GS4576C18L-33 [GSI]

576Mb CIO Low Latency DRAM (LLDRAM II);
GS4576C18L-33
型号: GS4576C18L-33
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

576Mb CIO Low Latency DRAM (LLDRAM II)

动态存储器
文件: 总63页 (文件大小:2120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS4576C09/18/36L  
533 MHz300 MHz  
144-Ball BGA  
Commercial Temp  
Industrial Temp  
64M x 9, 32M x 18, 16M x 36  
576Mb CIO Low Latency DRAM (LLDRAM II)  
2.5 V VEXT  
1.8 V VDD  
1.5 V or 1.8 V VDDQ  
Features  
Introduction  
• Pin- and function-compatible with Micron RLDRAM® II  
• 533 MHz DDR operation (1.067Gb/s/pin data rate)  
• 38.4 Gb/s peak bandwidth (x36 at 533 MHz clock frequency)  
• 16M x 36, 32M x 18, and 64M x 9 organizations available  
• 8 banks  
• Reduced cycle time (15 ns at 533 MHz)  
• Address Multiplexing (Nonmultiplexed address option  
available)  
• SRAM-type interface  
• Programmable Read Latency (RL), row cycle time, and burst  
sequence length  
• Balanced Read and Write Latencies in order to optimize data  
bus utilization  
The GSI Technology 576Mb Low Latency DRAM  
(LLDRAM II) is a high speed memory device designed for  
high address rate data processing typically found in networking  
and telecommunications applications. The 8-bank architecture  
and low tRC allows access rates formerly only found in  
SRAMs.  
The Double Data Rate (DDR) I/O interface provides high  
bandwidth data transfers, clocking out two beats of data per  
clock cycle at the I/O balls. Source-synchronous clocking can  
be implemented on the host device with the provided free-  
running data output clock.  
• Data mask for Write commands  
Commands, addresses, and control signals are single data rate  
signals clocked in by the True differential input clock  
transition, while input data is clocked in on both crossings of  
the input data clock(s).  
• Differential input clocks (CK, CK)  
• Differential input data clocks (DKx, DKx)  
• On-chip DLL generates CK edge-aligned data and output  
data clock signals  
• Data valid signal (QVLD)  
Read and Write data transfers always in short bursts. The burst  
length is programmable to 2, 4 or 8 by setting the Mode  
Register.  
• 32 ms refresh (16K refresh for each bank; 128K refresh  
command must be issued in total each 32 ms)  
• 144-ball BGA package  
• HSTL I/O (1.5 V or 1.8 V nominal)  
The device is supplied with 2.5 V V  
and 1.8 V V for the  
EXT DD  
• 25–60matched impedance outputs  
core, and 1.5 V or 1.8 V for the HSTL output drivers.  
• 2.5 V V , 1.8 V V , 1.5 V or 1.8 V V I/O  
DDQ  
EXT  
DD  
• On-die termination (ODT) R  
Internally generated row addresses facilitate bank-scheduled  
refresh.  
TT  
• Commerical and Industrial Temperature  
Commercial (+0° T +95°C)  
C
The device is delivered in an efficent BGA 144-ball package.  
Industrial (–40° T +95°C)  
C
Rev: 1.04 11/2013  
1/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
64M x 9 Mb Ball Assignments—144-Ball BGA—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
V
V
V
V
V
V
EXT  
A
B
C
D
E
F
TMS  
TCK  
REF  
SS  
DNU  
DNU  
DNU  
DNU  
EXT  
SS  
SS  
SS  
SS  
3
3
3
3
3
3
3
V
V
V
V
DQ0  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DD  
DD  
3
3
3
3
3
V
V
V
V
V
V
DQ1  
QK0  
DQ2  
DQ3  
A2  
TT  
DDQ  
DDQ  
TT  
1
V
V
V
QK0  
A22  
SS  
SS  
SS  
3
A21  
A5  
A20  
QVLD  
A0  
DNU  
DDQ  
DDQ  
3
V
V
DNU  
A6  
DNU  
A7  
DNU  
A1  
SS  
SS  
V
V
G
H
J
A8  
DD  
DD  
V
V
V
V
V
V
B2  
A9  
A4  
A3  
SS  
SS  
SS  
SS  
2
2
V
V
B0  
CK  
NF  
NF  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
K
L
DK  
REF  
WE  
DK  
CS  
B1  
CK  
DD  
DD  
DD  
V
V
V
V
V
V
A14  
A11  
A13  
A10  
A19  
DM  
SS  
SS  
SS  
SS  
M
N
P
R
T
A16  
A17  
A12  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DD  
DD  
3
3
3
3
3
3
3
V
V
SS  
A18  
A15  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
SS  
3
3
3
3
3
3
3
3
V
V
V
V
DDQ  
DDQ  
V
V
V
V
SS  
SS  
SS  
SS  
V
V
TT  
DDQ  
DDQ  
TT  
V
V
V
V
U
DNU  
ZQ  
DNU  
V
DD  
SS  
SS  
SS  
SS  
DD  
V
V
V
V
V
TDO  
TDI  
REF  
EXT  
EXT  
Notes:  
1. Reserved for future use. This pin may be connected to ground.  
2. No function. This pin may have parasitic characteristics of a clock input signal. It may be connected to GND.  
3. Do not use. This pin may have parasitic characteristics of an I/O. It may be connected to GND.  
Rev: 1.04 11/2013  
2/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
32M x 18 Ball Assignments—144-Ball BGA—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
V
V
V
V
V
V
EXT  
A
B
C
D
E
F
TMS  
TCK  
REF  
SS  
DNU  
DNU  
DNU  
DNU  
EXT  
SS  
SS  
SS  
SS  
4
4
4
4
4
4
V
V
V
V
DQ0  
DQ4  
DQ5  
DQ6  
DNU  
DNU  
DD  
DD  
4
V
V
V
V
V
V
DQ1  
QK0  
DQ2  
DQ3  
A2  
TT  
DDQ  
DDQ  
TT  
1
2
V
V
V
QK0  
A22  
A21  
A5  
SS  
SS  
SS  
4
A20  
QVLD  
A0  
DQ7  
DNU  
DDQ  
DDQ  
4
V
V
DNU  
A6  
DQ8  
A7  
DNU  
A1  
SS  
SS  
V
V
G
H
J
A8  
DD  
DD  
V
V
V
V
V
V
B2  
A9  
A4  
A3  
SS  
SS  
SS  
SS  
3
3
V
V
B0  
CK  
NF  
NF  
DD  
DD  
DD  
DD  
V
V
V
V
K
L
DK  
DK  
CS  
B1  
CK  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
REF  
WE  
A14  
A11  
A13  
A10  
A19  
DM  
SS  
SS  
SS  
SS  
M
N
P
R
T
A16  
A17  
A12  
DD  
DD  
4
4
4
V
V
SS  
A18  
A15  
DQ9  
DNU  
DNU  
DQ14  
DQ15  
QK1  
DNU  
DNU  
DNU  
DNU  
DNU  
SS  
4
4
4
4
V
V
V
V
DQ10  
DQ11  
DQ12  
DQ13  
DDQ  
DDQ  
V
V
V
V
QK1  
SS  
SS  
SS  
SS  
4
V
V
DNU  
DQ16  
DQ17  
TT  
DDQ  
DDQ  
TT  
4
V
V
V
V
U
DNU  
ZQ  
DD  
SS  
SS  
SS  
SS  
DD  
V
V
V
V
V
V
TDO  
TDI  
REF  
EXT  
EXT  
Notes:  
1. Reserved for future use. This pin may be connected to GND.  
2. Reserved for future use. This pin may have parasitic characteristics of an address input signal. It may be connected to GND.  
3. No function. This pin may have parasitic characteristics of a clock input signal. It may be connected to GND.  
4. Do not use. This pin may have parasitic characteristics of an I/O. It may be connected to GND.  
Rev: 1.04 11/2013  
3/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
16M x 36 Ball Assignments—144-Ball BGA—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
V
V
V
V
V
V
EXT  
A
B
C
D
E
F
TMS  
DQ0  
DQ2  
QK0  
TCK  
REF  
SS  
EXT  
SS  
SS  
SS  
SS  
V
V
V
V
DQ8  
DQ9  
DQ11  
DQ13  
DQ15  
DQ17  
A7  
DQ1  
DD  
DD  
V
V
V
V
V
V
DQ10  
DQ12  
DQ14  
DQ16  
A6  
DQ3  
QK0  
DQ5  
DQ7  
A2  
TT  
DDQ  
DDQ  
TT  
1
2
V
V
V
A22  
SS  
SS  
SS  
2
DQ4  
DQ6  
A1  
A21  
A5  
A20  
QVLD  
A0  
DDQ  
DDQ  
V
V
SS  
SS  
V
V
G
H
J
A8  
DD  
DD  
V
V
V
V
V
V
B2  
A9  
A4  
A3  
SS  
SS  
SS  
SS  
V
V
DK0  
DK1  
REF  
WE  
DK0  
DK1  
CS  
B0  
CK  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
K
L
B1  
CK  
DD  
DD  
V
V
V
V
V
V
A14  
A13  
A10  
A19  
SS  
SS  
SS  
SS  
M
N
P
R
T
A16  
A17  
A12  
A11  
DD  
DD  
V
V
SS  
A18  
A15  
DQ25  
DQ23  
QK1  
DQ35  
DQ33  
DQ31  
DQ29  
DQ27  
DQ34  
DQ32  
DQ30  
DQ28  
DQ26  
TDO  
DQ24  
DQ22  
SS  
V
V
DM  
DDQ  
DDQ  
V
V
V
V
QK1  
SS  
SS  
SS  
SS  
V
V
V
V
DQ20  
DQ21  
DQ19  
TT  
DDQ  
DDQ  
TT  
V
V
V
V
U
DQ18  
ZQ  
DD  
SS  
SS  
SS  
SS  
DD  
V
V
V
V
V
V
TDI  
REF  
EXT  
EXT  
Notes:  
1. Reserved for future use. This pin may be connected to GND.  
2. Reserved for future use. This pin may have parasitic characteristics of an address pin. It may be connected to GND.  
Rev: 1.04 11/2013  
4/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Ball Descriptions  
Symbol  
Type  
Description  
Address Inputs—A0–A21 define the row and column addresses for Read and Write Operations. During  
a Mode Register Set (MRS), the address inputs define the register settings. They are sampled at the  
rising edge of CK.  
A0–A21  
Input  
BA0–B2  
CK, CK  
Input  
Input  
Bank Address inputs—Select to which internal bank a command is being applied.  
Input Clock—CK and CK are differential input clocks. Addresses and commands are latched on the  
rising edge of CK. CK is ideally 180º out of phase with CK.  
Chip Select—CS enables the command decoder when Low and disables it when High. When the  
Input  
Input  
CS  
command decoder is disabled, new commands are ignored, but internal operations continue.  
Data Input—The DQ signals form the 36-bit data bus. During Read commands, the data is referenced to  
DQ0–DQ35  
both edges of QKx. During Write commands, the data is sampled at both edges of DK.  
Input Data Clock—DK and DK are the differential input data clocks. All input data is referenced to both  
edges of DK. DK is ideally 180º out of phase with DK. For the x36 device, DQ0– DQ17 are referenced to  
DK0 and DK0 and DQ18–DQ35 are referenced to DK1 and DK1. For the x9 and x18 devices, all DQs  
are referenced to DK and DK. All DKx and DKx pins must always be supplied to the device.  
Input  
Input  
DK, DK  
DM  
Input Data Mask—The DM signal is the input mask signal for Write data. Input data is masked when DM  
is sampled High. DM is sampled on both edges of DK (DK1 for the x36 configuration). Tie signal to  
ground if not used.  
IEEE 1149.1 clock input—This ball must be tied to V if the JTAG function is not used.  
TCK  
Input  
Input  
SS  
IEEE 1149.1 test inputs—These balls may be left as no connects if the JTAG function is not used.  
TMS, TDI  
Command Inputs—Sampled at the positive edge of CK, WE and REF define (together with CS) the  
Input  
Input  
WE, REF  
command to be executed.  
Input Reference Voltage—Nominally V /2. Provides a reference voltage for the input buffers.  
V
DDQ  
REF  
External Impedance (25–60)—This signal is used to tune the device outputs to the system data bus  
impedance. DQ output impedance is set to 0.2 * RQ, where RQ is a resistor from this signal to ground.  
Connecting ZQ to GND invokes the Minimum Impedance mode. Connecting ZQ to V invokes the  
I/O  
ZQ  
DD  
Maximum Impedance mode. Refer to the Mode Register Definition diagrams (Mode Register Bit 8 (M8))  
to activate or deactivate this function.  
