GPY0032A [GENERALPLUS]

2.0W Audio Power Amplifier;
GPY0032A
型号: GPY0032A
厂家: Generalplus Technology Inc.    Generalplus Technology Inc.
描述:

2.0W Audio Power Amplifier

文件: 总27页 (文件大小:2669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GPY0031A  
GPY0032A  
2.0W Audio Power Amplifier  
Mar. 14, 2014  
Version 1.5  
GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice. Information provided by GENERALPLUS  
TECHNOLOGY INC. is believed to be accurate and reliable. However, GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may  
appear in this document. Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing your order. No  
responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of patent or other rights of third parties which may result from its use.  
In addition, GENERALPLUS products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a  
malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Generalplus.  
GPY0031A/GPY0032A  
Table of Contents  
PAGE  
1. GENERAL DESCRIPTION.......................................................................................................................................................................... 3  
2. FEATURES.................................................................................................................................................................................................. 3  
3. BLOCK DIAGRAM ...................................................................................................................................................................................... 3  
4. SIGNAL DESCRIPTIONS............................................................................................................................................................................ 5  
4.1. PACKAGE PIN ASSIGNMENT.................................................................................................................................................................... 6  
5. ELECTRICAL SPECIFICATIONS ............................................................................................................................................................... 7  
5.1. ABSOLUTE MAXIMUM RATINGS ............................................................................................................................................................... 7  
5.2. THERMAL CHARACTERISTICS.................................................................................................................................................................. 7  
5.3. DC CHARACTERISTICS (VDD=5.0V, TA = 25°C UNLESS OTHERWISE SPECIFIED) ........................................................................................ 7  
5.4. TYPICAL PERFORMANCE CHARACTERISTICS ........................................................................................................................................... 9  
5.4.1. Output power vs. supply voltage............................................................................................................................................... 9  
5.4.2. THD+N.................................................................................................................................................................................... 10  
5.4.3. Supply ripple rejection ratio vs. frequency .............................................................................................................................. 18  
5.4.4. Noise....................................................................................................................................................................................... 19  
6. APPLICATION INFORMATION................................................................................................................................................................. 20  
6.1. GPY0031ATYPICAL APPLICATION CIRCUIT .......................................................................................................................................... 20  
