram  
Delayed interrupt source  
generate/release register  
Source latch  
54  
MB90210 Series  
11. Write-inhibit RAM  
The write-inhibit RAM is write-protectable with the WI pin input. Maintaining the “L” level input to the WI pin  
prevents a certain area of RAM from being written. The WI pin has a 4-machine-cycle filter.  
(1) Register Configuration  
WI control register (WICR)  
WI control register  
Address:  
Bit  
7
6
5
4
3
2
1
0
00008EH  
WI  
WICR  
Read/write  
Initial value  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(R/W)  
(1)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(—)  
(2) Write-inhibit RAM Area  
Write-inhibit RAM area  
001100H to 0011FFH (MB90214/P214A/P214B/W214A/W214B)  
001100H to 0012FFH (MB90V210)  
(3) Block Diagram  
Access to other area  
Write-inhibit  
circuit  
WR  
Write-  
inhibit  
RAM  
4-machine-cycle  
skew removal  
4-machine-cycle  
skew removal  
S
Q
S
R
Q
Select  
Preceded  
L
W I  
R
RAM  
decoder  
H
Internal data bus  
55  
MB90210 Series  
12. Low-power Consumption Modes, Oscillation Stabilization Delay Time, and Gear Function  
The MB90210 series has three low-power consumption modes: the sleep mode, the stop mode, the hardware  
standby mode, and gear function.  
Sleep mode is used to suspend only the CPU operation clock; the other components remain in operation. Stop  
mode and hardware standby mode stop oscillation, minimizing the power consumption while holding data.  
The clock gear function divides the external clock frequency, which is used usually as it is, to provide a lower  
machine clock frequency. This function can therefore lower the overall operation speed without changing the  
oscillation frequency. The function can select the machine clock as a division of the frequency of crystal oscillation  
or external clock input by 1, 2, 4, or 16.  
The OSC1 and OSC0 bits can be used to set the oscillation stabilization delay time for wake-up from stop mode  
or hardware standby mode.  
(1) Register Configuration  
Standby control register (STBYC)  
Standby control register  
Address:  
Bit  
7
6
5
4
3
2
1
0
0000A0H  
STP  
SLP  
SPL  
RST  
OSC1  
OSC0  
CLK1  
CLK0  
STBYC  
Read/write  
Initial value  
(W)  
(0)  
(W)  
(0)  
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  
(0) (1) (*) (*) (*) (*)  
Note: The initial value(*) of bit0 to bit3 is changed by reset source.  
56  
MB90210 Series  
(2) Block Diagram  
Oscillation clock  
CPU clock  
Gear divider circuit  
1/1 1/2 1/4 1/16  
CPU clock  
generator  
STBYC  
CLK1  
CLK0  
Selector  
Peripheral clock  
Peripheral clock  
generator  
SLP  
STP  
Standby control circuit  
RST Clear HST start  
HST pin  
Interrupt request  
or RST  
20  
Clock input  
216  
217  
218  
OSC1  
OSC0  
Selector  
Timebase timer  
214 216 217 218  
SPL  
RST  
Pin high-impedance control circuit  
Internal reset generator  
Pin HI–Z  
RST pin  
Internal RST  
To watchdog timer  
WDGRST  
57  
MB90210 Series  
ELECTRICAL CHARACTERISTICS (MB90V210, deviceused forevaluation, is excluded)  
1. Absolute Maximum Ratings  
(VSS = AVSS = 0.0 V)  
Value  
Pin  
Symbol  
Unit  
Remarks  
Parameter  
name  
Min.  
Max.  
Power supply voltage  
Program voltage  
VCC  
VPP  
VCC  
VSS – 0.3  
VSS + 7.0  
V
V
MB90P214A/W214A  
MB90P214B/W214B  
VPP  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
13.0  
VCC + 0.3  
AVCC  
Power supply voltage  
for A/D converter  
AVCC  
AVCC  
V
V
Analog power supply voltage  
AVRH  
AVRL  
AVRH  
AVRL  
Reference voltage for A/D  
converter  
*1  
Input voltage  
*2  
*3  
*3  
*2  
*2  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VCC + 0.3  
20  
V
V
VI  
Output voltage  
VO  
“L” level output current  
“L” level total output current  
“H” level output current  
“H” level total output current  
Power consumption  
IOL  
mA Rush current  
mA Total output current  
mA Rush current  
mA Total output current  
mW  
ΣIOL  
IOH  
50  
–10  
ΣIOH  
Pd  
–48  
650  
–40  
–40  
–55  
+105  
+85  
°C MB90214/P214B/W214B  
°C MB90P214A/W214A  
°C  
Operating temperature  
Storage temperature  
TA  
Tstg  
+150  
*1: VI and VO must not exceed VCC + 0.3 V.  
*2: Output pins  
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P82  
*3: Output pins  
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P75, P80 to P82  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
58  
MB90210 Series  
2. Recommended Operating Conditions  
Pin  
(VSS = AVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
name  
Min.  
Max.  
4.5  
5.5  
V
V
When operating  
Power supply voltage  
VCC  
VCC  
Retains the RAM state in stop  
mode  
3.0  
4.5  
5.5  
Power supply voltage for A/D  
converter  
AVCC  
AVCC  
VCC + 0.3  
V
Analog power supply  
voltage  
AVRH  
AVRL  
FC  
AVRH  
AVRL  
AVRL  
AVSS  
10  
AVCC  
AVRH  
16  
V
V
Reference voltage for A/D  
converter  
Clock frequency  
MHz  
Single-chip mode  
MB90214/P214B/W214B  
–40  
+105  
°C  
Operating temperature TA*  
Single-chip mode  
MB90P214A/W214A  
–40  
–40  
+85  
+70  
°C  
°C  
External bus mode  
* : Excluding the temperature rise due to the heat produced.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
59  
MB90210 Series  
3. DC Characteristics  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
External bus mode  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Parameter  
Symbol Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
VSS+ 0.3  
VIH  
*1  
0.7 VCC  
0.8 VCC  
VCC – 0.3  
VSS– 0.3  
VSS – 0.3  
VSS – 0.3  
V
V
V
V
V
V
CMOS level input  
Hysteresis input  
“H” level input  
voltage  
VIHS  
VIHM  
VIL  
*2  
MD0 to MD2  
*1  
CMOS level input  
Hysteresis input  
“L” level input  
voltage  
VILS  
VILM  
*2  
MD0 to MD2  
VCC = 4.5 V  
IOH = –4.0 mA  
VCC – 0.5  
VOH  
VOH1  
VOL  
*3  
VCC  
VCC  
V
V
V
V
“H” level output  
voltage  
VCC = 4.5 V  
IOH = –2.0 mA  
VCC – 2.3  
X1  
*4  
VCC = 4.5 V  
IOL = 4.0 mA  
0
0
0.4  
“L” level output  
voltage  
VCC = 4.5 V  
IOL = 2.0 mA  
VCC – 2.3  
VOL1  
X1  
Except pins with  
pull-up/pull-down  
resistor and RST  
pin  
VCC =5.5 V  
0.2 VCC <VI <0.8  
VCC  
*1  
*2  
II  
±10  
µA  
Input leakage  
current  
VCC =5.5 V  
II2  
X0  
3
±25  
7
µA  
mA  
µA  
pF  
0.2 VCC < VIH < 0.8 VCC  
IA  
FC = 16 MHz  
Analog power  
supply voltage  
AVCC  
In stop mode,  
TA = +25°C  
IAH  
10  
5*5  
Input capacitance CIN  
*6  
7
*
MB90214  
RST  
22  
50  
110  
kMB90P214A/  
W214A/P214B/  
W214B  
Pull-up resistor  
RpuIU  
7
*
MD1  
110  
22  
300  
50  
650  
110  
650  
110  
kΩ  
MB90214  
7
*
Generic pin  
MD0, MD2  
Generic pin  
kΩ  
MB90214  
7
*
110  
22  
300  
50  
kΩ  
MB90214  
Pull-down resistor RpuID  
7
*
kΩ  
MB90214  
(Continued)  
60  
MB90210 Series  
(Continued)  
Parameter  
Value  
Typ.  
50*8  
Symbol Pin name  
Condition  
Unit  
Remarks  
Min.  
Max.  
80  
mA MB90214  
MB90P214A/  
ICC  
VCC  
FC = 16 MHz  
W214A  
MB90P214B/  
W214B  
70*8  
100  
40  
mA  
Power supply  
voltage*9  
ICCS  
VCC  
VCC  
FC = 16 MHz  
mA In sleep mode  
TA = +25°C  
In stop mode  
µA In hardware  
standby input  
time  
ICCH  
5
10  
*1: CMOS level input (P00 to P07, P10 to P17, X0)  
*2: Hysteresis input pins (RST, HST, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67 P70 to P75, P80  
to P82)  
*3: Output pins (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P82)  
*4: Output pins (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to  
P75, P80 to P82)  
*5: The current value applies to the CPU stop mode with A/D converter inactive (VCC = AVCC = AVRH = +5.5 V).  
*6: Other than VCC, VSS, AVCC and AVSS  
*7: A list of availabilities of pull-up/pull-down resistors  
Pin name  
MB90214  
MB90P214A/W214A MB90P214B/W214B  
Availability of pull-up resistors is  
optionally defined.  
Pull-up resistors  
available  
Pull-up resistors  
available  
RST  
MD1  
