FA7622CPE [FUJI]

Bipolar IC For Switching Power Supply Control; 双极型集成电路开关电源控制
FA7622CPE
型号: FA7622CPE
厂家: FUJI ELECTRIC    FUJI ELECTRIC
描述:

Bipolar IC For Switching Power Supply Control
双极型集成电路开关电源控制

开关
文件: 总8页 (文件大小:70K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Bipolar IC  
For Switching Power Supply Control  
FA7622CP(E)  
Description  
Dimensions, mm  
The FA7622CP(E) is a DC-DC converter IC that can directly  
drive a power MOSFET. This IC has all the necessary  
protection functions for a power MOSFET. It is optimum for a  
portable equipment power supply which uses low-voltage input  
to output comparably large power.  
Á SSOP-20  
11  
20  
Features  
• Drive circuit for connecting a power MOSFET  
(Io = ±600mA)  
• Built-in voltage step-up circuit to drive a power MOSFET  
gate: A converter circuit requires only an N-channel power  
MOSFET.  
10  
1
7.2  
• Dual control circuit  
• Overcurrent limiting circuit  
• Overload cutoff circuit with timer and latch circuit  
• ON/OFF control pin  
0.6  
0.3  
0.65  
• Wide operating range: 3.6 to 28V  
• High-frequency operation: up to 1MHz  
• 20-pin package (DIP/SSOP)  
Á DIP-20  
20  
11  
Applications  
• Battery power supply for portable equipment  
1
10  
1.52  
24.4  
0.77  
7.62  
2.54±0.25  
0.46±0.1  
0~15˚  
Block diagram  
Pin Pin  
No. symbol  
Description  
DT1 CT RT VCC1  
SW  
13  
REF  
20  
1
2
3
4
CT  
Oscillator timing capacitor  
Oscillator timing resistor  
Timer and latch circuit  
16  
1
2
14  
RT  
SW  
CP  
OSC  
BIAS  
19  
VCC2  
ON/OFF  
12  
UVLO  
IN2+  
Non-inverting input to error  
amplifier  
5
IN2-  
Inverting input to error amplifier  
Error amplifier output  
Dead time adjustment  
Overcurrent limiting circuit 2  
Ground  
Duty  
limit  
6
FB2  
FB1 17  
OCP  
OCL1  
OUT1  
15  
11  
7
DT2  
+
+
8
OCL2  
GND  
OUT2  
OUT1  
VCC2  
SW  
IN1+  
18  
-
-
9
-
PWM1  
VB  
ER, AMP1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
CH.2 output  
Timer  
CP  
&
3
CH.1 output  
latch  
Power supply 2  
ER, AMP2  
+
IN2+  
+
OUT2  
OCL2  
10  
8
4
5
6
Switch for boost circuit  
Power supply 1  
-
-
VCC1  
OCL1  
DT1  
PWM2  
-
IN2-  
FB2  
Duty  
limit  
Overcurrent limiting circuit 1  
Dead time adjustment  
Error amplifier output  
OCP  
7
9
FB1  
DT2  
GND  
IN1+  
Non-inverting input to error  
amplifier  
19  
20  
ON/OFF Output ON/OFF control  
REF Reference voltage output  
1
FA7622CP(E)  
Absolute maximum ratings  
Recommended operating conditions  
Item  
Symbol  
Rating  
Unit  
Item  
Symbol Min. Max.  
Unit  
Supply  
voltage  
Voltage boost  
circuit not used  
VCC1  
28  
V
VCC1  
3.6  
26  
V
Voltage boost  
circuit not used  
Supply  
voltage  
Voltage boost  
circuit used  
Voltage boost  
circuit used  
VCC1  
20  
V
VCC1  
3.6  
18  
V
Supply voltage  
VCC2  
VON/OFF  
IOUT  
Pd  
28  
V
RNF  
CT  
100  
50  
kΩ  
pF  
Feedback resistance  
Timing capacitance  
Timing resistance  
ON/OFF pin voltage  
Out pin output current  