6.2. GPY0031A DIFFERENTIAL INPUT APPLICATION CIRCUIT........................................................................................................................ 20  
6.3. GPY0032ATYPICAL APPLICATION CIRCUIT .......................................................................................................................................... 21  
6.4. BTLAMPLIFIER EFFICIENCY ................................................................................................................................................................. 21  
6.5. POWER DISSIPATION............................................................................................................................................................................ 21  
6.6. THERMAL PAD CONSIDERATIONS .......................................................................................................................................................... 22  
7. PACKAGE/PAD LOCATIONS ................................................................................................................................................................... 24  
7.1. ORDERING INFORMATION ..................................................................................................................................................................... 24  
7.2. PACKAGE INFORMATION ....................................................................................................................................................................... 24  
7.2.1. SOP-8 ..................................................................................................................................................................................... 24  
7.2.2. SOP-8-P.................................................................................................................................................................................. 25  
8. DISCLAIMER............................................................................................................................................................................................. 26  
9. REVISION HISTORY ................................................................................................................................................................................. 27  
© Generalplus Technology Inc.  
Proprietary & Confidential  
2
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
AUDIO DRIVER  
1. GENERAL DESCRIPTION  
2. FEATURES  
The GPY0031A (a bridge-tied load (BTL) and GPY0032A (a BTL  
or singled-ended (SE)), are audio amplifiers, designed especially  
for low-voltage applications which normally require internal  
speaker. Operating on 5V power supply, GPY0031A / 32A is able  
to deliver 2.0W of successive average power into 4Ω load at less  
than 10% of THD+N throughout voice band frequencies and  
embedded the de-pop circuit to minimize the turn-on and turn-off  
pop noise. Normally, it is applied for GPC series, GPF series,  
GPL series and other GENERALPLUS products. The GPY0031A  
/ 32A are easily to be used in various applications and products.  
„ Wide Operation Range: 2.0V – 6.8V  
„ Bridge-Tied Load (BTL) (For GPY0031A)  
„ Bridge-Tied Load (BTL) or Single-Ended (SE) Modes  
Operation (For GPY0032A)  
„ Low Distortion: THD+N = 0.15% (Typ.)  
(For VDD = 5.0V, RL = 4.0Ω & Pout = 630mW)  
„ High Output Power: POUT = 1.6W  
(For VDD = 5.0V, THD+N =1.0%, f =1.0KHz & RL = 4Ω)  
„ Low Shutdown Current: 1.0μA  
„ Minimize the turn-on and turn-off pop noise  
„ Thermal Shutdown Protection  
„ Over Current Protection  
3. BLOCK DIAGRAM  
GPY0031A:  
© Generalplus Technology Inc.  
Proprietary & Confidential  
3
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
GPY0032A:  
© Generalplus Technology Inc.  
Proprietary & Confidential  
4
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
4. SIGNAL DESCRIPTIONS  
GPY0031A:  
Mnemonic  
PIN No.  
Type  
Description  
Electrical Characteristics  
SHUTDOWN  
1
I
Shutdown mode control signal input. Active Low.  
BYPASS is internal mid-supply bias. This pin  
should be connected to a 0.1uF ~ 2.2uF capacitor.  
