GS1881_09 [GENNUM]

Monolithic Video Sync Separators; 单片视频同步分离器
GS1881_09
型号: GS1881_09
厂家: GENNUM CORPORATION    GENNUM CORPORATION
描述:

Monolithic Video Sync Separators
单片视频同步分离器

文件: 总29页 (文件大小:4193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS1881, GS4881, GS4981 Monolithic Video Sync Separators  
Features  
Description  
noise tolerant odd/even flag, back porch and  
horizontal sync pulse  
The GS1881, GS4881 and GS4981 are general purpose sync  
separators for use in a wide variety of video applications.  
The devices extract the timing information from composite  
video signals with scan rates from 15 to 130kHz.  
fast recovery from impulse noise  
excellent temperature stability  
The GS1881 is a drop-in replacement for the industry  
standard LM1881 with much improved performance. The  
device generates composite sync, vertical sync, back porch  
and odd/even field signals. The GS4881 is identical to the  
GS1881 but features a noise immune back porch pulse  
which maintains a constant H rate during the vertical  
interval. The GS4981 is identical to the GS4881, except that  
it provides horizontal sync in place of the odd/even output.  
0.5V to 4Vpp input signal amplitude with 5V supply  
well-controlled clamp discharge current and slicing  
level  
programmable horizontal scan rate (up to 130kHz)  
composite, vertical, back porch, odd/even (GS1881,  
GS4881), horizontal (GS4981) outputs  
predictable vertical output pulse width with default  
trigger for non-standard video signals  
All three devices feature a self-adjusting windowing circuit  
for noise immunity, which synchronizes to H rate. This  
windowing circuit determines the odd or even field in the  
GS1881 and GS4881, gates the back porch pulse in the  
GS4881 and GS4981, and generates the horizontal sync  
output in the GS4981.  
Pb-free and Green  
5V to 12V supply voltage range  
pin compatible with LM1881 sync separator  
Application Selection Chart  
The devices feature an improved input stage which ensures  
that the input signal is sliced at a predictable point due to  
well-controlled input clamp discharge current and sync  
slicing level. A missing pulse detector enables the devices  
to recover quickly from impulse noise disturbances by  
temporarily increasing the clamp discharge current by  
roughly ten times. The input stage will operate with signals  
from 0.5 to 4Vp-p with a 5V supply.  
Application  
Choose Device:  
Direct LM1881 Replacement with  
Improved Performance  
GS1881  
New Applications Substitution for  
LM1881  
GS4881  
GS4981  
New Applications Requiring Horizontal  
Sync Output  
The GS1881, GS4881 and GS4981 also feature a predictable  
vertical output pulse width with a default trigger for  
non-standard video signals. All three are available in  
commercial and industrial temperature ranges and are  
packaged in both DIP and SOIC.  
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
Data Sheet  
1 of 29  
www.gennum.com  
Proprietary & Confidential  
6926 - 5  
November 2009  
Revision History  
Version  
Date  
Changes and/or Modifications  
5
November 2009  
Updated to latest Gennum template and changed from  
document number 52023 to 6926.  
4
3
2
1
July 2004  
Added lead-free and green information.  
Revisions made.  
Revisions made.  
March 1991  
New document.  
Contents  
Features.................................................................................................................................................................1  
Application Selection Chart ...........................................................................................................................1  
Description...........................................................................................................................................................1  
Revision History .................................................................................................................................................2  
1. Pin Connections .............................................................................................................................................3  
1.1 Pin Connections ................................................................................................................................3  
2. Electrical Characteristics ............................................................................................................................4  
2.1 GS1881 Electrical Characteristics ...............................................................................................4  
2.2 GS4881 Electrical Characteristics ...............................................................................................5  
2.3 GS4981 Electrical Characteristics ...............................................................................................6  
2.4 Typical Performance Characteristics .........................................................................................8  
3. Temperature Characteristics .................................................................................................................. 11  
