G2993P1T [GMT]

Regulator;
G2993P1T
型号: G2993P1T
厂家: GLOBAL MIXED-MODE TECHNOLOGY INC    GLOBAL MIXED-MODE TECHNOLOGY INC
描述:

Regulator

文件: 总10页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Global Mixed-mode Technology Inc.  
DDR Termination Regulator  
General Description  
G2993  
Features  
„ꢀOperation Supply Voltage: 1.6V to 5.5V  
„ꢀLow Supply Current: 280µA @ 2.5V  
„ꢀLow Output Offset  
The G2993 is a linear regulator designed to meet the  
JEDEC SSTL-2 and SSTL-3 (Series Stub Termination  
Logic) specifications for termination of DDR-SDRAM.  
It contains a high-speed operational amplifier that pro-  
vides excellent response to the load transients. This  
device can deliver 1.5A continuous current and tran-  
sient peaks up to 3A in the application as required for  
DDR-SDRAM termination.  
„ꢀSource and Sink Current  
„ꢀLow External Component Count  
„ꢀNo Inductor Required  
„ꢀNo external Resistors Required  
„ꢀThermal Shutdown Protection  
„ꢀSOP-8L package  
The G2993 can easily provide the accurate VTT volt-  
ages without external resistors that PCB areas can be  
reduced. The quiescent current is as low as 280µA @  
2.5V. So the power consumption can meet the low  
power consumption applications.  
Applications  
„ꢀDDR-SDRAM Termination Voltage  
„ꢀDDR-I / DDR-II Termination Voltage  
„ꢀSSTL-2  
„ꢀSSTL-3  
Ordering Information  
ORDER  
NUMBER  
G2993P1X  
TEMP.  
RANGE  
-40°C to 85°C  
MARKING  
PACKAGE  
G2993  
SOP- 8L  
Note: X Specify the packing type  
U: Tape & Reel T: Tube  
Pin Configuration  
Typical Application Circuit  
G2993  
8
7
6
5
VDDQ  
AVIN  
PVIN  
VTT  
1
2
3
4
GND  
GND  
GND  
GND  
VDDQ  
AVIN  
PVIN  
V
DDQ=2.5V  
VDD=2.5V  
VTT  
VTT=1.25V  
220µF  
+
+
GND  
47µF  
SOP-8L  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
1
Global Mixed-mode Technology Inc.  
G2993  
(1)  
Absolute Maximum Ratings  
Recommend Operation Range  
Supply Voltage  
PVIN, AVIN, VDDQ to GND……………-0.3V to +6V TA…………….…………………….………..-40°C to +85°C  
Operating Ambient Temperature Range AVIN to GND…………………………………1.6V to +5.5V  
Operating Ambient Temperature Range  
TA…….…………………………….……...-40°C to +125°C PVIN, VDDQ to GND.…………………..……1.6V to AVIN  
Maximum Junction Temperature, TJ…..……….….150°C  
Storage Temperature Range, TSTG….….-65°C to+150°C  
Soldering Temperature, 10seconds, TS……….……260°C  
Electrostatic Discharge, VESD  
Human body mode..……………………………….2000V(2)  
SOP-8L Thermal Resistance (θJA)….………..…50°C/W  
Note:  
(1) :Absolute maximum rating indicates limits beyond which damage to the device may occurs.  
(2) : Human body model : C = 100pF, R = 1500, 3 positive pulses plus 3 negative pulses  
Electrical Characteristics  
Specifications with standard typeface are for TA=25°C. Unless otherwise specified, AVIN=PVIN=2.5V,  
VDDQ=2.5V  
SYMBOL  
PARAMETER  
VTT Output voltage  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
VTT  
IOUT=0A  
VDDQ=2.3V  
1.115  
1.215  
1.315  
1.15  
1.25  
1.35  
1.19  
1.29  
1.39  
V
V
V
VDDQ=2.5V  
VDDQ=2.7V  
IOUT= 1.5A  
VDDQ=2.3V  
VDDQ=2.5V  
VDDQ=2.7V  
IOUT=0A  
1.115  
1.215  
1.315  
120  
1.15  
1.25  
1.35  
280  
100  
150  
25  
1.19  
1.29  
1.39  
500  
V
V
V
µA  
K  
°C  
°C  
IQ  
ZVDDQ  
TSD  
Quiescent Current  
VDDQ input Impedence  
Thermal Shutdown  
Thermal Shutdown Hystersis  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
2
Global Mixed-mode Technology Inc.  
G2993  
Typical Performance Characteristics  
AVIN=2.5V, PVIN=2.5V, VDDQ=2.5V,CAVIN=0.1µF, CPVIN=47µF, CVTT=220µF, TA=25°C, unless otherwise noted.  
IQ vs AVIN  
VTT vs IOUT vs Temperature  
1.248  
1.244  
1.24  
250  
230  
210  
190  
170  
150  
0°C  
1.236  
1.232  
1.228  
25°C  
85°C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-100 -75 -50 -25  
0
25  
50  
75 100  
AVIN(V)  
IOUT(mA)  
IQ vs AVIN Temperature  
VTT vs VDDQ  
3
2.5  
2
270  
250  
230  
210  
190  
170  
150  
25°C  
85°C  
1.5  
1
0°C  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
AVIN(V)  
VDDQ(V)  
Maximum Sourcing Current vs AVIN  
(VDDQ=2.5V, PVIN=1.8V)  
Maximum Sourcing Current vs AVIN  
(VDDQ=2.5V, PVIN=2.5V)  
1.4  
1.2  
1
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
AVIN(V)  
AVIN(V)  
TEL: 886-3-5788833  
Ver: 1.3  
Jan 13, 2004  
http://www.gmt.com.tw  
3
Global Mixed-mode Technology Inc.  
G2993  
(continued)  
Typical Performance Characteristics  
AVIN=2.5V, PVIN=2.5V, VDDQ=2.5V,CAVIN=0.1µF, CPVIN=47µF, CVTT=220µF, TA=25°C, unless otherwise noted.  
Maximum Sourcing Current vs AVIN  
(VDDQ=1.8V, PVIN=1.8V)  
Maximum Sourcing Current vs AVIN  
(VDDQ=2.5V, PVIN=3.3V)  
3
2.8  
2.6  
2.4  
2.2  
2
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
AVIN(V)  
4
4.5  
5
5.5  
5.5  
5.5  
2
2.5  
3
3.5  
AVIN(V)  
4
4.5  
5
5.5  
Maximum Sourcing Current vs AVIN  
(VDDQ=1.8V, PVIN=3.3V)  
Maximum Sinking Current vs AVIN  
(VDDQ=2.5V)  
3
2.8  
2.6  
2.4  
2.2  
2
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
2
2.5  
3
3.5  
AVIN(V)  
4
4.5  
5
2
2.5  
3
3.5  
AVIN(V)  
4
4.5  
5
5.5  
Maximum Sinking Current vs AVIN  
(VDDQ=1.8V)  
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
2
2.5  
3
3.5  
4
4.5  
5
AVIN(V)  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
4
Global Mixed-mode Technology Inc.  
G2993  
(continued)  
Typical Performance Characteristics  
AVIN=2.5V, PVIN=2.5V, VDDQ=2.5V, CAVIN=0.1µF/ Ceramic X7R/0603/6.3V/TDK, CPVIN=1000µF/Dip Electro-  
lytic/10*12.5mm/6.3V/JACKCON, CVTT=1000µF*3/Dip Electrolytic/10*12.5mm/6.3V/JACKCON, TA=25°C, unless  
otherwise noted.  
ILoad=0.5A Transient (Sinking)  
ILoad=0.5A Transient (Sourcing)  
ILoad=1A Transient (Sinking)  
ILoad=1A Transient (Sourcing)  
ILoad=1.5A Transient (Sinking)  
ILoad=1.5A Transient (Sourcing)  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
5
Global Mixed-mode Technology Inc.  
G2993  
Pin Description  
NUMBER  
NAME  
VDDQ  
AVIN  
PVIN  
VTT  
FUNCTION  
Input for internal reference which equals to VDDQ/2  
Analog input pin  
1
2
3
4
5
6
7
8
Power input pin  
Output voltage for connection to termination resistors, equal to VDDQ/2  
GND  
GND  
GND  
GND  
Ground  
Ground  
Ground  
Ground  
Block Diagram  
VDDQ  
AVIN  
PVIN  
50k  
+
VTT  
-
50k  
GND  
Description  
VTT  
VDD  
The G2993 is a linear bus termination regulator de-  
signed to meet the JEDEC SSTL-2 and SSTL-3 (Se-  
ries Stub Termination Logic) specifications for termi-  
nation of DDR-SDRAM. The output, VTT, is capable of  
sinking and sourcing current while regulating the out-  
put voltage equal to VDDQ/2. The G2993 is designed  
to maintain the excellent load regulation and with fast  
response time to minimum the transition preventing  
shoot-through. The G2993 also incorporates two dis-  
tinct power rails that separates the analog circuitry  
(AVIN) from the power output stage (PVIN). This  
power rails split can be utilized to reduce the internal  
power dissipation. And this also permits G2993 to pro-  
vide a termination solution for the next generation of  
DDR-SDRAM (DDR II).  
RT  
MENORY  
RS  
CHIPSET  
VREF  
Figure 1. SSTL-Termination Scheme  
AVIN, PVIN  
AVIN and PVIN are two independent input supply pins  
for the G2993. AVIN is used to supply all the internal  
analog circuits. PVIN is only used to supply the output  
stage to create the regulated VTT. To keep the regula-  
tion successfully, AVIN should be equal to or larger  
than PVIN. Using a higher PVIN voltage will produce a  
larger sourcing capability from VTT. But the internal  
power loss will also increase and then the heat in-  
creases. If the junction temperature exceeds the  
thermal shutdown threshold than the G2993 will enter  
the shutdown state, where VTT is tri-state.  
Series Stub Termination Logic (SSTL) was created to  
improve signal integrity of the data transmission  
across the memory bus. This termination scheme is  
essential to prevent data error from signal reflections  
while transmitting at high frequencies encountered  
with DDR-SDRAM. The most common form of termi-  
nation is Class II single parallel termination. This in-  
volves one RS series resistor from the chipset to the  
memory and one RT termination resistor, both 25Ω  
typically. The resistors can be changed to scale the  
current requirements from the G2993. This implemen-  
tation can be seen below in Figure 1.  
For SSTL-2 applications, the AVIN and PVIN can be  
short together at 2.5V to minimize the PCB complexity  
and to reduce the bypassing capacitors for the two  
supply pins separately.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
6
Global Mixed-mode Technology Inc.  
G2993  
VDDQ  
possible. The typical recommended value is 50µF for  
AL electrolytic capacitors, 10uF with X5R for the ce-  
ramic capacitors. To prevent the excessive noise cou-  
pling into this device, an additional 0.1µF ceramic ca-  
pacitor can be placed on the AVIN power rail for the  
better performance.  
A voltage divider of two 50kis connected between  
VDDQ and ground, to create the internal reference  
voltage (VDDQ/2). This guarantees that VTT will track  
VDDQ/2 precisely. The optimal implementation of  
VDDQ is as a remote sensing. This can be achieved  
by connecting VDDQ directly to the 2.5V rail (SSTL-2  
applications) at the DIMM instead of AVIN and PVIN.  
This will ensure that the reference voltage tracks the  
DDR memory rails precisely without a large voltage  
drop from the power lines.  
The output capacitor of the G2993 is suggested to use  
the capacitors with low ESR. Using the capacitors with  
low ESR (as ceramic, OS-CON, tantalum) will have  
the better transition performance which is with smaller  
voltage drop when the peak current occurring at the  
transition. As a general recommendation the output  
capacitor should be sized above 220µF with the low  
ESR for SSTL applications with DDR-SDRAM.  
VTT  
VTT is the regulated output that is used to terminate  
the bus resistors of DDR-SDRAM. It can precisely  
track the VDDQ/2 voltage with the sinking and sourc-  
ing current capability. The G2993 is designed to de-  
liver 1.5A continuous current and peak current up to  
3A with a fast transient response @ 2.5V supply rail.  
The maximum continuous current sourcing from VTT is  
a function of PVIN. Using a higher PVIN will increase  
the source current from VTT, but it also increase the  
internal power dissipation and reduce the efficiency.  
Although the G2993 can deliver the larger current,  
care should be taken for the thermal dissipation when  
larger current is required. The RDS of MOS will in-  
crease when the junction temperature increases. If the  
heat is not dealt with well, the maximum output current  
will be degraded. When the temperature exceeds the  
junction temperature, the thermal shutdown protection  
is activated. That will drive the VTT output into tri-state  
until the temperature returns below the hysteretic trig-  
ger point.  
Thermal Dissipation  
When the current is sinking to or sourcing from VTT,  
the G2993 will generate internal power dissipation  
resulting in the heat. Care should be taken to prevent  
the device from damages caused by the junction tem-  
perature exceeding the maximum rating. The maxi-  
mum allowable internal temperature rise (TRMAX) can  
be calculated under the given maximum ambient  
temperature (TAMAX) of the application and the maxi-  
mum allowable junction temperature (TJMAX).  
TRMAX= TJMAX - TAMAX  
From this equation, the maximum power dissipation  
(PDMAX) of the G2993 can be calculated:  
PDMAX = TRMAX /θJA  
θJA of the G2993 will be dependent on several vari-  
ables: the packages used, the thickness and size of  
the copper, the number of vias and the airflow. The  
better θJA is not only protecting the device well, but  
Capacitors  
The G2993 does not require the capacitors for input  
stability, but it is recommended for improving the  
performance during large load transition to prevent the  
input power rail from dropping, especially for PVIN.  
The input capacitor for PVIN should be as close as  
also increasing the maximum current capability at the  
same ambient temperature.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
7
Global Mixed-mode Technology Inc.  
G2993  
Typical Application Circuits  
There are several application circuits shown in Figure  
2 through 6 to illustrate some of the possible configu-  
rations of the G2993. Figure 2~4 are the SSTL-2 ap-  
plications. For the majority of applications that imple-  
ment the SSTL-2 termination scheme, it is recom-  
mended to connect all the input rails to 2.5V rail, as  
seen in Figure 2. This provides an optimal trade-off  
between power dissipation and component count.  
VDDQ  
AVIN  
PVIN  
VDDQ=2.5V  
DD=2.5V  
V
VTT  
VTT=1.25V  
COUT  
+
+
GND  
CIN  
Figure 2. Recommended SSTL-2 Implementation  
In Figure 3, the power rails are split. The power rail of  
the output stage (PVIN) can be as low as 1.8V, the  
power rail of the analog circuit (AVIN) is operated  
above 2V. The lower output stage power rail can lower  
the internal power dissipation when sourcing from the  
device and improve the efficiency, but the disadvan-  
tage is the maximum continuous current sourcing from  
VTT is reduced. This configuration is applied when the  
power dissipation and efficiency are concerned.  
VDDQ  
AVIN  
PVIN  
VDDQ=2.5V  
AVIN=1.8V or 5.5V  
PVIN=1.8V  
VTT  
VTT=1.25V  
COUT  
+
+
GND  
CIN  
Figure 3. Lower Power Dissipation SSTL-2 Implementation  
In Figure 4, the power rail of the output stage (PVIN) is  
should be more careful to prevent the junction tem-  
perature from exceeding the maximum rating. Be-  
cause of this risk, it is not recommended to supply the  
output stage power rail (PVIN) with a voltage higher  
than a nominal 3.3V rail.  
connected to 3.3V to increase the maximum continu-  
ous current sourcing from VTT. AVIN should be always  
equal to or larger than PVIN. This configuration can  
increase the source capability of this device, but the  
power dissipation increases at the same time. It  
VDDQ  
AVIN  
PVIN  
V
DDQ=2.5V  
AVIN=3.3V or 5V  
PVIN=3.3V  
VTT  
VTT=1.25V  
COUT  
+
+
GND  
CIN  
Figure 4. SSTL-2 Implementation with higher voltage rails  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
8
Global Mixed-mode Technology Inc.  
G2993  
In Figure 5 & 6, they are the application configurations  
of DDR-II SDRAM bus terminations. Figure 5 is the  
typical application scheme of DDR-II SDRAM. With  
the separate VDDQ pin and an internal resistor divider,  
it is possible to use the G2993 in applications utilizing  
DDR-II memory. Figure 6 is used to increase the driv-  
ing capability. The risk is the same as figure 4.  
VDDQ  
VDDQ=1.8V  
AVIN=1.8V or 5.5V  
PVIN=1.8V  
AVIN  
PVIN  
VTT  
VTT=0.9V  
COUT  
+
+
GND  
CIN  
Figure 5. Recommended DDR-II Termination  
VDDQ  
AVIN  
PVIN  
VDDQ=1.8V  
AVIN=3.3V or 5.5V  
PVIN=3.3V  
VTT  
VTT=0.9V  
COUT  
+
+
GND  
CIN  
Figure 6. DDR-II Termination with higher voltage rails  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
9
Global Mixed-mode Technology Inc.  
Package Information  
G2993  
C
H
E
L
D
θ
7 ° (4X)  
A2  
A1  
A
y
e
B
SOP-8L Package  
Note:  
1. Package body sizes exclude mold flash and gate burrs  
2. Dimension L is measured in gage plane  
3. Tolerance 0.10mm unless otherwise specified  
4. Controlling dimension is millimeter converted inch dimensions are not necessarily exact.  
5. Followed from JEDEC MS-012  
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOL  
MIN.  
1.35  
0.10  
-----  
0.33  
0.19  
4.80  
3.80  
-----  
5.80  
0.40  
-----  
0º  
NOM.  
1.60  
-----  
1.45  
-----  
-----  
-----  
-----  
1.27  
-----  
-----  
-----  
-----  
MAX.  
1.75  
0.25  
-----  
0.51  
0.25  
5.00  
4.00  
-----  
6.20  
1.27  
0.10  
8º  
MIN.  
0.053  
0.004  
-----  
0.013  
0.007  
0.189  
0.150  
-----  
NOM.  
0.063  
-----  
MAX.  
0.069  
0.010  
-----  
0.020  
0.010  
0.197  
0.157  
-----  
0.244  
0.050  
0.004  
8º  
A
A1  
A2  
B
C
D
E
e
H
L
0.057  
-----  
-----  
-----  
-----  
0.050  
-----  
-----  
-----  
-----  
0.228  
0.016  
-----  
y
θ
0º  
Taping Specification  
Feed Direction  
Typical SOP Package Orientation  
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Jan 13, 2004  
10  

相关型号:

G2993P1U

Regulator
GMT

G2993P1X

DDR Termination Regulator
GMT

G2995

DDR Termination Regulator
GMT

G2995F1T

暂无描述
GMT

G2995F1U

DDR Termination Regulator
GMT

G2995F1UF

DDR Termination Regulator
GMT

G2995P1T

Analog Circuit, 1 Func, PDSO8, MS-012, SOP-8
GMT

G2995P1U

DDR Termination Regulator
GMT

G2995P1UF

DDR Termination Regulator
GMT

G2995_15

DDR Termination Regulator
GMT

G2996

DDR I/II Termination Regulator
GMT

G2996F1U

DDR I/II Termination Regulator
GMT