IN+ is non-inverting input  
-
BYPASS  
2
I
VDD/2  
IN+  
3
4
5
6
7
8
I
I
-
IN-  
IN- is inverting input  
-
VO+  
VDD  
GND  
VO-  
O
I
VO+ is positive BTL output  
-
Power VDD  
2.0V – 6.8V  
I
Power Ground  
-
-
O
VO- is negative BTL output  
GPY0032A:  
Mnemonic  
PIN No.  
Type  
Description  
Electrical Characteristics  
SHUTDOWN  
1
I
Shutdown mode control signal input. Active High.  
BYPASS is internal mid-supply bias. This pin  
should be connected to a 0.1uF ~ 2.2uF capacitor.  
When SE / BTL is held low, GPY0032A is in BTL  
mode. When SE/ BTL is high, GPY0032A is in SE  
mode.  
-
BYPASS  
2
I
VDD/2  
SE / BTL  
3
I
-
IN  
4
5
6
7
8
I
O
I
Audio input  
-
VO+  
VDD  
GND  
VO-  
VO+ is positive output for BTL mode and SE mode  
Power VDD  
-
2.0V – 6.8V  
I
Power Ground  
-
-
O
VO- is negative BTL output  
© Generalplus Technology Inc.  
Proprietary & Confidential  
5
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
4.1. Package Pin Assignment  
GPY0031A  
GPY0031A  
SHUTDOWN  
BYPASS  
VO-  
SHUTDOWN  
BYPASS  
VO-  
GND  
GND  
IN+  
IN-  
VDD  
VO+  
IN+  
IN-  
VDD  
VO+  
SOP-8  
SOP-8-P  
= Thermal PAD  
(Connected to GND plane for better heat dissipation)  
GPY0032A  
SHUTDOWN  
BYPASS  
VO-  
GND  
SE / BTL  
IN  
VDD  
VO+  
SOP-8  
© Generalplus Technology Inc.  
Proprietary & Confidential  
6
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
5. ELECTRICAL SPECIFICATIONS  
5.1. Absolute Maximum Ratings  
Characteristics  
Symbol  
Rating  
DC Supply Voltage  
V+  
VIN  
TA  
< 7.0V  
Input Voltage Range  
-0.5V to V+ + 0.5V  
-40to + 85℃  
-40to + 150℃  
-50to + 150℃  
Operating free-air Temperature Range  
Operating junction Temperature Range  
Storage Temperature  
TJ  
TSTO  
Note: Stresses beyond those given in the Absolute Maximum Rating table may cause operational errors or damage to the device. For normal operational  
conditions see AC/DC Electrical Characteristics.  
5.2. Thermal Characteristics  
Characteristics  
Symbol  
RTHJA  
Value  
150  
60  
Unit  
/W  
/W  
SOP-8 Package Thermal Resistance  
SOP-8-P Package Thermal Resistance  
RTHJA  
5.3. DC Characteristics (VDD=5.0V, TA = 25°C unless otherwise specified)  
GPY0031A:  
Item  
Test Conditions  
Temperature = 25℃  
Symbol  
VDD  
Min.  
Typ.  
Max.  
Unit  
V
2.00  
-
-
6.8  
6.8  
6.8  
1.0  
-
Operation Voltage  
Temperature = -20℃  
VDD  
2.15  
V
Temperature = -40℃  
VDD  
2.25  
-
V
Shutdown Current  
Operating Current  
Reference Voltage  
SHUTDOWN=GND  
ISTBY  
IDD  
-
-
-
0.1  
4.0  
VDD /2  
uA  
mA  
V
VDD = 5.0V, SHUTDOWN =VDD, No Load  
VDD = 5.0V, SHUTDOWN =VDD  
VDD = 5.0V, RL = 4.0Ω,  
POUT = 630mW  
VREF  
-
THD+N  
THD+N  
POUT  
-
-
-
-
-
-
0.15  
0.15  
-
-
-
-
-
-
%
Total Harmonic Distortion +  
Noise  
VDD = 5.0V, RL = 8.0Ω,  
POUT = 630mW  
%
VDD = 5.0V, THD+N = 1%,  
f = 1.0KHz & RL = 4.0Ω  
VDD = 5.0V, THD+N = 1%,  
f = 1.0KHz & RL = 8.0Ω  
VDD = 5.0V, THD+N = 10%,  
f = 1.0KHz & RL = 4.0Ω  
VDD = 5.0V, THD+N = 10%,  
f = 1.0KHz & RL = 8.0Ω  
VIN=0V  
1600  
1150  
2000  
1400  
mW  
mW  
mW  
mW  
POUT  
Output Power  
POUT  
POUT  
Output Offset Voltage  
Power Rejection Ratio  
Enable Time  
VOS  
PSRR  
TON  
-
-
-
-
-
-
30  
-
mV  
dB  
f = 1kHz  
70  
70  
70  
850  
VDD = 5.0V, CI=0.47μF, CB=1.0μF  
VDD = 5.0V, CI=0.47μF, CB=1.0μF  
VDD = 5.0V, CI=0.47μF, CB=1.0μF  
-
ms  
ms  
mA  
Shutdown Time  
TOFF  
ILMT  
-
Current Limitation  
-
© Generalplus Technology Inc.  
Proprietary & Confidential  
7
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
GPY0032A:  
Item  
Test Conditions  
Temperature = 25°C  
Symbol  
VDD  
Min.  
2.00  
2.15  
2.25  
-
Typ.  
Max.  
6.8  
6.8  
6.8  
1.0  
-
Unit  
V
-
-
Operation Voltage  
Temperature = -20°C  
Temperature = -40°C  
SHUTDOWN=VDD  
VDD  
V
VDD  
-
V
Shutdown Current  
Operating Current  
Reference Voltage  
ISTBY  
IDD  
0.1  
4.0  
VDD /2  
uA  
mA  
V
VDD = 5.0V, SHUTDOWN =GND, No Load  
VDD = 5.0V, SHUTDOWN =GND  
VDD = 5.0V, RL = 4.0Ω,  
POUT = 630mW  
-
VREF  
-
-
THD+N  
THD+N  
POUT  
-
-
-
-
-
-
0.15  
0.15  
-
-
-
-
-
-
%