4. Circuit Description..................................................................................................................................... 14  
4.1 Composite Video Input (Pin 2) and Composite Sync Output (Pin 1) ............................. 14  
4.2 Back Porch Output (Pin 5) ........................................................................................................... 15  
4.3 Vertical Sync Output (Pin 3) ....................................................................................................... 16  
4.4 Odd/Even Field Output (Pin 7 GS1881, GS4881) ................................................................ 16  
4.5 Horizontal Output (Pin 7 GS4981) ............................................................................................ 17  
4.6 Block Diagrams .............................................................................................................................. 17  
5. Application Notes....................................................................................................................................... 20  
5.1 Choosing the Appropriate Input Capacitor to Optimize Slicing Level and  
Hum Rejection ....................................................................................................................................... 20  
5.2 Filtering ............................................................................................................................................. 22  
5.3 Deriving Odd/Even Using the GS4981 ................................................................................... 25  
6. Ordering Information................................................................................................................................ 27  
6.1 GS1881 Ordering Information .................................................................................................. 27  
6.2 GS4881 Ordering Information .................................................................................................. 27  
6.3 GS4981 Ordering Information .................................................................................................. 28  
GS1881, GS4881, GS4981 Monolithic Video Sync  
2 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
1. Pin Connections  
1.1 Pin Connections  
GS4981  
GS1881, GS4881  
COMPOSITE  
COMPOSITE  
SYNC OUT  
V
V
8
8
7
6
5
1
1
SYNC OUT  
cc  
cc  
COMPOSITE  
VIDEO IN  
ODD/EVEN  
COMPOSITE  
VIDEO IN  
HORIZONTAL  
7
6
5
2
3
4
2
VERTICAL  
SYNC OUT  
VERTICAL  
SYNC OUT  
3
4
R
R
SET  
SET  
GROUND  
GROUND  
BACK PORCH  
BACK PORCH  
8-PIN DIP  
8-PIN SOIC  
8-PIN DIP  
8-PIN SOIC  
Figure 1-1: 8-Pin DIP, 8-Pin SOIC  
GS1881, GS4881, GS4981 Monolithic Video Sync  
3 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
2. Electrical Characteristics  
2.1 GS1881 Electrical Characteristics  
Table 2-1 shows the electrical characteristics of the GS1881 where conditions are  
V
= 5V, R = 680kΩ, T =25°C, unless otherwise shown.  
SET A  
CC  
Table 2-1: GS1881 Electrical Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage  
Supply Current  
4.5  
5
13.2  
30  
V
Outputs at  
Logic 1  
V
CC = 5V  
4.6  
mA  
V
CC = 12V  
5.0  
6.5  
mA  
Video Input (Pin 2)  
(a) Signal Level  
V
CC = 5V  
Charge  
Discharge - normal  
0.5  
4
Vp-p  
(b) Clamp Current  
500  
9
650  
11  
850  
13  
μA  
μA  
μA  
μs  
Discharge - Nosync flag raised  
Video input held high  
65  
64  
95  
115  
130  
(c) Delay to raising of Nosync flag  
(d) Sync Tip Clamp Voltage  
Sync Slice Level  
95  
1.55  
77  
V
Relative to sync tip clamp voltage  
See Note 1.  
70  
1.14  
40  
84  
mV  
V
RSET Pin Reference Voltage (Pin 6)  
Composite Sync Out (Pin 1)  
Delay from Video  
1.24  
60  
1.34  
80  
See Note 2.  
CL = 15p  
ns  
Back Porch Pulse Out (Pin 5)  
(a) Delay from Rising Edge of Sync  
(b) Pulse Width  
CL = 15p  
400  
2.0  
500  
2.5  
650  
3.2  
ns  
μs  
Vertical Sync Out (Pin 3)  
(a) Pulse Width  
Serrations during vertical interval  
No serrations during vertical interval  
Modified RSET  
197.7  
48  
197.7  
65  
197.7  
82  
μs  
μs  
(b) Default Starting Time  
Horizontal Scan Rate  
15  
130  
kHz  
Logic Outputs  
(a) VOH  
Ι
OH = 40μA  
VCC = 5V  
4.2  
11.2  
2.4  
4.6  
11.6  
3.4  
V
V
V
V
V
CC = 12V  
Ι OH  
1.6mA  
=
VCC = 5V  
V
CC = 12V  
9.4  
10.4  
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
Data Sheet  
4 of 29  
Proprietary & Confidential  
6926 - 5  
November 2009  
Table 2-1: GS1881 Electrical Characteristics (Continued)  
Parameter  
(b) VOL  
Conditions  
Min  
Typ  
Max  
Units  
Ι
OL = 1.6mA  
0.3  
0.6  
V
NOTES:  
1. When placing the RSET resistor and the 0.1μF decoupling capacitor, careful attention should be made to ensure that they are as close as  
possible to Pin 6. Care should also be taken to avoid parasitic capacitive coupling from any output pin (Pins 1, 3, 5 and 7) to Pin 6.  
2. Measured from slicing point of input falling edge to 50% point of composite sync falling edge.  