Total power dissipation  
Junction temperature  
Operating temperature  
Storage temperature  
–0.3 to +7  
±600  
V
2200  
100  
mA  
mW  
°C  
°C  
°C  
RT  
24  
kΩ  
kHz  
650  
fOSC  
50  
1000  
Oscillation frequency  
Tj  
125  
Topr  
Tstg  
–30 to +85  
–40 to +150  
Electrical characteristics (Ta = 25°C, VCC = 6V, RT = 36k, CT = 180pF)  
Reference voltage section  
Item  
Symbol  
VREF  
LINE  
Test condition  
Min.  
Typ.  
Max.  
2.550  
15  
Unit  
Output voltage  
IOR = 1mA  
2.400  
2.475  
V
Line regulation  
VCC = 3.6 to 26V,  
I
OR = 1mA  
5
2
mV  
mV  
%
Load regulation  
LOAD  
VTC1  
VTC2  
IOR = 0.1 to 1mA  
Output voltage variation due to temperature change  
Ta = –30 to +25°C  
Ta = +25 to +85°C  
–1  
–1  
1
1
%
Oscillator section  
Item  
Symbol  
fOSC  
fdV  
Test condition  
Min.  
Typ.  
110  
1
Max.  
Unit  
kHz  
%
Oscillation frequency  
CT = 180pF, RT = 36kΩ  
VCC = 3.6 to 26V  
100  
120  
Frequency variation 1 (due to supply voltage change)  
Frequency variation 2 (due to temperature change)  
fdT  
Ta = –30 to +25°C  
5
%
Error amplifier section (ch. 1)  
Item  
Symbol  
VB  
Test condition  
Min.  
Typ.  
0.858  
5
Max.  
0.884  
100  
Unit  
V
Reference voltage  
Input bias current  
Open-loop voltage gain  
Unity-gain bandwidth  
Maximum output voltage  
0.832  
IB  
nA  
dB  
MHz  
V
AVO  
fT  
40  
1.0  
VOH  
VOL  
IOH  
No load  
No load  
VOH = 0V  
1.8  
30  
300  
90  
mV  
µA  
Output source current  
60  
Error amplifier section (ch. 2)  
Item  
Symbol  
VIO  
Test condition  
Min.  
Typ.  
Max.  
10  
Unit  
mV  
nA  
V
Input offset voltage  
Input bias current  
2
5
IB  
100  
1.0  
Common-mode input voltage  
Open-loop voltage gain  
Unity-gain bandwidth  
Maximum output voltage  
VCOM  
AVO  
fT  
0
70  
dB  
MHz  
V
1.0  
80  
VOH  
VOL  
IOH  
No load  
No load  
VOH = 0V  
1.8  
40  
300  
120  
mV  
µA  
Output source current  
2
FA7622CP(E)  
Pulse width modulation circuit section ( FB1, FB2 pin )  
Item  
Symbol  
VTHO  
Test condition  
Duty cycle = 0%  
Duty cycle = 100%  
Min.  
Typ.  
1.6  
Max.  
Unit  
V
Input threshold voltage  
Input threshold voltage  
1.8  
VTHI  
0.8  
1.0  
V
Dead time adjustment circuit section ( DT1, DT2 pin )  
Item  
Symbol  
VTH0  
Test condition  
Duty cycle = 0%  
Duty cycle = 100%  
DT1, DT2 pin open  
Min.  
Typ.  
1.6  
Max.  
Unit  
V
Input threshold voltage  
Input threshold voltage  
Standby voltage  
1.8  
VTH1  
0.8  
1.8  
1.0  
V
VSTR  
V
Overcurrent limiting circuit section  
Item  
Symbol  
VTHOC  
VHYOC  
IOC  
Test condition  
Min.  
Typ.  
210  
40  
Max.  
Unit  
mV  
mV  
µA  
Input threshold voltage  
Hysteresis voltage  
Input bias current  
Delay in OCL  
180  
240  
50  
100  
tdoc  
Overdriving: 50mV  
120  
ns  
Timer and latch circuit section  
Item  
Symbol  
VTHCP  
IINCP  
Test condition  
Min.  
Typ.  
Max.  
1.50  
1
Unit  
V
Latch-mode threshold voltage  
Input bias current  
CP pin voltage / LOW  