Total Harmonic Distortion +  
Noise  
VDD = 5.0V, RL = 8.0Ω,  
POUT = 630mW  
%
VDD = 5.0V, THD+N = 1%,  
f = 1.0KHz & RL = 4.0Ω  
VDD = 5.0V, THD+N = 1%,  
f = 1.0KHz & RL = 8.0Ω  
VDD = 5.0V, THD+N = 10%,  
f = 1.0KHz & RL = 4.0Ω  
VDD = 5.0V, THD+N = 10%,  
f = 1.0KHz & RL = 8.0Ω  
VIN=0V  
1600  
1150  
2000  
1400  
mW  
mW  
mW  
mW  
POUT  
Output Power  
POUT  
POUT  
Output Offset Voltage  
Power Rejection Ratio  
VOS  
-
-
-
-
-
-
-
-
30  
-
mV  
dB  
f = 1kHz  
PSRR  
70  
VDD = 5.0V, SE / BTL = GND, CB=1.0μF  
70  
-
ms  
ms  
ms  
ms  
mA  
Enable Time  
TON  
V
DD = 5.0V, SE / BTL = VDD, CB=1.0μF  
VDD = 5.0V, SE / BTL=GND, CB=1.0μF  
DD = 5.0V, SE / BTL = VDD, CB=1.0μF  
VDD = 5.0V, CI=0.47μF, CB=1.0μF  
200  
70  
-
-
Shutdown Time  
TOFF  
ILMT  
V
200  
850  
-
Current Limitation  
-
© Generalplus Technology Inc.  
Proprietary & Confidential  
8
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
5.4. Typical Performance Characteristics  
5.4.1. Output power vs. supply voltage  
OUTPUT POWER vs SUPPLY VOLTAGE  
OUTPUT POWER vs SUPPLY VOLTAGE  
2000  
1600  
1200  
800  
400  
0
2400  
RL = 8  
RL = 4 Ω  
f = 1k Hz  
BTL  
f = 1k Hz  
2000  
BTL  
1600  
THD+N = 1 0%  
1200  
THD+N = 1 0%  
THD+N = 1 %  
800  
400  
0
THD+N = 1 %  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
OUTPUT POWER vs SUPPLY VOLTAGE  
OUTPUT POWER vs SUPPLY VOLTAGE  
600  
150  
125  
100  
75  
RL = 32 Ω  
f = 1k Hz  
BTL  
RL = 32 Ω  
f = 1k Hz  
SE  
500  
400  
300  
200  
100  
0
THD+N = 1 0%  
THD+N = 1 0%  
THD+N = 1 %  
THD+N = 1 %  
50  
25  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
9
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
5.4.2. THD+N  
THD+N vs Frequency  
THD+N vs Frequency  
10  
10  
VDD = 3.3 V  
VDD = 3.3 V  
PO = 500 mW  
RL = 4 Ω  
BTL  
RL = 4 Ω  
AV = 2 V/V  
BTL  
AV = 10 V/V  
AV = 20 V/V  
PO = 250mW  
1
1
PO = 500mW  
0.1  
0.1  
AV = 2 V/V  
PO = 100mW  
0.01  
0.01  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 3.3 V  
f = 1k Hz  
AV = 2 V/V  
BTL  
f = 20k Hz  
f = 10k Hz  
1
1
f = 1k Hz  
f = 20 Hz  
RL = 4 Ω  
0.1  
0.1  
VDD = 3.3 V  
RL = 4 Ω  
AV = 2 V/V  
BTL  
0.01  
0.01  
0.01  
2
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.1  
1
Output Power (W)  
Output Power (W)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
10  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
10  
10  
VDD = 5.0 V  
PO = 1400 mW  
RL = 4 Ω  
VDD = 5.0 V  
RL = 4 Ω  
AV = 2 V/V  
BTL  
AV = 20 V/V  
BTL  
PO = 1400mW  
1
1
AV = 2 V/V  
PO = 700mW  
0.1  
0.1  
PO = 100mW  
AV = 10 V/V  
0.01  
0.01  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 5.0 V  
f = 1k Hz  
AV = 2 V/V  
BTL  
f = 20k Hz  
1
1
f = 10k Hz  
f = 1k Hz  
RL =4 Ω  
0.1  
f = 20 Hz  
0.1  
VDD = 5.0 V  
RL = 4 Ω  
AV = 2 V/V  
BTL  
0.01  
0.01  
2
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
11  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
10  
10  
VDD = 3.3 V  
PO = 250 mW  
RL = 8 Ω  
BTL  
VDD = 3.3 V  
RL = 8 Ω  
AV = 2 V/V  
BTL  
PO = 125mW  
1
1
PO = 50mW  
AV = 20 V/V  
0.1  
0.1  
AV = 2 V/V  
PO = 250mW  
AV = 10 V/V  
0.01  
0.01  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 3.3 V  
f = 1k Hz  
AV = 2 V/V  
BTL  
f = 20k Hz  
f = 10k Hz  
1
1
RL = 8 Ω  
f = 1k Hz  
f = 20 Hz  
0.1  
0.1  
VDD = 3.3 V  
RL = 8 Ω  
AV = 2 V/V  
BTL  
0.01  
0.01  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
12  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
10  
10  
VDD = 5.0 V  
PO = 700 mW  
RL = 8 Ω  
BTL  
VDD = 5.0 V  
RL = 8 Ω  
AV = 2 V/V  
BTL  
AV = 10 V/V  
PO = 350mW  
1
1
AV = 20 V/V  
PO = 700mW  
0.1  
0.1  
AV = 2 V/V  
PO = 50mW  
0.01  
0.01  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 5.0 V  
f = 1k Hz  
AV = 2 V/V  
BTL  
1
f = 20k Hz  
1
f = 10k Hz  
f = 1k Hz  
RL = 8 Ω  
0.1  
0.1  
f = 20 Hz  
VDD = 5.0 V  
RL = 8 Ω  
AV = 2 V/V  
BTL  
0.01  
0.01  
0
0.15  
0.3  
0.45  
0.6  
0.75  
0.9  
1.05  
1.2  
1.35  
1.5  
0.01  
0.1  
1
2
Output Power (W)  
Output Power (W)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
