7MBR50UD120 [FUJI]

Insulated Gate Bipolar Transistor,;
7MBR50UD120
型号: 7MBR50UD120
厂家: FUJI ELECTRIC    FUJI ELECTRIC
描述:

Insulated Gate Bipolar Transistor,

文件: 总5页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U-series IGBT Modules (1,200 V)  
Yuichi Onozawa  
Shinichi Yoshiwatari  
Masahito Otsuki  
1. Introduction  
tion voltage between the collector and emitter  
(VCE (sat)) and the turn-off loss of the newly developed  
IGBT (trench FS-IGBT). From this figure, it can be  
seen that the trade-off of the 1,200 V U-series IGBT is  
dramatically improved compared to that of the former  
generation S-series IGBT [planer NPT (non punch  
Power conversion equipment such as general-use  
inverters and uninterruptible power supplies (UPSs) is  
continuously challenged by demands for higher effi-  
ciency, smaller size, lower cost and lower noise.  
Accordingly, power-converting elements for inverter  
circuits are also required to have higher performance  
and lower cost. At present, IGBTs (insulated gate  
bipolar transistors) are the main power-converting  
elements used because of their low loss and easy drive  
circuit implementation. After commercializing the  
IGBT in 1988, Fuji Electric has made efforts to  
improve the IGBT in pursuit of lower loss and lower  
cost. This paper introduces fifth generation IGBT  
modules (U-series), and focuses on the 1,200 V series  
used mainly in 400 V AC power lines overseas. Adop-  
tion of a trench gate structure and a field stop (FS)  
structure has resulted in a large improvement in the  
trade-off characteristics of fifth generation IGBTs  
compared with those of the fourth generation IGBT (S-  
series).  
through) -IGBT].  
This dramatic improvement in  
characteristics has been achieved through adopting a  
field stop structure, evolved from an advanced NPT  
configuration, and a trench gate structure, acquired  
during development of MOSFETs (metal oxide semi-  
conductor field effect transistors).  
structures is described below.  
Each of these  
2.1 Field stop structure  
Figure 2 shows output characteristics and Fig. 3  
shows comparison of cross section of unit cells of a  
planar NPT-IGBT and a planar FS-IGBT. An NPT-  
IGBT requires a thick drift layer so that the depletion  
layer does not contact the collector side during turn-off.  
The FS-IGBT does not, however, require such a thick  
drift layer as the NPT because a field stop layer to stop  
the depletion layer has been fabricated in the FS-IGBT  
and accordingly VCE (sat) can be lowered for the FS-  
IGBT. Furthermore, the FS-IGBT has fewer excess  
carriers because of its thinner drift layer. Moreover,  
2. Features of the New IGBTs  
Figure 1 shows the trade-off relation of the satura-  
Fig.1 Trade-off between VCE (sat) and turn-off loss  
Fig.2 Output characteristics  
25  
160  
Room temperature  
Trench FS-IGBT  
Trench FS-IGBT 1,200 V/150 A  
VCC=600 V, IC=150 A, VG=+15 V/–15 V  
125°C  
125°C  
120  
20  
15  
10  
5
125°C  
Room  
Room  
tempe-  
temperature  
Planar  
NPT-IGBT  
rature  
125°C  
Room  
temperature  
80  
Trench  
Planar NPT-IGBT  
FS-IGBT  
40  
0
1.2  
1.4  
1.6  
1.8  
2.0  
VCE(sat) (V)  
2.2  
2.4  
2.6  
2.8  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VCE(sat) (V)  
115  
Fig.3 Comparison of cross sections of unit cells of a planar  
NPT-IGBT and a planar FS-IGBT  
Fig.5 Short-circuit waveforms  
Short-circuit test (at VCC = 800 V and Tj = 125°C)  
Gate  
Gate  
Emitter  
n+  
Emitter  
n+  
VGE  
p
p
VCE  
VGE =0  
n-  
(Drift layer)  
n-  
(Drift layer)  
Field stop layer  
Collector  
TW = 24.6 µs  
ESC = 8.36 J  
n
p
IC  
Depletion layer  
VGE , Ic=0  
p
Collector  