Pull-up resistors available  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
MD0, MD2  
Pull-down resistors available  
Availability of pull-up/pull-down  
resistors is optionally defined.  
Generic pin  
Unavailable  
Unavailable  
*8: VCC = +5.0 V, VSS = 0.0 V, TA = +25°C, FC = 16 MHz  
*9: Measurement condition of power supply current; external clock pin and output pin are open.  
Measurement condition of VCC; see the table above mentioned.  
61  
MB90210 Series  
2. AC Characteristics  
(1) Clock Timing Standards  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
External bus mode  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Pin  
name  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min. Typ. Max.  
Clock frequency  
FC  
tC  
X0, X1  
X0, X1  
10  
16  
MHz  
ns  
Clock cycle time  
62.5  
100  
1/FC  
PWH  
PWL  
Input clock pulse width  
X0  
X0  
0.4 tC  
0.6 tC  
8
ns Duty ratio: 60%  
ns  
tcr  
tcf  
Input clock rising/falling time  
tcr + tcf  
Clock Input Timings  
tC  
0.7 VCC  
0.7 VCC  
0.3 VCC  
X0  
PWH  
PWL  
tcr  
tcf  
Clock Conditions  
When a crystal  
or  
When an external clock is used  
ceramic resonator is used  
X0  
X1  
X0  
X1  
Open  
C1  
C2  
C1 = C2 = 10 pF  
Select the optimum capacity value for the resonator.  
62  
MB90210 Series  
Relationship between Clock Frequency and Power Supply Voltage  
V CC  
Single-chip mode  
[V]  
: (TA = –40°C to +105°C, FC = 10 to 16 MHz)  
(MB90214/P214B/W214B)  
: (TA = –40°C to +85°C, FC = 10 to 16 MHz)  
: (TA = –40°C to +70°C, FC = 10 to 16 MHz)  
(MB90P214A/W214A)  
External bus mode  
5.5  
Operation assurance range  
4.5  
FC  
[MHz]  
0
10  
16  
(2) Clock Output Timing Standards  
Pin  
External mode: (VCC = +4.5 to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Symbol  
Condition  
Unit Remarks  
Parameter  
name  
Min.  
Typ.  
Max.  
Machine cycle time  
tCYC  
62.5  
1600  
ns  
ns  
*
Load condition:  
80 pF  
CLK  
tCYC/  
2 – 20  
CLK ↑ → CLK↓  
tCHCL  
tCYC/2  
* : tCYC = n/FC, n gear ratio (1, 2, 4, 16)  
tCYC  
tCHCL  
CLK  
1/2 VCC  
1/2 VCC  
63  
MB90210 Series  
(3) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR Series)  
X 0  
X 1  
FAR*1  
*2  
*2  
C1  
C2  
*1: Fujitsu Acoustic Resonator  
Temperature  
characteristics of  
FAR frequency  
Initial deviation of  
FAR frequency  
(TA = +25°C)  
FAR part number  
(built-in capacitor type)  
Load  
Frequency  
capacitance*2  
(TA = –20°C to +60°C)  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
FAR-C4C F-1 6000- 02  
FAR-C4C F-1 6000- 12  
16.00  
Built-in  
Inquiry: FUJITSU LIMITED  
(4) Reset and Hardware Standby Input Standards  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
External bus mode  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Pin  
Symbol  
Condition  
Unit Remarks  
Parameter  
name  
Min.  
5 tCYC  
5 tCYC  
Typ.  
Max.  
Reset input time  
tRSTL  
RST  
HST  
ns  
Hardware standby input time tHSTL  
ns  
*
* : The machine cycle (tCYC) at hardware standby input is set to 1/16 divided oscillation.  
tRSTL, tHSTL  
RST  
HST  
0.2 VCC  
0.2 VCC  
64  
MB90210 Series  
(5) Power on Supply Specifications (Power-on Reset)  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
External bus mode  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Pin  
Symbol  
Condition  
Unit Remarks  
Parameter  
name  
Min.  
Typ.  
Max.  
30  
Power supply rising time  
Power supply cut-off time  
tR  
VCC  
VCC  
ms  
ms  
*
tOFF  
1
* : Before the power rising, VCC must be less than +0.2 V.  
Notes: The above specifications are for the power-on reset.  
Always apply power-on reset using these specifications, regardless of whether or not  
the power-on reset is needed.  
There are some internal registers (such as STBYC) which are only initialized by the power-on reset.  
Power-on Reset  
tR  
4.5 V  
0.2 V  
VCC  
0.2 V  
0.2 V  
tOFF  
Note: Caution on switching power supply  
Abrupt change of supply voltage may initiate power-on reset, even if the above requirements are not met.  
It is, therefore, recommended to power up gradually during the instantaneous change of power supply as  
shown in the figure below.  
Changing Power Supply  
Main power  
supply voltage  
The rising edge should be 50 mV/ms or less.  
Subpower  
supply voltage  
VSS  
65  
MB90210 Series  
(6) Bus Read Timing  
(VCC = +4.5 to +5.5 , VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Pin  
Symbol  
Condition  
Unit Remarks  
Parameter  
name  
Min.  
tCYC/2 – 20  
tCYC – 25  
Max.  
Valid address RD time  
RD pulse width  
tAVRL  
tRLRH  
tRLDV  
tRHDX  
A23 to A00  
RD  
ns  
ns  
ns  
ns  
RD ↓ → valid data input  
RD ↑ → data hold time  
tCYC – 30  
0
D15 to D00  
Load  
condition:  
80 pF  
Valid addressvalid data  
tAVDV  
tRHAX  
tAVCH  
tRLCL  
3 tCYC/2 – 40 ns  
input  
RD ↑ → address valid time  
Valid address CLK time  
RD ↓ → CLK time  
A23 to A00  
tCYC/2 – 20  
tCYC/2 – 25  
tCYC/2 – 25  
ns  
ns  
ns  
A23 to A00  
CLK  
RD, CLK  
tAVCH  
tRLCL  
0.7 VCC  
CLK  
RD  
0.3 VCC  
tRLRH  
tAVRL  
0.7 VCC  
tRHAX  
0.3 VCC  
0.7 VCC  
0.3 VCC  
0.7 VCC  
0.3 VCC  
A23 to A00  
D15 to D00  
tRHDX  
tRLDV  
tAVDV  
0.7 VCC  
0.7 VCC  
0.3 VCC  
Read data  
0.3 VCC  
66  
MB90210 Series  
(7) Bus Write Timing  
Parameter  
(VCC = +4.5 to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
Max.  
Valid address WR time tAVWL  
A23 to A00  
WRL, WRH  
tCYC/2 – 20  
tCYC – 25  
ns  
ns  
WR pulse width  
tWLWH  
tDVWH  
tWHDX  
Valid data output WR ↑  
time  
Load  
condition:  
80 pF  
tCYC – 40  
ns  
D15 to D00  
WR ↑ → data hold time  
tCYC/2 – 20  
tCYC/2 – 20  
tCYC/2 – 25  
ns  
ns  
ns  
WR ↑ → address valid time tWHAX  
A23 to A00  
WR ↓ → CLK time  
tWLCH  
WRL, WRH, CLK  
tWLCL  
0.3 VCC  
CLK  
WR  
tWLWH  
0.7 VCC  
tWHAX  
0.3 VCC  
(WRL, WRH)  
tAVWL  
0.7 VCC  
0.3 VCC  
A23 to A00  
D15 to D00  
tWHDX  
tDVWH  
Write data  
0.7 VCC  
0.3 VCC  
Un-  
defined  
67  
MB90210 Series  
(8) Ready Signal Input Timing  
(VCC = +4.5 to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
40  
Max.  
RDY setup time  
RDY hold time  
tRYHS  
tRYHH  
ns  
ns  
Load condition:  
80 pF  
RDY  
0
Note: Use the auto-ready function if the RDY setup time is insufficient.  
0.7 VCC  
0.7 VCC  
CLK  
A23 to A00  
RD/WR  
(WRL, WRH)  
tRYHS  
tRYHH  
tRYHS  
tRYHH  
RDY  
No wait  
0.8 VCC  
0.8 VCC  
Wait  
0.8 VCC  
0.8 VCC  
0.2 VCC  
(9) Hold Timing  
Parameter  
(VCC = +4.5 to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
Value  
Pin  
Symbol  
Condition  
Unit  
Remarks  
name  
Min.  
30  
Max.  
tCYC  
Pin floating HAK time  
HAK ↑ → pin valid time  
tXHAL  
tHAHV  
ns  
ns  
Load condition:  
80 pF  
HAK  
tCYC  
2tCYC  
Note: It takes at least one cycle for HAK to vary after HRQ is fetched.  
HRQ  
0.8 VCC  
0.2 VCC  
0.7 VCC  
0.3 VCC  
HAK  
tXHAL  
tHAHV  
Each pin  
High impedance  
68  
MB90210 Series  
(10) UART Timing  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
External bus mode  
Value  
Pin  
name  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Serial clock cycle time tSCYC  
8 tCYC  
ns  
ns  
ns  
ns  
SCLK ↓ → SOUT  
tSLOV  
–80  
100  
60  
80  
Internal shift  
clock mode  
output pin  
delay time  
Valid SIN SCLK ↑  
tIVSH  
tSHIX  
SCLK ↑ → Valid SIN  
hold time  
Serial clock “H” pulse  
width  
tSHSL  
tSLSH  
Load condition:  
80 pF  
4 tCYC  
4 tCYC  
ns  
ns  
Serial clock “L” pulse  
width  
External shift  
clock mode  
output pin  
SCLK ↓ → SOUT  
delay time  
tSLOV  
tIVSH  
tSHIX  
60  
60  
150  
ns  
ns  
ns  
Valid SIN SCLK ↑  
SCLK ↑ → Valid SIN  
hold time  
Notes: These AC characteristics assume the CLK synchronous mode.  
tCYC is the machine cycle (unit: ns).  
69  
MB90210 Series  
Internal Shift Clock Mode  
tSCYC  
0.7 VCC  
SCK  
0.3 VCC  
0.3 VCC  
tSLOV  
0.7 VCC  
0.3 VCC  
SOD  
SID  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