13  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
1
1
VDD = 3.3 V  
PO = 30 mW  
RL = 32 Ω  
SE  
VDD = 3.3 V  
RL = 32 Ω  
AV = 1 V/V  
SE  
AV = 5 V/V  
0.1  
0.1  
AV = 10 V/V  
PO = 30mW  
PO = 15mW  
0.01  
0.01  
AV = 1 V/V  
PO = 10mW  
0.001  
0.001  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 3.3 V  
RL = 32 Ω  
AV = 1 V/V  
SE  
VDD = 3.3 V  
f = 1k Hz  
AV = 1 V/V  
SE  
1
1
f = 20k Hz  
0.1  
0.1  
f = 10k Hz  
f = 1k Hz  
RL = 32 Ω  
0.01  
0.01  
f = 20 Hz  
0.001  
0.001  
20  
25  
30  
35  
40  
45  
50  
55  
60  
2
10  
100  
Output Power (mW)  
Output Power (mW)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
14  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
1
1
VDD = 5.0 V  
PO = 60 mW  
RL = 32 Ω  
SE  
VDD = 5.0 V  
RL = 32 Ω  
AV = 1 V/V  
SE  
AV = 5 V/V  
AV = 10 V/V  
0.1  
0.1  
PO = 15mW  
PO = 30mW  
0.01  
0.01  
AV = 1 V/V  
PO = 60mW  
0.001  
0.001  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 5.0 V  
RL = 32 Ω  
AV = 1 V/V  
SE  
VDD = 5.0 V  
f = 1k Hz  
AV = 1 V/V  
SE  
1
1
f = 20k Hz  
0.1  
0.1  
f = 10k Hz  
f = 1k Hz  
RL = 32 Ω  
f = 20 Hz  
0.01  
0.01  
0.001  
0.001  
20  
40  
60  
80  
100  
120  
140  
2
10  
100  
200  
Output Power (mW)  
Output Power (mW)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
15  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
1
1
VDD = 3.3 V  
PO = 0.1 mW  
RL = 10 kΩ  
SE  
VDD = 3.3 V  
RL = 10 kΩ  
AV = 1 V/V  
SE  
0.1  
0.1  
AV = 2 V/V  
PO = 0.1mW  
AV = 5 V/V  
PO = 0.13mW  
0.01  
0.01  
PO = 0.05mW  
AV = 1 V/V  
0.001  
0.001  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 3.3 V  
f = 1k Hz  
AV = 1 V/V  
SE  
VDD = 3.3 V  
RL = 10 kΩ  
AV = 1 V/V  
SE  
1
1
0.1  
0.1  
f = 20k Hz  
f = 10k Hz  
f = 1k Hz  
0.01  
0.01  
RL =10 kΩ  
f = 20 Hz  
0.001  
0.001  
50  
75  
100  
125  
150  
175  
200  
5
10  
100  
500  
Output Power (uW)  
Output Power (uW)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
16  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
THD+N vs Frequency  
THD+N vs Frequency  
1
1
VDD = 5.0 V  
PO =0.3 mW  
RL = 10 kΩ  
SE  
VDD = 5.0 V  
RL = 10 kΩ  
AV = 1 V/V  
SE  
0.1  
0.1  
AV = 2 V/V  
PO = 0.2mW  
AV = 5 V/V  
0.01  
0.01  
PO = 0.3mW  
AV = 1 V/V  
PO = 0.1mW  
0.001  
0.001  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequecny (Hz)  
THD+N vs Output Power  
THD+N vs Output Power  
10  
10  
VDD = 5.0 V  
f = 1k Hz  
AV = 1 V/V  
SE  
VDD = 5.0 V  
RL = 10 kΩ  
AV = 1 V/V  
SE  
1
1
0.1  
0.1  
f = 20k Hz  
f = 10k Hz  
f = 1k Hz  
0.01  
0.01  
RL =10 kΩ  
f = 20 Hz  
0.001  
0.001  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
5
10  
100  
500  
Output Power (uW)  
Output Power (uW)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
17  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
5.4.3. Supply ripple rejection ratio vs. frequency  
Supply Ripple Rejection Ratio vs Frequency  
0
Supply Ripple Rejection Ratio vs Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VDD = 3.3 V  
VDD = 5.0 V  
-10  
RL = 8 Ω  
RL = 8 Ω  
BTL  
BTL  
-20  
-30  
-40  
-50  
Cb=0.1uF  
Cb=0.1uF, 1uF or 2.2uF  
-60  
-70  
-80  
Cb=1uF or 2.2uF  
-90  
-100  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequency (Hz)  
Supply Ripple Rejection Ratio vs Frequency  
Supply Ripple Rejection Ratio vs Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
Cb=1uF  
Cb=1uF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Cb=0.1uF  
Cb=0.1uF  
VDD = 3.3 V  
RL = 32 Ω  
SE  
VDD = 5.0 V  
RL = 32 Ω  
SE  
Cb=2.2uF  
Cb=2.2uF  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequency (Hz)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
18  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
5.4.4. Noise  
Output Noise Voltage vs Frequency  
Output Noise Voltage vs Frequency  
100u  
100u  
10u  
1u  
BTL  
VO+  
BTL  
VO+  
10u  
VDD = 3.3 V  
VDD = 5.0 V  
BW = 22 Hz to 22k Hz  
BW = 22 Hz to 22k Hz  
RL = 4 , 8 or 32 Ω  
AV = -1 V/V  
RL = 4 , 8 or 32 Ω  
AV = -1 V/V  
1u  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
Frequency (Hz)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