1.00  
1.25  
VCP = 1.5V, VFB = 0.3V  
µA  
mV  
VSATC  
ICP = 20 µA, VFB = 1.0V  
300  
Output ON/OFF control circuit section  
Item  
Symbol  
VTHON  
VTH OFF  
IIN  
Test condition  
Min.  
Typ.  
Max.  
Unit  
V
OFF-to-ON threshold voltage  
ON-to-OFF threshold voltage  
Input bias current  
3.0  
0.60  
V
VIN = 3V  
180  
µA  
Undervoltage lock-out circuit section  
Item  
Symbol  
VCCON  
VCCOF  
VHYS  
Test condition  
Min.  
Typ.  
3.00  
2.90  
0.10  
Max.  
Unit  
V
OFF-to-ON threshold voltage  
ON-to-OFF threshold voltage  
Voltage hysteresis  
2.80  
3.20  
V
V
Output section  
Item  
Symbol  
VSAT+  
Test condition  
Min.  
Typ.  
1.50  
1.70  
Max.  
2.00  
2.20  
Unit  
V
Saturation voltage (H level)  
Saturation voltage (L level)  
IO = –50mA  
VSAT–  
I
O
= 50mA  
V
Voltage step-up circuit section  
Item  
Symbol  
Test condition  
Min.  
Typ.  
Max.  
Unit  
Output voltage  
VOUP  
L=330µH, C=1µF, No load  
10.5  
12.5  
14.0  
V
Overall device  
Item  
Symbol  
ICCST  
ICC1  
Test condition  
Out pin open  
Min.  
Typ.  
0.1  
Max.  
10  
Unit  
µA  
Stand-by supply current  
Operating VCC1 current  
Operating VCC2 current  
Normal operation  
3.8  
5.5  
mA  
mA  
ICC2  
Normal operation VCC2=12V  
OUT1, OUT2 open  
1.5  
2.2  
Duty cycle=50%  
3
FA7622CP(E)  
Description of each circuit  
CT pin voltage waveform  
1.6V  
1.0V  
1. Oscillator section  
This section charges and discharges an external capacitor CT.  
The charge current is determined by the external resistor RT  
connected to the IC. By charging and discharging the  
capacitor, this section provides a 1.0 to 1.6V triangle wave at  
the CT pin. The oscillation frequency can be set between  
50kHz to 1MHz. The frequency can be  
C
T
R
T
CT  
RT  
2
1
O S C  
VRT =1.0 (V)  
1.0 (V)  
calculated approximately as follows:  
I
CT = Ȁ  
RT  
Fig. 1 Oscillator  
7.1 • 105  
(1)  
...................…  
fOSC ( kHz ) ϭ  
RT ( k) • CT ( pF )  
REF  
20  
2. Error amplifier section  
I CT  
V CT : 1.0  
1.6V  
Error amplifier ➀  
As Fig. 3 shows, the inverting input of the error amplifier is  
connected to the VB reference voltage (0.858V typ.). The non-  
inverting input IN1+ and output FB1 connect to external  
terminals.  
CT  
1
During ordinary operation, the IN1+ terminal voltage is almost  
equal to VB. The power-supply output VOUTA can be  
determined as follows:  
CT  
I CT  
VCT : 1.6  
1.0V  
9
R1 + R2  
GND  
(2)  
.................................…  
•VB  
VOUTA ϭ  
R2  
The DC gain of the error amplifier is 40dB (typ.), regardless of  
external parts connected to the IC. Correct the phase by  
connecting capacitor C1 between the VOUTA and FB1 pins.  
Fig. 2  
VOUTA (Controlled by Q1)  
FB1  
Error amplifier ➁  
17  
• Voltage step-up or step-down chopper circuit  
As Fig. 4 shows, the non-inverting input IN2+, inverting input  
IN2–, and output FB2 of the error amplifier are connected to  
external terminals.  
The feedback voltage VOUTB to the IN2+ pin can be  