0.7 VCC  
0.3 VCC  
SOD  
SID  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
70  
MB90210 Series  
(11) Resource Input Timing  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
External bus mode  
Value  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Typ.  
Max.  
External event  
count input mode  
4 tCYC  
TIN0 to TIN3  
TIN4 to TIN7  
ns  
Trigger input/  
Gate input mode  
2 tCYC  
tTIWH  
tTIWL  
Load  
condition:  
2 tCYC  
2 tCYC  
3 tCYC  
2 tCYC  
4 tCYC  
ns Gate input mode  
Input pulse width  
PWC0 to PWC3 80 pF  
ns  
ns  
ns  
ns  
INT0 to INT3  
ATG  
WI  
tWIWL  
0.8 VCC  
0.8 VCC  
0.2 VCC  
TIN0 to TIN7  
PWC0 to PWC3  
INT0 to INT3  
WI  
0.2 VCC  
tTIWH  
tTIWL, tWIWL  
(12) Resource Output Timing  
Single-chip mode MB90214/P214B/W214B : (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +105°C)  
MB90P214A/W214A  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +85°C)  
: (VCC = +4.5 V to +5.5 V, VSS = 0.0 V, TA = –40°C to +70°C)  
External bus mode  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min. Max.  
TOUT0 to TOUT3  
PPG  
POUT0 to POUT3  
CLK ↑ →  
TOUT transition time  
Load condition:  
80 pF  
tTO  
30  
ns  
0.7 VCC  
CLK  
TOUT0 to TOUT3  
PPG  
POUT0 to POUT3  
0.7 VCC  
0.3VCC  
tTO  
71  
MB90210 Series  
5. A/D Converter Electrical Characteristics  
Single-chip mode MB90214/P214B/W214B:  
(AVCC = VCC = +5.0±10%, AVSS = VSS = 0.0 V, TA = –40°C to +105°C, +4.5 V  
AVRH – AVRL)  
Single-chip mode MBP90214A/W214A:  
(AVCC = VCC = +5.0±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C, +4.5 V  
External bus mode:  
AVRH – AVRL)  
AVRH – AVRL)  
(AVCC = VCC = +5.0±10%, AVSS = VSS = 0.0 V, TA = –40°C to +70°C, +4.5 V  
Value  
Unit  
Symbol Pin name  
Condition  
Remarks  
Parameter  
Resolution  
Min.  
Typ.  
Max.  
10  
n
bit  
Total error  
–3.0  
–2.0  
+3.0  
+2.0  
LSB  
LSB  
Linearity error  
Differential  
linearity error  
VOT  
±1.5  
LSB  
LSB  
Zero transition  
voltage  
AVRL – 1.5 AVRL + 0.5 AVRL + 2.5  
AN0 to AN7  
Full-scale  
transition voltage  
VFST  
TCONV  
TSAMP  
IAIN  
AVRH – 3.5 AVRH – 1.5 AVRH + 0.5 LSB  
98 machine  
cycles  
Conversion time  
6.125  
3.75  
µs  
µs  
µA  
V
tCYC = 62.5 ns  
60 machine  
cycles  
Sampling period  
Analog port input  
current  
±0.1  
AVRH  
AN0 to AN7  
Analog input  
voltage  
VAIN  
AVRL  
AVRH  
AVRL  
AVRL  
AVSS  
AVCC  
AVRH  
500  
V
V
Analog reference  
voltage  
IR  
200  
µA  
µA  
Reference voltage  
supply current  
AVRH  
IRH  
5*  
Interchannel  
disparity  
AN0 to AN7  
4
LSB  
* : The current value applies to the CPU stop mode with the A/D converter inactive (VCC = AVCC = AVRH = +5.5 V).  
Notes: (1) The smaller the | AVRH – AVRL |, the greater the error would become relatively.  
(2) Use the output impedance of the external circuit for analog input under the following conditions:  
.
=
External circuit output impedance < approx. 10 k(Sampling period 3.75 µs, tCYC = 62.5 ns)  
.
(3) Precision values are standard values applicable to sleep mode.  
(4) If VCC/AVCC or VSS/AVSS is caused by a noise to drop to below the analog input voltage, the analog input  
current is likely to increase. In such cases, a bypasscapacitoror the like should be provided in the external  
circuit to suppress the noise.  
72  
MB90210 Series  
Equivalent Circuit of Analog Input Circuit  
C0  
Analog input  
Comparator  
R ON2  
R ON1  
External impedance  
RON1: Approx. 1.5 kΩ  
C1  
RON2: Approx. 1.5 kΩ  
C0: Approx. 60 pF  
C1: Approx. 4 pF  
Note: The values shown here are reference values.  
6. A/D Converter Glossary  
Resolution: Analog changes that are identifiable with the A/D converter  
When the number of bits is 10, analog voltage can be divided into 210 = 1024.  
Total error: Difference between actual and logical values. This error is caused by a zero transition error,  
full-scale transition error, linearity error, differential linearity error, or by noise.  
Linearity error: The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00  
0000 0001”) with the full-scale transition point (“11 1111 1111” “11 1111 1110”) from actual  
conversion characteristics  
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the  
theoretical value.  
Digital output  
11 1111 1111  
11 1111 1110  
11 1111 1101  
Theoretical value V NT  
Theoretical value  
Actual conversion value  
Total error  
N + 1  
N
N – 1  
Linerity error  
N × 1LSB + V 0T  
00 0000 0010  
00 0000 0001  
00 0000 0000  
AVRL  
V NT  
V(N–1)T  
AVRH (V)  
V FST  
V 0T V 1T  
V 2T  
V(N+1)T  
AVRH – AVRL  
1022  
VFST – V0T  
1022  
1LSB theoretical value  
=
1LSB =  
N = 0 to 1022  
VNT (N = 0) = V0T  
VNT (N = 1022) = VFST  
VNT– (N × 1LSB + V0T)  
Linearity error =  
1LSB  
VNT – V(N – 1) T  
Differential linearity error  
=
N = 1 to 1022  
– 1  
1LSB  
VNT – { ( N + 0.5 ) × 1LSB theoretical value }  
=
Total error  
N = 0 to 1022  
1LSB theoretical value  
73  
MB90210 Series  
EXAMPLE CHARACTERISTICS  
(1) Power Supply Current  
I CC vs. T A example characteristics  
I CCH vs. T A example characteristics  
I CCH (µA)  
I CC (mA)  
100  
40  
30  
20  
10  
0
F C = 16 MHz  
External clock input  
V CC = 5.5 V  
V CC = 5.5 V  
90  
80  
70  
MB90P214A  
60  
MB90214  
50  
–10  
40  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
T A (°C)  
T A (°C)  
Note: These are not assured value of characteristics but example characteristics.  
(2) Output Voltage  
V OL vs. I OL example characteristics  
V OL (V)  
V OH vs. I OH example characteristics  
V OH (V)  
5.5  
2.0  
T A = +25°C  
V CC = 5.0 V  
T A = +25°C  
V CC = 5.0 V  
1.5  
5.0  
4.5  
4.0  
3.5  
1.0  
0.5  
0.0  
–0.5  
3.0  
–15  
–10  
–5  
0
5
–5  
0
5
10  
15  
20  
25  
I OH (mA)  
I OL (mA)  
Note: These are not assured value of characteristics but example characteristics.  
74  
MB90210 Series  
(3) Pull-up/Pull-down Resistor  
Pull-down resistor example characteristics  
Pull-up resistor example characteristics  
R pul U (k)  
R pul D (k)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
V CC = 4.5 V  
V CC = 5.0 V  
V CC = 5.5 V  
V CC = 4.5 V  
V CC = 5.0 V  
V CC = 5.5 V  
20  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
T A (°C)  
T A (°C)  
Pull-up resistor example characteristics  
Pull-down resistor example characteristics  
R pul D (k)  
R pul U (k)  
500  
400  
300  
200  
100  
500  
V CC = 5.5 V  
400  
300  
200  
V CC = 5.5 V  
100  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
T A (°C)  
T A (°C)  
Note: These are not assured value of characteristics but example characteristics.  
(4) Analog Filter  
Analog filter example characteristics  
Input pulse width (ns)  
80  
T A = +25°C  
70  
60  
50  
40  
30  
20  
10  
Filtering enable  
4.0  
4.5  
5.0  
5.5  
6.0  
V CC (V)  
Note: These are not assured value of characteristics but example characteristics.  
75  
MB90210 Series  
INSTRUCTIONS (421 INSTRUCTIONS)  
Table 1 Description of Items in Instruction List  
Item  
Description  
Mnemonic  
English upper case and symbol: Described directly in assembler code.  
English lower case: Converted in assembler code.  
Number of letters after English lower case: Describes bit width in code.  
#
~
Describes number of bytes.  
Describes number of cycles.  
For other letters in other items, refer to table 4.  
B
Describes correction value for calculating number of actual states.  
Number of actual states is calculated by adding value in the ~section.  
Operation  
LH  
Describes operation of instructions.  
Describes a special operation to 15 bits to 08 bits of the accumulator.  
Z : Transfer 0.  
X : Sign-extend and transfer.  
– : No transmission  
AH  
Describes a special operation to the upper 16-bit of the accumulator.  
* : Transmit from AL to AH.  
– : No transfer.  
Z : Transfer 00H to AH.  
X : Sign-extend AL and transfer 00H or FFH to AH.  