Output Data Clocks—QKx and QKx are opposite polarity, output data clocks. They are free running,  
and during Reads, are edge-aligned with data output from the LLDRAM II. QKx is ideally 180º out of  
phase with QKx. For the x36 device, QK0 and QK0 are aligned with DQ0–DQ17, and QK1 and QK1 are  
aligned with DQ18–DQ35. For the x18 device, QK0 and QK0 are aligned with DQ0–DQ8, while QK1 and  
QK1 are aligned with Q9–Q17. For the x9 device, all DQs are aligned with QK0 and QK0.  
Output  
QKx, QKx  
Rev: 1.04 11/2013  
5/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Ball Descriptions (Continued)  
Symbol  
Type  
Description  
Output  
Data Valid—The QVLD pin indicates valid output data. QVLD is edge-aligned with QKx and QKx.  
QVLD  
IEEE 1149.1 Test Output—JTAG output. This ball may be left as no connect if the JTAG function is not  
Output  
Supply  
Supply  
TDO  
used.  
Power Supply—Nominally, 1.8 V. See the DC Electrical Characteristics and Operating Conditions  
V
DD  
section for range.  
DQ Power Supply—Nominally, 1.5 V or 1.8 V. Isolated on the device for improved noise immunity. See  
V
DDQ  
the DC Electrical Characteristics and Operating Conditions section for range.  
Power Supply—Nominally, 2.5 V. See the DC Electrical Characteristics and Operating Conditions  
V
Supply  
Supply  
EXT  
section for range.  
V
Ground  
SS  
Power Supply—Isolated termination supply. Nominally, V /2. See the DC Electrical Characteristics  
DDQ  
V
TT  
and Operating Conditions section for range.  
Reserved for Future Use—This signal is not connected and may be connected to ground.  
Do Not Use—These balls may be connected to ground.  
A22  
DNU  
NF  
No Function—These balls can be connected to ground.  
Rev: 1.04 11/2013  
6/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Operations  
Initialization  
A specific power-up and initialization sequence must be observed. Other sequences may result in undefined operations or  
permanent damage to the device.  
Power-up:  
1. Apply power (VEXT, VDD, VDDQ, VREF, VTT) . Start clock after the supply voltages are stable. Apply VDD and VEXT before or  
1
at the same time as VDDQ . Apply VDDQ before or at the same time as VREF and VTT. The chip starts internal initlization  
2
only after both voltages approach their nominal levels. CK/CK must meet VID DC prior to being applied . Apply only  
(
)
NOP commands to start. Ensuring CK/CK meet VID DC while loading NOP commands guarantees that the LLDRAM II  
(
)
will not receive damaging commands during initialization.  
2. Idle with continuing NOP commands for 200s (MIN).  
3. Issue three or more consecutive MRS commands: two or more dummies plus one valid MRS. The consecutive MRS  
commands will reset internal logic of the LLDRAM II. tMRSC does not need to be met between these consecutive  
commands. Address pins should be held Low during the dummy MRS commands.  
4. tMRSC after the valid MRS, issues an AUTO REFRESH command to all 8 banks in any order (along with 1024 NOP  
commands) prior to normal operation. As always, tRC must be met between any AUTO REFRESH and any subsequent  
valid command to the same bank.  
Notes:  
1. It is possible to apply VDDQ before VDD. However, when doing this, the DQs, DM, and all other pins with an output driver, will  
go High instead of tri-stating. These pins will remain High until VDD is at the same level as VDDQ. Care should be taken to  
avoid bus conflicts during this period.  
2. If VID DC on CK/CK can not be met prior to being applied to the LLDRAM II, placing a large external resistor from CS to VDD  
(
)
is a viable option for ensuring the command bus does not receive unwanted commands during this unspecified state.  
Rev: 1.04 11/2013  
7/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Power–Up Initialization Sequence  
VEXT  
VDD  
VDDQ  
VREF  
VTT  
Refresh  
All Banks(5)  
200us Min  
Mode Initialization  
tMRSC  
1024 Cycles NOP Cycles Min  
tCK  
tDK  
tCKH  
tDKH  
tCKL  
tDKL  
CK  
CK  
DK  
DK  
Command  
ADDR  
BA  
NOP  
NOP  
MRS  
MRS  
MRS  
NOP  
AREF  
AREF  
NOP  
AC  
CODE(1,2)  
CODE(1,2)  
CODE(2)  
ADDR  
Valid  
Bank 0  
Bank 7  
DM  
DQ  
Notes:  
1. Recommend all address pins held Low during dummy MRS commands.  
2. A10–A17 must be Low.  
3. DLL must be reset if tCK or VDD are changed.  
4. CK and CK must be separated at all times to prevent bogus commands from being issued.  
5. The sequence of the eight AUTO REFRESH commands (with respect to the 1024 NOP commands) does not matter. As is required for any operation,  
tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank.  
Rev: 1.04 11/2013  
8/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Power–Up Initialization Flow Chart  
Step  
VDD and VEXT ramp  
VDDQ ramp  
1
2
Voltage rails can  
be applied  
simultaneously  
Apply VREF and VTT  
3
4
Apply stable CK/CK and DK/DK  
Wait at least 200s  
5
6
Issue MRS command—A10–A17 must be Low  
Issue MRS command—A10–A17 must be Low  
Desired load mode register with A10–A17 Low  
Assert NOP for tMRSC  
MRS commands  
must be on  
consecutive  
clock cycles  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Issue AUTO REFRESH to bank 0  
Issue AUTO REFRESH to bank 1  
Issue AUTO REFRESH to bank 2  
Issue AUTO REFRESH to bank 3  
Issue AUTO REFRESH to bank 4  
Issue AUTO REFRESH to bank 5  
Issue AUTO REFRESH to bank 6  
Issue AUTO REFRESH to bank 7  
Wait 1024 NOP commands*  
Valid command  
*Note:  
The sequence of the eight AUTO REFRESH commands (with respect to the 1024 NOP commands) does not matter. As is required for any  
operation, tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank.  
Rev: 1.04 11/2013  
9/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
DLL Reset  
Mode Register Bit 7 (M7) selects DLL Reset as is shown in the Mode Register Definition tables. The default setting for M7 is Low,  
whereby the DLL is disabled. Once M7 is set High, 1024 cycles (5s at 200 MHz) are needed before a Read command can be  
issued. The delay allows the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur  
may result in a violation of the tCKQK parameter. A reset of the DLL is necessary if tCK or VDD is changed after the DLL has  
already been enabled. To reset the DLL, set M7 is Low. After waiting tMRSC, an MRS command should be issued to set M7 High.  
1024 clock cycles must pass before loading the next Read command.  
Driver Impedance Mapping  
The LLDRAM II is equipped with programmable impedance output buffers. Setting Mode Register Bit 8 (M8) High during the  
MRS command activates the feature. Programmable impedance output buffers allow the user to match the driver impedance to the  
PCB trace impedance. To adjust the impedance, an external resistor (RQ) is connected between the ZQ ball and VSS. The value of  
the resistor must be five times the desired impedance (e.g., a 300resistor produces an output impedance of 60). RQ values of  
125–300are supported, allowing an output impedance range of 25–60(+/- 15 %).  
The drive impedance of uncompensated output transistors can change over time due to changes in supply voltage and die  
temperature. When drive impedance control is enabled in the MRS, the value of RQ is periodically sampled and any needed  
impedance update is made automatically. Updates do not affect normal device operation or signal timing.  
When Bit M8 is set Low during the MRS command, the output compensation circuits are still active but reference an internal  
resistance reference. The internal reference is imprecise and subject to temperature and voltage variations so output buffers are set  
to a nominal output impedance of 50, but are subject to a ±30 percent variance over the Commercial temperature range of the  
device.  
Rev: 1.04 11/2013  
10/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
On–Die Termination (ODT)  
Mode Register Bit 9 (M9) set to 1 during an MRS command enables ODT. With ODT on, the DQs and DM are terminated to VTT  
with a resistance, RTT. Command, address, QVLD, and clock signals are not terminated. The diagram below shows the equivalent  
circuit of a DQ receiver with ODT. When a tri-stated DQ begins to drive, the ODT function is briefly switched off. When a DQ  
stops driving at the end of a data transfer, ODT is switched back on. Two-state DM pin never deactivates ODT.  
On–Die Termination DC Parameters  
Description  
Symbol  
Min  
Max  
Units  
V
Notes  
1, 2  
3
V
0.95 * V  
1.05 * V  
REF  
Termination Voltage  
On–Die Termination  
TT  
REF  
R
125  
185  
TT  
Notes:  
1. All voltages referenced to V (GND).  
SS  
2.  
V
is expected to be set equal to V  
and must track variations in the DC level of V  
.
REF  
TT  
REF  
3. The R value is measured at 95°C T .  
TT  
C
On–Die Termination–Equivalent Circuit  
VTT  
SW  
RTT  
Receiver  
DQ  
VREF  
Rev: 1.04 11/2013  
11/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read NOP Read On-Die Termination Burst Length 2, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
NOP  
RD  
A
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
BA0  
BA2  
RL = 4  
QKx  
QKx  
QVLD  
DQ  
Q0a  
Q0b  
Q2a  
Q2b  
ODT  
ODT ON  
ODT OFF  
ODT ON  
ODT OFF  
ODT ON  
Read-Write On-Die Termination Burst Length 2, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
WT  
A
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
BA0  
BA1  
WL = 5  
DK  
DK  
DQ  
Q0a  
Q0b  
D1a  
D1b  
RL = 4  
QKx  
QKx  
QVLD  
ODT  
ODT ON  
ODT OFF  
ODT ON  
Rev: 1.04 11/2013  
12/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read Burst On-die Termination Burst Length 2, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
RD  
A
RD  
A
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
BA0  
BA1  
BA2  
RL = 4  
QKx  
QKx  
QVLD  
DQ  
Q0a  
Q0b  
Q1a  
Q1b  
Q2a  
Q2b  
ODT  
ODT ON  
ODT OFF  
ODT ON  
Rev: 1.04 11/2013  
13/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Commands  
Valid control commands are listed below. Any input commands not shown are illegal or reserved. All inputs must meet specified  
setup and hold times around the true crossing of CK.  
Description of Commands  
Command  
Description  
Notes  
The NOP command is used to perform a no operation to the LLDRAM II, which essentially deselects the  
chip. Use the NOP command to prevent unwanted commands from being registered during idle or wait  
states. Operations already in progress are not affected. Output values depend on command history.  
DSEL/NOP  
1
The Mode Register is set via the address inputs A0–A17. See the Mode Register Definition diagrams for  
further information. The MRS command can only be issued when all banks are idle and no bursts are in  
progress.  
MRS  
2
The Read command is used to initiate a burst read access to a bank. The value on the BA0–BA2 inputs  
selects the bank, and the address provided on inputs A0–An selects the data location within the bank.  
READ  
The Write command is used to initiate a burst write access to a bank. The value on the BA0–BA2 inputs  
selects the bank, and the address provided on inputs A0–An selects the data location within the bank.  
Input data appearing on the DQ is written to the memory array subject to the DM input logic level  
appearing coincident with the data. If the DM signal is registered Low, the corresponding data will be  
written to memory. If the DM signal is registered High, the corresponding data inputs will be ignored (that  
is, this part of the data word will not be written).  
WRITE  
AREF  
2
The AREF command is used during normal operation of the LLDRAM II to refresh the memory content  
of a bank. The command is non-persistent, so it must be issued each time a refresh is required. The  
value on the BA0–BA2 inputs selects the bank. The refresh address is generated by an internal refresh  
controller, effectively making each address bit a “Don’t Care” during the AREF command.  
See the Auto Refresh section for more details.  
Notes:  
1. When the chip is deselected, internal NOP commands are generated and no commands are accepted.  
2. For the value of “n”, see Address Widths at Different Burst Lengths table.  
Command Table  
Operation  
Command  
CS  
WE  
REF  
BA0–BA2  
A0–An  
Device Deselect/No Operation  
DSEL/NOP  
MRS  
H
L
L
L
L
X
L
X
L
X
X
1
MRS  
Read  
CODE  
X
1, 3  
1, 2  
1, 2  
1
READ  
H
L
H
H
L
A
A
X
BA  
BA  
BA  
Write  
WRITE  
AREF  
Auto Refresh  
H
Notes:  
1. X= Don’t Care; H = Logic High; L = Logic Low; A = Valid Address; BA = Valid Bank Address.  
2. For the value of “n”, see Address Widths at Different Burst Lengths table.  
3. Only A0–A17 are used for the MRS command.  
Rev: 1.04 11/2013  
14/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
State Diagram  
Initialization  
Sequence  
DSEL/  
NOP  
Write  
Read  
AREF  
MRS  
Notes:  
Automatic Sequence  
Command Sequence  
Rev: 1.04 11/2013  
15/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Mode Register Set  
Mode Register Set controls the operating modes of the memory, including configuration, burst length, test mode, and I/O options.  