2.2 GS4881 Electrical Characteristics  
Table 2-2 shows the electrical characteristics of the GS4881 where conditions are  
V
= 5V, R = 680kΩ, T =25°C, unless otherwise shown.  
SET A  
CC  
Table 2-2: GS4881 Electrical Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage  
Supply Current  
4.5  
5
13.2  
30  
V
Outputs at  
Logic 1  
V
CC = 5V  
4.6  
mA  
V
CC = 12V  
5.0  
6.5  
mA  
Video Input (Pin 2)  
(a) Signal Level  
V
CC = 5V  
Charge  
Discharge - normal  
0.5  
4
Vp-p  
(b) Clamp Current  
500  
9
650  
11  
850  
13  
μA  
μA  
μA  
μs  
Discharge - Nosync flag raised  
Video input held high  
65  
64  
95  
115  
130  
(c) Delay to raising of Nosync flag  
(d) Sync Tip Clamp Voltage  
Sync Slice Level  
95  
1.55  
77  
V
Relative to sync tip clamp voltage  
See Note 1.  
70  
1.14  
40  
84  
mV  
V
RSET Pin Reference Voltage (Pin 6)  
Composite Sync Out (Pin 1)  
Delay from Video  
1.24  
60  
1.34  
80  
See Note 2.  
CL = 15p  
ns  
Back Porch Pulse Out (Pin 5)  
(a) Delay from Rising Edge of Sync  
(b) Pulse Width  
CL = 15p  
400  
2.0  
H
500  
2.5  
H
650  
3.2  
H
ns  
μs  
(c) Occurrence Rate  
Vertical Sync Out (Pin 3)  
(a) Pulse Width  
Serrations during vertical interval  
No serrations during vertical interval  
197.7  
48  
197.7  
65  
197.7  
82  
μs  
μs  
(b) Default Starting Time  
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
Data Sheet  
5 of 29  
Proprietary & Confidential  
6926 - 5  
November 2009  
Table 2-2: GS4881 Electrical Characteristics (Continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Horizontal Scan Rate  
Modified RSET  
15  
130  
kHz  
Logic Outputs  
(a) VOH  
Ι
OH = 40μA  
VCC = 5V  
CC = 12V  
VCC = 5V  
CC = 12V  
4.2  
11.2  
2.4  
9.4  
4.6  
11.6  
3.4  
V
V
V
V
V
V
Ι OH  
1.6mA  
=
V
10.4  
0.3  
(b) VOL  
NOTES:  
Ι
OL = 1.6mA  
0.6  
1. When placing the RSET resistor and the 0.1μF decoupling capacitor, careful attention should be made to ensure that they are as close as  
possible to Pin 6. Care should also be taken to avoid parasitic capacitive coupling from any output pin (Pins 1, 3, 5 and 7) to Pin 6.  
2. Measured from slicing point of input falling edge to 50% point of composite sync falling edge.  
2.3 GS4981 Electrical Characteristics  
Table 2-2 shows the electrical characteristics of the GS4981 where conditions are  
V
= 5V, R = 680kΩ, T =25°C, unless otherwise shown.  
SET A  
CC  
Table 2-3: GS4981 Electrical Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage  
Supply Current  
4.5  
5
13.2  
30  
V
Outputs at  
Logic 1  
V
CC = 5V  
4.6  
mA  
V
CC = 12V  
5.0  
6.5  
mA  
Video Input (Pin 2)  
(a) Signal Level  
V
CC = 5V  
Charge  
Discharge - normal  
0.5  
4
Vp-p  
(b) Clamp Current  
500  
9
650  
11  
850  
13  
μA  
μA  
μA  
μs  
Discharge - Nosync flag raised  
Video input held high  
65  
64  
95  
115  
130  
(c) Delay to raising of Nosync flag  
(d) Sync Tip Clamp Voltage  
Sync Slice Level  
95  
1.55  
77  
V
Relative to sync tip clamp voltage  
See Note 1.  
70  
1.14  
40  
84  
mV  
V
RSET Pin Reference Voltage (Pin 6)  
Composite Sync Out (Pin 1)  
Delay from Video  
1.24  
60  
1.34  
80  
See Note 2.  
CL = 15p  
ns  
Back Porch Pulse Out (Pin 5)  
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
Data Sheet  
6 of 29  
Proprietary & Confidential  
6926 - 5  
November 2009  
Table 2-3: GS4981 Electrical Characteristics (Continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(a) Delay from Rising Edge of Sync  
(b) Pulse Width  
CL = 15p  
400  
2.0  
H
500  
2.5  
H
650  
3.2  
H
ns  
μs  
(c) Occurrence Rate  
Vertical Sync Out (Pin 3)  
(a) Pulse Width  
Serrations during vertical interval  
No serrations during vertical interval  
197.7  
48  
197.7  
65  
197.7  
82  
μs  
μs  
(b) Default Starting Time  
Horizontal Sync Out (Pin 7)  
(a) Delay From Video  
CL = 15p  
90  
190  
290  
ns  
(b) Pulse Width  
5.0  
15  
7.0  
9.0  
μs  
Horizontal Scan Rate  
Modified RSET  
130  
kHz  
Logic Outputs  
(a) VOH  
Ι
OH = 40μA  
VCC = 5V  
VCC = 12V  
VCC = 5V  
4.2  
11.2  
2.4  
4.6  
11.6  
3.4  
V
V
V
Ι OH  
=
1.6mA  
See Note 3.  
V
CC = 12V  
9.4  
10.4  
0.3  
V
V
(b) VOL  
NOTES:  
Ι
OL = 1.6mA  
0.6  
1. When placing the RSET resistor and the 0.1μF decoupling capacitor, careful attention should be made to ensure that they are as close as  
possible to Pin 6. Care should also be taken to avoid parasitic capacitive coupling from any output pin (Pins 1, 3, 5 and 7) to Pin 6.  
2. Measured from slicing point of input falling edge to 50% point of composite sync falling edge.  
3. Applies only to composite sync, vertical sync, and back porch outputs. Horizontal sync has a passive 10kΩ pull-up to VCC  
.
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
7 of 29  
Proprietary & Confidential  
Data Sheet  
6926 - 5  
November 2009  
2.4 Typical Performance Characteristics  
Figure 2-1 through Figure 2-6 show the typical performance characteristics for the  
GS1881, GS4881, and GS4981, where V = 5V, T =25°C, unless otherwise specified.  
S
A
700  
600  
500  
400  
300  
200  
100  