I
S
Describes status of I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero),  
V (overflow), and C (carry) flags.  
* : Changes after execution of instruction.  
– : No changes.  
S : Set after execution of instruction.  
R: Reset after execution of instruction.  
T
N
Z
V
C
RMW  
Describes whether or not the instruction is a read-modify-write type (a data is read out from  
memory etc. in single cycle, and the result is written into memory etc.).  
* : Read-modify-write instruction  
– : Not read-modify-write instruction  
Note: Not used to addresses having different functions for reading and writing operations.  
76  
MB90210 Series  
Table 2 Description of Symbols in Instruction Table  
Description  
Item  
A
32-bit accumlator  
The bit length is dependent on the instructions to be used.  
Byte : Lower 8-bit of AL  
Word :16-bit of AL  
Long : AL: 32-bit of AH  
AH  
AL  
Upper 16-bit of A  
Lower 16-bit of A  
SP  
Stack pointer (USP or SSP)  
Program counter  
PC  
SPCU  
SPCL  
PCB  
DTB  
ADB  
SSB  
USB  
SPB  
DPR  
brg1  
brg2  
Ri  
Stack pointer upper limited register  
Stack pointer lower limited register  
Program bank register  
Data bank register  
Additional data bank register  
System stack bank register  
User stack bank register  
Current stack bank register (SSB or USB)  
Direct page register  
DTB, ADB, SSB, USB, DPR, PCB  
DTB, ADB, SSB, USB, DPR  
R0, R1, R2, R3, R4, R5, R6, R7  
RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7  
RW0, RW1, RW2, RW3  
RWi  
RWj  
RLi  
RL0, RL1, RL2, RL3  
dir  
addr16  
Specify shortened direct address.  
Specify direct address.  
addr24  
ad24 0 to 15  
ad24 16 to 23  
Specify physical direct address.  
bit0 to bit15 of addr24  
bit16 to bit 23 of addr24  
io  
I/O area (000000H to 0000FFH)  
#imm4  
#imm8  
#imm16  
#imm32  
ext (imm8)  
4-bit immediate data  
8-bit immediate data  
16-bit immediate data  
32-bit immediate data  
16-bit data calculated by sign-extending an 8-bit immediate data  
disp8  
disp16  
8-bit displacement  
16-bit displacement  
bp  
Bit offset value  
vct4  
vct8  
Vector number (0 to 15)  
Vector number (0 to 255)  
( )b  
Bit address  
rel  
ear  
eam  
Specify PC relative branch.  
Specify effective address (code 00 to 07).  
Specify effective address (code 08 to 1F).  
rlst  
Register allocation  
77  
MB90210 Series  
Table 3 Effective Address Field  
Address type  
Number of bytes in address  
extension block*  
Code  
Symbol  
00  
01  
02  
03  
04  
05  
06  
07  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
RW0  
RW1  
RW2  
RW3  
RW4  
RW5  
RW6  
RW7  
RL0 Register direct  
(RL0) "ea" corresponds to byte, word, and  
RL1 long word from left respectively.  
(RL1)  
RL2  
(RL2)  
RL3  
(RL3)  
08  
09  
0A  
0B  
@RW0  
@RW1  
@RW2  
@RW3  
Register indirect  
0
0
0C  
0D  
0E  
0F  
@RW0 +  
@RW1 +  
@RW2 +  
@RW3 +  
Register indirect with post increment  
10  
11  
12  
13  
14  
15  
16  
17  
@RW0 + disp8  
@RW1 + disp8  
@RW2 + disp8  
@RW3 + disp8  
@RW4 + disp8  
@RW5 + disp8  
@RW6 + disp8  
@RW7 + disp8  
Register indirect with 8-bit  
displacement  
1
18  
19  
1A  
1B  
@RW0 + disp16  
@RW1 + disp16  
@RW2 + disp16  
@RW3 + disp16  
Register indirect with 16-bit  
displacement  
2
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
Register indirect with index  
Register indirect with index  
PC indirect with 16-bit displacement  
Direct address  
0
0
2
2
Note: Number of bytes for address extension corresponds to “+” in the # (number of bytes) part in the instruction  
table.  
78  
MB90210 Series  
Table 4 Number of Execution Cycles in Addressing Modes  
(a)*  
Code  
Operand  
Number of execution cycles for addressing modes  
Ri  
RWi  
RLi  
00 to 07  
Listed in instruction table  
08 to 0B  
0C to 0F  
10 to 17  
18 to 1B  
@RWj  
1
4
1
1
@RWj +  
@RWi + disp8  
@RWj + disp16  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
2
2
2
1
Note: (a) is used for ~ (number of cycles) and B (correction value) in instruction table.  
Table 5 Correction Value for Number of Cycles for Calculating Actual Number of Cycles  
(b)*  
byte  
+0  
(c)*  
word  
+0  
(d)*  
long  
+0  
Operand  
Internal register  
Internal RAM even address  
Internal RAM odd address  
+0  
+0  
+0  
+1  
+0  
+2  
Other than internal RAM even address  
Other than internal RAM odd address  
+1  
+1  
+1  
+3  
+2  
+6  
External data bus 8-bit  
+1  
+3  
+6  
Notes: (b), (c), (d) is used for ~ (number of cycles) and B (correction value) in instruction table.  
79  
MB90210 Series  
Table 6 Transmission Instruction (Byte) [50 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
MOV A, dir  
2
3
1
2
2
2
1
1
(b) byte (A) (dir)  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R
*
*
*
*
*
*
*
*
*
*
*
*
*
MOV A, addr16  
MOV A, Ri  
(b) byte (A) (addr16)  
0
0
byte (A) (Ri)  
byte (A) (ear)  
MOV A, ear  
MOV A, eam  
2 + 2 + (a) (b) byte (A) (eam)  
MOV A, io  
2
2
2
3
3
5
2
1
2
2
2
6
3
3
2
1
(b) byte (A) (io)  
byte (A) imm8  
MOV A, #imm8  
MOV A, @A  
0
(b) byte (A) ((A))  
byte (A) ((RLi) + disp8)  
byte (A) ((SP) + disp8)  
MOV A, @RLi + disp8  
MOV A, @SP + disp8  
MOVP A, addr24  
MOVP A, @A  
(b)  
(b)  
(b) byte (A) (addr24)  
(b) byte (A) ((A))  
MOVN A, #imm4  
0
byte (A) imm4  
MOVX A, dir  
2
3
2
2
2
2
1
1
(b) byte (A) (dir)  
X
X
X
X
X
X
X
X
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
MOVX A, addr16  
MOVX A, Ri  
(b) byte (A) (addr16)  
0
0
byte (A) (Ri)  
byte (A) (ear)  
MOVX A, ear  
MOVX A, eam  
2 + 2 + (a) (b) byte (A) (eam)  
MOVX A, io  
2
2
2
2
3
3
5
2
2
2
2
3
6
3
3
2
(b) byte (A) (io)  
byte (A) imm8  
(b) byte (A) ((A))  
byte (A) ((RWi) + disp8)  
(b)  
MOVX A, #imm8  
MOVX A, @A  
0
MOVX A, @RWi + disp8  
MOVX A, @RLi + disp8  
MOVX A, @SP + disp8  
MOVPX A, addr24  
MOVPX A, @A  
(b) byte (A) ((RLi) + disp8) X  
byte (A) ((SP) + disp8)  
(b) byte (A) (addr24)  
(b) byte (A) ((A))  
(b)  
X
X
X
MOV dir, A  
2
3
1
2
2
2
1
2
(b) byte (dir) (A)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
MOV addr16, A  
MOV Ri, A  
(b) byte (addr16) (A)  
0
0
byte (Ri) (A)  
byte (ear) (A)  
MOV ear, A  
MOV eam, A  
2 + 2 + (a) (b) byte (eam) (A)  
MOV io, A  
2
3
3
5
2
6
3
3
(b) byte (io) (A)  
(b)  
(b)  
byte ((RLi) + disp8) (A)  
byte ((SP) + disp8) (A)  
MOV @RLi + disp8, A  
MOV @SP + disp8, A  
MOVP addr24, A  
(b) byte (addr24) (A)  
MOV Ri, ear  
2
2
0
byte (Ri) (ear)  
*
*
*
*
MOV Ri, eam  
MOVP @A, Ri  
2 + 3 + (a) (b) byte (Ri) (eam)  
2
2
3
3
(b) byte ((A)) (Ri)  
byte (ear) (Ri)  
*
*
MOV ear, Ri  
0
*
*
MOV eam, Ri  
MOV Ri, #imm8  
MOV io, #imm8  
MOV dir, #imm8  
MOV ear, #imm8  
MOV eam, #imm8  
2 + 3 + (a) (b) byte (eam) (Ri)  
*
*
2
3
3
3
2
3
3
2
0
byte (Ri) imm8  
*
*
(b) byte (io) imm8  
(b) byte (dir) imm8  
*
*
0
byte (ear) imm8  
3 + 2 + (a) (b) byte (eam) imm8  
MOV @AL, AH  
2
2
2
3
(b) byte ((A)) (AH)  
byte (A) (ear)  
*
*
XCH A, ear  
XCH A, eam  
XCH Ri, ear  
XCH Ri, eam  
0
Z
Z
2 + 3 + (a) 2 × (b) byte (A) (eam)  
byte (Ri) (ear)  
2 + 5 + (a) 2 × (b) byte (Ri) (eam)  
2
4
0
Note: For (a) and (b), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
80  
MB90210 Series  
Table 7 Transmission Instruction (Word) [40 Instructions]  
LH AH  
Mnemonic  
MOVW A, dir  
MOVW A, addr16  
MOVW A, SP  
MOVW A, RWi  
MOVW A, ear  
MOVW A, eam  
MOVW A, io  
MOVW A, @A  
MOVW A, #imm16  
MOVW A, @RWi + disp8  
MOVW A, @RLi + disp8  
MOVW A, @SP + disp8  
MOVPW A, addr24  
MOVPW A, @A  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
2
3
1
1
2
2
2
2
1
1
(c) word (A) (dir)  
(c) word (A) (addr16)  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
word (A) (SP)  
word (A) (RWi)  
word (A) (ear)  
2 + 2 + (a) (c) word (A) (eam)  
2
2
3
2
3
3
5
2
2
2
2
3
6
3
3
2
(c) word (A) (io)  
(c) word (A) ((A))  
0
(c)  
(c)  
(c)  
word (A) imm16  
word (A) ((RWi) +disp8)  
word (A) ((RLi) +disp8)  