During an MRS command, the address inputs A0–A17 are sampled and stored in the Mode Register. Except during initialization to  
force internal reset, after a valid MRS command, tMRSC must be met before any command except NOP can be issued to the  
LLDRAM II. All banks must be idle and no bursts may be in progress when an MRS command is loaded.  
Note: Changing the burst length configuration may scramble previously written data. A burst length change must be assumed to  
invalidate all stored data.  
Mode Register Set  
CK  
CK  
CS  
WE  
REF  
Addr  
CODE  
BA(2:0)  
Rev: 1.04 11/2013  
16/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Mode Register Definition in Nonmultiplexed Address Mode  
Address Bus  
A17 ... A10 A9 A8 A7 A6 A5 A4 A3 A2 A1  
A0  
17–10  
9
8
7
6
5
4
3
2
1
0
Mode Register (Mx)  
1
2
Reserved  
ODT IM DLL NA AM  
BL  
Config  
M2 M1 M0  
Configuration  
On Die  
M9  
Termination  
3
0
0
0
1 (default)  
0
1
Off (default)  
On  
3
0
0
0
1
0
1
1
0
1
0
1
0
1
2
3
M8  
Drive Impedance  
M7  
DLL Reset  
3
4
5
0
1
Internal 50(default)  
4
0
1
DLL reset (default)  
1
1
1
0
1
1
1
0
1
5
External (ZQ)  
DLL enabled  
Reserved  
Reserved  
M5  
0
Address MUX  
Nonmulitplexed (default)  
Multiplexed  
Burst  
Length  
M4  
M3  
0
0
1
1
0
1
0
1
2 (default)  
1
4
8
Reserved  
Notes:  
1. A10–A17 must be set to zero; A18–An = “Don’t Care”.  
2. A6 not used in MRS.  
3. BL = 8 is not available.  
4. DLL RESET turns the DLL off.  
5. +/–30% over rated temperature range.  
Rev: 1.04 11/2013  
17/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Configuration Tables  
The relationship between cycle time and read/write latency is selected by the user. The configuration table below lists valid  
configurations available via Mode Register bits M0, M1, and M2 and the clock frequencies supported for each setting. Write  
Latency is equal to the Read Latency plus one in each configuration to reduce bus conflicts.  
Cycle Time and Read/Write Latency Configuration Table  
Configuration  
Parameter  
Units  
2
2, 3  
2
3
5
1
4
tRC  
4
6
8
3
3
4
5
tCK  
tCK  
tCK  
MHz  
tRL  
tWL  
4
5
6
7
8
9
5
6
Valid Frequency Range  
266–175  
400–175  
533–175  
200–175  
333–175  
Notes:  
1. tRC < 20 ns in any configuration is only available with –18 and –24 speed grades.  
2. BL= 8 is not available.  
3. The minimum tRC is typically 3 cycles, except in the case of a Write followed by a Read to the same bank. In this instance the minimum  
tRC is 4 cycles.  
Rev: 1.04 11/2013  
18/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Burst Length  
Read and Write data transfers occur in bursts of 2, 4, or 8 beats. Burst Length is programmed by the user via Mode Register Bit 3  
(M3) and Bit 4 (M4). The Read Burst Length diagrams illustrate the different burst lengths with respect to a Read Command.  
Changes in the burst length affect the width of the address bus.  
Note: Changing the burst length configuration may scramble previously written data. A burst length change must be assumed to  
invalidate all stored data.  
Read Burst Lengths  
Example BL=2  
CK  
CK  
Command  
READ  
READ  
READ  
RL = 5  
RL = 5  
RL = 5  
QKx  
QKx  
QVLD  
DQ  
Q0  
Q1  
Example BL=4  
CK1  
CK1  
Command1  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
QKx1  
QKx1  
QVLD1  
DQ1  
Q0  
Q1  
Q2  
Q3  
Example BL=8  
CK2  
CK2  
Command2  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
QKx2  
QKx2  
QVLD2  
DQ2  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Address Widths at Different Burst Lengths  
Configuration  
x 18  
Burst Length  
x 9  
x36  
2
4
8
A0–A21  
A0–A20  
A0–A19  
A0–A20  
A0–A19  
A0–A18  
A0–A19  
A0–A18  
A0–A17  
Rev: 1.04 11/2013  
19/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Write  
Write data transfers are launched with a Write command, as shown below. A valid address must be provided during the Write  
command.  
During Write data transfers, each beat of incoming data is registered on crossings of DK and DK until the burst transfer is  
complete. Write Latency (WL) that is always one cycle longer than the programmed Read Latency (RL), so the first valid data  
registered at the first True crossing of the DK clocks WL cycles after the Write command.  
A Write burst may be followed by a Read command (assuming tRC is met). At least one NOP command is required between Write  
and Read commands to avoid data bus contention. The Write-to-Read timing diagrams illustrate the timing requirements for a  
Write followed by a Read. Setup and hold times for incoming DQ relative to the DK edges are specified as tDS and tDH. Input  
data may be masked a High on an associated DM pin. The setup and hold times for the DM signal are tDS and tDH.W  
Write Command  
CK  
CK  
CS  
WE  
REF  
Addr  
A
BA(2:0)  
BA  
Rev: 1.04 11/2013  
20/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Write Burst Length 2, Configuration 1  
T0  
T1  
T2  
RC = 4  
T3  
T4  
T5  
T6  
T7  
T8  
CK  
CK  
CMD  
ADDR  
BA  
WR  
A
WR  
A
WR  
A
WR  
A
WR  
A
WR  
A
WR  
A
WR  
A
WR  
A
BA0  
BA1  
BA2  
BA3  
BA0  
BA4  
BA5  
BA6  
BA7  
WL=5  
DK  
DK  
DM  
DQ  
D0a  
D0b  
D1a  
D1b  
D2a  
D2b  
D3a  
D3b  
Write Burst Length 4, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
RC = 4  
CK  
CK  
CMD  
ADDR  
BA  
WR  
A
NOP  
WR  
A
NOP  
WR  
NOP  
WR  
A
NOP  
WR  
A
A
BA0  
BA1  
BA0  
BA3  
BA0  
WL = 5  
DK  
DK  
DM  
DQ  
D0a  
D0b  
D0c  
D0d  
D1a  
D1b  
D1c  
D1d  
Rev: 1.04 11/2013  
21/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Write-Read Burst Length 2, Configuration 1  
0
1
2
3
4
5
6
7
8
9
RL = 4  
CK  
CK  
CMD  
ADDR  
BA  
WR  
A
NOP  
RD  
A
RD  
A
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
BA0  
BA1  
BA2  
WL = 5  
DK  
DK  
DM  
DQ  
D0a  
D0b  
Q1a  
Q1b  
Q2a  
Q2b  
QVLD  
QKx  
QKx  
Rev: 1.04 11/2013  
22/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Write-Read Burst Length 4, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
RL = 4  
CK  
CK  
CMD  
ADDR  
BA  
WR  
A
NOP  
NOP  
RD  
A
NOP  
RD  
A
NOP  
NOP  
NOP  
NOP  
BA0  
BA1  
BA2  
WL = 5  
DK  
DK  
DM  
DQ  
D0a  
D0b  
D0c  
D0d  
Q1a  
Q1b  
Q1c  
Q1d  
Q2a  
QVLD  
QKx  
QKx  
Rev: 1.04 11/2013  
23/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read  
Read data transfers are launched with a Read command, as shown below. Read Addresses must provided with the Read command.  
Each beat of a Read data transfer is edge-aligned with the QKx signals. After a programmable Read Latency, data is available at the  
outputs. One half clock cycle prior to valid data on the read bus, the data valid signal (QVLD) is driven High. QVLD is also edge-  
aligned with the QKx signals. The QK clocks are free-running.  
The skew between QK and the crossing point of CK is specified as tCKQK. tQKQ0 is the skew between QK0 and the last valid data  
edge generated at the DQ signals associated with QK0 (tQKQ0 is referenced to DQ0–DQ17 for the x36 configuration and DQ0–DQ8  
for the x18 configuration). tQKQ1 is the skew between QK1 and the last valid data edge generated at the DQ signals associated with  
QK1 (tQKQ1 is referenced to DQ18–DQ35 for the x36 and DQ9–DQ17 for the x18 configuration). tQKQx is derived at each QKx  
clock edge and is not cumulative over time. tQKQ is defined as the skew between either QK differential pair and any output data edge.  
At the end of a burst transfer, assuming no other commands have been initiated, output data (DQ) will go High-Z. The QVLD signal  
transitions Low on the beat of a Read burst. Note that if CK/CK violates the V  
specification while a Read burst is occurring,  
ID(DC)  
QVLD remains High until a dummy Read command is issued. Back-to-back Read commands are possible, producing a continuous  
flow of output data.  
The data valid window specification is referenced to QK transitions and is defined as: tQHP – (tQKQ [MAX] + |tQKQ [MIN]|). See the  
Read Data Valid Window section for illustration.  
Any Read transfer may be followed by a subsequent Write command. The Read-to-Write timing diagram illustrates the timing  
requirements for a Read followed by a Write. Some systems having long line lengths or severe skews may need additional NOP cycles  
inserted between Read and Write commands to prevent data bus contention.  
Read Command  
CK  
CK  
CS  
WE  
REF  
Addr  
A
BA(2:0)  
BA  
Rev: 1.04 11/2013  
24/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read Burst Length 2, Configuration 1  
T0  
T1  
T2  
RC = 4  
T3  
T4  
T5  
T6  
T7  
T8  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
RD  
A
RD  
A
RD  
A
RD  
A
RD  
A
RD  
A
RD  
A
RD  
A
BA0  
BA1  
BA2  
BA3  
BA0  
BA7  
BA6  
BA5  
BA4  
RL = 4  
QKx  
QKx  
QVLD  
DQ  
Q0a  
Q0b  
Q1a  
Q1b  
Q2a  
Q2b  
Q3a  
Q3b  
Q0a  
Read Burst Length 4, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
RC = 4  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
NOP  
RD  
A
NOP  
RD  
A
NOP  
RD  
A
NOP  
RD  
A
BA0  
BA1  
BA0  
BA1  
BA3  
RL = 4  
QKx  
QKx  
QVLD  
DQ  
Q0a  
Q0b  
Q0c  
Q0d  
Q1a  
Q1b  
Q1c  
Q1d  
Q0a  
Rev: 1.04 11/2013  
25/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read-Write Burst Length 2, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
WR  
A
WR  
A
NOP  
NOP  
NOP  
NOP  
NOP  
D2a  
T7  
BA0  
BA1  
BA2  
WL = 5  
DK  
DK  
DM  
DQ  
Q0a  
Q0b  
D1a  
D1b  
D2b  
QVLD  
RL = 4  
QKx  
QKx  
Read-Write Burst Length 4, Configuration 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
CMD  
ADDR  
BA  
RD  
A
NOP  
WR  
A
NOP  
NOP  
NOP  
NOP  
NOP  
BA0  
BA1  
WL = 5  
DK  
DK  
DM  
DQ  
Q0a  
Q0b  
Q0c  
Q0d  
D1a  
D1b  
QVLD  
RL = 4  
QKx  
QKx  
Rev: 1.04 11/2013  
26/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Auto Refresh  
The Auto Refresh (AREF) command launches a REFRESH cycle on one row in the bank addressed. Refresh row addresses are  
generated by an internal refresh counter, so address inputs are Don’t Care, but a bank addresses (BA 2:0) must be provided during  
the AREF command. A refresh may be contining in one bank while other commands, including other AREF commands, are  
launched in other banks. The delay between the AREF command and a READ, WRITE or AREF command to the same bank must  
be at least tRC.  
The entire memory must be refreshed every 32 ms (tREF). This means that this 576Mb device requires 128K refresh cycles at an  
average periodic interval of 0.24s MAX (actual periodic refresh interval is 32 ms/16K rows/8 = 0.244s). To improve efficiency,  
eight AREF commands (one for each bank) can be launched at periodic intervals of 1.95s (32 ms/16K rows = 1.95s). The Auto  
Refresh Cycle diagram illustrates an example of a refresh sequence.  
Auto Refresh (AREF) Command  
CK  
CK  
CS  
WE  
REF  
A(20:0)  
BA(2:0)  
BA  
Auto Refresh Cycle  
CK  
CK  
CMD  
Bank  
AREF  
BA0  
AREF  
NOP  
AREF  
BA4  
BA3  
Rev: 1.04 11/2013  
27/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Address Multiplexing  
LLDRAM II defaults to “broadside” addressing at power up, meaning, it registers all address inputs on a single clock transition.  