0
15  
35  
55  
75  
95  
115  
135  
SCAN RATE (kHz)  
Figure 2-1: R  
vs Scan Rate  
SET  
70  
60  
50  
40  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
600  
700  
RSET (kΩ)  
Figure 2-2: Vertical Sync Default Starting Time vs R  
SET  
GS1881, GS4881, GS4981 Monolithic Video Sync  
8 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
700  
600  
500  
400  
300  
200  
100  
0
0
100  
200  
300  
400  
500  
600  
700  
RSET (kΩ)  
Figure 2-3: Back Porch Delay vs R  
SET  
3000  
2500  
2000  
1500  
1000  
500  
0
0
100  
200  
300  
400  
500  
600  
700  
RSET (kΩ)  
Figure 2-4: Back Porch Width vs R  
SET  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
100  
200  
300  
400  
500  
600  
700  
RSET (kΩ)  
Figure 2-5: Horizontal Width vs R  
SET  
GS1881, GS4881, GS4981 Monolithic Video Sync  
9 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
600  
700  
RSET (kΩ)  
Figure 2-6: Nosync Delay Time vs R  
SET  
GS1881, GS4881, GS4981 Monolithic Video Sync  
10 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
3. Temperature Characteristics  
Figure 3-1 through Figure 3-6 show the typical temperature characteristics for the  
GS1881, GS4881, and GS4981, where V = 5V, R =680kΩ, unless otherwise specified.  
S
SET  
NOTE: Grey shading on Figure 3-1 through Figure 3-6 indicates commercial  
temperature range (0 to 70°C).  
10  
8
6
4
2
0
-2  
-4  
-6  
-25 -15 -5  
5
15  
25  
35  
45  
55  
65 75 85  
TEMPERATURE (°C)  
Figure 3-1: Composite Sync Delay Variation vs Temperature  
850  
740  
650  
550  
450  
350  
-25 -15 -5  
5
15  
25  
35  
45  
55  
65 75 85  
TEMPERATURE (°C)  
Figure 3-2: Clamping Current vs Temperature  
GS1881, GS4881, GS4981 Monolithic Video Sync  
11 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
30  
20  
10  
0
-10  
-20  
-25 -15  
-5  
5
15  
25 35  
45  
55  
65 75 85  
TEMPERATURE (°C)  
Figure 3-3: Back Porch Delay Variation vs Temperature  
125  
100  
75  
50  
25  
0
-25  
-50  
-75  
100  
-125  
-25 -15 -5  
5
15  
25  
35  
45  
55  
65 75 85  
TEMPERATURE (°C)  
Figure 3-4: Back Porch Width Variation vs Temperature  
25  
20  
15  
10  
5
0
-5  
-25 -15 -5  
5
15  
25  
35  
45  
55  
65 75 85  
TEMPERATURE (°C)  
Figure 3-5: Horizontal Delay Variation vs Temperature  
GS1881, GS4881, GS4981 Monolithic Video Sync  
12 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
600  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-25 -15 -5  
5
15  
25  
35  
45  
55  
65 75 85  
TEMPERATURE (°C)  
Figure 3-6: Horizontal Width Variation vs Temperature  
GS1881, GS4881, GS4981 Monolithic Video Sync  
13 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
4. Circuit Description  
The block diagrams for the GS1881, GS4881 and GS4981, are shown in Figure 4-5  
through Figure 4-7, with timing diagrams for the devices shown in Figure 4-8.  
When stimulated by a composite input signal, the GS1881 and GS4881 sync separators  
output composite sync, vertical sync, back porch, and odd/even field information. The  
GS4981 substitutes the odd/even output of the GS4881 with a horizontal output. An  
external resistor on Pin 6 is used to define internal currents allowing the devices to  
accommodate horizontal scan rates from 15kHz to 130kHz.  
4.1 Composite Video Input (Pin 2) and Composite  
Sync Output (Pin 1)  
Composite video is AC coupled via an external coupling capacitor to Pin 2. The device  
clamps the sync tip of the input video to 1.5V (V  
) and then slices at 77mV above the  
clamp  
clamp voltage (V  
). The resultant signal, provided at Pin 1, is a reproduction of the  
slice  
input signal with the active video portion removed. As V  
and V  
are supply and  
clamp  
slice  
input signal independent, for 0.5Vp-p signals (sync height of 143mV) slicing will occur  
at just above the 50% point and for 2Vp-p signals (sync height of 572mV) slicing will  
occur at approximately 13% of sync height.  
The video signal path and composite sync slicing circuitry have been optimized and  
compensated to achieve a low propagation delay that is stable over temperature. The  
typical delay is 60ns with less than 3ns drift over the commercial temperature range.  
The typical input clamp discharge current is 11μA. This current is optimal under normal  
operating circumstances but needs to be increased when the clamp is trying to recover  
from negative going impulse noise. The device improves the recovery time by raising a  
NOSYNC flag when there has not been a sync pulse for approximately 1 1/2 horizontal  
lines.  
When this flag is raised the discharge current is increased by 85μA so that the recovery  
time is sped up by nearly 10 times. Figure 4-1 shows a comparison between the recovery  
times with and without the increased discharge current.  
GS1881, GS4881, GS4981 Monolithic Video Sync  
14 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
VIDEO INPUT  
IMPULSE NOISE  
COMPOSITE SYNC RECOVERY TIME without INCREASED DISCHARGE CURRENT (LM1881)  
RECOVERY TIME T1  
COMPOSITE SYNC RECOVERY TIME with INCREASED DISCHARGE CURRENT (GS1881, GS4881, GS4981)  