word (A) ((SP) + disp8)  
(c) word (A) (addr24)  
(c) word (A) ((A))  
MOVW dir, A  
2
3
4
1
1
2
2
2
2
2
1
2
(c) word (dir) (A)  
(c) word (addr16) (A)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
MOVW addr16, A  
MOVW SP, #imm16  
MOVW SP, A  
MOVW RWi, A  
MOVW ear, A  
MOVW eam, A  
MOVW io, A  
MOVW @RWi + disp8, A  
MOVW @RLi + disp8, A  
MOVW @SP + disp8, A  
MOVPW addr24, A  
MOVPW @A, RWi  
MOVW RWi, ear  
MOVW RWi, eam  
MOVW ear, RWi  
MOVW eam, RWi  
MOVW RWi, #imm16  
MOVW io, #imm16  
MOVW ear, #imm16  
MOVW eam, #imm16  
0
0
0
0
word (SP) imm16  
word (SP) (A)  
word (RWi) (A)  
word (ear) (A)  
2 + 2 + (a) (c) word (eam) (A)  
2
2
3
3
5
2
2
2
3
6
3
3
3
2
(c) word (io) (A)  
word ((RWi) +disp8) (A)  
word ((RLi) +disp8) (A)  
word ((SP) + disp8) (A)  
(c)  
(c)  
(c)  
(c) word (addr24) (A)  
(c) word ((A)) (RWi)  
0
word (RWi) (ear)  
2 + 3 + (a) (c) word (RWi) (eam)  
word (ear) (RWi)  
2 + 3 + (a) (c) word (eam) (RWi)  
2
3
0
3
4
4
2
3
2
0
word (RWi) imm16  
(c) word (io) imm16  
word (ear) imm16  
0
4 + 2 + (a) (c) word (eam) imm16  
MOVW @AL, AH  
2
2
2
3
(c) word ((A)) (AH)  
word (A) (ear)  
*
*
XCHW A, ear  
0
XCHW A, eam  
XCHW RWi, ear  
XCHW RWi, eam  
2 + 3 + (a) 2 × (c) word (A) (eam)  
word (RWi) (ear)  
2 + 5 + (a) 2 × (c) word (RWi) (eam)  
2
4
0
Note: For (a) and (c), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
81  
MB90210 Series  
Table 8 Transmission Instruction (Long) [11 Instructions]  
LH AH  
Mnemonic  
MOVL A, ear  
MOVL A, eam  
MOVL A, #imm32  
MOVL A, @SP + disp8  
MOVPL A, addr24  
MOVPL A, @A  
#
2
2 +  
5
3
5
~
2
B
0
Operation  
long (A) (ear)  
I
S
T
N
*
*
*
*
Z
*
*
*
*
*
*
V
C RMW  
3 + (a)  
(d) long (A) (eam)  
long (A) imm32  
3
4
4
3
0
(d) long (A) ((SP) + disp8)  
(d) long (A) (addr24)  
(d) long (A) ((A))  
*
*
2
MOVPL @A, RLi  
2
5
(d) long ((A)) (RLi)  
*
*
MOVL @SP + disp8, A  
MOVPL addr24, A  
MOVL ear, A  
3
5
2
4
4
2
(d) long ((SP) + disp8) (A)  
(d) long (addr24) (A)  
*
*
*
*
*
*
*
*
0
long (ear) (A)  
MOVL eam, A  
2 + 3 + (a) (d) long (eam) (A)  
Note: For (a) and (c), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
82  
MB90210 Series  
Table 9 Add/Subtract (Byte, Word, Long) [42 Instructions]  
LH AH  
Mnemonic  
ADD A,#imm8  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
2
2
2
2
3
2
0
byte (A) (A) +imm8  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
(b) byte (A) (A) +(dir)  
byte (A) (A) +(ear)  
0
2 + 3 + (a) (b) byte (A) (A) +(eam)  
byte (ear) (ear) + (A)  
2 + 3 + (a) 2 × (b) byte (eam) (eam) + (A)  
2
2
0
*
1
2
2
2
0
0
byte (A) (AH) + (AL) + (C)  
byte (A) (A) + (ear) + (C)  
*
ADDC A, ear  
ADDC A, eam  
ADDDC A  
2 + 3 + (a) (b) byte (A) (A) + (eam) + (C)  
byte (A) (AH) + (AL) + (C) (decimal)  
1
2
2
2
3
2
3
2
0
0
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBC  
A, #imm8  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
byte (A) (A) – imm8  
(b) byte (A) (A) – (dir)  
byte (A) (A) – (ear)  
0
2 + 3 + (a) (b) byte (A) (A) – (eam)  
byte (ear) (ear) – (A)  
2 + 3 + (a) 2 × (b) byte (eam) (eam) – (A)  
2
2
0
*
1
2
2
2
0
0
byte (A) (AH) – (AL) – (C)  
byte (A) (A) – (ear) – (C)  
SUBC A, ear  
SUBC A, eam  
SUBDC A  
2 + 3 + (a) (b) byte (A) (A) – (eam) – (C)  
1
byte (A) (AH) – (AL) – (C) (decimal)  
3
0
ADDW  
A
1
2
2
2
0
0
word (A) (AH) + (AL)  
word (A) (A) + (ear)  
2 + 3 + (a) (c) word (A) (A) + (eam)  
word (A) (A) + imm16  
word (ear) – (ear) + (A)  
2 + 3 + (a) 2 × (c) word (eam) – (eam) + (A)  
word (A) (A) + (ear) + (C)  
2 + 3 + (a) (c) word (A) (A) + (eam) + (C)  
word (A) (AH) – (AL)  
word (A) (A) – (ear)  
2 + 3 + (a) (c) word (A) (A) – (eam)  
word (A) (A) – imm16  
word (ear) (ear) – (A)  
2 + 3 + (a) 2 × (c) word (eam) (eam) – (A)  
word (A) (A) – (ear) – (C)  
2 + 3 + (a) (c) word (A) (A) – (eam) – (C)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADDW A, ear  
ADDW A, eam  
ADDW A, #imm16  
ADDW ear, A  
ADDW eam, A  
ADDCW A, ear  
ADDCW A, eam  
3
2
2
2
0
0
*
2
2
0
*
*
1
2
2
2
0
0
SUBW  
A
SUBW A, ear  
SUBW A, eam  
SUBW A, #imm16  
SUBW ear, A  
SUBW eam, A  
SUBCW A, ear  
SUBCW A, eam  
3
2
2
2
0
0
2
2
0
ADDL A, ear  
ADDL A, eam  
ADDL A, #imm32  
SUBL A, ear  
SUBL A, eam  
SUBL A, #imm32  
2
5
0
long (A) (A) + (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2 + 6 + (a) (d) long (A) (A) + (eam)  
5
2
4
5
0
0
long (A) (A) + imm32  
long (A) (A) – (ear)  
2 + 6 + (a) (d) long (A) (A) – (eam)  
long (A) (A) – imm32  
5
4
0
Note: For (a) to (d), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
83  
MB90210 Series  
Table 10 Increment/Decrement (Byte, Word, Long) [12 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
INC  
INC  
ear  
eam  
2
2
0
byte (ear) (ear) +1  
*
*
*
*
*
*
*
*
2 + 3 + (a) 2 × (b) byte (eam) (eam) +1  
DEC  
DEC  
ear  
eam  
2
2
0
byte (ear) (ear) –1  
*
*
*
*
*
*
*
*
2 + 3 + (a) 2 × (b) byte (eam) (eam) –1  
INCW ear  
INCW eam  
2
2
0
word (ear) (ear) +1  
*
*
*
*
*
*
*
*
2 + 3 + (a) 2 × (c) word (eam) (eam) +1  
DECW ear  
DECW eam  
2
2
0
word (ear) (ear) –1  
*
*
*
*
*
*
*
*
2 + 3 + (a) 2 × (c) word (eam) (eam) –1  
long (ear) (ear) +1  
INCL  
INCL  
ear  
eam  
2
4
0
*
*
*
*
*
*
*
2 + 5 + (a) 2 × (d) long (eam) (eam) +1  
DECL ear  
DECL eam  
2
4
0
long (ear) (ear) –1  
*
*
*
*
*
*
*
*
2 + 5 + (a) 2 × (d) long (eam) (eam) –1  
Note: For (a) to (d), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
Table 11 Compare (Byte, Word, Long) [11 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
CMP  
CMP  
CMP  
CMP  
A
1
2
1
2
0
0
byte (AH) – (AL)  
byte (A) – (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A, ear  
A, eam  
A, #imm8  
2 + 3 + (a) (b) byte (A) – (eam)  
2
2
0
byte (A) – imm8  
CMPW A  
1
2
1
2
0
0
word (AH) – (AL)  
word (A) – (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMPW A, ear  
CMPW A, eam  
CMPW A, #imm16  
2 + 3 + (a) (c) word (A) – (eam)  
3
2
0
word (A) – imm16  
CMPL A, ear  
CMPL A, eam  
CMPL A, #imm32  
2
6
0
word (A) – (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
2 + 7 + (a) (d) word (A) – (eam)  
word (A) – imm32  
5
3
0
Note: For (a) to (d), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
84  
MB90210 Series  
Table 12 Unsigned Multiply/Division (Word, Long) [11 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
DIVU  
A
1
*1  
0
word (AH) /byte (AL)  
Quotient byte (AL)  
Remainder byte (AH)  
word (A)/byte (ear)  
*
*
*
*
*
*
DIVU  
DIVU  
A, ear  
A, eam  
2
*2  
0
*
*
*
*
Quotient byte (A)  
Remainder byte (ear)  
2 + *3 *6 word (A)/byte (eam)  
Quotient byte (A)  
Remainder byte (eam)  
long (A)/word (ear)  
DIVUW A, ear  
DIVUW A, eam  
2
*4  
0
Quotient word (A)  
Remainder word (ear)  
2+ *5 *7 long (A)/word (eam)  
Quotient word (A)  
Remainder word (eam)  
MULU  
MULU  
MULU  
MULUW A  
MULUW A, ear  
MULUW A, eam  
A
1
2
*8  
*9  
0
0
byte (AH) byte (AL) word (A)  
byte (A) byte (ear) word (A)  
A, ear  
A, eam  
2 + *10 (b) byte (A) byte (eam) word (A)  
1
2
*11  
*12  
0
0
word (AH) word (AL) long (A)  
word (A) word (ear) long (A)  
2 + *13 (c) word (A) word (eam) long (A)  
Note: For (b) and (c), refer to “Table 5 Correction Values for Number of Cycles for Calculating Actual Number of  
Cycles.”  
*1: Set to 3 when the division-by-0, 6 for an overflow, and 14 for normal operation.  
*2: Set to 3 when the division-by-0, 6 for an overflow, and 13 for normal operation.  
*3: Set to 5 + (a) when the division-by-0, 7 + (a) for an overflow, and 17 + (a) for normal operation.  
*4: Set to 3 when the division-by-0, 5 for an overflow, and 21 for normal operation.  
*5: Set to 4 + (a) when the division-by-0, 7 + (a) for an overflow, and 25 + (a) for normal operation.  
*6: When the division-by-0, (b) for an overflow, and 2 × (b) for normal operation.  
*7: When the division-by-0, (c) for an overflow, and 2 × (c) for normal operation.  
*8: Set to 3 when byte (AH) is zero, 7 when byte (AH) is not zero.  