However, for most configurations of the device, considerable efficiency can be gained by operating in Address Multiplexed mode,  
cutting the address pin count on the host device in half. In Multiplexed Address mode, the address is loaded in two consecutive  
clock transitions. Broadside Addressing only improves Continuous Burst mode data transfer efficiency of Burst Length 2 (BL = 2)  
configuration.  
In Address Multiplex mode, bank addresses are loaded on the same clock transition as Command and the first half of the address,  
Ax. The 576Mb Address Mapping in Multiplexed Address Mode table and Cycle Time and Read/Write Latency Configuration in  
Mulitplexed Mode table show the addresses needed for both the first and second clock transitions (Ax and Ay, respectively). The  
AREF command does not require an address on the second clock transition, as only the Bank Address are loaded for refresh  
commands. Therefore, AREF commands may be issued on consecutive clocks, even when in Address Multiplex mode.  
Setting Mode Register Bit 5 (M5) to 1 in the Mode Register activates the Multiplexed Address mode. Once this bit is set  
subsequent MRS, READ, and WRITE operate as described in the Multiplexed Address Mode diagram.  
Rev: 1.04 11/2013  
28/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Power-Up Multiplexed Address Mode  
VEXT  
VDD  
VDDQ  
VREF  
VTT  
200us Min  
tMRSC  
tMRSC  
Refresh All Banks(9) 1024 NOP cycles Min  
tCK  
tCKL  
tCKH  
CK  
CK  
tDK  
tDKH  
tDKL  
DK  
DK  
Command  
ADDR  
NOP  
NOP  
MRS  
MRS  
MRS  
NOP  
MRS  
NOP  
REF  
REF  
NOP  
AC  
CODE(1,2)  
CODE(1,2)  
CODE(2,3)  
Ax(2,4)  
Ay(2)  
Valid(5)  
Valid(5)  
Bank  
Bank 0  
Bank 7  
Rev: 1.04 11/2013  
29/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
MRS Command In Multiplexed Mode  
The Mode Register Set command stores the data for controlling the RAM into the Mode Register. The register allows the user to  
modify Read and Write pipeline length, burst length, test mode, and I/O options. The Multiplexed MRS command requires two  
cycles to complete The Ax address is sampled on the true crossing of clock with the MRS Command. The Ay address and a  
required NOP command are captured on the next next crossing of clock. After issuing a valid MRS command, tMRSC must be met  
before any READ, WRITE, MRS, or AREF command can be issued to the LLDRAM II. This statement does not apply to the  
consecutive MRS commands needed for internal logic reset during the initialization routine. The MRS command can only be  
issued when all banks are idle and no bursts are in progress.  
Note: The data written by the prior burst length is not guaranteed to be accurate when the burst length of the device is changed.  
MRS Command in Multiplexed Mode  
MRS  
CK  
CK  
CS  
WE  
REF  
A(20:0)  
BA(2:0)  
Ax  
Ay  
Notes:  
1. Recommended that all address pins held Low during dummy MRS commands.  
2. A10–A18 must be Low.  
3. Set address A5 High. This enbles the part to enter Multiplexed Address mode when in Non-Multiplexed mode operation. Multiplexed  
Address mode can also be entered at some later time by issuing an MRS command with A5 High. Once address Bit A5 is set High, tMRSC  
must be satisfied before the two-cycle multiplexed mode MRS command is issued.  
4. Address A5 must be set High. This and the following step set the desired mode register once the LLDRAM II is in Multiplexed Address  
mode.  
5. Any command or address.  
6. The above sequence must be followed in order to power up the LLDRAM II in the Multiplexed Address mode.  
7. DLL must be reset if tCK or V are changed.  
DD  
8. CK and CK must separated at all times to prevent bogus commands from being issued.  
9. The sequence of the eight AUTO REFRESH commands (with respect to the 1024 NOP commands) does not matter. As is required for any  
operation, tRC must be met between an AUTO REFRESH command and a subsequent VALID command to the same bank.  
Rev: 1.04 11/2013  
30/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Mode Register Definition in Multiplexed Address Mode  
Ax  
Ay  
A18...A10  
A18...A10  
A9 A8  
A5 A4 A3  
A0  
A9 A8  
A4 A3  
18–10  
9
8
7
6
5
4
3
2
1
0
Mode Register (Mx)  
1
5
Reserved  
ODT IM DLL NA AM  
BL  
Config  
M2 M1 M0  
Configuration  
On Die  
M9  
Termination  
2
0
0
0
1 (default)  
0
1
Off (default)  
On  
2
0
0
0
1
0
1
1
0
1
0
1
0
1
2
3
M8  
Drive Impedance  
M7  
DLL Reset  
2
4
3
0
1
Internal 50(default)  
4
0
1
DLL reset (default)  
1
1
1
0
1
1
1
0
1
5
External (ZQ)  
DLL enabled  
Reserved  
Reserved  
M5  
0
Address MUX  
Nonmulitplexed (default)  
Multiplexed  
Burst  
Length  
M4  
M3  
0
0
1
1
0
1
0
1
2 (default)  
1
4
8
Reserved  
Notes:  
1. A10–A18 must be set to zero.  
2. BL = 8 is not available.  
3. +/–30% over rated temperature range.  
4. DLL RESET turns the DLL off.  
5. Ay8 not used in MRS.  
6. BA0–BA2 are “Don’t Care”.  
7. Addresses A0, A3, A4, A5, A8, and A9 must be set as shown in order to activate the Mode Register in the Multiplexed Address mode.  
Rev: 1.04 11/2013  
31/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
576Mb Address Mapping in Multiplexed Address Mode  
Address  
A9  
A9  
Burst  
Length  
Data Width  
Ball  
A0  
A0  
X
A3  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A4  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A5  
A5  
X
A8  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A10  
A10  
A19  
A10  
X
A13  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A14  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A17  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A18  
A18  
A15  
A18  
A15  
X
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
2
A7  
A0  
X
A5  
X
A9  
x36  
4
8
2
4
8
2
4
8
A7  
A0  
X
A5  
X
A9  
A10  
X
A7  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A0  
A20  
A0  
X
A5  
X
A9  
A10  
A19  
A10  
A19  
A10  
X
A7  
A5  
X
A9  
x18  
A7  
A0  
X
A5  
X
A9  
A7  
A0  
A20  
A0  
A20  
A0  
X
A5  
A21  
A5  
X
A9  
A10  
A19  
A10  
A19  
A10  
A19  
A7  
A9  
x9  
A7  
A5  
X
A9  
A7  
Notes:  
X= Don’t Care.  
Configuration in Mulitplexed Mode  
In Multiplexed Address mode, the Read and Write latencies are increased by one clock cycle. However, the LLDRAM II cycle time  
remains the same as when in Nonmultiplexed Address mode.  
Cycle Time and Read/Write Latency Configuration in Mulitplexed Mode  
Configuration  
Parameter  
Units  
2
2, 3  
2
3
5
1
4
tRC  
4
6
8
3
4
5
5
tCK  
tCK  
tCK  
MHz  
tRL  
tWL  
5
6
7
8
9
10  
6
7
Valid Frequency Range  
266–175  
400–175  
533–175  
200–175  
333–175  
Notes:  
1. tRC < 20 ns in any configuration is only available with –24 and –18 speed grades.  
2. Minimum operating frequency for –18 is 370 MHz.  
3. The minimum tRC is typically 3 cycles, except in the case of a Write followed by a Read to the same bank. In this instance the minimum  
tRC is 4 cycles.  
Rev: 1.04 11/2013  
32/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Write Command in Multiplexed Mode  
Address Multiplexed Write data transfers are launched with a Write command, as shown below. A valid address must be provided  
during the Write command. The Ax address must be loaded on the same true clock crossing used to load the Write command and  
the Bank address. The Ay address and a NOP command must be provided at the next clock crossing.  
During Write data transfers, each beat of incoming data is registered on crossings of DK and DK until the burst transfer is  
complete. Write Latency (WL) is always one cycle longer than the programmed Read Latency (RL).  
A Write burst may be followed by a Read command (assuming tRC is met). At least one NOP command is required between Write  
and Read commands to avoid data bus contention. The Write-to-Read timing diagrams illustrate the timing requirements for a  
Write followed by a Read. Setup and hold times for incoming DQ relative to the DK edges are specified as tDS and tDH. Input data  
may be masked high on an associated DM pin. The setup and hold times for the DM signal are tDS and tDH.  
Write Command in Multiplexed Mode  
WRITE  
CK  
CK  
CS  
WE  
REF  
A(20:0)  
BA(2:0)  
Ax  
Ay  
BA  
Write Burst Length 4, Configuration 1 in Multiplexed Mode  
T0  
T1  
T2  
RC = 4  
T3  
T4  
T5  
T6  
T7  
T8  
CK  
CK  
CMD  
ADDR  
BA  
WR  
NOP  
WR  
Ax  
NOP  
WR  
NOP  
WR  
NOP  
WR  
Ax  
Ay  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
BA0  
BA1  
BA0  
BA3  
BA0  
WL = 6  
DK  
DK  
DM  
D
D0a  
D0b  
D0c  
D0d  
D1a  
D1b  
Rev: 1.04 11/2013  
33/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read Command in Multiplexed Mode  
Address Multiplexed Read data transfers are launched with a Read command, as shown below. A valid address must be provided  
during the READ command. The Ax address must be loaded on the same True clock crossing used to load the READ command  
and the Bank address. The Ay address and a NOP command must be provided at the next clock crossing.  
Each beat of a Read data transfer is edge-aligned with the QKx signals. After a programmable Read Latency, data is available at  
the outputs. One half clock cycle prior to valid data on the read bus, the data valid signal (QVLD) is driven High. QVLD is also  
edge-aligned with the QKx signals. The QK clocks are free-running.  
The skew between QK and the crossing point of CK is specified as tCKQK. tQKQ0 is the skew between QK0 and the last valid  
data edge generated at the DQ signals associated with QK0 (tQKQ0 is referenced to DQ0–DQ17 for the x36 configuration and  
DQ0–DQ8 for the x18 configuration). tQKQ1 is the skew between QK1 and the last valid data edge generated at the DQ signals  
associated with QK1 (tQKQ1 is referenced to DQ18–DQ35 for the x36 and DQ9–DQ17 for the x18 configuration). tQKQx is  
derived at each QKx clock edge and is not cumulative over time. tQKQ is defined as the skew between either QK differential pair  
and any output data edge.  
At the end of a burst transfer, assuming no other commands have been initiated, output data (DQ) will go High–Z. The QVLD  
signal transitions Low on the beat of a Read burst. Note that if CK/CK violates the V  
specification while a Read burst is  
ID(DC)  
occurring, QVLD remains High until a dummy Read command is issued. Back-to-back Read commands are possible, producing a  
continuous flow of output data.  
The data valid window specification is referenced to QK transitions and is defined as: tQHP – (tQKQ [MAX] + |tQKQ [MIN]|). See  
the Read Data Valid Window section.  
Any Read transfer may be followed by a subsequent Write command. The Read-to-Write timing diagram illustrates the timing  
requirements for a Read followed by a Write. Some systems having long line lengths or severe skews may need additional NOP  
cycles inserted between Read and Write commands to prevent data bus contention.  
Read Command in Mulitplexed Mode  
READ  
CK  
CK  
CS  
WE  
REF  
A(20:0)  
BA(2:0)  
Ax  
Ay  
BA  
Rev: 1.04 11/2013  
34/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read Burst Length 4, Configuration 1 in Multiplexed Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
RC = 4  
CK  
CK  
CMD  
ADDR  
BA  
RD  
NOP  
RD  
NOP  
RD  
NOP  
RD  
NOP  
RD  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
BA0  
BA1  
BA2  
BA0  
BA1  
RL = 5  
QKx  
QKx  
QVLD  
Q
Q0a  
Q0b  
Q0c  
Q0d  
Q1a  
Q1b  
Q1c  
Rev: 1.04 11/2013  
35/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Refresh Commands in Multiplexed Address Mode  
The AREF command launches a REFRESH cycle on one row in the bank addressed. Refresh row addresses are generated by an  
internal refresh counter. so address inputs are Don’t Care, but Bank addresses (BA 2:0) must be provided during the AREF  
command. A refresh may be continuing in one bank while other commands, including other AREF commands, are launched in  
other banks. The delay between the AREF command and a READ, WRITE or AREF command to the same bank must be at least  
tRC.  
The entire memory must be refreshed every 32 ms (tREF). This means that this 576Mb device requires 128K refresh cycles at an  
average periodic interval of 0.24s MAX (actual periodic refresh interval is 32 ms/16K rows/8 = 0.244s). To improve efficiency,  
eight AREF commands (one for each bank) can be launched at periodic intervals of 1.95s (32 ms/16K rows = 1.95s). The Auto  
Refresh Cycle diagram illustrates an example of a refresh sequence.  