RECOVERY TIME  
T1 / 10  
Figure 4-1: Impulse Noise: Recovery Time Comparison  
4.2 Back Porch Output (Pin 5)  
In an NTSC composite video signal, horizontal sync pulses are followed by the back  
porch interval. The device generates a negative going pulse on Pin 5 during this time. It  
is delayed typically 500ns from the rising edge of sync and has a typical width of 2.5μs.  
Both of these times are set by the external R resistor.  
SET  
During the pre-equalizing, vertical sync, and post-equalizing periods, composite sync  
doubles in frequency. The GS4881 and GS4981 maintain the back porch output at the  
horizontal rate due to Back Porch Enable (BPEN), generated by the internal windowing  
circuit, which forces back porch to be asserted at the horizontal rate. This gating circuit  
is also the reason for the excellent impulse noise immunity of the back porch output as  
shown in Figure 4-2.  
Video  
Input  
Impulse  
Noise  
Back  
Porch  
Output  
GS4881  
GS4981  
Figure 4-2: Back Porch Noise Immunity  
GS1881, GS4881, GS4981 Monolithic Video Sync  
15 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
The GS1881 does not gate the Back Porch which allows for total pin compatibility with  
the LM1881.  
4.3 Vertical Sync Output (Pin 3)  
The vertical sync interval is detected by integrating the composite sync pulses. The first  
broad vertical sync pulse causes an internal capacitor to charge past a fixed threshold  
and raises an internal vertical flag. Once the vertical flag is raised, the positive edge of  
the next serration clocks out the vertical output. When the vertical sync interval ends,  
the first post equalizing pulse is unable to charge the capacitor sufficiently, causing the  
internal vertical flag to go high. The rising edge of the second post-equalizing pulse then  
clocks out the high flag to end the vertical sync pulse. The vertical output is clocked in  
and out and therefore is a fixed width of 197.7μs (3H + 4.7μs + 2.3μs). In the case of a  
non-standard vertical interval that has no serrations, a second internal capacitor is  
charged and clocks the vertical pulse out after typically 65μs. In this case the end of the  
vertical pulse will still be the rising edge of the second post-equalizing pulse. As the  
vertical detector is designed as a true integrator, it provides improved noise immunity.  
4.4 Odd/Even Field Output (Pin 7 GS1881, GS4881)  
NTSC PAL and SECAM composite video standards are interlaced video schemes and  
therefore have odd and even fields. For odd fields the first broad vertical sync pulse is  
coincident with the start of horizontal, while for even fields the first broad vertical sync  
pulse starts in the middle of a horizontal line. Therefore by comparing the vertical sync  
with an internally generated horizontal sync the odd/even field information is  
determined. This output is clocked out by the falling edge of vertical sync. The odd/even  
output is low during even fields and high during odd fields. This method of detecting  
odd and even fields is very noise tolerant.  
Noise during the pre-equalizing pulses does not affect the output since the field decision  
is made at the beginning of the vertical interval. This noise immunity is displayed in  
Figure 4-3 in which an extra pre-equalizing pulse has been added to the video input  
with no negative effect on the odd/even field information.  
Video  
Input  
Impulse  
Noise  
Even  
Odd  
Odd/Even  
Output  
Figure 4-3: Odd/Even Output  
GS1881, GS4881, GS4981 Monolithic Video Sync  
16 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
4.5 Horizontal Output (Pin 7 GS4981)  
As mentioned above, the odd/even field output of the GS1881 and GS4881 is generated  
by comparing vertical sync with an internal horizontal sync signal. This horizontal sync  
signal is a true horizontal signal (i.e. maintained during the vertical interval) and is  
outputted on Pin 7 for the GS4981. A delay of 190ns from the video input and a width of  
6.5μs are typically characteristics for this signal. The windowing circuit which generates  
horizontal provides excellent impulse noise immunity as shown in Figure 4-4. This  
output buffer is an open collector stage with an internal 10kΩpull up resistor.  
Video  
Input  
Impulse  
Noise  
Horizontal  
Output  
Figure 4-4: Horizontal Output  
4.6 Block Diagrams  
C SYNC  
COMPOSITE  
SYNC OUTPUT  
(Pin 1)  
-
VIDEO  
-
INPUT  
(Pin 2)  
+
V SLICE  
HORIZONTAL  
+
-
+
ODD / EVEN  
OUTPUT  
(Pin 7)  
D
Q
Q
Q
Q
V CLAMP  
D
G
WINDOWING  
CIRCUIT  
CLK  
85μ  
11μ  
NOSYNC  
V
CC  
VERTICAL SYNC  
OUTPUT  
D
Q
Q
(Pin 8)  
VOLTAGE  
REGULATOR  
VERTICAL  
(PIN 3)  
DETECTOR  
CLK  
1.2V  
BACK PORCH  
OUTPUT  
(Pin 5)  
R_SET  
(Pin 6)  
BACK PORCH  
DETECTOR  
TIMING  
CURRENTS  
Figure 4-5: GS1881 Block Diagram  
GS1881, GS4881, GS4981 Monolithic Video Sync  
17 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
C SYNC  
COMPOSITE  
SYNC OUTPUT  
(Pin 1)  
-
VIDEO  
INPUT  
(Pin 2)  
-
+
V SLICE  
HORIZONTAL  
+
-
+
ODD / EVEN  
OUTPUT  
(Pin 7)  
D
G
Q
Q
V CLAMP  
D
Q
Q
WINDOWING  