*9: Set to 3 when byte (ear) is zero, 7 when byte (ear) is not zero.  
*10:Set to 4 + (a) when byte (eam) is zero, 8 + (a) when byte (eam) is not zero.  
*11:Set to 3 when word (AH) is zero, 11 when word (AH) is not zero.  
*12:Set to 4 when word (ear) is zero, 11 when word (ear) is not zero.  
*13:Set to 4 + (a) when word (eam) is zero, 12 + (a) when word (eam) is not zero.  
85  
MB90210 Series  
Table 13 Signed multiplication/division (Word, Long) [11 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
DIV  
DIV  
DIV  
A
2
*1  
0
word (AH)/byte (AL)  
Z
Z
Z
*
*
*
*
*
*
Quotient byte (AL)  
Remainder byte (AH)  
word (A)/byte (ear)  
A, ear  
2
*2  
0
*
*
*
*
Quotient byte (A)  
Remainder byte (ear)  
A, eam  
2 + *3 *6 word (A)/byte (eam)  
Quotient byte (A)  
Remainder byte (eam)  
long (A)/word (ear)  
DIVW A, ear  
DIVW A, eam  
2
*4  
0
Quotient word (A)  
Remainder word (ear)  
2 + *5 *7 long (A)/word (eam)  
Quotient word (A)  
Remainder word (eam)  
MUL  
MUL  
MUL  
MULW  
MULW A, ear  
MULW A, eam  
A
2
2
*8  
*9  
0
0
byte (AH) × byte (AL) word (A) –  
A, ear  
A, eam  
A
byte (A) × byte (ear) word (A)  
byte (A) × byte (eam) word (A)  
word (AH) × word (AL) long (A)  
word (A) × word (ear) long (A)  
2 + *10 (b)  
2
2
*11  
*12  
0
0
2 + *13 (b) word (A) × word (eam) long (A)  
For (b) and (c), refer to “Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles.”  
*1: Set to 3 for divide-by-0, 8 or 18 for an overflow, and 18 for normal operation.  
*2: Set to 3 for divide-by-0, 10 or 21 for an overflow, and 22 for normal operation.  
*3: Set to 4 + (a) for divide-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.  
*4: Positive divided: Set to 4 for divide-by-0, 10 or 29 for an overflow, and 30 for normal operation.  
Negative divided: Set to 4 for divide-by-0, 11 or 30 for an overflow, and 31 for normal operation.  
*5: Positive divided: Set to 4 + (a) fordivide-by-0, 11 + (a) or 30 + (a)for an overflow, and 31 + (a) for normaloperation.  
Negative divided: Set to 4 + (a) for divide-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal  
operation.  
*6: Set to (b) when the division-by-0 or an overflow, and 2 × (b) for normal operation.  
*7: Set to (c) when the division-by-0 or an overflow, and 2 × (c) for normal operation.  
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.  
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.  
*10:Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.  
*11:Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.  
*12:Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.  
*13:Set to 4 +(a)when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result isnegative.  
Note: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two  
values because of detection before and after an operation.  
When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.  
86  
MB90210 Series  
Table 14 Logic 1 (Byte, Word) [39 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
AND  
AND  
AND  
AND  
AND  
A, #imm8  
A, ear  
A, eam  
ear, A  
2
2
2
2
0
0
byte (A) (A) and imm8  
byte (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2 + 3 + (a) (b) byte (A) (A) and (eam)  
byte (ear) (ear) and (A)  
2
3
0
eam, A  
2 + 3 + (a) 2 × (b) byte (eam) (eam) and (A) –  
*
OR  
OR  
OR  
OR  
OR  
A, #imm8  
A, ear  
A, eam  
ear, A  
2
2
2
2
0
0
byte (A) (A) or imm8  
byte (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2 + 3 + (a) (b) byte (A) (A) or (eam)  
byte (ear) (ear) or (A)  
2 + 3 + (a) 2 × (b) byte (eam) (eam) or (A)  
2
3
0
eam, A  
*
XOR A, #imm8  
XOR A, ear  
XOR A, eam  
XOR ear, A  
XOR eam, A  
2
2
2
2
0
0
byte (A) (A) xor imm8  
byte (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
R
R
*
*
*
2 + 3 + (a) (b) byte (A) (A) xor (eam)  
byte (ear) (ear) xor (A)  
2
3
0
2 + 3 + (a) 2 × (b) byte (eam) (eam) xor (A) –  
1
2
NOT  
NOT  
NOT  
A
ear  
eam  
2
2
0
0
byte (A) not (A)  
byte (ear) not (ear)  
2 + 3 + (a) 2 × (b) byte (eam) not (eam)  
*
ANDW A  
1
3
2
2
2
2
0
0
0
word (A) (AH) and (A)  
word (A) (A) and imm16  
word (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ANDW A, #imm16  
ANDW A, ear  
ANDW A, eam  
ANDW ear, A  
ANDW eam, A  
2 + 3 + (a) (c) word (A) (A) and (eam)  
word (ear) (ear) and (A)  
2
3
0
2 + 3 + (a) 2 × (c) word (eam) (eam) and (A) –  
*
ORW  
A
1
3
2
2
2
2
0
0
0
word (A) (AH) or (A)  
word (A) (A) or imm16  
word (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ORW A, #imm16  
ORW A, ear  
ORW A, eam  
ORW ear, A  
2 + 3 + (a) (c) word (A) (A) or (eam)  
word (ear) (ear) or (A)  
2
3
0
ORW eam, A  
2 + 3 + (a) 2 × (c) word (eam) (eam) or (A) –  
*
XORW A  
1
3
2
2
2
2
0
0
0
word (A) (AH) xor (A)  
word (A) (A) xor imm16  
word (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
R
R
R
*
*
XORW A, #imm16  
XORW A, ear  
XORW A, eam  
XORW ear, A  
XORW eam, A  
NOTW A  
2 + 3 + (a) (c) word (A) (A) xor (eam)  
2
2 + 3 + (a) 2 × (c) word (eam) (eam) xor (A) –  
1
3
0
word (ear) (ear) xor (A)  
2
3
0
0
word (A) not (A)  
word (ear) not (ear)  
NOTW ear  
NOTW eam  
2
*
*
2 + 3 + (a) 2 × (c) word (eam) not (eam)  
Note: For (a) to (c), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
87  
MB90210 Series  
Table 15 Logic 2 (Long) [6 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
ANDL A, ear  
ANDL A, eam  
2
5
0
long (A) (A) and (ear)  
*
*
*
*
R
R
2 + 6 + (a) (d) long (A) (A) and (eam)  
ORL  
ORL  
A, ear  
A, eam  
2
5
0
long (A) (A) or (ear)  
*
*
*
*
R
R
2 + 6 + (a) (d) long (A) (A) or (eam)  
XORL A, ear  
XORL A, eam  
2
5
0
long (A) (A) xor (ear)  
*
*
*
*
R
R
2 + 6 + (a) (d) long (A) (A) xor (eam)  
Note: For (a) and (d), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
Table 16 Sign Reverse (Byte, Word) [6 Instructions]  
RG  
LH AH  
RMW  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C
NEG  
A
1
2
0
0
byte (A) 0 – (A)  
X
*
*
*
*
NEG  
NEG  
ear  
eam  
2
3
2
0
byte (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2 + 5 + (a) 0 2 × (b) byte (eam) 0 – (eam)  
NEGW A  
1
2
0
0
word (A) 0 – (A)  
*
*
*
*
NEGW ear  
NEGW eam  
2
3
2
0
word (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2 + 5 + (a) 0 2 × (c) word (eam) 0 – (eam)  
Note: For (a) and (d), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
Table 17 Absolute Values (Byte, Word, Long) [3 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
ABS  
ABSW  
ABSL  
A
A
A
2
2
2
2
2
4
0
0
0
byte (A) Absolute value (A)  
word (A) Absolute value (A)  
long (A) Absolute value (A)  
Z
*
*
*
*
*
*
*
*
*
Table 18 Normalize Instruction (Long) [1 Instruction]  
LH AH  
RMW  
C
Mnemonic  
#
~
RG  
B
Operation  
I
S
T
N
Z
V
NRML A, R0  
2
*1  
1
0
long (A) Shift to where “1”  
is originally located  
*
byte (R0) Number of shifts  
in the operation  
* : Set to 5 when the accumulator is all “0”, otherwise set to 5 + (R0).  
88  
MB90210 Series  
Table 19 Shift Type Instruction (Byte, Word, Long) [27 Instructions]  
LH AH  
RMW  
T N Z V C  
Mnemonic  
RORC A  
#
~
B
Operation  
I
S
2
2
2
2
0
0
byte (A) With right-rotate carry  
byte (A) With left-rotate carry  
*
*
*
*
*
*
ROLC A  
RORC ear  
RORC eam  
ROLC ear  
ROLC eam  
2
2 +  
2
2
0
byte (ear) With right-rotate carry  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3 + (a)  
2 × (b) byte (eam) With right-rotate carry  
byte (ear) With left-rotate carry  
2
3 + (a)  
0
2 +  
2 × (b) byte (eam) With left-rotate carry  
byte (A) Arithmetic right barrel shift (A, R0)  
ASR A, R0  
LSR A, R0  
2
2
2
*1  
*1  
*1  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
byte (A) Logical right barrel shift (A, R0)  
byte (A) Logical left barrel shift (A, R0)  
LSL  
A, R0  
byte (A) Arithmetic right barrel shift (A, imm8)  
ASR A, #imm8  
3
3
3
*3  
*3  
*3  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
byte (A) Logical right barrel shift (A, imm8)  
LSR  
LSL  
A, #imm8  
A, #imm8  