determined as follows:  
36k  
C1  
+
R1  
R2  
IN1  
Q1  
18  
ϩ
Ϫ
11  
OUT1  
VB  
ER.AMP1  
( R3 + R4 ) • R6  
(3)  
• VREF ..................……  
VOUTB ϭ  
R4 • ( R5 + R6 )  
Fig. 3  
The DC gain AV from the VOUTB to FB2 pin is 70dB (min),  
when R7 is not connected.  
VOUTB (Controlled by Q2)  
When R7 is connected, the AV can be determined as follows:  
REF  
20  
R7 • (R5 + R6)  
R5 • R6  
R4  
(4)  
...........  
AV ϭ  
1 +  
R5  
R3 + R4  
R3  
R4  
+
-
IN2  
IN2  
Q2  
4
5
ϩ
Ϫ
10  
To correct the phase, connect the resistor R8 and capacitor C2  
in series between the IN2– and FB2 pins.  
R8  
C2  
OUT2  
R6  
ER.AMP2  
R7  
6
FB2  
Fig. 4  
4
FA7622CP(E)  
• Inverting chopper circuit  
According to the circuit shown in Fig. 5, the power output  
voltage VOUTB can be determined as follows:  
VCC1  
REF  
20  
Q3  
R10  
R11  
R11  
+
(5)  
• VREF ..............................  
VOUTB = –  
IN2  
4
5
ϩ
R10  
-
10  
IN2  
R13  
C3  
R9  
Ϫ
OUT2  
ER.AMP2  
R12  
The AV between the VOUTB and FB2 pins can be determined  
as follows:  
6
FB2  
VOUTB (Controlled by Q3)  
–R11  
(6)  
.................................................  
AV ϩ  
R12  
Fig. 5  
To correct the phase, connect the resistor R13 and capacitor  
C3 in series between the IN2– and FB2 pins.  
By using this circuit, invert the output polarity of OUT2 with an  
external transistor to drive a P-channel MOSFET (or PNP  
transistor).  
DT1(DT2)  
FB1(FB2)  
CT  
PWM output  
3. PWM comparator section  
As Fig. 6 shows, a PWM comparator has three input  
terminals. PWM comparator 1 determines the duty cycle of  
the output from the OUT1 pin. This comparator compares the  
CT oscillator Voltage (Pin 1) with the FB1 voltage (Pin 17) or  
the DT1 voltage (Pin 16), whichever is greater. When the  
highest of these voltages is lower than the CT voltage, the  
PWM output is high. When it is higher than CT, the PWM  
output is low.  
Time  
CT  
DT1(DT2)  
FB1(FB2)  
ϩ
Ϫ
Ϫ
PWM output  
PWM1  
(PWM2)  
Fig. 6  
PWM comparator 2 determines the duty cycle of the output  
from the OUT2 pin. To determine the PWM output, this  
comparator compares the CT oscillator voltage (Pin 1) with the  
FB2 voltage (Pin 6) or the DT2 voltage (Pin 7) whichever is  
higher.  
During ordinary operation, the OUT1 and OUT2 pin voltages  
have the same polarity as the output from each comparator.  
When the power supply is turned on, the pulse width  
gradually increases. The time constant for soft-start is  
determined by the external resistor and capacitor across pins  
16 and 7. In Figures 7 and 8, the time ts required for the pulse  
width (duty-cycle) to reach about 30% after start-up can be  
determined as follows:  
REF  
20  
CT  
1
CS  
PWM output  
ϩ
Ϫ
Ϫ
DT1(DT2)  
RS  
PWM1  
(PWM2)  
FB1(FB2)  
(Units: µF for Cs and kfor Rs, Rs1, and Rs2)  
Fig. 7  
Fig.7:  
(7)  
tS (mS) = 0.54CS • RS .................................  
Fig.8:  
tS (mS) = CS  
RS1 • RS2  