1,200 V/150 A Trench FS-IGBT  
VCE : 200 V/div, IC : 500 A/div,  
Time : 5 µs/div, VGE : 20 V/div  
(a) Planar NPT-IGBT  
(b) Planar FS-IGBT  
Fig.4 Comparison of cross sections of IGBT unit cells  
Fig.6 Comparison of turn-on waveforms  
Emitter  
Emitter  
Layer  
Layer  
Turn-on  
(at Tj = 125°C)  
1,200 V/50 A  
VCE : 200 V/div,  
IC : 25 A/div,  
Time : 200 ns/div  
insulation film  
insulation film  
Conventional  
PiN  
n+  
n+  
Gate  
p
Gate  
p
New  
FWD  
n-  
n-  
Collector  
Collector  
(b) Trench FS-IGBT  
(a) Planar FS-IGBT  
the FS-IGBT can achieve reduced turn-off loss because  
the remaining width of its neutral region is small when  
its depletion layer is completely extended.  
Fig.7 Comparison of FWD output characteristics  
100  
100  
New FWD  
Conventional  
PIN  
2.2 Trench gate structure  
Figure 4 shows a cross section of a trench FS-IGBT.  
By adopting a trench gate structure, channel density  
80  
60  
40  
20  
80  
60  
40  
20  
1,200 V/75 A  
FWD  
can be increased and VCE  
can be significantly  
(sat)  
lowered because resistance in the JFET part, which was  
problematic for planar IGBTs when cell density in-  
creased, can be reduced to zero.  
On the other hand, the high channel density of the  
trench IGBT causes a problem of low short-circuit  
capacity. However, the trench gate structure optimiz-  
es the total channel length to realize high short-circuit  
capacity without sacrificing VCE (sat) (Fig. 5).  
125°C  
125°C  
Room  
Room  
temperature  
temperature  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Forward voltage (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Forward voltage (V)  
116  
Vol. 48 No. 4 FUJI ELECTRIC REVIEW  
Table 1 Characteristics of the 1,200 V U-series IGBT modules  
(a) Absolute maximum ratings (at Tc = 25°C unless otherwise specified)  
(c) Thermal resistance characteristics  
Characteristics  
Item  
Symbol  
Condition  
Max. rating Unit  
Item  
Symbol Condition  
Unit  
min. typ. max.  
Collector-emitter  
voltage  
VCES  
1,200  
V
V
Thermal resistance  
(1 device)  
IGBT  
0.21  
0.33  
Rth(j-c)  
Gate-emitter  
voltage  
VGES  
IC  
±20  
FWD  
°C/W  
Thermal resistance  
between case and fins  
Rth(c-f)  
0.05  
Tj =25°C  
150  
100  
300  
200  
100  
200  
600  
Continous  
1 ms  
Tj =80°C  
Tj =25°C  
Tj =80°C  
IC pulse  
A
Collector current  
Maximum loss  
Table 2 1,200 V U-series IGBT modules  
IC  
IC pulse  
PC  
1 ms  
Rated  
voltage  
(V)  
Rated  
current  
(A)  
Package  
Types  
Sale date  
1 device  
W
Junction  
temperature  
Tj  
150  
°C  
10  
15  
7MBR10UE120  
7MBR15UE120  
7MBR10UA120  
7MBR15UA120  
7MBR25UA120  
7MBR35UA120  
7MBR35UB120  
7MBR50UB120  
7MBR75UB120  
7MBR10UC120  
7MBR15UC120  
7MBR25UC120  
7MBR35UC120  
Small PIM  
Preserving  
temperature  
–40 to  
+125  
Tstg  
Viso  
°C  
10  
Isolation voltage  
(package)  
15  
AC : 1 min  
2,500  
V
EP2  
25  
Mounting  
Terminals  
3.5  
3.5  
Screw fastening  
torque  
Nm  
35  
35  
EP3  
50  
(b) Electrical characteristics (at Tc = 25°C unless otherwise specified)  
75  
Characteristics  
10  
Item  
Symbol  
Condition  
Unit  
min. typ. max.  
15  
HEP2  
Collector-  
emitter  
leakage  
current  
25  
VGE =0 V,  
VCE =1,200 V  
ICES  
1.0 mA  
35  
35  
7MBR35UD120  
7MBR50UD120  
7MBR75UD120  
6MBI75UA-120  
6MBI75UB-120  
6MBI100UB-120  
6MBI150UB-120  
6MBI75UC-120  
6MBI100UC-120  
3MBI150UC-120  
3MBI150U-120  
7MBI75UD-120  
7MBI100UD-120  
7MBI150UD-120  
2MBI75UA-120  
2MBI100UA-120  
2MBI150UA-120  
2MBI150UB-120  
2MBI200UB-120  
2MBI200UC-120  
2MBI300UC-120  
2MBI300UD-120  
2MBI300UE-120  
2MBI450UE-120  
6MBI225U-120  
6MBI300U-120  