19  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
6. APPLICATION INFORMATION  
6.1. GPY0031A Typical Application Circuit  
RF  
10kΩ  
VDD/2  
VDD  
VO+  
6
5
VDD  
Audio  
Input  
CI  
0.47μF  
RI  
10kΩ  
CS  
1μF  
4
IN-  
3
IN+  
2
1
BYPASS  
CB  
1μF  
RF  
RI  
Gain = 2*  
VO-  
8
7
SHUTDOWN  
BIAS  
Control  
From System Control  
GND  
6.2. GPY0031A Differential Input Application Circuit  
RF  
10kΩ  
VDD/2  
VDD  
VO+  
6
VDD  
CI  
0.47μF  
RI  
10kΩ  
CS  
1μF  
4
IN-  
5
Audio  
Input  
3
IN+  
CI  
0.47μF  
RI  
10kΩ  
RF  
10kΩ  
2
BYPASS  
CB  
1μF  
RF  
Gain = 2*  
VO-  
8
7
RI  
1
BIAS  
Control  
SHUTDOWN  
From System Control  
GND  
© Generalplus Technology Inc.  
Proprietary & Confidential  
20  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
6.3. GPY0032A Typical Application Circuit  
6.4. BTL Amplifier Efficiency  
Table-1 Efficiency vs. Output Power in 3.3V 8BTL System  
POUT (W)  
0.125  
Efficiency (%)  
33.6  
VP (V)  
1.41  
PD (W)  
0.26  
The following equations are basis for calculating amplifier  
efficiency.  
0.250  
47.6  
2.00  
0.29  
Output Power  
Input Power  
POUT  
PSUP  
Efficiency =  
=
(1)  
0.375  
58.3  
2.45*  
0.28  
* High-peak voltage values cause the THD to increase.  
Where  
2
2
VP  
6.5. Power Dissipation  
VO.RMS  
POUT  
=
=
(2)  
(3)  
(4)  
Power Dissipation is major concern when designing a successful  
amplifier, whether the amplifier is bridged or single-ended.  
Equation 7 states the maximum power dissipation point for a  
single-ended mode operating at a given supply voltage and driving  
a specified output load.  
RL  
2RL  
2
VP  
VO.RMS  
=
2
2VP  
πRL  
PSUP = VDD x IDD.AVG = VDD  
x
PD.MAX = (VDD)2 /(2π2 RL)  
Single-Ended (7)  
However, a direct consequence of the increased power delivered  
to the load by bridge amplifier is an increment in internal power  
dissipation point for a bridge amplifier operating at the same  
conditions.  
Efficiency of a BTL configuration:  
POUT  
PSUP  
πVP  
=
(5)  
(6)  
4VDD  
PD.MAX = 4(VDD)2 /(2π2 RL)  
Bridge-Mode (8)  
PD = PSUP - POUT  
Since the GPY0031A/32A has two operational amplifiers in one  
package, the maximum internal power dissipation is four times  
© Generalplus Technology Inc.  
Proprietary & Confidential  
21  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
6.6. Thermal Pad Considerations  
that of a single-end amplifier. The maximum power dissipation  
from equation 8 must not be greater than the power dissipation  
that results from the equation 9.  
The thermal pad must be connected to ground. The package  
with thermal pad of the GPY0031A/32A requires special attention  
on thermal design. If the thermal design issues are not properly  
addressed, the GPY0031A/32A will go into thermal shutdown  
when driving an 8load.  
PD.MAX = (TJ.MAX-TJ) /θJA  
(9)  
For SOP-8 package with and without thermal pad, the thermal  
resistance (θJA) is equal to 60°C/W and 160°C/W, respectively.  
Thermal pad on the bottom of the GPY0031A/32A should be  
soldered down to a copper pad on the circuit board. Heat can be  
conducted away from the thermal pad through the copper plane to  
ambient. The copper plane used to conduct heat away from the  
thermal pad should be as large as practical.  
Since the maximum junction temperature (TJ.MAX  
)
of  
GPY0031A/32A is 150°C and ambient temperature (TA) is defined  
by the power system design, the maximum power dissipation  
which the IC package is able to handle from equation 9. Once  
the power dissipation is greater than the maximum limit (PD.MAX),  
either the supply voltage (VDD) must be decreased, the load  
impedance (RL) must be increased, or the θJA must be reduced  
with heat-sink.  
If the ambient temperature is higher than 25°C, a larger copper  
plane or forced-air cooling will be required to keep the  
GPY0031A/32A junction temperature below thermal shutdown  
temperature (150°C).  
Example: VDD=6.0V, Load=8, TA=30°C, GPY0031A SOP-8  
without thermal pad (θJA=160°C/W).  
In higher ambient temperature, higher airflow rate and/or larger  