Unlike READ and WRITE commands in Address Multiplex mode, all the information needed to execute an AREF command (the  
AREF command and the Band Address (BA 2:0)) is loaded in a single clock crossing, another AREF command (to a different  
bank) may be loaded on the next clock crossing.  
Consecutive Refresh Operations with Multiplexed Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
CK  
CMD  
ADDR  
BA  
AC  
Ax  
NOP  
AREF  
AREF  
AREF  
AREF  
AREF  
AREF  
AREF  
AREF  
AC  
Ax  
NOP  
Ay  
Ay  
BAn  
BA0  
BA1  
BA2  
BA3  
BA4  
BA5  
BA6  
BA7  
BAn  
Notes:  
1. Any command.  
2. Bank n is chosen so that tRC is met.  
Rev: 1.04 11/2013  
36/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Absolute Maximum Ratings  
Absolute Maximum Voltage  
(All voltages reference to V  
)
SS  
Parameter  
Min  
–0.3  
–0.3  
–0.3  
–0.3  
Max  
+ 0.3  
Unit  
V
V
I/O Voltage  
DDQ  
Voltage on V supply  
+2.8  
+2.1  
+2.1  
V
EXT  
Voltage on V supply relative to V  
V
DD  
SS  
Voltage on V  
supply relative to V  
SS  
V
DDQ  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Absolute Maximum Temperature  
Temperature  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Notes  
Range  
T
Storage Temperature  
–55  
+150  
+110  
+110  
C°  
C°  
C°  
1
2
2
STG  
Commercial  
Industrial  
T
Reliability junction temperature  
J
Notes:  
1. Max storage case temperature; T  
is measured in the center of the package.  
STG  
2. Temperatures greater than 110 C° may cause permanent damage to the device. This is a stress rating only and functional operation of the  
device at or above this is not implied. Exposure to the absolute maximum ratings condtions for extended periods may affect reliability of  
the part.  
Rev: 1.04 11/2013  
37/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Recommended Operating Temperature and Thermal Impedance  
Like any other semiconcuctor device, the LLDRAM II must be operated within the temperature specifications shown in the  
Temperature Limits table for the device to meet datasheet specifications. The thermal impedance characteristics of the device are  
are listed below. In applications where the ambient temperature or PCB temperature are too high, use of forced air and/or heat  
sinks may be required in order to satisfy the case temperature specifications.  
Temperature Limits  
Temperature  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Notes  
Range  
Commercial  
Industrial  
0
+100  
+100  
+95  
C°  
C°  
C°  
C°  
1
1
T
Operating junction temperature  
J
–40  
0
Commercial  
Industrial  
2, 3  
2, 3, 4  
T
Operating case temperature  
C
–40  
+95  
Notes:  
1. Junction temperature depends upon package type, cycle time, loading, ambient temperature, and airflow.  
2. Maximum operating case temperature, T , is measured in the center of the package.  
C
3. Device functionality is not guaranteed if the device exceeds maximum T during operation.  
C
4. Junction and case temperature specifications must be satisfied.  
Thermal Impedance  
Test PCB  
Substrate  
JA (C°/W)  
Airflow = 0 m/s  
JA (C°/W)  
Airflow = 1 m/s  
JA (C°/W)  
Airflow = 2 m/s  
JB (C°/W)  
JC (C°/W)  
Package  
2-layer  
4-layer  
TBD  
22.4  
TBD  
19.0  
TBD  
16.2  
TBD  
5.3  
TBD  
1.7  
BGA  
Notes:  
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. The minimal metalization of a 2-layer  
board tends to minimize the utility of the junction-to-board heat path. The 4-layer test fixture PCB is intended to highlight the effect of  
connection to power planes typically found in the PCBs used in most applications. Be advised that a good thermal path to the PCB can  
result in cooling or heating of the RAM depending on PCB temperature.  
Rev: 1.04 11/2013  
38/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Recommended DC Operating Conditions and Electrical Characteristics  
Description  
Supply Voltage  
Conditions  
Symbol  
Min.  
2.38  
Max.  
2.63  
1.9  
Unit  
V
Notes  
V
EXT  
V
Supply Voltage  
1.7  
V
2
2, 3  
4, 5, 6  
7, 8  
2
DD  
V
V
Isolated Output Buffer Supply  
Reference Voltage  
1.4  
V
DDQ  
DD  
V
0.49 * V  
0.51 * V  
DDQ  
V
REF  
DDQ  
V
0.95 * V  
1.05 * V  
REF  
Termination Voltage  
V
TT  
REF  
V
V
+ 0.1  
V
DDQ  
+ 0.3  
– 0.1  
Input High (logic 1) voltage  
Input Low (logic 0) voltage  
Ouput High Current  
V
IH(DC)  
REF  
V
V
– 0.3  
V
REF  
V
2
IL(DC)  
SS  
V
V
= V /2  
I
(V /2)/(1.15 * RQ/5)  
(V /2)/(0.85 * RQ/5)  
A
9, 10, 11  
9, 10, 11  
OUT  
OUT  
DDQ  
OH  
DDQ  
DDQ  
= V /2  
I
(V /2)/(1.15 * RQ/5)  
(V /2)/(0.85 * RQ/5)  
Ouput Low Current  
A
DDQ  
OL  
DDQ  
DDQ  
0 VV V  
I
Clock Input Leakage Current  
Input Leakage Current  
Output Leakage Current  
Reference Voltage Current  
–5  
–5  
–5  
–5  
5
5
5
5
A  
A  
A  
A  
IN  
DD  
DD  
LC  
0 VV V  
I
IN  
LI  
0 VV V  
I
IN  
DDQ  
LO  
I
REF  
Notes:  
1. All voltages referenced to V (GND). This note applies to the entire table.  
SS  
2. Overshoot V  
V + 0.7 V for t tCK/2. Undershoot: V  
–0.5 V for t tCK/2. During normal operation V  
must not exceed  
DDQ  
IH(AC)  
DD  
IL(AC)  
V
V
. Control input signals may not have pulse widthts less than tCK/2 or operate at frequencies exceeding tCK (MAX).  
DD  
3.  
can be set to a nominal 1.5 V ± 0.1 V or 1.8 V ± 0.1 V supply.  
DDQ  
4. Typically the value of V  
is expected to be 0.5 * V  
of the transmitting device. V  
is expected to track variations in V  
.
DDQ  
REF  
DDQ  
REF  
5. Peak-to-Peak AC noise on V  
must not exceed ±2% of V  
.
REF  
REF(DC)  
6.  
V
is expected to equal V /2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise   
REF DDQ  
(non-common mode) on V  
may not exceed ±2% of the DC value. Thus, from V /2, V  
is allowed ±2% V /2 for DC error and an  
REF DDQ  
REF  
DDQ  
addtional ±2% V /2 for AC noise. This measurement is to be taken at the nearest V  
bypass capacitor.  
REF  
DDQ  
7.  
V
is expected to be set equal to V  
and must track variations in the DC level of V  
.
REF  
TT  
REF  
8. On-die termination may be selected using Mode Register Bit 9 (M9). A resistance R from each data input signal to the nearest V can be  
TT  
TT  
enabled. R = 125–185at 95° C T .  
TT  
C
9.  
I
and I are defined as absolute values and are measured at V /2. I flows from the device, I flows into the device.  
OH OL DDQ OH OL  
10. If Mode Register Bit 8 (M8) is 0, use RQ = 250in the equation in lieu of presence of an external impedance matched resistor.  
11. For V and V , refer to the LLDRAM II IBIS models.  
OL  
OH  
Rev: 1.04 11/2013  
39/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
DC Differential Input Clock Logic Levels  
Parameter  
Symbol  
Min.  
–0.3  
0.2  
Max.  
Unit  
V
Notes  
1–4  
V
V
V
+ 0.3  
Clock input voltage level: CK and CK  
IN(DC)  
DDQ  
V
+ 0.6  
Clock input differential voltage: CK and CK  
V
1–5  
ID(DC)  
DDQ  
Notes:  
1. DKx and DKx have the same requirements as CK and CK.  
2. All voltages referenced to V (GND).  
SS  
3. The CK and CK input reference level (for timing referenced to CK/CK) is the point at which CK and CK cross. The input reference level for  
signals other than CK/CK is V  
REF.  
4. The CK and CK input slew rate must be 2 V/ns (4 V/ns if measured differentially).  
5. is the magnitude of the difference between the input level on CK and the input level on CK.  
V
ID  
Recommended AC Operating Conditions and Electrical Characteristics  
Input AC Logic Levels  
Parameter  
Symbol  
Min.  
+ 0.2  
Max.  
Unit  
V
Notes  
1, 2, 3  
1, 2, 3  
V
V
Input High (logic 1) Voltage  
Input Low (logic 0) Voltage  
IH  
REF  
V
V
– 0.2  
REF  
V
IL  
Notes:  
1. All voltages referenced to V (GND).  
SS  
2. The AC and the DC input level specifications are defined in the HSTL standard (that is, the receiver will effectively switch as a result of the  
signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above (see drawing below) the DC  
input Low (High) level).  
3. The minimum slew rate for the input signals used to test the device is 2 V/ns in the range between V  
and V  
.
IL(AC)  
IH(AC)  
Nominal tAS/ tCS/ tDS and tAH/ tCH/ tDH Slew Rate  
V
DDQ  
V
IH(AC)MIN  
V
IH(DC)MIN  
V
REF  
V
IL(DC)MAX  
V
IL(AC)MAX  
V
SS  
Rev: 1.04 11/2013  
40/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
AC Differential Input Clock Levels  
Parameter  
Symbol  
Min.  
Max.  
+ 0.6  
Unit  
V
Notes  
1–5  
V
V
Clock input differential voltage: CK and CK  
0.4  
ID(AC)  
DDQ  
V
V
/2 – 0.15  
V
/2 + 0.15  
DDQ  
Clock input crossing point voltage: CK and CK  
V
1–4, 6  
IX(AC)  
DDQ  
Notes:  
1. DKx and DKx have the same requirements as CK and CK.  
2. All voltages referenced to V (GND).  
SS  
3. The CK and CK input reference level (for timing referenced to CK/CK) is the point at which CK and CK cross. The input reference level for  
signals other than CK/CK is V  
REF.  
4. The CK and CK input slew rate must be 2 V/ns (4 V/ns if measured differentially).  
5. is the magnitude of the difference between the input level on CK and the input level on CK.  
V
ID  
6. The value of V is expected to equal V /2 of the transmitting device and must track variations in the DC level of the same.  
IX  
DDQ  
Differential Clock Input Requirements  
VIN(DC) MAX  
Maximum Clock Level  
CK  
VIX(AC)MAX  
V
DDQ/2 + 0.15  
3
VID(AC)  
2
VID(DC)  
VDDQ/2  
1
VDDQ/2 – 0.15  
VIX(AC)MIN  
CK  
VIN(DC) MIN  
Minimum Clock Level  
Notes:  
1. CK and CK must cross within this region.  
2. CK and CK must meet at least V  
when static and centered around V /2.  
DDQ  
ID(DC)MIN  
3. Minimum peak-to-peak swing.  
4. It is a violation to tristate CK and CK after the part is initialized.  
Rev: 1.04 11/2013  
41/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Input Slew Rate Derating  
The Address and Command Setup and Hold Derating Values shown in the following table should be added to the default tAS/tCS/  
tDS and tAH/tCH/tDH specifications when the slew rate of any of these input signals is less than the 2 V/ns.  
To determine the setup and hold time needed for a given slew rate, add the tAS/tCS default specification to the “tAS/tCS VREF to  
CK/CK Crossing” and the tAH/tCH default specification to the "tAH/tCH CK/CK Crossing to V " derated values in the Address  
REF  
and Command Setup and Hold Derating Values table. The derated data setup and hold values can be determined the same way  
using the “tDS V  
to CK/CK Crossing” and “tDH to CK/CK Crossing to V ” values in the Data Setup and Hold Derating  
REF  
REF  
Values table. The derating values apply to all speed grades.  
The setup times in the table relate to a rising signal. The time from the rising signal crossing V  
to the CK/CK cross point  
IH(AC)MIN  
is static and must be maintained across all slew rates. The derated setup timing describes the point at which the rising signal crosses  
to the CK/CK cross point. This derated value is calculated by determining the time needed to maintain the given slew  
V
REF(DC)  
rate and the delta between V  
and the CK/CK cross point. All these same values are also valid for falling signals (with  
IH(AC)MIN  
respect to V  
and the CK/ CK cross point).  