CIRCUIT  
CLK  
85μ  
11μ  
NOSYNC  
B PEN  
V
CC  
VERTICAL SYNC  
OUTPUT  
(Pin 8)  
D
Q
Q
VOLTAGE  
REGULATOR  
VERTICAL  
(PIN 3)  
DETECTOR  
CLK  
BACK PORCH  
OUTPUT  
1.2V  
(Pin 5)  
R_SET  
(Pin 6)  
BACK PORCH  
DETECTOR  
TIMING  
CURRENTS  
Figure 4-6: GS4881 Block Diagram  
COMPOSITE  
SYNC OUTPUT  
(Pin 1)  
C SYNC  
-
VIDEO  
-
INPUT  
(Pin 2)  
+
V 1  
V 2  
+
10k  
-
+
HORIZONTAL  
OUTPUT  
(Pin 7)  
WINDOWING  
CIRCUIT  
85μ  
11μ  
NOSYNC  
B PEN  
V
CC  
VERTICAL SYNC  
OUTPUT  
D
(Pin 8)  
Q
VOLTAGE  
REGULATOR  
VERTICAL  
(PIN 3)  
DETECTOR  
CLK  
Q
BACK PORCH  
OUTPUT  
1.2V  
(Pin 5)  
R_SET  
(Pin 6)  
BACK PORCH  
DETECTOR  
TIMING  
CURRENTS  
Figure 4-7: GS4981 Block Diagram  
GS1881, GS4881, GS4981 Monolithic Video Sync  
18 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
525  
1
2
3
4
5
6
7
8
COMPOSITE  
VIDEO INPUT  
COMPOSITE SYNC OUTPUT  
GS1881, GS4881, GS4981  
BACK PORCH OUTPUT  
GS4881, GS4981  
BACK PORCH OUTPUT  
GS1881  
HORIZONTAL OUTPUT  
GS4981  
VERTICAL SYNC OUTPUT  
GS1881, GS4881, GS4981  
ODD/EVEN OUTPUT  
GS1881, GS4881  
600ns  
2.5μs  
COMPOSITE  
VIDEO INPUT  
BACK PORCH  
OUTPUT  
2.5μs  
500ns  
Figure 4-8: GS1881, GS4881, GS4981 Video Sync Separator Timing Diagram  
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
Data Sheet  
19 of 29  
Proprietary & Confidential  
6926 - 5  
November 2009  
5. Application Notes  
5.1 Choosing the Appropriate Input Capacitor to  
Optimize Slicing Level and Hum Rejection  
The video designer can adjust the slicing level by choosing the value of the input  
coupling capacitor. The relationship between slicing level and input coupling capacitor  
is described by the following equation:  
IDIS  
∆VSLICE  
=
∆T = VDROOP  
CC  
where:  
IDIS = clamp discharge current = 11 μA  
∆T = TLINE - TSYNC = (63.5 μs - 4.7 μs)  
CC = input coupling capacitor  
Figure 5-1 is a graphical representation of this equation and Figure 5-2 and Figure 5-3  
show the input video waveforms for 0.1μF and 0.01μF input capacitors respectively. The  
advantage in choosing a smaller input coupling capacitor, is increased hum rejection as  
the following analyses illustrates.  
137  
127  
117  
107  
97  
87  
77  
0.01 0.02 0.03 0.04 0.05 0.06 0.07  
0.08 0.09 0.10  
INPUT COUPLING CAPACITOR (μF)  
Figure 5-1: Slicing Level vs Input Coupling Capacitor  
GS1881, GS4881, GS4981 Monolithic Video Sync  
20 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
CH2  
CH1  
8
VIDEO  
2
4
0.1μF  
75W  
6
680k  
0.1μ  
Figure 5-2: Test Circuit 1 and Video Waveforms for 0.1μF  
CH2  
CH1  
8
6
VIDEO  
2
0.01μF  
75W  
4
680k  
0.1μ  
Figure 5-3: Test Circuit 2 and Video Waveforms for 0.01μF  
The interfering hum component is defined by:  
vHUM(t) = VPcos(2πƒHUMt)  
where: VP = Peak voltage of AC hum  
ƒHUM = Frequency of hum (50Hz or 60Hz)  
The maximum rate of change of this hum signal occurs at the zero crossing points and is:  
dvHUM  
=
VP2πƒHUM  
dt  
π
2
3π  
2
t =  
,
Since the horizontal scan period is much faster than the period of the interference  
(63.5ms << 1/ƒ ) a good approximation is to assume that the maximum line to line  
HUM  
voltage change resulting from the interfering hum is:  
∆VHUM V P2πƒHUM TLINE  
=
where: TLINE = 63.5μs  
GS1881, GS4881, GS4981 Monolithic Video Sync  
21 of 29  
Separators  
Data Sheet  
6926 - 5  
Proprietary & Confidential  
November 2009  
The total line to line voltage change (ΔV ) can then be calculated by adding the hum  
T
component (ΔV  
) and the droop component (V  
). This calculation results in two  
HUM  
DROOP  
cases:  
∆V  
T
∆V  
T
Case A  
Case B  
∆VT = ∆VHUM + VDROOP  
To correct for ΔV in case A, the input stage must be able to charge the input capacitor  
T
ΔV volts in 4.7μs. This is not a constraint as the typical clamping current of 650μA can  
T
accomplish this for practical values of coupling capacitor.  
The only way to compensate for ΔV in case B is to make V  
>ΔV  
. V  
is  
T
DROOP  
HUM DROOP  
increased by decreasing the input coupling capacitor value. Therefore the video  
designer can increase hum rejection by decreasing the value of this capacitor. The  
following is a numerical example:  
choosing C = 0.022μF  
c
... VDROOP  
=
(63.5μ - 4.7μ) = 29.4mV  
11  
0.022  
the maximum amount of 60 Hz hum that could be rejected would be when:  
∆VDROOP  
... VP =  
= ∆VHUM = VP 2πƒHUM TLINE  
∆VDROOP  
29.4mV  
=
= 1.23VPEAK HUM  
2πƒHUMTLINE  
2π(60) (63.5μ)  
verifying that there is enough clamping current  
∆Vt = 29.4mV + 29.4 mV = 58.8mV  
58.8mV  
4.7μ  
... i = 0.022μ  
= 275μA  
(
)
which is less than 650μA.  
5.2 Filtering  
In order to keep the input to output delay small and temperature stable, no chrominance  
filtering is done within the device. External filtering may be necessary if the input signal  
contains large chrominance components (less than 77mV from sync tip) or has  
significant amounts of high frequency noise. This filter can be a simple low pass RC  
network constructed by a resistance (R ) in series with the source and a capacitor (C ) to  
S
ƒ