6MBI450U-120  
Gate-emitter  
leakage  
HEP3  
50  
VCE =0 V,  
IGES  
0.2 µA  
VGE =±20 V  
75  
current  
New PC2  
75  
Gate-emitter  
threshold  
voltage  
VCE =20 V,  
IC =100 mA  
VGE(th)  
7.0  
V
V
75  
100  
150  
75  
Tj =25°C  
Tj =125°C  
Tj =25°C  
Tj =125°C  
1.95  
2.2  
VCE(sat)  
(Terminal)  
Collector-  
emitter  
saturation  
voltage  
VGE =  
1,200  
New PC3  
April 2003  
15 V,  
IC  
=
1.75  
2.0  
VCE(sat)  
(Chip)  
100 A  
100  
150  
150  
75  
Input  
capacitance  
Cies  
Coes  
13.3  
0.8  
New PC2  
7in1  
(M631  
or  
Output  
capacitance  
VGE =0 V,  
VCE =10 V  
f =1 MHz  
nF  
100  
150  
75  
Reverse  
P611)  
transfer  
Cres  
1.2  
capacitance  
M232  
M233  
100  
150  
150  
200  
200  
300  
300  
300  
450  
225  
300  
450  
ton  
tr  
1.2  
0.6  
1.0  
0.3  
Turn-on  
time  
VCC =600 V  
IC =100 A  
VGE =±15 V  
Rg =4.7 Ω  
µs  
toff  
tf  
Turn-off  
time  
Tj =25°C  
2.0  
2.0  
1.8  
1.8  
VF  
(Terminal)  
M234  
M235  
Diode  
forward  
voltage  
IF =  
100 A  
Tj =125°C  
Tj =25°C  
Tj =125°C  
V
VF  
(Chip)  
M238  
Reverce  
recovery time  
trr  
IF =100 A  
0.35 µs  
Large  
capacity  
module  
U-series IGBT Modules (1,200 V)  
117  
Fig.8 Catalogue of packages of 1,200 V U-series  
PIM  
6 in 1  
7 in 1  
2 in 1  
EP2  
PC3  
HEP2  
M232  
122  
110  
16  
16  
16  
107.5  
107.5  
M5  
93  
92  
EP3  
Large capacity module  
HEP3  
M233  
M6  
122  
110  
122  
U
V
W
92  
50 +  
50+  
50+  
17  
162  
22  
Small PIM1  
M631  
M235  
118  
57  
B
P
N
108  
U
V
W
Small PIM2  
M238  
65.6  
110  
3. Features of the New FWDs  
As IGBT switching speeds have increased, the  
accompanying vibration at the time of switching has  
become a significant problem. Fuji Electric succeeded  
in realizing soft recovery to suppress the vibration  
even at a high di/dt by optimizing the surface  
structure and bulk impurities profile of the FWDs (free  
wheeling diodes) (Fig. 6).  
Fig.9 Correlation among 1,200 V U-series  
Rated  
5A  
10A 15A 25A 35A  
(5.5kW)  
50A 75A 100A 150A 200A 300A 450A  
600A  
current  
(11kW)  
(22kW)  
(40kW)  
(75kW)  
Series  
Small  
Small PIM  
EP2/HEP2  
PIM  
PIM  
EP3/HEP3  
Moreover, a newly developed FDW has been made  
suitable for parallel operation by optimizing a lifetime  
killer to achieve a positive temperature coefficient of  
the output characteristics (Fig. 7).  
6 in 1  
New PC3 with a  
thermal sensor  
(6 in 1)  
M631 with a  
thermal sensor  
(7 in 1)  
Large capacity  
module  
(6 in 1)  
4. 1,200 V U-series IGBT Modules and Character-  
istics  
2 in 1  
/1 in 1  
M232  
M238  
M233 M235  
M138  
PIM/  
6 in 1  
For vector  
control  
EP  
New PC (with  
(N-line open) shunt resistance)  
Characteristics of 1,200 V U-series IGBT modules  
and an overview of U-series are presented in Tables 1  
118  
Vol. 48 No. 4 FUJI ELECTRIC REVIEW  
and 2, respectively. A catalog of packages available in  
this series is shown in Fig. 8 and the correlation among  
the 1,200 V U-series IGBT modules is shown in Fig. 9.  
smaller size and lower loss equipment.  
Fuji Electric intends to continue to work toward  
realizing higher performance and higher reliability  
devices and to contribute to the development of power  
electronics.  
5. Conclusion  
An overview of the 1,200 V U-series IGBT modules  
has been presented. The IGBTs of this series are  
extremely low loss devices and we believe they will  
make important contributions to the realization of  
Reference  
(1) Laska, T. et al. The Field Stop IGBT (FS IGBT) ——  
A New Power Device Concept with a Great Improve-  
ment Potential. Proc. 12th ISPSD. 2000, p 355-358.  
U-series IGBT Modules (1,200 V)  
119  