copper area will be required to keep the IC out of thermal  
shutdown.  
From equation 9:  
PD.MAX = (150-30)/160 = 0.75W < 4(VDD)2 /(2π2 RL) = 0.913W  
Decrease Power Voltage VDD to 5V.  
PD.MAX = (150-30)/160 = 0.75W > 4(VDD)2 /(2π2 RL) = 0.634W  
© Generalplus Technology Inc.  
Proprietary & Confidential  
22  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
Table-2 Output Power vs. Junction Temperature in BTL System (TA=25°C)  
Output  
Power  
Efficiency  
(%)  
Internal  
Dissipation  
PD (W)  
Power From  
Supply  
VOUT  
Peak-to-Peak  
VP (V)  
Junction  
Junction  
Junction  
Temperature  
TJ – SOP-8 (°C)  
Temperature  
Temperature  
TJ – SOP-8-P /  
MSOP-8-P (°C)  
POUT (W)  
PSUP (W)  
TJ – MSOP-8 (°C)  
VDD = 3.3V, Load=System  
0.5  
0.8  
1.1  
47.6  
60.2  
70.7  
0.55  
0.53  
0.46  
1.05  
1.33  
1.56  
2.00  
2.53  
2.97  
113.0  
135.0  
131.0  
117.0  
58.0  
56.8  
52.6  
109.8  
98.6  
VDD = 5V, Load=System  
0.5  
1
31.4  
44.0  
62.8  
1.09  
1.25  
1.18  
1.59  
2.25  
3.18  
2.00  
2.83  
4.00  
199.4*  
243.0*  
275.0*  
261.0*  
90.4  
100.0  
95.8  
225.0*  
213.8*  
2
VDD = 6V, Load=System  
0.5  
1
26.2  
37.0  
52.3  
1.41  
1.70  
1.82  
1.91  
2.70  
3.82  
2.00  
2.83  
4.00  
250.6*  
307.0*  
365.0*  
389.0*  
109.6  
127.0  
134.2  
297.0*  
316.2*  
2
VDD = 3.3V, Load=8Ω System  
0.25  
0.4  
47.6  
60.2  
70.7  
0.28  
0.26  
0.22  
0.53  
0.66  
0.77  
2.00  
2.53  
2.97  
69.8  
81.0  
77.0  
69.0  
41.8  
40.6  
38.2  
66.6  
60.2  
0.55  
VDD = 5V, Load=8Ω System  
0.5  
1
44.4  
62.8  
70.7  
0.63  
0.59  
0.52  
1.13  
1.59  
1.79  
2.83  
4.00  
4.50  
125.8  
151.0*  
143.0  
129.0  
62.8  
60.4  
56.2  
119.4  
108.2  
1.27  
VDD = 6V, Load=8System  
0.5  
1
37.0  
52.3  
70.7  
0.85  
0.91  
0.76  
1.35  
1.91  
2.58  
2.83  
4.00  
5.40  
161.0*  
195.0*  
207.0*  
177.0*  
76.0  
79.6  
70.6  
170.6*  
1.82  
146.6  
* TJ must be less than TJ.MAX (150°C).  
** TJ = θJA x PD + TA ; θJA(SOP-8) = 160°C/W ; θJA(MSOP-8) = 200°C/W; θJA(SOP-8-P or MSOP-8-P) = 60°C/W  
© Generalplus Technology Inc.  
Proprietary & Confidential  
23  
Mar. 14, 2014  
Version: 1.5  
GPY0031A/GPY0032A  
7. PACKAGE/PAD LOCATIONS  
7.1. Ordering Information  
Product Number  
GPY0031A – HS011  
GPY0031A – HS141  
Package Type  
Green Package – SOP-8 (150mil)  
Green Package – SOP-8-P With Thermal PAD (150mil)  
Green Package – SOP-8 (150mil)  
GPY0032A – HS01x  
Note: Package form number (x = 1 - 9, serial number).  
7.2. Package Information  
7.2.1. SOP-8  
UNIT: INCH  
Dimension in inch  
Symbol  
Min.  
0.053  
0.004  
0.189  
0.150  
0.228  
0.016  
0
Typ.  
Max.  
0.069  
0.010  
0.196  
0.157  
0.244  
0.050  
8
A
A1  
D
-
-
-
-
-
-
-
E
H
L
θº  
© Generalplus Technology Inc.  
Proprietary & Confidential  
24  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
7.2.2. SOP-8-P  
Thermal PAD  
UNIT: INCH  
Dimension in inch  
Symbol  
Min.  
0.053  
0.000  
0.189  
0.077  
0.150  
0.077  
0.228  
0.016  
-
Typ.  
Max.  
0.067  
0.006  
0.196  
0.090  
0.157  
0.090  
0.244  
0.050  
-
A
A1  
D
-
-
D1  
E
-
-
E1  
H
-
-
-
L
e1  
e2  
Φ1  
0.016  
0.050  
8º  
-
-
© Generalplus Technology Inc.  
Proprietary & Confidential  
25  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
8. DISCLAIMER  
The information appearing in this publication is believed to be accurate.  
Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the  
terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this  
publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO  
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter  
the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other  
information in this publication are current before placing orders. Products described herein are intended for use in normal commercial  
applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support  
equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that  
application circuits illustrated in this document are for reference purposes only.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
26  
Mar. 14, 2014  
Version: 1.5  
 