ground. A single pole low pass filter having a corner frequency of approximately  
500kHz will provide ample bandwidth for passing sync pulses with almost 18dB  
attenuation at 3.58MHz. Care should be taken in choosing the value of the series resistor  
in the filter since the source resistance seen by the sync separator affects its  
performance. See Figure 5-4.  
GS1881, GS4881, GS4981 Monolithic Video Sync  
22 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
As the source resistance rises, the video input sync tip starts to be clipped due to the  
clamping current during the sync. This clamping current is relatively large due to the  
non-symmetric duty cycle of video. To a good approximation the amount of sync clamp  
current can be calculated as follows:  
( ICLAMP ) (TSYNC) = (IDIS) (TLINE - TSYNC  
)
AVG  
ICLAMP (4.7 μs) = (11μA) (63.5μs - 4.7μs)  
AVG  
..  
. . ICLAMP  
= 137.6μA  
AVG  
This clamp current flows in the source resistance causing a voltage drop equal to:  
VCLIP = ( ICLAMP ) (RS)  
AVG  
= (137.6μ) (RS)  
ICLAMP  
VIDEO  
INPUT  
RS  
8
6
2
-
+
V
CC  
CLIP  
4
75Ω  
C
ƒ
680k  
0.1μ  
Figure 5-4: Simple Chrominance Filtering  
Figure 5-5 shows the amount of sync clipping for a 560Ω source resistor. A graph of  
versus R is shown in Figure 5-6, and Figure 5-7 shows the corresponding  
V
CLIP  
S
capacitor value for a particular series resistor to provide a corner frequency of 500kHz.  
In applications where signal levels are small the amount of attenuation should be  
minimized. It follows from Figure 5-6 and Figure 5-7 that in order to minimize  
attenuation a small series resistor and a larger capacitor to ground should be chosen.  
This however, increases the capacitive loading of the signal source.  
CH1  
CH2  
VIDEO  
8
6
2
560W  
75W  
0.1μF  
4
680k  
0.1μ  
Figure 5-5: Test Circuit 3 and Sync Clipping for a 650Ω Source Resistor  
GS1881, GS4881, GS4981 Monolithic Video Sync  
23 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
600  
700  
SERIES RESISTOR (Ω)  
Figure 5-6: VCLIP vs Series Resistor  
10  
9
8
7
6
5
4
3
2
1
0
0
100  
200  
300  
400  
500  
600  
700  
SERIES RESISTOR (Ω)  
Figure 5-7: Cƒ vs Series Resistor  
Another way to minimize the amount of attenuation is to control the source resistance  
seen by the sync separator by using a PNP emitter follower (Figure 5-8). A PNP emitter  
follower works well to drive the sync separator, and does not require much DC current  
because the transistor provides the current when it is needed during sync. Figure 5-9 is  
a typical application circuit that minimizes sync tip clipping.  
VCC  
5.6k  
8
VIDEO  
INPUT  
2
4
CC  
FILTER  
6
75Ω  
680k  
0.1μ  
-5V  
Figure 5-8: PNP Emitter Follower Buffer  
GS1881, GS4881, GS4981 Monolithic Video Sync  
24 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
VCC  
5.6k  
VIDEO  
INPUT  
8
2
5.6k  
CC  
6
4
680k  
0.1μ  
75Ω  
56p  
-5V  
Figure 5-9: Typical NTSC Application Circuit  
5.3 Deriving Odd/Even Using the GS4981  
Odd/even field information can be derived using the vertical and horizontal outputs  
from the GS4981 along with an external positive edge D flip/flop. The horizontal output  
is used as the D input and the vertical output as the clock, as shown in Figure 5-10.  
At the start of an odd field the vertical output ends in the middle of the horizontal line  
and a high will be latched. At the start of an even field, the vertical output ends near the  
beginning of the horizontal line and since the horizontal output is low, a low will be  
latched. This timing sequence is shown in Figure 5-11.  
GS4981  
COMPOSITE  
5 - 12V  
D FLIP/FLOP  
V
1
CC  
SYNC OUTPUT  
8
7
0.1μF  
HORIZONTAL  
COMPOSITE  
VIDEO INPUT  
ODD/EVEN  
OUTPUT  
2
D
Q
Q
680kW  
0.1μF  
VERTICAL  
3
4
CLK  
R
6
5
SYNC OUTPUT  
SET  
BACK PORCH  
OUTPUT  
Figure 5-10: Derivation of Odd/Even with GS4981  
GS1881, GS4881, GS4981 Monolithic Video Sync  
25 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
START OF ODD FIELD  
525  
1
2
3
4
5
6
7
8
COMPOSITE  
VIDEO INPUT  
HORIZONTAL OUTPUT  
GS4981  
VERTICAL SYNC OUTPUT  
GS4981  
ODD/EVEN OUTPUT  
START OF EVEN FIELD  
263  
264  
265  
266  
267  
268  
269  
270  
COMPOSITE  
VIDEO INPUT  
HORIZONTAL  
GS4981  
VERTICAL SYNC OUTPUT  
GS4981  
ODD/EVEN OUTPUT  
Figure 5-11: Timing Diagram  
GS1881, GS4881, GS4981 Monolithic Video Sync  
Separators  
Data Sheet  
26 of 29  
Proprietary & Confidential  
6926 - 5  
November 2009  
6. Ordering Information  
6.1 GS1881 Ordering Information  
Table 6-1: GS1881 Ordering Information  
Part Number  
Package Type  
Temperature  
Range  
Pb-Free and Green  
GS1881 - CDA  
GS1881 - CKA  
GS1881 - CTA  
GS1881 - IDA  
GS1881 - IKA  
GS1881 - ITA  
8-Pin PDIP  
8-Pin SOIC  
8-Pin TAPE  
8-Pin PDIP  
8-Pin SOIC  
8-Pin TAPE  
8-Pin SOIC  
8-Pin TAPE  
8-Pin SOIC  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
-25°C to 85°C  
-25°C to 85°C  
-25°C to 85°C  
0°C to 70°C  
0°C to 70°C  
-25°C to 85°C  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
GS1881 - CKAE3  
GS1881 - CTAE3  
GS1881 - IKAE3  