相关型号:

7MBR50VA060-50

Insulated Gate Bipolar Transistor
FUJI

7MBR50VB120-50

Insulated Gate Bipolar Transistor,
FUJI

7MBR50VKD060-50

Insulated Gate Bipolar Transistor
FUJI

7MBR50VM120-50

IGBT MODULE
FUJI

7MBR50VN120-50

Insulated Gate Bipolar Transistor, 50A I(C), 1200V V(BR)CES, N-Channel, ROHS COMPLIANT, COMPACT PACKAGE-35
FUJI

7MBR50VP060-50

IGBT MODULE
FUJI

7MBR50VP120-50

IGBT MODULE
FUJI

7MBR50VR120-50

Insulated Gate Bipolar Transistor, 50A I(C), 1200V V(BR)CES, N-Channel, ROHS COMPLIANT, COMPACT PACKAGE-32
FUJI

7MBR50VW120-50

IGBT MODULE
FUJI

7MBR50VX120-50

Insulated Gate Bipolar Transistor, 50A I(C), 1200V V(BR)CES, N-Channel, ROHS COMPLIANT PACKAGE-35
FUJI

7MBR50VY060-50

Insulated Gate Bipolar Transistor, 50A I(C), 600V V(BR)CES, N-Channel, ROHS COMPLIANT PACKAGE-32
FUJI

7MBR50VY120-50

Insulated Gate Bipolar Transistor, 50A I(C), 1200V V(BR)CES, N-Channel, ROHS COMPLIANT PACKAGE-22
FUJI