byte (A) Logical left barrel shift (A, imm8)  
word (A) Arithmetic right shift (A, 1 bit)  
ASRW A  
LSRW A/SHRW A 1  
LSLW A/SHLW A  
1
2
2
2
0
0
0
*
*
*
R
*
*
*
*
*
*
*
word (A) Logical right shift (A, 1 bit)  
word (A) Logical left shift (A, 1 bit)  
1
word (A) Arithmetic right barrel shift (A, R0)  
ASRW A, R0  
LSRW A, R0  
LSLW A, R0  
2
2
2
*1  
*1  
*1  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
word (A) Logical right barrel shift (A, R0)  
word (A) Logical left barrel shift (A, R0)  
word (A) Arithmetic right barrel shift (A, imm8)  
ASRW A, #imm8  
LSRW A, #imm8  
LSLW A, #imm8  
3
3
3
*3  
*3  
*3  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
word (A) Logical right barrel shift (A, imm8)  
word (A) Logical left barrel shift (A, imm8)  
long (A) Arithmetic right barrel shift (A, R0)  
ASRL A, R0  
LSRL A, R0  
LSLL A, R0  
2
2
2
*2  
*2  
*2  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
long (A) Logical right barrel shift (A, R0)  
long (A) Logical left barrel shift (A, R0)  
long (A) Arithmetic right barrel shift (A, imm8)  
ASRL A, #imm8  
LSRL A, #imm8  
LSLL A, #imm8  
3
3
3
*4  
*4  
*4  
0
0
0
*
*
*
*
*
*
*
*
*
*
*
long (A) Logical right barrel shift (A, imm8)  
long (A) Logical left barrel shift (A, imm8)  
Note: For (a) and (b), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
*1: Set to 3 when R0 is 0, otherwise 3 + (R0).  
*2: Set to 3 when R0 is 0, otherwise 4 + (R0).  
*3: Set to 3 when imm8 is 0, otherwise 3 + imm8.  
*4: Set to 3 when imm8 is 0, otherwise 4 + imm8.  
89  
MB90210 Series  
Table 20 Branch 1 [31 Instructions]  
LH AH  
Mnemonic  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
#
~
B
Operation  
Branch if (Z) = 1  
Branch if (Z) = 0  
Branch if (C) = 1  
Branch if (C) = 0  
Branch if (N) = 1  
Branch if (N) = 0  
Branch if (V) = 1  
Branch if (V) = 0  
Branch if (T) = 1  
Branch if (T) = 0  
Branch if (V) xor (N) = 1  
Branch if (V) xor (N) = 0  
Branch if ((V) xor (N)) or (Z) = 1  
Branch if ((V) xor (N)) or (Z) = 0  
I
S
T N Z V C RMW  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
*1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BN  
BP  
BV  
BNV  
BT  
BNT  
BLT  
BGE  
BLE  
BGT  
BLS  
BHI  
BRA  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
Branch if (C) or (Z) = 1  
Branch if (C) or (Z) = 0  
Branch unconditionally  
JMP  
JMP  
JMP  
JMP  
JMPP  
JMPP  
JMPP  
@A  
addr16  
@ear  
@eam  
@ear *3  
@eam *3  
addr24  
1
3
2
2
2
3
0
0
0
word (PC) (A)  
word (PC) addr16  
word (PC) (ear)  
2 + 4 + (a) (c) word (PC) (eam)  
2
2 + 4 + (a) (d)  
4
word (PC) (ear), (PCB) (ear + 2)  
word (PC) (eam), (PCB) (eam + 2)  
word (PC) ad24 0 – 15,  
(PCB) ad24 16 – 23  
3
0
3
0
CALL  
CALL  
CALL  
@ear *4  
2
4
(c) word (PC) (ear)  
@eam *4  
addr16 *5  
2 + 5 + (a) 2 × (c) word (PC) (eam)  
3
1
2
5
5
7
(c) word (PC) addr16  
2 × (c) Vector call instruction  
2 × (c) word (PC) (ear) 0 – 15  
(PCB) (ear) 16 – 23  
CALLV #vct4 *5  
CALLP @ear *6  
CALLP @eam *6  
CALLP addr24 *7  
2 + 8 + (a) *2 word (PC) (eam) 0 – 15  
(PCB) (eam) 16 – 23  
4
7
2 × (c) word (PC) addr0 – 15,  
(PCB) addr16 – 23  
Note: For(a), (c) and (d), referto “Table 4 Number of Execution Cyclesin Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
*1: Set to 3 when branch is executed, and 2 when branch is not executed.  
*2: 3 × (c) + (b)  
*3: Reads (word) of the branch destination address.  
*4: W pushes to stack (word), and R reads (word) of the branch destination address.  
*5: Pushes to stack (word).  
*6: W pushes to stack (long), and R reads (long) of the branch destination address.  
*7: Pushes to stack (long).  
90  
MB90210 Series  
Table 21 Branch 2 [20 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
CBNE A, #imm8, rel  
CWBNE A, #imm16, rel  
3 *1  
4 *1  
0
0
Branch if byte (A) imm8  
Branch if word (A) imm16  
*
*
*
*
*
*
*
*
Branch if byte (ear) imm8  
Branch if byte (eam) imm8  
Branch if word (ear) imm16  
Branch if word (eam) imm16  
CBNE ear, #imm8, rel  
CBNE eam, #imm8, rel  
CWBNE ear, #imm16, rel  
4 *1  
4 + *3 (b)  
5 *1  
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
CWBNE eam, #imm16, rel 5 + *3 (c)  
DBNZ ear, rel  
DBNZ eam, rel  
3 *2  
0
byte (ear) = (ear) – 1,  
Branch if (ear) 0  
*
*
*
*
*
*
*
3 + *4 2 × (b) byte (eam) = (eam) – 1,  
Branch if (eam) 0  
DWBNZ ear, rel  
DWBNZ eam, rel  
3 *2  
0
word (ear) = (ear) – 1,  
Branch if (ear) 0  
*
*
*
*
*
*
*
3 + *4 2 × (c) word (eam) = (eam) – 1,  
Branch if (eam) 0  
INT  
INT  
INTP  
INT9  
RETI  
RETIQ *6  
#vct8  
addr16  
addr24  
2 14 8 × (c) Software interrupt  
3 12 6 × (c) Software interrupt  
4 13 6 × (c) Software interrupt  
1 14 8 × (c) Software interrupt  
R
R
R
R
*
S
S
S
S
*
*
*
*
*
*
1
9 6 × (c) Return from interrupt  
2 11 *5 Return from interrupt  
*
*
*
*
*
*
*
2
1
6
5
(c) Stores old frame pointer in  
the beginning of the  
LINK  
#imm8  
function, set new frame  
pointer, and reserves local  
pointer area  
(c) Restore old frame pointer  
from stack in the end of  
the function  
UNLINK  
RET *7  
1
1
4
5
(c) Return from subroutine  
(d) Return from subroutine  
RETP *8  
Note: For (a) to (d), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
*1: Set to 4 when branch is executed, and 3 when branch is not executed.  
*2: Set to 5 when branch is executed, and 4 when branch is not executed.  
*3: Set to 5 + (a) when branch is executed, and 4 + (a) when branch is not executed.  
*4: Set to 6 + (a) when branch is executed, and 5 + (a) when branch is not executed.  
*5: Set to 3 × (b) + 2 × (c) when an interrupt request is issued, and 6 × (c) for return.  
*6: This is a high-speed interrupt return instruction. In the instruction, an interrupt request is detected. When an  
interrupt occurs, stack operation is not performed, with this instruction branching to the interrupt vector.  
*7: Return from stack (word).  
*8: Return from stack (long).  
91  
MB90210 Series  
Table 22 Miscellaneous Control Types (Byte, Word, Long) [36 Instructions]  
LH AH  
Mnemonic  
PUSHW A  
PUSHW AH  
PUSHW PS  
PUSHW rlst  
#
~
B
Operation  
I
S
T N Z V C RMW  
1
1
1
2
3
3
(c) word (SP) (SP) – 2, ((SP)) (A) –  
word (SP) (SP) – 2, ((SP)) (AH)  
word (SP) (SP) – 2, ((SP)) (PS)  
(PS) (PS) – 2n, ((SP)) (rlst)  
(c)  
(c)  
*4  
3
*3  
word (A) ((SP)), (SP) ← (SP) + 2  
word (AH) ((SP)), (SP) ← (SP) + 2  
word (PS) ((SP)), (SP) ← (SP) + 2  
(rlst) ((SP)), (SP) (SP) + 2n  
POPW  
A
1
1
1
2
3
3
(c)  
(c)  
(c)  
*4  
*
*
*
*
*
*
*
*
POPW AH  
POPW PS  
POPW rlst  
3
*2  
JCTX  
@A  
1
9
6 × (c) Context switch instruction  
*
*
*
*
*
*
*
AND  
OR  
CCR, #imm8  
CCR, #imm8  
2
2
3
3
0
0
byte (CCR) (CCR) and imm8 –  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
byte (CCR) (CCR) or imm8  
MOV  
MOV  
RP, #imm8  
ILM, #imm8  
2
2
2
2
0
0
byte (RP) imm8  
byte (ILM) imm8  
MOVEA RWi, ear  
MOVEA RWi, eam  
MOVEA A, ear  
2
3
0
0
0
0
word (RWi) ear  
word (RWi) eam  
word(A) ear  
*
2 + 2 + (a)  
2
2
MOVEA A, eam  
2 + 1 + (a)  
word (A) eam  
*
ADDSP #imm8  
ADDSP #imm16  
2
3
3
3
0
0
word (SP) (SP) + ext (imm8) –  
word (SP) (SP) + imm16  
MOV  
MOV  
MOV  
A, brgl  
2
2
*1  
1
2
0
0
0
byte (A) (brgl)  
byte (brg2) (A)  
byte (brg2) imm8  
Z
*
*
*
*
*
*
*
brg2, A  
brg2, #imm8 3  
NOP  
ADB  
DTB  
PCB  
SPB  
NCC  
CMR  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
No operation  
Prefix code for accessing AD space  
Prefix code for accessing DT space  
Prefix code for accessing PC space  
Prefix code for accessing SP space  
Prefix code for no change in flag  
Prefix for common register bank  
MOVW SPCU, #imm16  
MOVW SPCL, #imm16  
SETSPC  
4
4
2
2
2
2
2
2
0
0
0
0
word (SPCU) (imm16)  
word (SPCL) (imm16)  
Enables stack check operation.  
CLRSPC  
Disables stack check operation. –  
Bit position of 1 in byte (A) from word (A)  
Bit position (× 2) of 1 in byte (A) from word (A)  
BTSCN A  
BTSCNS A  