IL(AC)MAX  
The hold times in the table relate to falling signals. The time from the CK/CK cross point to when the signal crosses V  
is  
IH(DC) MIN  
static and must be maintained across all slew rates. The derated hold timing describes the delta between the CK/CK cross point to  
when the falling signal crosses V . This derated value is calculated by determining the time needed to maintain the given  
REF(DC)  
slew rate and the delta between the CK/CK cross point and V  
. The hold values are also valid for rising signals (with respect  
IH(DC)  
to V  
and the CK and CK cross point).  
IL(DC)MAX  
Note: The above descriptions also pertain to data setup and hold derating when CK/CK are replaced with DK/DK.  
Rev: 1.04 11/2013  
42/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Address and Command Setup and Hold Derating Values  
tAH/tCH  
CK/CK crossing to  
tAS/tCS V  
CK/CK crossing  
to  
tAS/tCS V  
CK/CK crossing  
tAH/tCH  
CK/CK crossing to V  
Command/Address  
Slew Rate (V/ns)  
REF  
IH(AC)MIN  
REF  
V
IH(DC)MIN  
CK/CK Differential Slew Rate: 2.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0
5
–100  
–100  
–100  
–100  
0
3
6
9
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
11  
18  
25  
33  
43  
54  
67  
82  
100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
13  
17  
22  
27  
34  
41  
50  
CK/CK Differential Slew Rate: 1.5 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
30  
35  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
30  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
33  
36  
39  
43  
47  
52  
57  
64  
71  
80  
41  
48  
55  
63  
73  
84  
97  
112  
130  
CK/CK Differential Slew Rate: 1.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
60  
65  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
60  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
63  
66  
71  
78  
69  
85  
73  
93  
77  
103  
114  
127  
142  
160  
82  
87  
94  
101  
110  
Rev: 1.04 11/2013  
43/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Data Setup and Hold Derating Values  
tDS  
tDS V  
to CK/CK tDS V  
CK/CK  
IH(AC)MIN  
crossing  
tDS  
REF  
CK/CK crossing to  
Data Slew Rate (V/ns)  
CK/CK crossing to V  
crossing  
REF  
V
IH(DC)MIN  
DK/DK Differential Slew Rate: 2.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0
5
–100  
–100  
–100  
–100  
0
3
6
9
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
–50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
11  
18  
25  
33  
43  
54  
67  
82  
100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
13  
17  
22  
27  
34  
41  
50  
DK/DK Differential Slew Rate: 1.5 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
30  
35  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
–70  
30  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
–20  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
33  
36  
39  
43  
47  
52  
57  
64  
71  
80  
41  
48  
55  
63  
73  
84  
97  
112  
130  
DK/DK Differential Slew Rate: 1.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
60  
65  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
60  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
63  
66  
71  
78  
69  
85  
73  
93  
77  
103  
114  
127  
142  
160  
82  
87  
94  
101  
110  
Rev: 1.04 11/2013  
44/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Capacitance  
Description  
Symbol  
Conditions  
Min.  
1.0  
3.0  
1.5  
1.5  
Max.  
2.0  
Unit  
pF  
C
Address/control input capacitance  
Input/Output capacitance (DQ, DM, and QK, QK)  
Clock capacitance (CK/CK and DK/DK)  
JTAG pins  
I
C
4.5  
pF  
O
TA = 25° C; f = 100 MHz  
V
= V  
= 1.8 V  
DD  
DDQ  
C
2.5  
pF  
CK  
C
4.5  
pF  
JTAG  
Notes:  
1. Capacitance is not tested on the ZQ pin.  
2. JTAG Pins are tested at 50 MHz.  
IDD Operating Conditions  
Description  
Condition  
Symbol  
-18  
-24  
-25  
-33  
I
1 (V ) x9/x18  
55  
55  
55  
55  
55  
55  
5
55  
55  
SB  
DD  
tCK = idle, All banks idle; No inputs  
toggling.  
I
1 (V ) x36  
Standby Current  
mA  
mA  
SB  
DD  
I
1 (V  
)
EXT  
5
5
5
SB  
I
I
2 (V ) x9/x18  
385  
385  
5
360  
360  
5
360  
360  
5
340  
340  
5
SB  
DD  
CS = 1, No commands; Bank address  
incremented and half address/data change  
once every four clock cycles.  
I
2 (V ) x36  
Active Standby Current  
SB  
DD  
I
2 (V  
)
EXT  
SB  
BL = 2, Sequential bank access; Bank  
transitions once every tRC; Half address  
transitions once every tRC; Read followed  
by Write sequence; Continuous data during  
Write Commands.  
1 (V ) x9/x18  
495  
510  
470  
485  
445  
455  
425  
435  
DD  
DD  
I
1 (V ) x36  
DD  
DD  
Operational Current  
Operational Current  
mA  
mA  
I
1 (V  
)
EXT  
15  
15  
15  
10  
DD  
BL = 4, Sequential bank access; Bank  
I
I
2 (V ) x9/x18  
495  
540  
480  
525  
450  
485  
435  
470  
DD  
DD  
transitions once every t ; Half address  
RC  
I
2 (V ) x36  
DD  
DD  
transitions once every t ; Read followed  
RC  
by Write sequence; Continuous data during  
Write Commands.  
I
2 (V  
)
EXT  
25  
25  
25  
20  
DD  
BL = 8, Sequential bank access; Bank  
3 (V ) x9/x18  
580  
665  
555  
640  
500  
570  
480  
550  
DD  
DD  
transitions once every t ; Half address  
RC  
I
3 (V ) x36  
DD  
DD  
Operational Current  
transitions once every t . Read followed  
mA  
mA  
RC  
by Write sequence; Continuous data during  
Write Commands.  
I
3 (V  
)
EXT  
40  
40  
40  
30  
DD  
I
1 (V ) x9/x18  
720  
720  
60  
625  
625  
60  
615  
615  
60  
540  
540  
45  
REF  
DD  
Eight bank cyclic refresh; Continuous  
address/data; Command bus remains in  
refresh for all eight banks.  
I
1 (V ) x36  
Burst Refresh Current  
REF  
DD  
I
1 (V  
)
EXT  
REF  
Rev: 1.04 11/2013  
45/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
IDD Operating Conditions (Continued)  
Description  
Condition  
Symbol  
-18  
-24  
-25  
-33  
I
2 (V )x9/x18  
425  
425  
15  
400  
400  
15  
390  
390  
15  
370  
370  
10  
REF  
DD  
Single bank refresh; Sequential bank  
Distributed Refresh Current access; Half address transitions once every  
tRC; Continuous data.  
I
2 (V )x36  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
REF  
DD  
I
2 (V  
)
EXT  
REF  
I
2W (V ) x9/x18  
BL= 2; Cyclic bank access; Half of address  
Operating Burst Write Current bits change every clock cycle; Continuous  
960  
995  
60  
820  
855  
60  
810  
850  
60  
695  
735  
45  
DD  
DD  
I
2W (V ) x36  
DD  
DD  
Example  
data; Measurement is taken during  
continuous Write.  
I
2W (V  
)
EXT  
DD  
I
4W (V )x9/x18  
BL= 4; Cyclic bank access; Half of address  
bits change every two clock cycles;  
Continuous data; Measurement is taken  
during continuous Write.  
755  
895  
55  
655  
765  
55  
655  
765  
55  
575  
660  
40  
DD  
DD  
Operating Burst Write Current  
Example  
I
4W (V ) x36  
DD  
DD  
I
4W (V  
)
EXT  
DD  
I
8W (V ) x9/x18  
BL= 8; Cyclic bank access; Half of address  
bits change every four clock cycles;  
Continuous data; Measurement is taken  
during continuous Write.  
720  
855  
55  
620  
730  
55  
620  
730  
55  
540  
630  
40  
DD  
DD  
Operating Burst Write Current  
Example  
I
8W (V ) x36  
DD  
DD  
I
8W (V  
)
EXT  
DD  
BL= 2; Cyclic bank access; Half of address  
bits change every clock cycle; Continuous  
data; Measurement is taken during  
continuous Read.  
I
2R (V )x9/x18  
850  
865  
60  
725  
740  
60  
720  
730  
60  
620  
630  
45  
DD  
DD  
Operating Burst Read  
Current Example  
I
2R (V )x36  
DD  
DD  
I
2R (V  
)
EXT  
DD  
BL= 4; Cyclic bank access; Half of address  
bits change every two clock cycles;  
Continuous data; Measurement is taken  
during continuous Read.  
I
I
4R (V ) x9/x18  
675  
785  
55  
580  
665  
55  
580  
665  
55  
505  
570  
40  
DD  
DD  
Operating Burst Read  
Current Example  
I
4R (V ) x36  
DD  
DD  
I
4R (V  
)
EXT  
DD  
8R (V ) x9/x18  
BL= 8; Cyclic bank access; Half of address  
bits change every four clock cycles;  
Continuous data; Measurement is taken  
during continuous Read.  
645  
760  
55  
555  
645  
55  
555  
645  
55  
485  
550  
40  
DD  
DD  
Operating Burst Read  
Current Example  
I
8R (V ) x36  
DD  
DD  
I
8R (V  
)
EXT  
DD  
Notes:  
1. IDD specifications are tested after the device is properly initialized and is operating at worst-case rated temperature and voltage specifications.  
2. Definitions of IDD Conditions:  
3a. Low is defined as VIN  VIL AC  
.
(
) MAX  
3b. High is defined as VIN VIH AC  
.
(
) MIN  
3c. Stable is defined as inputs remaining at a High or Low level.  
3d. Floating is defined as inputs at VREF = VDDQ/2.  
3e. Continuous data is defined as half the DQ signals changng between High and Low every half clock cycle (twice per clock).  
3f. Continuous address is defined as half the address signals changing between High and Low every clock cycles (once per clock).  
3g. Sequential bank access is defined as the bank address incrementing by one every tRC.  
3h. Cyclic bank access is defined as the bank address incrementing by one for each command access. For BL = 2 this is every clock, for BL = 4 this  
is every other clock, and for BL = 8 this is every fourth clock.  
3. CS is High unless a Read, Write, AREF, or MRS command is registered. CS never transitions more than once per clock cycle.  
4. IDD parameters are specified with ODT disabled.  
5. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operations are tested for the full voltage range specified.  
6. IDD tests may use a VIL-to-VIH swing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK), and  
parameter specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test  
the device is 2 V/ns in the range between VIL AC andVIH AC .  
(
)
( )  
Rev: 1.04 11/2013  
46/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
AC Electrical Characteristics  
–18  
–24  
–25  
–33  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
Input Clock Cycle Time  
Input data clock cycle time  
Clock jitter: period  
tCK  
tDK  
1.875  
5.7  
2.5  
5.7  
2.5  
5.7  
3.3  
5.7  
ns  
ns  
ps  
tCK  
tCK  
tCK  
tCK  
tJITPER  
–100  
100  
200  
–150  
150  
300  
–150  
150  
300  
–200  
200  
400  
5, 6  
tJITCC  
Clock jitter: cycle-to-cycle  
Clock High Time  
ps  
tCKH  
tDKH  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK  
tCKL  
tDKL  
Clock Low Time  
tCK  
Clock to input data clock  
tCKDK  
tMRSC  
–0.3  
6
0.3  
–0.45  
6
0.5  
–0.45  
6
0.5  
–0.45  
6
1.2  
ns  
Mode register set cycle time  
to any command  
tCK  
Setup Times  
Address/command and input  
setup time  
tAS/tCS  
tDS  
0.3  
0.4  
0.4  
0.5  
0.3  
ns  
ns  
Data–in and data mask to  
DK set up time  
0.17  
0.25  
0.25  
Hold Times  
Address/command and input  
hold time  
Data-in and data mask to  
DK setup time  
tAH/tCS  
tDH  
0.3  
0.4  
0.4  
0.5  
0.3  
ns  
ns  
0.17  
0.25  
0.25  
Data and Data Strobe  
tCKH  
tCKL  
Output data clock High time  
tQKH  
tQKL  
0.9  
0.9  
1.1  
1.1  
0.9  
0.9  
1.1  
1.1  
0.9  
0.9  
1.1  
1.1  
0.9  
0.9  
1.1  
1.1  
Output data clock Low time  
Half–clock period  
MIN  
(tQKH, tQKL)  
MIN  
(tQKH, tQKL)  
MIN  
(tQKH, tQKL)  
MIN  
(tQKH, tQKL)  
tQHP  
0.2  
0.25  
0.2  
0.25  
0.2  
0.3  
ns  
ns  
7
QK edge to clock edge skew  
tCKQK  
–0.2  
–0.25  
–0.25  
–0.3  
tQKQ0,  
tQKQ1  
QK edge to output data  
edge  
–0.12  
–0.22  
0.12  
–0.2  
–0.3  
–0.2  
–0.3  
–0.25  
–0.35  
0.25  
QK edge to any output data  
edge  
tQKQ  
0.22  
0.3  
0.3  
0.35  
ns  
8
QK edge to QVLD  
Data Valid Window  
tQKVLD  
tDVW  
–0.22  
0.22  
–0.3  
0.3  
–0.3  
0.3  
–0.35  
0.35  
ns  
9
tDVW (MIN)  
tDVW (MIN)  
tDVW (MIN)  
tDVW (MIN)  
Rev: 1.04 11/2013  
47/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
AC Electrical Characteristics (Continued)  
–18  
–24  
–25  
–33  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Refresh  
Average Periodic Refresh  
Interval  
tREFI  
0.24  
0.24  
0.24  
0.24  
10  
Notes:  
1. All timing parameters are measured relative to the crossing point of CK/CK, DK/DK and to the crossing point with V  
of the command,  
REF  
address, and data signals.  