6.2 GS4881 Ordering Information  
Table 6-2: GS4881 Ordering Information  
Part Number  
Package Type  
Temperature  
Range  
Pb-Free and Green  
GS4881 - CDA  
GS4881 - CKA  
GS4881 - CTA  
GS4881 - IDA  
GS4881 - IKA  
GS4881 - ITA  
8-Pin PDIP  
8-Pin SOIC  
8-Pin TAPE  
8-Pin PDIP  
8-Pin SOIC  
8-Pin TAPE  
8-Pin SOIC  
8-Pin PDIP  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
-25°C to 85°C  
-25°C to 85°C  
-25°C to 85°C  
0°C to 70°C  
0°C to 70°C  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
GS4881 - CKAE3  
GS4881 - CDAE3  
GS1881, GS4881, GS4981 Monolithic Video Sync  
27 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
6.3 GS4981 Ordering Information  
Table 6-3: GS4981 Ordering Information  
Part Number  
Package Type  
Temperature  
Range  
Pb-Free and Green  
GS4981 - CDA  
GS4981 - CKA  
GS4981 - CTA  
GS4981 - IDA  
GS4981 - IKA  
8-Pin PDIP  
8-Pin SOIC  
8-Pin TAPE  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin TAPE  
8-Pin SOIC  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
-25°C to 85°C  
-25°C to 85°C  
0°C to 70°C  
0°C to 70°C  
-25°C to 85°C  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
GS4981 - CKAE3  
GS4981 - CTAE3  
GS4981 - IKAE3  
GS1881, GS4881, GS4981 Monolithic Video Sync  
28 of 29  
Separators  
Data Sheet  
Proprietary & Confidential  
6926 - 5  
November 2009  
CAUTION  
ELECTROSTATIC SENSITIVE DEVICES  
DOCUMENT IDENTIFICATION  
DATA SHEET  
The product is in production. Gennum reserves the right to make changes to  
the product at any time without notice to improve reliability, function or  
design, in order to provide the best product possible.  
DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A  
STATIC-FREE WORKSTATION  
Phone: +1 (905) 632-2996  
E-mail: corporate@gennum.com  
Fax: +1 (905) 632-2055  
www.gennum.com  
GENNUM CORPORATE HEADQUARTERS  
4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada  
OTTAWA  
SNOWBUSH IP - A DIVISION OF GENNUM  
GERMANY  
Hainbuchenstraße 2  
80935 Muenchen (Munich), Germany  
232 Herzberg Road, Suite 101  
Kanata, Ontario K2K 2A1  
Canada  
439 University Ave. Suite 1700  
Toronto, Ontario M5G 1Y8  
Canada  
Phone: +49-89-35831696  
Phone: +1 (613) 270-0458  
Fax: +1 (613) 270-0429  
Phone: +1 (416) 925-5643  
Fax: +49-89-35804653  
Fax: +1 (416) 925-0581  
E-mail: gennum-germany@gennum.com  
E-mail: sales@snowbush.com  
Web Site: http://www.snowbush.com  
CALGARY  
NORTH AMERICA WESTERN REGION  
691 South Milpitas Blvd., Suite #200  
Milpitas, CA 95035  
3553 - 31st St. N.W., Suite 210  
Calgary, Alberta T2L 2K7  
Canada  
MEXICO  
United States  
288-A Paseo de Maravillas  
Jesus Ma., Aguascalientes  
Mexico 20900  
Phone: +1 (403) 284-2672  
Phone: +1 (408) 934-1301  
Fax: +1 (408) 934-1029  
UNITED KINGDOM  
North Building, Walden Court  
Parsonage Lane,  
Bishop’s Stortford Hertfordshire, CM23 5DB  
United Kingdom  
Phone: +1 (416) 848-0328  
E-mail: naw_sales@gennum.com  
JAPAN KK  
NORTH AMERICA EASTERN REGION  
Shinjuku Green Tower Building 27F  
6-14-1, Nishi Shinjuku  
Shinjuku-ku, Tokyo, 160-0023  
Japan  
4281 Harvester Road  
Burlington, Ontario L7L 5M4  
Canada  
Phone: +44 1279 714170  
Fax: +44 1279 714171  
Phone: +1 (905) 632-2996  
Fax: +1 (905) 632-2055  
Phone: +81 (03) 3349-5501  
INDIA  
Fax: +81 (03) 3349-5505  
#208(A), Nirmala Plaza,  
Airport Road, Forest Park Square  
Bhubaneswar 751009  
India  
E-mail: nae_sales@gennum.com  
E-mail: gennum-japan@gennum.com  
Web Site: http://www.gennum.co.jp  
KOREA  
8F Jinnex Lakeview Bldg.  
65-2, Bangidong, Songpagu  
Seoul, Korea 138-828  
TAIWAN  
Phone: +91 (674) 653-4815  
Fax: +91 (674) 259-5733  
6F-4, No.51, Sec.2, Keelung Rd.  
Sinyi District, Taipei City 11502  
Taiwan R.O.C.  
Phone: +82-2-414-2991  
Fax: +82-2-414-2998  
Phone: (886) 2-8732-8879  
E-mail: gennum-korea@gennum.com  
Fax: (886) 2-8732-8870  
E-mail: gennum-taiwan@gennum.com  
Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of  
the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent  
infringement.  
All other trademarks mentioned are the properties of their respective owners.  
GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.  
© Copyright 1991 Gennum Corporation. All rights reserved.  
www.gennum.com  
GS1881, GS4881, GS4981 Monolithic Video Sync  
29 of 29  
Separators  
Data Sheet  
29  
Proprietary & Confidential  
6926 - 5  
November 2009  

相关型号:

GS18A

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A03

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A03-P1J

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A05

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A05-P1J

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A07

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A07-P1J

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A09

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A09-P1J

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A12

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A12-P1J

10~18WAC-DC Single Output Desktop
MEANWELL

GS18A15

10~18WAC-DC Single Output Desktop
MEANWELL