RS1  
REF  
• ln  
(8)  
……  
20  
RS1 ϩ RS2  
0.417RS1 – 0.583 RS2  
RS1  
CS  
CT  
1
Where, RS1 / RS2 > 0.716  
ϩ
Ϫ
Ϫ
PWM output  
DT1(DT2)  
RS2  
Please connect enough large capacitance between REF and  
GND pins in order to prevent irregular output pulse caused by  
minus voltage at DT1 or DT2 pin when IC is shut down.  
PWM1  
(PWM2)  
FB1(FB2)  
Fig. 8  
5
FA7622CP(E)  
4. Timer and latch circuit for overload protection  
Figure 9 shows the timer and latch circuit for overload  
protection and Fig. 10 shows its timing during an overload.  
If the power supply output decreases due to an overload, the  
error amplifier output decreases. If the voltage decreases to  
less than 0.3V, the switch that clamps the CP pin voltage to  
the ground disconnects. This charges capacitor Cp from the  
REF pin through the resistor Rcp and the CP pin voltage  
increases. When the voltage reaches 1.25V, OUT1 (OUT2)  
voltage is clamped to ground.  
REF  
20  
FB1  
(FB2)  
ϩ
Ϫ
RCP  
0.3V  
S1  
OUT1  
(OUT2)  
CP  
ϩ
Ϫ
CP  
The N-channel MOSFET (or NPN transistor) connected to the  
OUT1 (or OUT2) is turned OFF and cuts off the power supply.  
The time tL from when the circuit is overloaded until the power  
supply is cut off can be determined as follows:  
1.25V  
Fig. 9  
tL (mS) = 0.67CP (µF) • RCP (k)  
(9)  
.................  
Voltage waveforms  
5. Overcurrent limiting circuit  
This is a pulse-by-pulse overcurrent limiting circuit which  
detects and limits the peak of each drain current pulse from the  
main switching transistor (MOSFET).  
FB1(FB2)  
DT1(DT2)  
1.25V  
(Threshold voltage  
of CP pin)  
CT  
CP  
Figure 11 shows the overcurrent limiting circuit and Fig. 12  
shows its timing.  
PWM output  
Time  
This circuit detects a drain current with a voltage sampling  
resistor Rs. If a voltage lower than the VCC1 pin voltage by  
210mV or more is input to OCL1 (OCL2), the OUT1 (OUT2) is  
clamped to ground. At the same time, DT1 (DT2) is raised to  
the reference voltage VREF. (This reduces the duty-cycle to  
0%)  
Fig. 10  
DT1  
REF (DT2) VCC1  
This circuit has hysteresis to prevent noise from causing  
malfunction.  
The RS voltage which is propotional to drain current is limited  
OCL1  
(OCL2)  
ID  
Rs  
to 210mV (typ.) and released at 170mV (typ).  
OUT1  
Ϫ
(OUT2)  
ϩ
VCC1  
-0.21V  
Fig. 11  
Voltage waveforms  
OCL1  
(OCL2)  
VCC1  
VCC1  
-0.2V  
(Similar to ID)  
OUT1  
(OUT2)  
Time  
Fig. 12  
6
FA7622CP(E)  
ON/OFF  
6. IC ON/OFF control circuit  
This control circuit turns the entire IC ON or OFF by an  
external signal using an ON/OFF control pin to limit the IC’s  
current consumption to 10µA or less.  
ID  
Figure 13 shows the IC ON/OFF control circuit and Fig. 14  
shows its timing.  
Ϫ
ϩ
To turn the IC OFF, this circuit clamps OUT1 (OUT2) to  
ground when the ON/OFF pin voltage is controlled to less than  
0.60V. The internal bias current is cut off to turn off the  
switching transistor.  
OUT1  