GPY0031A/GPY0032A  
9. REVISION HISTORY  
Date  
Revision #  
Description  
Page  
1.  
2.  
3.  
4.  
Modify Package Pin Assignment in section 4.1.  
6
7
Modify Thermal Characteristics in section 5.2.  
MAR. 14, 2014  
JAN. 18, 2010  
1.5  
1.4  
Modify Order Information in section 7.1.  
24  
Delete MSOP-8 and MSOP-8-P Package Information in section 7.2.3 and 7.2.4  
26-27  
1.  
Modify Order Information in section 7.1.  
25  
1. Modify Package Pin Assignment in section 4.1.  
2. Modify Thermal Characteristics in section 5.2.  
3. Add Current Limitation in section 5.3.  
6
7
7-8  
21  
21-22  
22  
23  
24  
26  
27  
5
4. Add BTL Amplifier Efficiency in section 6.4.  
5. Add Power Dissipation in section 6.5.  
SEP. 08, 2009  
1.3  
6. Add Thermal Pad Considerations in section 6.6.  
7. Add Table 2. Output Power vs. Junction Temperature in BTL System in section 6.  
8. Modify Ordering Information in section 7.1.  
9. Add MSOP-8 Package Information in section 7.2.3.  
10. Add MSOP-8-P Package Information in section 7.2.4.  
1. Modify Signal Description in section 4.  
JUL. 14, 2009  
MAY 06, 2009  
DEC. 19, 2008  
1.2  
1.1  
1.0  
2. Modify Thermal Characteristics in section 5.2  
7
1.  
2.  
Modify Feature in section 2.  
3
Modify DC Characteristics in section 5.3.  
7, 8  
1
1. Modify the title page for 2.0W Audio Power Amplifier.  
2. Modify Package Pin Assignment in section 4.1.  
3. Modify DC Characteristics in section 5.3.  
6
7
4. Modify Typical Performance Characteristics in section 5.4.  
5. Modify Ordering Information section 7.1.  
9
22  
6. Modify Package Information in section 7.2.  
22  
16  
AUG. 20, 2008  
0.1  
Original  
© Generalplus Technology Inc.  
Proprietary & Confidential  
27  
Mar. 14, 2014  
Version: 1.5  
 

相关型号:

GPY0032A-HS01x

2.0W Audio Power Amplifier
GENERALPLUS

GPY0033A

PWM Amplifier with Audio Mixer
GENERALPLUS

GPY0033A-C

PWM Amplifier with Audio Mixer
GENERALPLUS

GPY0033A-HS02x

PWM Amplifier with Audio Mixer
GENERALPLUS

GPY0050A

12-bit ADC with Microphone Preampplifier
GENERALPLUS

GPY0050A-C

12-bit ADC with Microphone Preampplifier
GENERALPLUS

GPY0050A-HG01x

12-bit ADC with Microphone Preampplifier
GENERALPLUS

GPY0050A-HG08x

12-bit ADC with Microphone Preampplifier
GENERALPLUS

GPY0050A1

12--bit ADC with Microphone Preamplifier
GENERALPLUS

GPY0050A1-C

12--bit ADC with Microphone Preamplifier
GENERALPLUS

GPY0050A1-EG01x

12--bit ADC with Microphone Preamplifier
GENERALPLUS

GPY0050A1-EG08x

12--bit ADC with Microphone Preamplifier
GENERALPLUS