BTSCND A  
2
2
2
*5  
*6  
*7  
0
0
0
Z
*
*
*
Z
Bit position (× 4) of 1 in byte (A) from word (A)  
Z
Note: For (a) and (c), refer to “Table 4 Number of Execution Cycles in Addressing Modes” and “Table 5 Correction  
Values for Number of Cycles for Calculating Actual Number of Cycles.”  
*1: PCB, ADB, SSB, USB, and SPB : 1 state  
DTB  
DPR  
: 2 states  
: 3 states  
*2: 3 + 4 × (number of POPs)  
*3: 3 + 4 × (number of PUSHes)  
*4: (Number of POPs) × (c), or (number of PUSHes) × (c)  
*5: Set to 3 when AL is 0, 5 when AL is not 0.  
*6: Set to 4 when AL is 0, 6 when AL is not 0.  
*7: Set to 5 when AL is 0, 7 when AL is not 0.  
92  
MB90210 Series  
Table 23 Bit Manipulation Instruction [21 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T N Z V C RMW  
MOVB A, dir:bp  
MOVB A, addr16:bp  
MOVB A, io:bp  
3
4
3
3
3
3
(b) byte (A) (dir:bp) b  
(b) byte (A) (addr16:bp) b  
(b) byte (A) (io:bp) b  
Z
Z
Z
*
*
*
*
*
*
*
*
*
MOVB dir:bp, A  
MOVB addr16:bp, A  
MOVB io:bp, A  
3
4
3
4
4
4
2 × (b) bit (dir:bp) b (A)  
2 × (b) bit (addr16:bp) b (A)  
2 × (b) bit (io:bp) b (A)  
*
*
*
*
*
*
*
*
*
SETB dir:bp  
SETB addr16:bp  
SETB io:bp  
3
4
3
4
4
4
2 × (b) bit (dir:bp) b 1  
2 × (b) bit (addr16:bp) b 1  
2 × (b) bit (io:bp) b 1  
*
*
*
CLRB dir:bp  
CLRB addr16:bp  
CLRB io:bp  
3
4
3
4
4
4
2 × (b) bit (dir:bp) b 0  
2 × (b) bit (addr16:bp) b 0  
2 × (b) bit (io:bp) b 0  
*
*
*
BBC dir:bp, rel  
BBC addr16:bp, rel  
BBC io:bp, rel  
4
5
4
*1  
*1  
*1  
(b) Branch if (dir:bp) b = 0  
(b) Branch if (addr16:bp) b = 0  
(b) Branch if (io:bp) b = 0  
*
*
*
BBS  
BBS  
BBS  
dir:bp, rel  
addr16:bp, rel  
io:bp, rel  
4
5
4
*1  
*1  
*1  
(b) Branch if (dir:bp) b = 1  
(b) Branch if (addr16:bp) b = 1  
(b) Branch if (io:bp) b = 1  
*
*
*
Branch if (addr16:bp) b = 1, bit = 1  
SBBS addr16:bp, rel  
WBTS io:bp  
5
3
3
*2 2 × (b)  
*
*
*3  
*3  
*4 Wait until (io:bp) b = 1  
*4 Wait until (io:bp) b = 0  
WBTC io:bp  
Note: For (b), refer to “Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles.”  
*1: Set to 5 when branch is executed, and 4 when branch is not executed.  
*2: 7 if conditions are met, 6 when conditions are not met.  
*3: Indeterminate times  
*4: Until conditions are met  
93  
MB90210 Series  
Table 24 Accumulator Manipulation Instruction (Byte, Word) [6 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
SWAP  
SWAPW/XCHW AL, AH  
EXT  
EXTW  
ZEXT  
ZEXTW  
1
1
1
1
1
1
3
2
1
2
1
1
0 byte (A) 0 – 7 (A) 8 – 15  
0 word (AH) (AL)  
0 byte sign-extension  
0 word sign-extension  
0 byte zero-extension  
0 word zero-extension  
X
Z
*
X
Z
*
*
R
R
*
*
*
*
Table 25 String Instruction [10 Instructions]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
MOVS/MOVSI  
2
*2 *3 byte transfer @AH + @AL +,  
Counter = RW0  
*2 *3 byte transfer @AH – @AL –,  
Counter = RW0  
MOVSD  
2
SCEQ/SCEQI  
SCEQD  
2
2
*1 *4 byte search (@AH +) – AL,  
Counter = RW0  
*1 *4 byte search (@AH –) – AL,  
*
*
*
*
*
*
*
*
Counter = RW0  
FISL/FILSI  
2 5m + 6 *5 byte fill @AH + AL,  
*
*
Counter = RW0  
MOVSW/MOVSWI  
MOVSWD  
2
2
*2 *6 word transfer @AH + @AL +,  
Counter = RW0  
*2 *6 word transfer @AH – @AL –,  
Counter = RW0  
SCWEQ/SCWEQI  
SCWEQD  
2
2
*1 *7 word search (@AH +) – AL,  
Counter = RW0  
*1 *7 word search (@AH –) – AL,  
*
*
*
*
*
*
*
*
Counter = RW0  
FILSW/FILSWI  
2 5m + 6 *8 word fill @AH + AL,  
*
*
Counter = RW0  
m: RW0 value (counter value)  
*1: 3 when RW0 is 0, 2 + 6 × (RW0) when count out, and 6n + 4 when matched  
*2: 4 when RW0 is 0, otherwise 2 + 6 × (RW0)  
*3: (b) × (RW0)  
*4: (b) × n  
*5: (b) × (RW0)  
*6: (c) × (RW0)  
*7: (c) × n  
*8: (c) × (RW0)  
94  
MB90210 Series  
Table 26 Multiple Data Transfer Instructions [18 Instruction]  
LH AH  
Mnemonic  
#
~
B
Operation  
I
S
T
N
Z
V
C RMW  
MOVM @A, @RLi, #imm8  
3
*1 *3 Multiple data transfer  
byte ((A)) ((RLi))  
MOVM @A, eam, #imm8  
MOVM addr16, @RLi, #imm8  
3 + *2 *3 Multiple data transfer  
byte ((A)) (eam)  
*1 *3 Multiple data transfer  
5
byte (addr16) ((RLi))  
MOVM addr16, @eam, #imm8 5 + *2 *3 Multiple data transfer  
byte (addr16) (eam)  
*1 *4 Multiple data transfer  
MOVMW@A, @RLi, #imm8  
MOVMW@A, eam, #imm8  
MOVMWaddr16, @RLi, #imm8  
3
word ((A)) ((RLi))  
3 + *2 *4 Multiple data transfer  
word ((A)) (eam)  
*1 *4 Multiple data transfer  
5
word (addr16) ((RLi))  
MOVMWaddr16, @eam, #imm8 5 + *2 *4 Multiple data transfer  
word (addr16) (eam)  
*1 *3 Multiple data transfer  
MOVM @RLi, @A, #imm8  
MOVM @eam, A, #imm8  
MOVM @RLi, addr16, #imm8  
3
byte ((RLi)) ((A))  
3 + *2 *3 Multiple data transfer  
byte (eam) ((A))  
*1 *3 Multiple data transfer  
5
byte ((RLi)) (addr16)  
MOVM @eam, addr16, #imm8 5 + *2 *3 Multiple data transfer  
byte (eam) (addr16)  
*1 *4 Multiple data transfer  
MOVMW@RLi, @A, #imm8  
MOVMW@eam, A, #imm8  
MOVMW@RLi, addr16, #imm8  
3
word ((RLi)) ((A))  
3 + *2 *4 Multiple data transfer  
word (eam) ((A))  
*1 *4 Multiple data transfer  
5
word ((RLi)) (addr16)  
MOVMW@eam, addr16, #imm8 5 + *2 *4 Multiple data transfer  
word (eam) (addr16)  
MOVM bnk: addr16,  
bnk: addr16, #imm8*5  
7
7
*1 *3 Multiple data transfer  
byte (bnk: addr16) ←  
(bnk: addr16)  
*1 *4 Multiple data transfer  
word (bnk: addr16) ←  
(bnk: addr16)  
MOVMWbnk: addr16,  
bnk: addr16, #imm8*5  
*1: 256 when 5 + imm8 × 5, imm8 is 0.  
*2: 256 when 5 + imm8 × 5 + (a), imm8 is 0.  
*3: (Number of transfer cycles) × (b) × 2  
*4: (Number of transfer cycles) × (c) × 2  
*5: The bank register specified by bnk is the same as that for the MOVS instruction.  
95  
MB90210 Series  
ORDERING INFORMATION  
Part number  
Type  
MB90214PF  
MB90P214PF  
MB90P214BPF  
Package  
Remarks  
MB90214  
MB90P214A  
MB90P214B  
80-pin Plastic QFP  
(FPT-80P-M06)  
MB90W214A  
MB90W214B  
MB90W214ZF  
MB90W214BZF  
80-pin Ceramic QFP  
(FPT-80C-C02)  
Only ES level  
For evaluation  
MB90V210  
MB90V210CR  
256-pin Ceramic PGA  
(PGA-256C-A02)  
96  
MB90210 Series  
PACKAGE DIMENSIONS  
80-pin Plastic QFP  
(FPT-80P-M06)  
(Mounting height)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
"B"  
0.10(.004)  
0.30(.012)  
0.18(.007)MAX  
0
10°  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
0.58(.023)MAX  
22.30±0.40(.878±.016)  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED F80010S-3C-2  
80-pin Ceramic QFP  
(FPT-80C-C02)  
0.05(.002)MIN  
(STAND OFF)  
17.90±0.30  
(.705±.012)  
12.00(.472)  
REF  
16.30±0.25  
(.642±.010)  
14.00+00..1455  
Ø8.89(.350)TYP  
+.018  
.551–.006  
INDEX AREA  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
18.40(.724) REF  
0.15±0.05  
(.006±.002)  
1.45±0.20  
(.057±.008)  
+0.50  
20.00–0.20  
3.30(.130)MAX  
+.020  
.787–.008  
23.90±0.30  
(.941±.012)  
(Mounting height)  
22.30±0.25  
(.878±.010)  
0.80±0.20  
(.0315±.008)  
C
1994 FUJITSU LIMITED F80018SC-1-2  
Dimensions in mm (inches)  
97  
MB90210 Series  
MEMO  
98  
MB90210 Series  
MEMO  
99  
MB90210 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-88, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9710  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB90P214B

16-bit Proprietary Microcontroller
FUJITSU

MB90P214BPF

16-bit Proprietary Microcontroller
FUJITSU

MB90P214PF

16-bit Proprietary Microcontroller
FUJITSU

MB90P224A

16-bit Proprietary Microcontroller
FUJITSU

MB90P224APF

Microcontroller, 16-Bit, OTPROM, 16MHz, CMOS, PQFP120, PLASTIC, QFP-120
FUJITSU

MB90P224B

16-bit Proprietary Microcontroller
FUJITSU

MB90P224BPF

16-bit Proprietary Microcontroller
FUJITSU

MB90P224PF

16-bit Proprietary Microcontroller
FUJITSU

MB90P234

16-bit Proprietary Microcontroller
FUJITSU

MB90P553A

16-bit Proprietary Microcontroller
FUJITSU

MB90P553APF

16-bit Proprietary Microcontroller
FUJITSU

MB90P553APF

Microcontroller, 16-Bit, OTPROM, F2MC-16LX CPU, 16MHz, CMOS, PQFP100, 14 X 20 MM, 3.35 MM HEIGHT, 0.65 MM PITCH, PLASTIC, QFP-100
CYPRESS