(OUT2)  
3.0V  
0.6V  
To turn the IC ON, raise the ON/OFF pin voltage immediately  
to 3.0V or more to charge the soft-start capacitor gradually.  
7. Voltage boost circuit  
Fig. 13  
By using the circuit shown in Fig. 15, this IC generates a  
voltage 6.5V (typ.) higher than the VCC1 input voltage at the  
VCC2 pin. This circuit allows the IC to drive MOSFET gates  
directly. With this circuit, the IC can drive a low-level side  
N-channel MOSFET at 3.6 to 18V as VCC1 (not possible with  
conventional ICs). In addition, an N-channel MOSFET can be  
used on the high-level side of a buck chopper. In Fig. 15, the  
inductor (L) is about 100µH or more and the capacitor (Cup)  
should be greater than about 0.1µF.  
Voltage waveforms  
3.0V  
0V  
ON/OFF  
OUT1  
(OUT2)  
Time  
If voltage boost is not necessary, connect the VCC1 and VCC2  
pins directly, and SW pin must be opened.  
Fig. 14 Control of output  
8. Undervoltage lock-out circuit  
This circuit prevents a malfunction at a low supply voltage.  
When the supply voltage VCC1 rises and reaches 3.0V, this  
circuit is activated. When VCC1 drops below 2.9V, this circuit  
clamps OUT1 (OUT2) to ground. The CP pin voltage is reset  
L
D
CUP  
VCC1  
SW  
VCC2  
12  
14  
13  
to low by means of cutting off a power supply input.  
9. Output circuit  
As Fig. 17 shows, OUT1 and OUT2 with a totempole  
structure can drive a MOSFET.  
R E G U L A T O R  
Since both the maximum output source and sink currents are  
600mA, a MOSFET can be switched at high speed.  
Fig. 15  
VCC2  
OUT1  
(OUT2)  
GND  
Fig. 16  
7
FA7622CP(E)  
Application circuit  
VIN  
2.2k  
10.6k  
5.5~9V  
+
683  
100µ  
0.33  
330  
472  
683  
470k  
684  
10  
1µ  
330µ  
683  
+
33µ  
ON/OFF  
5V  
47k  
+
47µ  
20  
19  
18  
17  
16  
15  
OCL1  
13  
12  
11  
OUT1  
14  
REF ON/OFF  
IN1+ FB1  
DT1  
VCC1 SW VCC2  
FA7622P(M)  
IN2-  
5
OCL2 GND OUT2  
CP IN2+  
FB2 DT2  
CT  
RT  
0.33  
6
2
3
4
7
8
9
10  
1
102  
472  
180p  
1µ  
36k  
330  
3.3k  
100k  
100µ  
360k  
120k  
12V  
+
10  
47k  
470k  
510k  
33µ  
683  
3.3K  
64k  
Parts tolerances characteristics are not defined in the circuit design  
sample shown above. When designing an actual circuit for a product,  
you must determine parts tolerances and characteristics for safe and  
economical operation.  
8

相关型号:

FA7630CE

Analog IC
ETC

FA7630CP

Bipolar IC For Switching Power Supply Control
FUJI

FA7630CPE

Bipolar IC For Switching Power Supply Control
FUJI

FA7700V

FUJI Power Supply Control IC
FUJI

FA7701V

FUJI Power Supply Control IC
FUJI

FA7703

FUJI Power Supply Control IC
FUJI

FA7703M

Dual Switching Controller, 0.4A, 1000kHz Switching Freq-Max, CMOS, PDSO16, SOP-16
FUJI

FA7704

FUJI Power Supply Control IC
FUJI

FA7704V

Dual Switching Controller, 0.4A, 1000kHz Switching Freq-Max, CMOS, PDSO16, 1.10 MM, TSSOP-16
FUJI

FA7711V

FUJI Power Supply Control IC
FUJI

FA7726

45V Input Buck Converter 3ch/2ch IC with Power MOSFET
FUJI