2. Outputs measured with equivalent load:  
V
TT  
50  
DQ  
Test Point  
10 pF  
V
OUT  
3. Tests for AC timing I , and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the  
DD  
related specifications and device operations are tested for the full voltage range specified.  
4. AC timing may use a V – to–V swing of up to 1.5 V in the test environment, but input timing is still referenced to V (or to the crossing  
IL  
IH  
REF  
point for CK/CK), and parameter specifications are tested for the specified AC input levels under normal use conditions. The minimum slew  
rate for the input signals used to test the device is 2 V/ns in the rance between V and V  
.
IH(AC)  
IL(AC)  
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
6. Frequency drift is not allowed.  
7. tQKQ0 is referenced to DQ0–DQ17 for the x36 xconfiguration and DQ0–DQ8 for the x18 configuration. tQKQ1 is referenced to  
DQ18–DQ35 for the x36 configuration and the DQ9–DQ17 for the x18 configuration.  
8. tQKQ takes in to account the skew between any QKx and any Q.  
9. tDVW (MIN) tQHP – (tQKQx [MAX] + |tQKQx [MIN]|)  
10. To improve efficiency, eight AREF commands (one for each bank) can be posted to the LLDRAM II on consecutive cycles at periodic  
intervals of 1.95 s  
Rev: 1.04 11/2013  
48/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Read Data Valid Window for x18 Device  
tQHP1  
tQHP1  
QK0  
QK0  
DQ_Lower_0  
DQ_Lower_1  
DQ_Lower_2  
DQ_Lower_3  
DQ_Lower_4  
DQ_Lower_5  
DQ_Lower_6  
DQ_Lower_7  
DQ_Lower_8  
B"1"  
B"0"  
B"0"  
B"1"  
B"1"  
B"0"  
B"0"  
B"0"  
B"1"  
B"1"  
B"1"  
B"0"  
B"1"  
B"0"  
B"0"  
B"1"  
B"1"  
B"0"  
tQKQ0(Min)  
tQKQ0(Min)  
tQKQ0(Min)  
tQKQ0(Max)  
tQKQ0(Max)  
tDVW3  
X"155"  
tDVW3  
X"0AA"  
DQ_Lower  
X"ZZZ"  
X"ZZZ"  
tQHP1  
tQHP1  
QK1  
QK1  
DQ_Upper_9  
DQ_Upper_10  
DQ_Upper_11  
DQ_Upper_12  
DQ_Upper_13  
DQ_Upper_14  
DQ_Upper_15  
DQ_Upper_16  
DQ_Upper_17  
B"0"  
B"1"  
B"1"  
B"0"  
B"0"  
B"1"  
B"1"  
B"1"  
B"0"  
B"0"  
B"0"  
B"1"  
B"0"  
B"1"  
B"1"  
B"0"  
B"0"  
B"1"  
tQKQ1(Min)  
tQKQ1(Min)  
tQKQ1(Min)  
tQKQ1(Max)  
tQKQ0(Max)  
tDVW3  
X"0AA"  
tDVW3  
X"155"  
DQ_Upper  
X"ZZZ"  
X"ZZZ"  
Notes:  
1. tQHP is defined as the lesser of tQKH or tQKL.  
2. tQKQ0 is referenced to DQ0–DQ8.  
3. Minimum data valid window (tDVW) can be expressed as tQHP – (tQKQx [MAX] + |tQKQx [MIN]|).  
4. tQKQ1 is referenced to DQ9–DQ17.  
5. tQKQ takes into account the skew between any QKx and any DQ.  
Read Burst Timing  
tCKH  
tCKL  
tCK  
CK  
CK  
tCKQK  
tQKL  
tQKH  
QKx  
QKx  
tQKVLDmax  
tQKVLDmin  
QVLD  
tQKQmin  
Q1  
tQKQmax  
Q0  
tDVW  
Q3  
DQ  
Q2  
Rev: 1.04 11/2013  
49/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
LLDRAM II includes an IEEE 1149.1 (JTAG) serial boundary scan Test Access Port (TAP). JTAG ports are generally used to  
verify the connectivity of the device once it has been mounted on a Printed Circuit Board (PCB). The port operates in accordance  
with IEEE Standard 1149.1-2001 (JTAG). Because the ZQ pin is actually an analog output, to ensure proper boundary-scan testing  
of the ZQ pin, Mode Register Bit 8 (M8) needs to be set to 0 until the JTAG testing of the pin is complete. Note that upon power  
up, the default state of Mode Register Bit 8 (M8) is Low.  
Whenever the JTAG port is used prior to the initialization of the LLDRAM II device, such as when initial conectivity testing is  
conducted, it is critical that the CK and CK pins meet V  
or that CS be held High from power-up until testing begins. Failure  
ID(DC)  
to do so can result in inadvertent MRS commands being loaded and causing unexpected test results. Alternately a partial  
initialization can be conducted that consists of simply loading a single MRS command with desired MRS Register settings. JTAG  
testing may then begin as soon as tMRSC is satisfied. JTAG testing can be conducted after full initilization as well.  
The input signals of the test access port (TDI, TMS, and TCK) are referenced to the V as a supply, while the output driver of the  
DD  
TAP (TDO) is powered by V  
.
DDQ  
The JTAG test access port incorporates a standardTAP controller from which the Instruction Register, Boundary Scan Register,  
Bypass Register, and ID Code Register can be selected. Each of these functions of the TAP controller are described below.  
Disabling the JTAG Feature  
Use of the JTAG port is never required for RAM operation. To disable the TAP controller, TCK must be tied Low (V ) to prevent  
SS  
clocking of the device. TDI and TMS are internally pulled up and may be unconnected or they can be connected to V directly or  
DD  
through a pull-up resistor. TDO should be left unconnected. Upon power-up, the device will come up in a reset state, which will not  
interfere with the operation of the device.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK.  
All of the states in the TAP Controller State Diagram are entered through the serial input of the TMS pin. A “0” in the diagram  
represents a Low on the TMS pin during the rising edge of TCK while a “1” represents a High on TMS.  
Test Data-In (TDI)  
The TDI ball is used to serially input test instructions and data into the registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP Controller State Diagram. TDI is connected to the Most Significant Bit  
(MSB) of any register (see the TAP Controller Block Diagram).  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock test instructions and data out from the registers. The TDO output driver is only active  
during the Shift-IR and Shift-DR TAP controller states. In all other states, the TDO pin is in a High-Z state. The output changes on  
the falling edge of TCK. TDO is connected to the Least Significant Bit (LSB) of any register (see the TAP Controller Block  
Diagram).  
TAP Controller  
The TAP controller is a finite state machine that uses the state of the TMS pin at the rising edge of TCK to navigate through its  
various modes of operation. See the TAP Controller State Diagram. Each state is described in detail below.  
Rev: 1.04 11/2013  
50/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Test-Logic-Reset  
The test-logic-reset controller state is entered when TMS is held High for at least five consecutive rising edges of TCK. As long as  
TMS remains High, the TAP controller will remain in the test-logic-reset state. The test logic is inactive during this state.  
Run-Test/Idle  
The run-test/idle is a controller state in between scan operations. This state can be maintained by holding TMS Low. From here  
either the data register scan, or subsequently, the instruction register scan can be selected.  
Select-DR-Scan  
Select-DR-scan is a temporary controller state. All test data registers retain their previous state while here.  
Capture-DR  
The Capture-DR state is where the data is parallel-loaded into the test data registers. If the Boundary Scan Register is the currently  
selected register, then the data currently on the pins is latched into the test data registers.  
Shift-DR  
Data is shifted serially through the data register while in this state. As new data is input through the TDI pin, data is shifted out of  
the TDO pin.  
Exit1-DR, Pause-DR, and Exit2-DR  
The purpose of Exit1-DR is used to provide a path to return back to the run-test/idle state (through the Update-DR state). The  
Pause-DR state is entered when the shifting of data through the test registers needs to be suspended. When shifting is to reconvene,  
the controller enters the Exit2-DR state and then can re-enter the Shift-DR state.  
Update-DR  
When the EXTEST instruction is selected, there are latched parallel outputs of the boundary scan shift register that only change  
state during the Update-DR controller state.  
Instruction Register States  
The instruction register states of the TAP controller are similar to the data register states. The desired instruction is serially shifted  
into the instruction register during the Shift-IR state and is loaded during the Update-IR state.  
Loading Instruction Code and Shifting Out Data  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
8-bit Instruction Code  
TCK  
TMS  
TDI  
TAP State  
TDO  
Logic-Reset  
Idle  
Select-DR  
Select-IR  
Capture-IR  
Shift-IR  
Shift-IR  
Exit 1-IR  
Pause-IR  
Pause-IR  
Rev: 1.04 11/2013  
51/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Loading Instruction Code and Shifting Out Data (Continued)  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
n-bit Register between TDI and TDO  
TCK  
TMS  
TDI  
TAP State  
TDO  
Exit 2-IR  
Update-IR  
Select-DR  
Capture-DR  
Shift-DR  
Shift-DR  
Shift-DR  
Exit 1-DR  
Update-DR  
Idle  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Select IR-scan  
Select DR-scan  
Run Test Idle  
0
0
0
1
1
Capture-IR  
Capture-DR  
0
0
Shift-IR  
Shift-DR  
0
0
1
1
1
1
Exit1-IR  
Exit1-DR  
0
0
Pause-IR  
Pause-DR  
0
0
1
1
0
0
Exit2-IR  
Exit2-DR  
1
1
Update-IR  
Update-DR  
1
0
1
0
Rev: 1.04 11/2013  
52/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
TAP Controller Block Diagram  
0
Bypass Regsiter  
7
6
5
4
3
2
1
0
0
Instruction Regsiter  
Selection  
circuitry  
Selection  
circuitry  
TDO  
TDI  
31 30 29  
.
.
.
2
1
Identification Regsiter  
x1  
.
.
.
.
.
2
1
0
Boundary Scan Regsiter  
TCK  
TMS  
TAP Controller  
Note:  
x= 112 for all configurations  
Performing a TAP RESET  
A reset is performed by forcing TMS High (V  
) for five rising edges of TCK. This RESET does not affect the operation of the  
DDQ  
LLDRAM II and may be performed while the LLDRAM II is operating.  
At power-up, the TAP is reset internally to ensure that TDO comes up in a High-Z state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and allow data to be scanned into and out of the LLDRAM II test  
circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK.  
Instruction Register  
Eight-bit instructions can be serially loaded into the instruction register. This register is loaded during the Update-IR state of the  
TAP controller. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described in the previous section.  
When the TAP controller is in the Capture-IR state, the two LSBs are loaded with a binary “01” pattern to allow for fault isolation  
of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is  
a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the LLDRAM II with  
minimal delay. The bypass register is set Low (V ) when the BYPASS instruction is executed.  
SS  
Rev: 1.04 11/2013  
53/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Boundary Scan Register  
The Boundary Scan Register is connected to all the input and bidirectional balls on the LLDRAM II. Several bits are also included  
in the scan register for reserved balls. The LLDRAM II has a 113-bit register.  
The Boundary Scan Register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state.  
The Boundary Scan Register table shows the order in which the bits are connected. Each bit corresponds to one of the balls on the  
LLDRAM II package. The MSB of the register is connected to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code during the capture-DR state when the IDCODE command is loaded in  
the instruction register. The IDCODE is hardwired into the LLDRAM II and can be shifted out when the TAP controller is in the  
shift-DR state. The ID register has a vendor code and other information described in the table below.  
Identification Register Definitions  
Instruction Field  
Bit Size  
Bit Size  
ab = die revision  
cd = 00 for x9, 01 for x18, 10 for x36  
Revision number (31:28)  
abcd  
def = 000 for 288Mb, 001 for 576Mb  
i = 0 for common I/O, 1 for separate I/O  
jk = 01 for LLDRAM II  
Device ID (27:12)  
00jkidef10100111  
GSI JEDEC ID code (11:1)  
01011011001  
1
Allows unique identification of LLDRAM II vendor  
Indicates the presence of an ID register  
ID register presence indicator (0)  
TAP Instruction Set  
Overview  
Many different instructions (256) are possible with the 8-bit instruction register. All combinations used are listed in the Instruction  
Codes table. These six instructions are described in detail below. The remaining instructions are reserved and should not be used.  
The TAP controller used in this LLDRAM II is fully compliant to the 1149.1 convention.  
Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the  
instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary Scan Register cells at output  
balls are used to apply a test vector, while those at input balls capture test results. Typically, the first test vector to be applied using  
the EXTEST instruction will be shifted into the Boundary Scan Register using the PRELOAD instruction. Thus, during the  
Update-IR state of EXTEST, the output driver is turned on, and the PRELOAD data is driven onto the output balls.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the  
TAP controller is given a test logic reset state.  
Rev: 1.04 11/2013  
54/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
High-Z  
The High-Z instruction places all LLDRAM II outputs into a High-Z state, and causes the bypass register to be connected between  
TDI and TDO when the TAP Controller is in the Shift DR state.  
CLAMP  
When the CLAMP instruction is loaded into the instruction register, the data driven by the output balls are determined from the  
values held in the Boundary Scan Register. Additionally, it causes the bypass register to be connected between TDI and TDO  
when the TAP Controller is in the Shift DR state.  
SAMPLE/PRELOAD  
When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is captured in the Boundary Scan Register.  
The user must be aware that the TAP controller clock can only operate at a frequency up to 50 MHz, while the LLDRAM II clock  
operates significantly faster. Because there is a large difference between the clock frequencies, it is possible that during the  
Capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition  
(metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results  
may not be possible.  
To ensure that the Boundary Scan Register will capture the correct value of a signal, the LLDRAM II signal must be stabilized long  
enough to meet the TAP controller’s capture setup plus hold time (tCS + tCH). The LLDRAM II clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the value of the CK and CK captured in the Boundary Scan Register.  
Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the Boundary  
Scan Register between the TDI and TDO balls.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is  
placed between TDI and TDO. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple  
devices are connected together on a board.  
Reserved for Future Use  
The remaining instructions are not implemented but are reserved for future use. Do not use these instructions.  
TAP Timing  
T0  
T1  
T2  
T3  
T4  
T5  
tTLTH  
tTHTL  
tMVTH  
tDVTH  
tTHTH  
Test Clock (TCK)  
Test Mode Select (TMS)  
Test Data-In (TDI)  
tTHMX  
tTHDX  
tTLOX  
tTLOV  
Test Data-Out (TDO)  
Rev: 1.04 11/2013  
55/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
TAP Input AC Logic Levels  
Description  
Symbol  
Min  
+ 0.3  
Max  
Units  
V
V
Input High (logic 1) Voltage  
V
V
IH  
REF  
V
V
– 0.3  
REF  
Input Low (logic 0) Voltage  
IL  
TAP AC Electrical Characteristics  
Description  
Symbol  
Min  
Max  
Units  
Clock  
Clock Cycle Time  
Clock Frequency  
Clock High Time  
Clock Low Time  
tTHTH  
tTF  
20  
10  
10  
50  
ns  
MHz  
ns  
tTHTL  
tTLTH  
ns  
TDI/TDO Times  
TCK Low to TDO Unknown  
TCK Low to TDO Valid  
TDI Valid to TCK High  
TCK High to TDI Invalid  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
10  
ns  
ns  
ns  
ns  
5
5
Setup Times  
TMS Setup  
tMVTH  
tCS  
5
ns  
ns  
Capture Setup  
5
Hold Times  
TMS Setup  
tTHMX  
tCH  
5
5
ns  
ns  
Capture Setup  
Note:  
tCS and tCH refer to the set up and hold time requirements of latching data from the Boundary Scan Register.  
Rev: 1.04 11/2013  
56/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
TAP DC Electrical Characteristics and Operating Conditions  
Description  
Condition  
Symbol  
Min  
+ 0.15  
Max  
+ 0.3  
Units  
Notes  
1, 2  
V
V
V
Input High (logic 1) Voltage  
Input High (logic 0) Voltage  
V
V
IH  
REF  
DD  
V
V
– 0.3  
V
– 0.15  
REF  
1, 2  
IL  
SS  
Output disabled,  
I
Input Leakage Current  
–5.0  
5.0  
  
LI  
0 VV V  
IN  
DDQ  
0 VV V  
I
Output Leakage Current  
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
–5.0  
5.0  
0.2  
0.4  
  
V
1
IN  
DD  
LO  
I
= 100   
V
V
V
1
2
1
OLC  
OL  
OL  
I
= 2mA  
V
1
OLT  
I  
= 100   
V
– 0.2  
V
1
OHC  
OH  
OH  
DDQ  
DDQ  
I = 2mA  
V
2
V
– 0.4  
V
1
OHT  
Notes:  
1. All voltages referenced to V (GND).  
SS  
2. Overshoot = V  
V + 0.7 V for t tTHTH/2; undershoot = V  
– 0.5 V for t tTHTH/2; during normal operation, V must  
DDQ  
IH(AC)  
DD  
IL(AC)  
not exceed V  
DD.  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction  
Bypass  
8
1
ID  
32  
113  
Boundary Scan  
JTAG TAP Instruction Codes  
Instruction  
Code  
Description  
Captures I/O ring contents; Places the Boundary Scan Register between TDI and TDO. Data  
driven by output balls are determined from values held in the Boundary Scan Register.  
EXTEST  
0000 0000  
Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect LLDRAM II operations.  
IDCODE  
SAMPLE/PRELOAD  
CLAMP  
0010 0001  
0000 0101  
0000 0111  
0000 0011  
1111 1111  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. This  
operation does not affect LLDRAM II operations.  
Selects the bypass register to be connected between TDI and TDO. Data driven by output balls are  
determined from values held in the Boundary Scan Register.  
Selects the bypass register to be connected between TDI and TDO. All outputs are forced into  
High-Z.  
HIGH-Z  
Places Bypass Register between TDI and TDO.This operation does not affect LLDRAM II  
operations.  
BYPASS  
Rev: 1.04 11/2013  
57/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Boundary Scan Exit Order  
Bit #  
1
Ball  
K1  
Bit #  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Ball  
R11  
R11  
P11  
P11  
P10  
P10  
N11  
N11  
N10  
N10  
P12  
N12  
M11  
M10  
M12  
L12  
L11  
Bit #  
77  
Ball  
C11  
C11  
C10  
C10  
B11  
B11  
B10  
B10  
B3  
2
K2  
78  
3
L2  
79  
4
L1  
80  
5
M1  
M3  
M2  
N1  
P1  
81  
6
82  
7
83  
8
84  
9
85  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
N3  
N3  
N2  
N2  
P3  
86  
B3  
87  
B2  
88  
B2  
89  
C3  
C3  
C2  
C2  
D3  
D3  
D2  
D2  
E2  
90  
P3  
91  
P2  
92  
P2  
93  
R2  
R3  
T2  
K11  
K12  
J12  
J11  
94  
95  
96  
T2  
97  
T3  
H11  
H12  
G12  
G10  
G11  
E12  
F12  
F10  
F10  
F11  
F11  
E10  
E10  
E11  
E11  
D11  
D10  
98  
E2  
T3  
99  
E3  
U2  
U2  
U3  
U3  
V2  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
E3  
F2  
F2  
F3  
F3  
U10  
U10  
U11  
U11  
T10  
T10  
T11  
T11  
R10  
R10  
E1  
F1  
G2  
G3  
G1  
H1  
H2  
J2  
J1  
Boundary Scan (BSDL Files)  
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications  
Engineering Department at: apps@gsitechnology.com.  
Rev: 1.04 11/2013  
58/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Package Dimensions—144-Bump BGA (Package L)  
A1  
1
2
3
4
5
6 7 8 9 10 11 12  
A
B
C
D
E
F
G
H
J
10.60 CTR.  
10° TYP.  
0.73±0.1  
K
L
M
N
P
SEATING PLANE  
0.012  
A
A
R
T
U
V
8.80  
Ø0.51 (144x)  
A1  
0.80 TYP.  
0.49±0.05  
12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
18.1 CTR  
K
L
M
N
P
R
T
U
V
1.20 MAX  
0.8 TYP  
0.34 MIN  
8.8 CTR  
11.00±0.10  
Note: All dimensions in millimeters.  
Rev: 1.04 11/2013  
59/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Ordering Information for GSI LLDRAM IIs  
Speed  
(tCK/tRC)  
1
2
Org  
Type  
Package  
Part Number  
T
64M x 9  
64M x 9  
64M x 9  
64M x 9  
32M x 18  
32M x 18  
32M x 18  
32M x 18  
16M x 36  
16M x 36  
16M x 36  
16M x 36  
64M x 9  
64M x 9  
64M x 9  
64M x 9  
32M x 18  
32M x 18  
32M x 18  
32M x 18  
16M x 36  
16M x 36  
16M x 36  
16M x 36  
64M x 9  
64M x 9  
64M x 9  
GS4576C09L-18  
GS4576C09L-24  
GS4576C09L-25  
GS4576C09L-33  
GS4576C18L-18  
GS4576C18L-24  
GS4576C18L-25  
GS4576C18L-33  
GS4576C36L-18  
GS4576C36L-24  
GS4576C36L-25  
GS4576C36L-33  
GS4576C09GL-18  
GS4576C09GL-24  
GS4576C09GL-25  
GS4576C09GL-33  
GS4576C18GL-18  
GS4576C18GL-24  
GS4576C18GL-25  
GS4576C18GL-33  
GS4576C36GL-18  
GS4576C36GL-24  
GS4576C36GL-25  
GS4576C36GL-33  
GS4576C09L-18I  
GS4576C09L-24I  
GS4576C09L-25I  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
144-ball BGA  
144-ball BGA  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
I
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
144-ball BGA  
144-ball BGA  
I
144-ball BGA  
I
Note:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS4576C09-533T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.04 11/2013  
60/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
Ordering Information for GSI LLDRAM IIs (Continued)  
Speed  
(tCK/tRC)  
1
2
Org  
Type  
Package  
Part Number  
T
64M x 9  
32M x 18  
32M x 18  
32M x 18  
32M x 18  
16M x 36  
16M x 36  
16M x 36  
16M x 36  
64M x 9  
GS4576C09L-33I  
GS4576C18L-18I  
GS4576C18L-24I  
GS4576C18L-25I  
GS4576C18L-33I  
GS4576C36L-18I  
GS4576C36L-24I  
GS4576C36L-25I  
GS4576C36L-33I  
GS4576C09GL-18I  
GS4576C09GL-24I  
GS4576C09GL-25I  
GS4576C09GL-33I  
GS4576C18GL-18I  
GS4576C18GL-24  
GS4576C18GL-25I  
GS4576C18GL-33I  
GS4576C36GL-18I  
GS4576C36GL-24I  
GS4576C36GL-25I  
GS4576C36GL-33I  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
CIO LLDRAM II  
144-ball BGA  
144-ball BGA  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
533/15  
400/15  
400/20  
300/20  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
RoHS-compliant 144-ball BGA  
64M x 9  
64M x 9  
64M x 9  
32M x 18  
32M x 18  
32M x 18  
32M x 18  
16M x 36  
16M x 36  
16M x 36  
16M x 36  
Note:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS4576C09-533T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.04 11/2013  
61/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS4576C09/18/36L  
576Mb LLDRAM II Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
• Revised Timing Diagrams  
4576Cxx_r1  
• Modified Cycle Time and Read/Write Latency tables (pg. 19,  
4576Cxx_r1.00a  
31.)  
• Updated Operating Conditions (pg. 46), AC Electrical  
Characteristics (pg. 48)  
• Changed FBGA references to BGA (including diagrams)  
4576Cxx_r1.00b  
4576Cxx_r1.01  
• Various changes to prepare for public release  
• Added IDD Op Conditions  
• (Rev1.02b: corrected mechanical drawing)  
• (Rev1.02c: Editorial updates)  
• (Rev1.02d: Updated NOP commands from 3000 to 2048)  
• (Rev1.02e: Added Termal Impedance numbers for 4-layer  
substrate)  
4576Cxx_r1.02  
• (Rev1.02f: Changed all V  
references to V  
)
SSQ  
SS  
• Changed DLL Reset to 1024 cycles (page 10)  
• Corrected typos/wording errors in TAP section  
• (Rev1.03a: Changed NOP time from 2048 to 1024)  
4576Cxx_r1.03  
4576Cxx_r1.04  
• Updated to reflect MP status  
Rev: 1.04 11/2013  
62/62  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
GSI Technology:  
GS4576C36GL-18I GS4576C36GL-25I GS4576C18GL-24I GS4576C18GL-25I GS4576C36GL-24I  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY